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Abstract 

Halloysite nanotubes (HNTs) are considered as ideal materials for biotechnological and 

medical applications.  An important feature of halloysite is that it has a different surface 

chemistry on the inner and outer sides of the tubes.  This property means that 

negatively-charged molecules can be selectively loaded inside the halloysite nanoscale 

its lumen.  Loaded HNTs can be used for the controlled or sustained release of proteins, 

drugs, bioactive molecules and other agents.  

We studied the interaction between HNTs and bovine serum albumin, α lactalbumin and 

β –lactoglobulin loaded into HTNs using Fourier Transform Infrared Spectroscopy  and 

Thermogravimetry.  These techniques enabled us to study the protein conformation and 

thermal stability, respectively, and to estimate the amount of protein loaded into the 

HNTs.  TEM images confirmed the loading of proteins into HTNs. 

 

Keywords: Halloysite nanotubes (HNTs); proteins; Fourier Transform Infrared 

Spectroscopy (FTIR); Thermogravimetry (TG) 
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1 Introduction  

Materials based on nanoclays have attracted great interest because their properties and 

morphologies can be tuned. Halloysite nanotubes (HNTs) are newly emerging clays 

with unique features and innovative uses [15].  HNTs are considered to be “green”, i.e. 

supposedly not hazardous for the environment, cheap and abundantly available in 

natural deposits [36].  

Due to the variety of crystallization conditions and geological occurrence, HNTs adopt 

various morphologies such as tubular, spheroidal and plate-like particles, of which the 

tubular structure is the most common and valuable [23].  Dried halloysite is a roll of 15–

20 alumosilicate sheets with a packing periodicity of 0.72 nm with hollow lumens.  

Dimensions of the halloysite tubes vary depending on the deposit.  Their outside 

diameter ranges between 50–100 nm, and the diameter of the internal lumen between 

10–20 nm [36]. Due to their high length/diameter (L/D) ratio and superior high-

temperature-resistant property, HNTs have been exploited to produce high-quality 

ceramics. Scientists and engineers have recently discovered and developed a large 

range of new applications for this material [23]. 

An important feature of Halloysite is its different surface chemistry at the inner and outer 

sides of the tubes; there is a silica layer on the outer surface of tube, while the alumina 

is on the inner (lumen) surface.  Aluminium and silicon oxides have different ionization 

properties and surface charges. This is evident from the zeta-potentials of their colloids 

in water.  Alumina has a positive charge of up to pH 8.5, while silica is negative above 

pH 1.5 [66].  Halloysite entraps molecules in various ways including adsorption to the 

external and internal walls of the tubes, intercalation within the interlayer space and, 

most importantly, by loading into lumen [36].  Halloysite can be selectively loaded with 

negatively-charged molecules inside the halloysite nanoscale lumen [36], from simple 
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organic and inorganic molecules to high molecular weight polymers, biologically active 

substances and biomolecules, including drugs, cosmetic additives, antiseptics, 

antibacterials, DNA, enzymes, and proteins [1, 2, 4, 33, 38, 56, 57, 62, 65, 66, 69].   

HNTs are ideal biocompatible substrates for the controlled or sustained release of drugs 

or bioactive molecules in medical applications, additives for paints and sealants, 

lubricants, herbicides, pest repellents, household, food and personal products, 

cosmetics, and other agents [23].  An increasing number of studies have focused on the 

fabrication of polymer/HNT nanocomposites [23]. New materials based on HTNs have 

several unique advantages because they are low cost materials derived from natural 

resources and are environmentally friendly [67].    

Studies on the thermal decomposition of natural Halloysite have shown that Halloysite 

loses the interlayer water and undergoes dehydroxilation below 600°C. However, 

surprisingly, the characteristic tubular morphology of halloysite is maintained up to 900 

°C, even though the crystalline structure is destroyed leading to an amorphous structure 

[25, 30, 32, 46].  

We studied the interaction of bovine serum albumin (BSA), alpha lactalbumin (α-Lac) 

and beta lactoglobulin (β-Lg) with the inner surface of HNTs using Fourier transform 

infrared spectroscopy (FTIR) and thermogravimetry (TG). FTIR spectroscopy is a 

valuable tool for investigating the conformational changes induced in protein secondary 

structures by their interaction with surfaces [7-9]. 

