
Constraint removal in linear MPC: an improved criterion and

complexity analysis

Michael Jost, Gabriele Pannocchia and Martin Mönnigmann

Abstract— Constraint removal accelerates model predictive con-
trol by detecting inactive constraints at the yet unknown optimal
solution and removing them from the online optimization
problem. We show in this paper that the number of removed
constraints can be increased further by generalizing previously
used inactivity criteria. The proposed generalization does not
depend on information available at previous time steps, and
consequently can also be applied at the initial state. In ad-
dition, we provide a detailed analysis of the computational
complexity of the proposed variant and of existing constraint
removal methods, applied to both active-set (AS) and interior-
point (IP) solvers. Finally, we compare the different constraint
removal variants in numerical experiments to corroborate the
complexity analysis carried out, showing the greatest benefits
of the proposed variant, especially with IP solvers.

I. INTRODUCTION

Model predictive control (MPC) is a well-known approach

to control large, constrained, multivariable systems. However,

since MPC requires solving optimal control problems on a

receding horizon, it is computationally expensive.

For linear systems subject to state and input constraints and

with quadratic weights on the states and inputs, the opti-

mization problem to be solved during runtime is a quadratic

program (QP). The solution to this QP is a piecewise affine

function of the state [1], [2]. Several researchers exploited

the knowledge of the structure of the solution to reduce

the required online calculations. Ferreau et al. [3] used

the fact that the set of constraints that are active at the

optimal solution of successive QPs does not change too

much. Pannocchia et al. [4] enumerate the active sets that

occur most frequently during runtime. More recently, we

showed that the time required to calculate the optimal control

law can be reduced by removing constraints from the opti-

mization problem that are found to be inactive at the optimum

before actually solving it [5]. Several methods to find such

a priori inactive constraints have been proposed [5]–[8].

Some of them detect inactive constraints using precalculated,

structural information, others do not require any offline

preparation. We stress that constraint removal (CR) does

not only remove redundant constraints, i.e., constraints that

cannot be active for any state, from the QP, but the set of a

priori inactive constraints is a function of the initial state of

the optimal control problem.

In this paper we propose an extension to the CR techniques

presented in [5], [7] that is based on Hölder’s inequality.

With the proposed modification the number of a priori
M. Jost and M. Mönnigmann are with Automatic Control and Systems

Theory, Department of Mechanical Engineering, Ruhr-Universität Bochum,
Germany. G. Pannocchia is with Department of Civil and Industrial En-
gineering, University of Pisa, Italy. E-mail: michael.s.jost@rub.de,

gabriele.pannocchia@unipi.it, martin.moennigmann@rub.de.

inactive constraints can be increased, which further reduces

the required calculation time. We also analyze the complexity

of CR-MPC in combination with both active-set and interior-

point solvers. Finally, an example is used to demonstrate the

effectiveness of our approach.

We state the problem class and summarize existing constraint

removal variants in Sects. II and III, respectively. The main

result, i.e., the improved inactivity criterion is given in

Sect. IV. The computational complexity of existing variants

and the new one are compared in Sect. V. We apply the

proposed approach to an example in Sect. VI and give some

conclusions in Sect. VII.

II. PROBLEM STATEMENT

We consider linear discrete-time state space systems:

x(t+ 1) = Ax(t) +Bu(t), (1)

where x(t) ∈ R
n is the state, u(t) ∈ R

m is the input, and

(A,B) is assumed to be stabilizable. We assume state and

input constraints

x(t) ∈ X ⊂ R
n, u(t) ∈ U ⊂ R

m, (2)

must be respected for all t, where U and X are compact,

full-dimensional polytopes that contain the origin in their

interior. The model predictive control problem treated here

(see e.g. [9] for details) reads

min
U,X

ℓf (x̂(N)) +
N−1
∑

k=0

ℓ(x̂(k), u(k))

s.t. x̂(k + 1) = Ax̂(k) +Bu(k), k = 0, . . . , N − 1,
x̂(0) = x,
x̂(k) ∈ X, k = 0, . . . , N,
u(k) ∈ U, k = 0, . . . , N − 1,
x̂(N) ∈ Xf ,

(3)

where x̂(k), k = 0, . . . , N are the predicted system states,

x is the current system state, X = (x̂′(0), . . . ,x̂′(N))′, U =
(u′(0), . . . ,u′(N − 1))′, and N is the horizon length. We

consider a quadratic stage and terminal cost, i.e., ℓ(x, u) =
1
2x

′ Qx+ 1
2u

′ Ru and ℓf(x) =
1
2x

′ P x, where P ∈ R
n×n,

P � 0, Q ∈ R
n×n, Q � 0 and R ∈ R

m×m, R ≻ 0 are the

terminal, state and input weighting matrices, respectively, and

(Q1/2, A) is detectable. Moreover, we assume the terminal

set Xf ⊂ R
n to be a full-dimensional polytope containing

the origin in its interior. Under these assumptions it can be

shown that (3) is a strictly convex optimization problem [1].