In this study we selected BSA, β-Lg and α-Lac as model for globular proteins because 

their structures and physicochemical properties are well characterized. Table 1 

summarizes the physico-chemical properties of the three proteins. 
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Protein MW 

(Da) 

Isoelectric 

point (IEP) 

Compactness Dimensions 

(nm) 

Net 

charge at 

pH 7 

Zeta 

potential 

(mV) 

Ref. 

BSA 68,000 4.9 Soft 9.0×6.0×5.0 Negative -14.6 [50] 

β-LG 18,300 5.1 Hard 6.5×3.6×3.6 Negative -19.5 [34] 

α-LA 14,200 4.5 Soft 2.3×2.6×4.0 Negative -7.3 [44] 

 

Thanks to their biological abundance, these proteins are a model environment for 

potential interactions of engineered nanomaterials with biomolecules in the context of 

food and food processing. Moreover, these proteins are among the most studies in the 

framework of protein-nanoparticle interactions, thus constituting a reference for these 

kind of investigations.  Serum albumin is the most abundant protein in mammalian 

plasma and BSA is the most studied serum protein due to its wide availability, low cost 

and high structural resemblance with human serum albumin. The most important 

property of BSA is its ability to bind reversibly to an incredible variety of ligands and it is 

the principal carrier of fatty acids that are otherwise insoluble in circulating plasma.   

β-LG is also one of the most extensively studied proteins due to its high abundance in 

cow’s milk. β-Lg is believed to function as transporters of some hydrophobic molecules 

such as retinol and long chain fatty acid molecules across the intestinal membrane.  

 We successfully applied the combined FTIR and TG approach to study the interaction 

of proteins with inorganic salts [24, 27, 43] and in the literature, these techniques have 

been applied to study protein-clay interactions [48].  Various spectroscopic techniques 

(NMR, fluorescence, and circular dichroism) are currently used to study protein 

structural conformations in solution. FTIR spectroscopy is best suited for comparing 

secondary structures for proteins in solution or adsorbed on a solid support. 
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2 Experimental  

2.1 Materials and solutions 

BSA (A-8531, 05470), α-Lac Type (L6010, Type III, calcium depleted) and β-Lg (L 3908, 

Types A and B) were purchased from Aldrich–Sigma Chemical Co and were used 

without further purification for all the experiments.  Halloysite nanotubes were 

purchased from Sigma Aldrich (685445) and used without further purification.   

Loading procedure.  The following loading procedure was selected on the basis of the 

literature data [1-3, 33, 39, 57] in order to get the maximum amount of proteins loaded 

into HTNs.  Solutions of BSA, α-Lac and β-Lg (2 mg/mL) were prepared by dissolving 

the lyophilized protein in ultrapure water. HNTs were added to the proteins solution in 

order to have HNTs/protein=1 weight ratio.  Each protein suspension was magnetically 

stirred for 24 hours at room temperature (21 ± 1°C) and then divided into two aliquots. 

One aliquot was vortexed for 5 min and centrifuged at 4000 rpm for 10 minutes. Two 

protocols were then followed:  in the first the residue was washed once with bidistilled 

water; in the second it was washed three times in order to completely remove the 

excess protein. The solid residue was left to dry under vacuum in the desiccator for two 

days (10-3 mbar).  The dried residues were analysed by TG and ATR-FTIR.  The aim 

was to highlight whether the protein had been adsorbed, or merely deposited on the 

surface of the nanotubes, and also to study the related TG signals.  

The other aliquot was subjected to three vacuum cycles (1 hour vacuum + 1 hour 

magnetic stirring three times; membrane vacuum pump 0.0148 atm) then vortexed for 5 

min, centrifuged at 4000 rpm for 10 minutes and washed three times (loading 
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procedure).  The solution was left to dry under vacuum in the desiccator for two days. 

The dried residues were analysed by TG and ATR-FTIR.   

A “blank” of the loading procedure (the same described above performed only on 

proteins without HTNs) allowed us to distinguish between the conformational changes 

due to the procedure with or without HTNs. 

Ultrapure water was prepared with an Elga Purelab-UV system (Veolia Environment, 

Paris, France).  

 

2.2 Equipment and measurements 

2.2.1 Fourier transform infrared spectroscopy (FTIR) 

FTIR spectra were recorded using a Perkin-Elmer Spectrum One FTIR 

spectrophotometer, equipped with a universal ATR accessory and a TGS detector.  