The MPC problem (3) can be reformulated to read

min
U

V (x, U),

s. t. GU − Ex ≤ w,
P(x)

where V (x, U) = 1/2x′Y x + x′FU + 1/2U ′HU , and Y ∈
R

n×n, F ∈ R
n×mN , H ∈ R

mN×mN , G ∈ R
q×mN , E ∈

R
q×n, w ∈ R

q; and q denotes the number of constraints.

Since (3) is a strictly convex QP, i.e., the matrix H in P(x) is

positive definite, the solution to P(x) is unique if it exists [1].

Finally, we note that the reformulation of the optimal control

problem (3) given in P(x), in which states are eliminated

from the QP decision variables, is only convenient but not

necessary for the constraint removal approaches proposed in

this paper.

A. Notation

For any real matrix M , M i denotes the i-th row of M . For

any ξ ∈ R
n, the sum norm (l1-norm), Euclidean norm (l2-

norm), and max norm (l∞-norm) are defined by ‖ξ‖1 =
∑n

i=1 |ξi|, ‖ξ‖2 =
√
∑n

i=1 ξ
2
i , and ‖ξ‖

∞
= max(|ξi|),

respectively. The set of states for which P(x) is feasible is

denoted by X , where X ⊆ X. Furthermore, U⋆ : X → U
N

and u⋆ : X → U denote the optimal solution to P(x)
and its first m elements, respectively, and V ⋆ : X → R,

V ⋆(x) = V (x, U⋆(x)) is the value of the cost function

in P(x) at the optimum.

Let Q = {1, . . ., q} denote the index set of all constraints. A

constraint i ∈ Q is said to be active for any given x ∈ X , if

GiU⋆(x)−Eix = wi and inactive, if GiU⋆(x)−Eix < wi.

Let
A(x) =

{

i ∈ Q
∣

∣GiU⋆(x)− Eix = wi
}

,

I(x) = Q\A(x),
(4)

be short for the sets of active and inactive constraints at

x ∈ X , respectively. Finally, note that the constraints of P(x)
define a convex polytope in the combined space of inputs and

states

P =
{

(U, x) ∈ R
mN × R

n |GU − Ex ≤ w
}

, (5)

which is full dimensional, bounded and contains the origin

in its interior if the assumptions on X and U hold.

III. BRIEF SUMMARY OF CONSTRAINT REMOVAL

The quadratic program P(x) can be simplified by removing

some (or all) of the constraints that are inactive at the optimal

solution before solving it. More precisely, the following

result holds.
Proposition 1 (Reduced optimization problem [8], [10]):

Let x ∈ X be arbitrary and let Ĩ ⊆ I(x) be any subset of
the inactive constraints. Consider the reduced optimization
problem

Ṽ
⋆(x) = min

Ũ

1

2
x
′
Y x+ x

′
FŨ +

1

2
Ũ

′
HŨ,

s. t. G
Q\Ĩ

Ũ − E
Q\Ĩ

x ≤ w
Q\Ĩ

.

P̃(x)

Then P̃(x) and P(x) have the same unique solution Ũ⋆(x) =
U⋆(x).
In order for Prop. 1 to be useful, some or all of the inac-

tive constraints must obviously be identified before actually

solving P̃(x). Several approaches to identifying inactive

constraints have been presented by the authors of the present

paper, see e.g. [5]–[7], [10]. We briefly summarize two of

these in Secs. III-A and III-B, because they are required in

the subsequent sections.

A. Constraint removal with bounds on V ⋆(x) (prelyap-

MPC)

We showed in [8] that the optimal value function V ⋆(x)
can be used to detected inactive constraints. Essentially, a

lower bound σ⋆
i on the optimal value function V ⋆(x) can be

calculate before runtime that satisfies

σ⋆
i < V ⋆(x) for all x ∈ Gi, (6)

where Gi = {x ∈ X| i ∈ A(x)} is the so-called region of

activity [5], [6] of constraint i [8]. If, for any x ∈ X , the

optimal cost function V ⋆(x) is smaller than the lower bound

σ⋆
i , the corresponding constraint must be inactive. Unfortu-

nately, V ⋆(x) is only known after solving the optimization

problem. However, if V ⋆(x) is a Lyapunov function of the

closed-loop system, it strictly decreases along any trajectory.

If we combine this property with the bound σ⋆
i , the following

lemma results.