Measurements were performed in attenuated total reflectance (ATR) mode.  In order to 

obtain a suitable S/N ratio, 128 interferograms were recorded averaged and Fourier-

transformed to produce a spectrum with a nominal resolution of 4 cm−1.  An in-house 

LabVIEW program for peak fitting [11, 12] was employed to run the deconvolution of the 

Amide I band. 

The LabVIEW program for peak fitting was based on a previous work [11, 12].  Prior to 

curve processing, a straight baseline passing through the ordinates at 1800 and 1480 

cm-1 was subtracted, and spectra were normalized in the 1700 - 1600 cm-1 region. This 

approach was adopted in order to avoid artefacts in absorptions near the limits of the 

region examined (1700 - 1600 cm-1).  The second derivatives of the amide I band of the 

spectra examined (1700 - 1600 cm-1 region) were then analysed in order to determine 

the starting data (number and position of Gaussian components) required for the 

deconvolution procedure.   
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The choice of the amide I band for structural analysis is due to the very low contribution 

of the amino acid side chain absorptions present in this region [18], and to its higher 

intensity with respect to other amide modes.  On the basis of the infrared assignment of 

amide components, assuming that the extinction coefficient is the same for all the 

secondary structures, the secondary structure composition can be obtained from the 

FTIR spectra.  The percentage values of the various secondary structures were 

estimated by expressing the amplitude value of the bands assigned to each of these 

structures as a fraction of the total sum of the amplitudes of the Amide I components.  

The precision of the quantitative determination depends on the amounts of the 

structures in the protein. The coefficient of variation is < 10% for values of amide I 

component > 15%.  While the general validity of the above assumption regarding the 

extinction coefficients remains to be tested, the good correlation found between the 

secondary structure results obtained by FTIR approaches and x-ray crystallography 

indicated that this is a reasonable assumption [11]. 

The spectroscopic estimation of the amount of protein adsorbed onto HTNs was 

performed on the basis of the Amide I optical density of the FTIR non-normalized 

spectrum recorded before and after rinsing to remove the excess BSA. 

The deconvolution procedure was applied to the Amide I band of the FTIR spectra of 

proteins after rinsing in order to study the conformational changes of proteins adsorbed 

onto the clay.  

 

2.2.2 Thermogravimetry (TG) 

A TA Instruments Thermobalance model Q5000IR was used.  Measurements were 

performed at a rate of 10°C/min, from 30 °C to 900°C under air flow (25 mL/min).  The 

amount of samples in each TG measurement varied between 2 and 4 mg. Each 
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experiment was repeated three times.  TG data were employed to estimate the yield 

of loading of BSA, α-Lac and β-Lg into HNTs using the following equation:  

 

where RHNTs is the residual mass of HNTs, Rs is the residual mass of the HNTs/protein 

suspension, and RB is the residual mass of protein blank, according to Odlyha et al. 

[42].  

 

 

2.2.3. Transmission electron microscopy (TEM). 

The size and morphology of the HTNs before and after loading with proteins were 

examined by transmission electron microscopy (TEM). The powders were suspended in 

2 ml of isopropanol and a few drops of the suspensions were deposited onto copper 

grids. The solvent was then let to evaporate at room temperature. Images were 

acquired using a CM12 Philips transmission electron microscope equipped with a 

microanalysis Edax and LaB6 cathode. 

2.2.4 Dynamic  light scattering (DLS). 

Dynamic  Light Scattering (DLS) measurements of native BSA in water were performed 

using a Zetasizer Nano S (ZEN 1600) apparatus Malvern Instruments Ltd UK, equipped 

with a 4.0 mW laser (He-Ne, 632.8 nm).  Scattering angle detection (173°) was 

measured by an avalanche photodiode.  The BSA solutions were placed in a 

polystyrene cuvettes and held at 20 °C during analysis. Each sample was analized five 

times with 10-20 sub runs of ten seconds. 
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3 Results and discussion 

3.1 Thermogravimetric study 

Figures 1, 2 and 3 report the thermogravimetric curves (TG, panel A) and their 

corresponding derivatives (DTG, panel B) of pristine HNTs, lyophilized protein and 

protein loaded HNTs for BSA, α-Lac and β-Lg, respectively. Table 2 shows the 

experimental temperatures of and the percentage mass loss of the thermal degradation 

steps of pristine HNTs, lyophilized protein and protein loaded HNTs for BSA, α-Lac and 

β-Lg.  