Lemma 1 ([8], [10]): Let x(t0) ∈ X be arbitrary, let i ∈ Q
be an arbitrary constraint and assume σ⋆

i ∈ R satisfies (6).

Then

V ⋆(x(t0)) < σ⋆
i ⇒ i ∈ I(x(t)), t ≥ t0,

i.e., constraint i remains inactive along the trajectory of the

closed-loop system.

B. Online constraint removal (lyap-MPC)

It is required to calculate the bounds σ⋆
i , i = 1, . . . , q

before runtime in the method presented in Sect. III-A. Un-

fortunately, these bounds σ⋆
i must be recalculated whenever

parameters of the MPC problem (3) such as weighting

matrices or horizons are changed.

In [7], we proposed a method that does not require any

precalculated bounds. The method is based on the following

two ideas. First, an upper bound (denoted κ2(x) below) on

the Euclidean norm of the optimal U⋆(x) can be used to

detect inactive constraints. This is summarized in Lemma 2.

Lemma 2 ([7], [10]): Let x ∈ X be arbitrary and assume

there exists κ2(x) ≥ 0 such that ‖U⋆(x)‖2 ≤ κ2(x). Then
∥

∥Gi
∥

∥

2
κ2(x) < Eix+ wi ⇒ i ∈ I(x), (7)

i.e. constraint i is inactive at the optimal solution to P(x).
Secondly, if the optimal value function is a Lyapunov func-

tion of the closed-loop system, an appropriate bound κ2(x)
can be calculated by exploiting its geometric properties. This

is summarized in the following lemma.

Lemma 3 ([7]): Let x ∈ X be arbitrary, and assume

U⋆(x−), the optimal input sequence at the preceding time

step, has been found. Let ρ(x−) = V ⋆(x−) − 1
2x

′(Y −
FH−1F ′)x. Then the Euclidean norm of the optimal U⋆(x)
is bounded above by

κ2(x) =

√

2ρ(x−)λ−1
min(H) +

∥

∥H−1F ′x
∥

∥

2
, (8)

i.e., ‖U⋆(x)‖2 ≤ κ2(x).
The upper bound κ2(x) on ‖U⋆(x)‖2, which is given in

Lem. 3, can be used together with (7) to detect inactive

constraints [7].

IV. AN EXTENSION TO CONSTRAINT REMOVAL USING

HÖLDER’S INEQUALITY

The proposed approaches detect a priori inactive constraints

based on the optimal value function. Since the value of

V ⋆(x) must be known to identify inactive constraints, neither

Lemma 1 and Lemma 2 can be applied at the initial state1.
1We note for completeness that extensions to Lem. 1 and Lem. 2 are

proposed in [8] and [7] that allow to remove some inactive constraints even
at the initial state. These extensions are only able to remove redundant

constraints, however.

The criterion presented here allows to remove inactive con-

straints during the first time step as well.

We first extend Lemma 2 by generalizing Cauchy and

Schwarz’s inequality by Hölder’s inequality.

Lemma 4: Let x ∈ X be arbitrary and assume there exists

κ∞ ≥ 0 such that ‖U⋆(x)‖
∞

≤ κ∞. If, for any i ∈ Q,
∥

∥Gi
∥

∥

1
κ∞ < Eix+ wi, (9)

then constraint i is inactive at the optimal solution to P(x)
for x, i.e., GiU⋆(x) < Eix+ wi.

Proof: Consider the relations

GiU⋆(x) ≤ |GiU⋆(x)| ≤ ‖Gi‖1‖U
⋆(x)‖∞ ≤ ‖Gi‖1κ∞,

which hold, because ν ≤ |ν| for all ν ∈ R, according

to Hölder’s inequality, and because ‖U⋆(x)‖
∞

≤ κ∞

by assumption, respectively. Together with (9) this implies

GiU⋆(x) < Eix+ wi, which proves the claim.

It remains to show how to calculate an upper bound κ∞ for

‖U⋆(x)‖
∞

. We stress x is not fixed in the following lemma

but varies over x ∈ X in (10) in particular.

Lemma 5: Define ν = (ν1, . . . , νmN)
′

by

νi = max
(U,x)∈P

|Ui|, i = 1, . . . ,mN (10)

Then, ‖U⋆(x)‖
∞

is bounded above by κ∞ = ‖ν‖
∞

for all

x ∈ X , i.e.,

‖U⋆(x)‖
∞

≤ κ∞ for all x ∈ X .
Proof: Let x ∈ X be arbitrary and let U⋆(x) be the

corresponding optimal input sequence. Since (U⋆(x), x) ∈
P , we have |U⋆

i (x)| ≤ νi for all i = 1, . . . ,mN by

construction of νi in (10). Consequently, ‖U⋆(x)‖
∞

≤ κ∞.