We chose as reference the thermogram of the lyophilized protein because we verified 

that in the absence of HTNs (blank) the thermal profiles of BSA, α-Lac and β-Lg did not 

change with protein treatments (magnetic stirring, vacuum cycles, drying). In addition, 

when the HTNs/protein mixtures were washed three times, the TG curves showed only 

the peaks due to HNTs thermal degradation (data not shown for brevity), indicating that 

the adsorbed proteins had been completely removed from the surface of the nanotubes.  

This indicates that the proteins interact only weakly (or do not interact at all) with the 

outer surface of the nanotubes. This result is important in order to confirm that any 

changes of the protein TG curves observed in the presence of HNTs are not due to the 

adsorption/loading procedures but are directly related to the interactions of the protein 

with the internal surfaces of the HNTs.  
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Figure 1.  TG curves (panel A) and their corresponding DTG curves (panel B) of 

pristine HNTs (black line), lyophilized BSA (blue line), BSA loaded HNTs (red line) 

recorded under air flow at 10°C/min. 

Figure 2.  TG curves (panel A) and their corresponding TDG curves (panel B) of 

pristine HNTs (black line), lyophilized BSA (blue line), BSA loaded HNTs (red line) 

recorded under air flow at 10°C/min. 
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Figure 3.  TG curves (panel A) and their corresponding DTG curves (panel B) of 

pristine HNTs (black line), lyophilized BSA (blue line), BSA loaded HNTs (red line) 

recorded under air flow at 10°C/min. 

 

 

Table 2. Experimental temperatures of the thermal degradation steps of HNTs, pure 

proteins and proteins loaded into the HNTs. 

 

Step  

number 

 

Temperature of the step (mass loss) 

HNTs BSA   BSA/ 
HNTs   α-Lac  α-Lac/ 

HNTs  β-Lg  β-Lg/ 
HNTs 

1  
30 °C 

(3%) 

40°C 

(1.4%) 

40°C 

(2.2%) 

38°C 

(7.0%) 

36°C 

(2.9%) 

39°C 

(6.2%) 

35°C 

(2.1%) 

2 
250°C 

(2.5%)  

250°C 

(2.1%)  

250°C 

(1.9%) 
- 

250°C 

(2.0%) 

3  - 
320°Ca 

(58.2%) 

335°C 

(3.0%) 

300°C a 

(52.8%) 

332°C 

(3.4%) 

308°C a  

(59.2%) 

331°C 

(2.4%) 
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4  
468°C 

(12.3%) 
- 

469°C 

(12.9%) 

478°C 

(20.2%) 

477°C 

(13.0%) 

490°C 

(24.9%) 

468°C 

(12.8%) 

5 
- 

575° C b 

(38.2%) - 

558°C 

(15.8%) - 

583°C 

(7.9%) - 

Residue  
at  800°C 

82.2% 2.2% 79.8% 4.2% 78.8% 1.8% 80.7% 

a Total mass loss in the 200-400°C temperature range. 

a Total mass loss in the 450-650°C temperature range. 

 

HNTs undergo their three characteristic steps of mass loss due to the release of water 

physically adsorbed into the surface (below 50°C), the release of interlayer water 

molecules bound by hydrogen bonds (250°C), and the dehydroxylation process (470°C) 

[17, 28, 30]. 

 

Beside moisture evaporation (below 50°C), the decomposition of proteins under air flow 

shows a broad mass loss (more than 50%) with a maximum at 320°C for BSA, 300°C 

for α-Lac, and 308°C for β-Lg. There is also a shoulder at 245 (BSA and α-Lac), likely 

due to the polypeptide chain thermal decomposition of proteins [24, 26, 31]. In addition, 

BSA shows another broad mass loss (38%) in the range 450-650°C, while α-Lac and for 

β-Lg decompose into two steps at about 480 °C (20.2%) and 558 °C (15.8%) (α-Lac), 

and at 490°C (24.9%) and 580 °C (7.9%) (β-Lg).  

Since it is known that BSA, (as well as ovalbumin), α-Lac and β-Lg may form dimers, 

oligomers and aggregated species [14, 60], the mass losses at 480 °C (α-Lac), and at 

490°C (β-Lg) can be related to the decomposition of aggregated portions of proteins,  

while the sharp mass loss above 550°C (α-Lac and β-Lg) is likely related to the 

carbonizing and ashing of the hard residues of the proteins [26]. In the case of BSA, the 
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broad mass loss in the range 450-650°C includes both the decomposition of aggregates 

and the carbonizing and ashing of the hard residues of the proteins. The molecular 

weight of aggregates is obviously different and depends on the molecular weight and 

size of proteins: BSA MW 69.000 Da, 140Å x 40Å x 40Å [70], α-Lac MW 14.000 Da, 

23Å x 26Å x 40Å [5] and β-Lg MW 18.000 Da, 3.8Å x 5Å x 5.7Å [55]. 

 

After the loading process, the TG curve of the HNTs/protein samples shows i) a 15-

20°C shift toward higher temperatures of the protein mass loss at about 300°C, ii) a 

mass loss with a maximum at about 470°C due to both HNT and proteins 

decomposition, and iii) the disappearance of the protein mass loss at above 550 °C 

(Figure 1 and Table 2).  

The 15-20°C shift toward higher temperatures of the protein mass loss at about 300°C 

can be ascribed to HNT/proteins interactions, but it seems too small to hypothesize a 

chemisorption of the protein on the inner HNT surface. It is likely due to the changes in 

the conformational structure of the proteins. There may also be small delay in the heat 

transmission due to the insulating properties of clays.   

The conformational study described in the next section highlights that after the loading 

into the HTNs, the interaction of BSA and α-Lac with the inner surface of the HNTs 

leads to an increase in the beta structures with a consequent increase in their thermal 

stability.  The interaction of β-Lg with the inner surface of the HNTs leads to an increase 

in the helix.  

To explain the HNT/protein TG curve above 400°C, we can hypothesize that HTNs act 

as molecular sieves: only single protein molecules and small aggregates are allowed to 

be loaded into HTN lumina.  The aggregates of α-Lac, β-Lg and BSA likely decompose 

in the same temperature range as the HNTs dehydroxylation. The higher molecular 
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weight aggregates of BSA are not present inside the HNTs and the ashing of the hard 

residues of the proteins does not occur for the proteins that are inside HNTs. In this 

case the formula reported in the Experimental underestimates the loading percentage of 

the HNTs.  This formula, in fact, gives correct results if all the organic part of the sample 

is combusted in the experimental temperature range and the residue is only due to the 

inorganic material.  

The loading yields obtained by using the values of residues at 800°C and the equation 

reported in the experimental section are of 3.2% for BSA, 4.1% for α-Lac and 1.1% for 

β-Lg; however these values may have been underestimated by up to 50%. 

As an alternative approach, we calculated the weight percentage of protein loaded into 

HNTs by FTIR spectra following the equation: 

% 𝐩𝐫𝐨𝐭𝐞𝐢𝐧 𝐚𝐝𝐬𝐨𝐫𝐛𝐞𝐝 = (
𝐎𝐃𝐫
𝐎𝐃𝐧𝐫

∗  𝒎𝒈 𝒐𝒇 𝒑𝒓𝒐𝒕𝒆𝒊𝒏/ 𝒎𝒈 𝒐𝒇 𝒕𝒐𝒕𝒂𝒍 𝒔𝒂𝒎𝒑𝒍𝒆) ∗ 𝟏𝟎𝟎 

 

where ODr is the optical density of the Amide I band of the FTIR spectrum obtained on 

the dried film from protein/HTNs mixture after rinsing the protein excess, and ODnr is 

the optical density of the Amide I band of the FTIR spectrum obtained on the dried film 

from protein/HTNs mixture without rinsing the protein excess. We obtained a 12% 

loading for BSA, 8% for α-Lac, and 5% for β-Lg, in line with the best literature results 

[37, 63]. 

 

3.2 ATR-FTIR study 

ATR-FTIR spectroscopy was used to study the protein conformation.  

Figure 4 shows the representative FTIR spectra of lyophilized BSA, BSA treated with 

the loading procedure, and HNTs loaded with the protein and the FTIR spectrum of 
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loaded HNTs in the amide band region (1750-1450 cm-1). The FTIR spectra of α-Lac 

and β-Lg are shown in the Supporting Informations. 
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Figure 4. FTIR spectra of lyophilized BSA, BSA treated with the loading procedure, and 

HNTs loaded with BSA (inlet FTIR spectrum in the 1750–1450 cm-1 region). 
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The two characteristic bands of HNTs at 3696 and 3621 cm-1 are due to the stretching 

vibration of O–H in the inner-surface hydroxyl groups of Al–O–H. The absorption peak 

at 910 cm-1 is likely due to the deformation vibration of the above hydroxyl groups. The 

presence of the interlayer or adsorbed water is indicated by the stretching vibration at 

3450 cm-1. The spectrum of BSA has the characteristic bands of amide A (3282 cm-1), 

amide B (3056 cm-1), amide I, II, and III (respectively 1642, 1518 and 1234 cm-1). No 

peaks of HNTs and Kao were present in the 1700–1250 cm-1 range. 

The curve-fitting method described in the experimental section was applied to the 

deconvolution of the amide I band of the FTIR spectra in order to get detailed 

information on the secondary structure of BSA, α-Lac and β-Lg loaded into the HTNs.  

The results were compared to the secondary structures of lyophilized protein powders 

purchased from Sigma-Aldrich and of proteins prepared following the blank procedure, 

as described in the Experimental.  

Figure 5 shows a representative plot of the curve fitting of the Amide I band of 

lyophilized BSA, BSA treated with the loading procedure (blank), and HNTs loaded with 

BSA. 

Tables 3-5 show the quantitative results of the secondary structure analysis of BSA, α-

Lac and β-Lg.  Each invididual component of Amide I was assigned according to the 

literature [58, 68], namely ca. 1690 cm-1 (antiparallel β-sheets), ca. 1680 cm-1 (β turns), 

and ca. 1658 cm-1 (α-helix). The band in the 1626–1643 cm-1 region was assigned to β-

sheets, and the band at 1641-1649 cm-1 was assigned to the random coil (wide peak 

width) or the solvated short helix (narrow peak width).  The band at 1601–1617 cm-1 

was assigned to inter-molecular β-sheets.  Note that in our operating conditions the 

conformational changes observed were related to BSA loaded in HNTs.  The excess 

BSA was, in fact, removed with the rinsing procedure (see Experimental). 
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Figure 5.  Representative plot of the curve fitting and the residual plots of the Amide I 

band of lyophilized BSA, BSA treated with the loading procedure (blank), and HNTs 

loaded with BSA.  The residual plots have been calculated as difference spectrum 

measured (black line) and reconstructed one (red line). 
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Table 3. Results of the deconvolution procedure applied to the Amide I band of the 

FTIR spectra of BSA commercial lyophilized powder, BSA blank, and HNTs/BSA. 

BSA powder 
Freq. (peak width) 

cm-1 
% 

BSA blank 
Freq. (peak width) 

cm-1 
% 

HNTs/BSA  
Freq. (peak width) 

cm-1 
% 

Assignment 

  - Inter-molecular β 
sheets 

1623 (64) 
36%  1635 (49) 

40% β sheets 

 1641(68) 
87%  Random coil 

1651 (51) 
51%  1653 (28) 

29% 
 

α Helix 
1681 (13) 

5% 
1684 (32) 

11% 
1680 (43) 

31% β Turns 

1691 (23) 
8% 

1695 (8) 
2%  β sheets ap 

 
 

Table 4. Results of the deconvolution procedure applied to the Amide I band of the 

FTIR spectra of α-Lac powder, α-Lac blank, and HNTs/ α-Lac. 

α-Lac powder 
Freq. (peak width) 

cm-1 
% 

α-Lac blank 
 Freq. (peak width) 

cm-1 
% 

HNTs/α-Lac  
Freq. (peak width) 

cm-1 
% 

Assignment 

 1615 (17) 
3% 

1603 (18) 
7% 

Inter-molecular β 
sheets 

 1634 (37) 
40% 

1623 (33) 
21% β sheets 

1645 (52) 
73%   Random coil 

 1657 (28) 
22% 

1652 (36) 
50% 

 
α Helix 

1674 (24) 
13% 

1684 (23) 
30% 

1675 (19) 
6% β Turns 

1692 (24) 
14% 

1699 (14) 
5% 

1687 (34) 
16% β sheets ap 
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Table 5.  Results of the deconvolution procedure applied to the Amide I band of the 

FTIR spectra of β-Lg powder, β-Lg blank, and HNTs/β-Lg. 

β-Lg powder 
Freq. (peak width) 

cm-1 

% 

β-Lg blank 
Freq. (peak width) 

cm-1 

% 

HNTs/β-Lg  
Freq. (peak width) 

cm-1 
% 

Assignment 

1620 (35) 
37% 

 1609 (11) 
3% 

Inter-molecular β 
sheets 

1633 (20) 
11% 

1627 (36) 
43% 

1630 (47) 
31% 

β sheets 

1646 (13) 
4% 

1648 (27) 
28% 

 Solvated short α-
helix 

1654 (44) 
38% 

 1656 (69) 
64% 

 
α Helix 

1686 (30) 
10% 

1673 (43) 
29% 

 β Turns 

  1694 (18) 
2% 

β sheets ap 

 

 

Figure 6 summarizes the percentage of the protein secondary structure components (β-

structures, helix and random coil) of BSA, α-Lac and β-Lg lyophilized powder, as well as 

protein blanks and proteins loaded into HTNs.  The contribution of β structures is 

calculated as the sum of antiparallel β-sheets, β turns, intra molecular and 

intermolecular β sheets. The helix percentage is calculated as the sum of the α-helix 

and the solvated short helix. 
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Figure 6.  Secondary structure percentages of protein powder, protein after the loading 

blank procedure and HNTs/protein samples.   

0

20

40

60

80

100

BSA powder BSA loading 
blank

BSA after 
loading

%

Helix
β-structures
Random coil

0

20

40

60

80

100

α-Lac powder α-Lac loading 
blank

α-Lac after 
loading

%

Helix
β-structures
Random coil

      Lac   

0

20

40

60

80

100

β-Lg powder β-Lg loading 
blank

β-Lg after 
loading

% Helix
β-structures

BSA 

ß-Lg 



22 

 

 

The FTIR data of BSA lyophilized powder (Figure 6A) shows that BSA is in its native 

state, since the secondary structure percentages are in agreement with those reported 

in the literature [11, 13, 16, 29, 49, 59].  The dissolution of 2 mg/mL BSA in bidistilled 

water and the treatment of the solution with vacuum cycles, magnetic stirrings, 

centrifugation and drying under vacuum (blank as described in the Experimental) led to 

the disruption of ordered structures and the almost complete unfolding of BSA.  The 

random coil structure reached 87%.  The loading of BSA into the HNTs lumen led, 

instead, to a refolding of BSA in a non-native conformation but characterized by ordered 

structures: 71% β structures and 29% α-helix.  Considering that the isoelectric point (pI) 

of BSA is 4.7 [45], in water BSA has a negative net charge, and the electrostatic 

interactions are the driving forces between the negative BSA molecules and the positive 

surface of the inner layer of HNTs.  This interaction induces a more compact, ordered 

structure.  This result is in agreement with a previous study that showed that the surface 

curvature stabilizes the secondary structure of albumin [52].  

The secondary structure of α-Lac lyophilized powder (Figure 6B) had a high percentage 

of random coil (73%) because it is Ca++ depleted [21, 35]. The blank procedure gave a 

conversion of random coil into α-helix (22%) and β-structures (78%), likely due to the 

relatively high concentration of α-Lac solution (2 mg/mL, i.e. about 110 µM).  The basic 

and acid side chains of protein amino acids likely act as a buffer [19].  

The loading of α-Lac into HNTs lumen led to an increase in α-helix structures (50%) and 

a decrease in the β-structures (50%).  Again, the negative charge of protein (pI=4.2) 

favours its interaction with the positive inner surface of HNTs, inducing a rearrangement 

of α-Lac secondary structure into a native-like state.  Although α-Lac has been reported 
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to contain 31% α-helix [5] and about 21% 310-helix [51, 61, 64], which are easily 

identifiable in FTIR spectra, the secondary structure of the loaded α-Lac  showed only 

the α-helix structure.   

The deconvolution procedure of β-Lg lyophilized powder (Figure 6C) confirmed that β-

Lg is native [10, 22, 47, 54].  The dissolution of 2 mg/mL β-Lg in bidistilled water treated 

with the blank procedure caused significant conformational changes.  In particular, we 

observed the disappearance of intermolecular β-sheets with their conversion in intra-

molecular β-sheets, their increase, and the decrease in the α-helix.  

β-Lg loaded into HNTs showed the loss of β components and a notable increase in the 

α-helix (64%).  In our operating conditions, β-Lg is closer than BSA and α-Lac to its pI 

(pI=5.2).  Again, although less advantageous, the electrostatic interactions  between 

negative charges of β-Lg and the positively charged inner surface of HNTs are possibly 

responsible for these conformational changes. 

These results are in agreement with studies performed in the past few years on a 

variety of nanoparticles of various dimensions, composition and surface characteristics 

that have been investigated to understand the mechanism of interaction with proteins 

[40].  Electrostatic and hydrophobic interactions, alone or in combination are considered 

to be the basis of the interaction between nanomaterials and protein, and this depends 

on the nature and source of nanoparticles and the proteins investigated [39, 41].   

 

3. TEM study of HTNs loaded with BSA 

A representative TEM study of HTNs loaded with BSA was performed to support TG 

and FTIR data.  
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Figure 7 shows TEM pictures of HNTs (A and B) and HNT loaded with BSA (C and D). 

The nanotubes’ lumen and external/internal diameters, as well as the particle size are 

indicated by the red lines. 

The nanotubes appeared to form large clusters in the micrometer range.  Despite the 

formation of such agglomerates, the tubular and elongated structure of each 

nanoparticle can still be clearly identified in both loaded and not loaded HNTs [20]. 

 

 

Figure 7.  TEM pictures of HNTs (A and B) and HNT loaded with BSA (C and D). The 

nanotubes’ lumen and external/internal diameters, as well as the organic particle size 

(D) are indicated by the red lines. 
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The TEM pictures of the HNTs confirmed the hollow nanostructure of the halloysite clay.  

Not loaded HTNs had a external and inner diameter of 30,2 ± 8.2 nm and 6.9 ± 1, 

respectively, and a strongly elongated structure, which appeared to have a high ratio 

between diameter and length, usually higher than 5-10.  HTNs loaded with BSA had a 

bigger external and inner diameter of the not loaded HTNs was   When loaded both the 

external and the diameters were higher: 40.2 ± 2 nm and 9 ± 1.5 nm, respectively.  This 

result suggested that the protein molecules were present in the lumen and between the 

layers.   

The ligth gray spots in Figure 7 C and D are organic material, likely BSA, as reported 

also by de Kruif et al. [20].  Their diameter was 11 ± 1 nm, about 3 times higher than the 

size of native BSA.  DLS data of 0.1-0.5 mg/mL native BSA in bidistilled ultrapure water 

showed, indeed, a single peak distribution (Figure S3 of the Supporting Information) 

with particles ranging between 3-4 nm, in agreement with the literature data (3.2-3.9 nm 

as reported in [6, 53]).  This result is compatible with the structural changes found by 

the FTIR study as well as with the formation of small aggregates (likely trimers).  

Figure 7 C and D also show that the external surface of HTNs after protein loading is 

rougher and less defined.  This may suggest the BSA adsorption on the external HNT 

surface in addition to the penetration into the HTNs.  

 

4.  Conclusions 

We exploited TG and FTIR spectroscopy to study the thermal stability and 

conformational changes of BSA, β-Lg and α-Lac after they had been loaded into HTNs.   

We observed that the thermal degradation of proteins loaded into HNTs lumen occurred 

at temperatures higher than those of free proteins. This increase in the thermal stability 



26 

 

may be due to the changes in the secondary structure driven by the interaction with 

HNTs. 

Our FTIR data showed that the dissolution of proteins in water itself and the treatment 

of the solution with vacuum cycles, magnetic stirrings, centrifugation and drying under 

vacuum led to several conformational changes in the proteins, which are different from 

the changes in the protein secondary structure observed after they have been loaded 

into HNTs.  In all cases, we found that the proteins loaded into HNTs lumen had 

ordered structures (β structures and helices).  The electrostatic interactions between the 

negative charge of proteins and the positive inner surface of HNTs are likely responsible 

for the protein adsorption and, thus, for the conformational changes in the proteins. 

TEM data confirmed the loading of proteins into HTNs. 

All these findings indicate that possible applications of HNTs as protein carriers in 

biotechnology and nanomedicine cannot ignore the fact that nanostructures may cause 

deep conformational changes in the proteins and this may dramatically alter the 

properties of these proteins.  
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