Since x ∈ X was arbitrary, this proves the claim.

We collect several comments on the bound κ∞:

(i) In contrast to κ2(x) from Sec. III-B, the bound κ∞

is independent of the state and thus constant during

runtime.

(ii) The calculation of the bound κ∞ requires to solve mN
linear programs, which are of similar size (in terms of

their number of constraints) as the MPC problem itself.

(iii) If the system is subject to input box constraints of

the form u− ≤ u ≤ u+ only, we have κ∞ =
max(‖u+‖

∞
, ‖u−‖

∞
). In this case, no linear programs

have to be solved.

Lemma 4 can be used to remove constraints before solving

the optimization problem. However, the bound κ∞ does not

depend on the state and therefore may be too conservative

to significantly reduce the number of constraints. This is

different to the approaches summarized in Sec. III. Both

approaches summarized in Sec. III detect more and more

constraints to be inactive as the system converges to the

origin until only the unconstrained solution remains. In order

to retain this property, the inactivity criteria from Sec. III and

Sec. IV can be combined. More precisely, we consider the

following combinations of criteria:

prelyap-MPC: Inactive constraints are detected
with precalculated bounds on V ⋆(x) as described
in Lemma 1.

(11-1)

höl-prelyap-MPC: Inactive constraints are de-

tected with both Lemma 1 and the new criterion

from Lemma 4.

(11-2)

lyap-MPC: Online constraint removal as described

in Lemma 2.
(11-3)

höl-lyap-MPC: Online constraint removal with

both Lemma 2 and the new criterion from

Lemma 4.

(11-4)

The implementation of höl-lyap-MPC is described in more

detail in Alg. 1, which can be summarized as follows:

First, the set Ĩ2 =
{

i ∈ Q
∣

∣

∥

∥Gi
∥

∥

2
κ2(x) < Eix+ wi

}

of

inactive constraints is calculated with Lemma 2 (line 2) [7].

Then, Hölder’s inequality is used to construct the set Ĩ∞ =
{

i ∈ Q
∣

∣

∥

∥Gi
∥

∥

1
κ∞ < Eix+ wi

}

(lines 3-5). The tighter

bound is selected in lines 6-8. If the reduced QP is detected

to be unconstrained, the unconstrained solution is applied.

Otherwise, the reduced optimization problem P̃(x) is solved

(lines 9-10). The other three variants can be implemented

accordingly.

V. SOME NOTES ON THE COMPUTATIONAL COMPLEXITY

We analyze the computational complexity of MPC with con-

straint removal in this section. Let O (·) denote the order of

the number of elementary floating point arithmetic operations

such as additions, multiplications and comparisons of real

numbers necessary for a given calculation. Let ϑLP(s, t)
and ϑQP(s, t) refer to the number of arithmetic operations

required to solve a linear program and a quadratic program,

respectively, with s decision variables and t constraints.

The section is split into three parts: We first analyze the

computational effort required for preparatory calculations of

the four methods (11) in Sect. V-A. Note these are the

calculations that can be carried out before runtime of the

actual MPC controller. They are therefore referred to as

offline calculations. Subsequently, we discuss the number

of operations required at runtime, i.e., online, for detecting

inactive constraints and solving the resulting reduced QPs in

Sect. V-B. Since the computational effort for solving a QP

depends on the chosen method and solver, Sect. V-C gives

a more detailed account of these numbers, distinguishing

between active-set and interior-point solvers.

A. Offline computational effort of the variants (11)

prelyap-MPC, höl-prelyap-MPC: For this MPC variant, a

lower bound σ⋆
i on the objective function has to be calculated

for each constraint (cf. Sect. III-A). As shown in [8], this

requires solving a strictly convex quadratic program with

mN+n−1 decision variables and q−1 inequality constraints.

Thus, qϑQP(mN + n − 1, q − 1) operations are required in

total. For höl-prelyap-MPC the bound κ∞ is required, which

can be obtained by solving mN linear programs (cf. Lem. 5).

Therefore, the total number of preparatory calculations is

qϑQP(mN + n− 1, q − 1) +mNϑLP(mN + n, q).

lyap-MPC, höl-lyap-MPC: The required preparatory oper-

ations are the calculation of the eigenvalue λmin(H), the

norms of Gi, i = 1, . . . , q, and the matrices H−1F ′ and

Y −FH−1F ′. Simple calculations show that the preparatory

calculations in total are of order O
(

m3N3
)

, where we

assumed n ≤ mN , the Cholesky factorization is used to

calculate the inverse of the matrix H , and the positive

definiteness of H is exploited. Again, for höl-lyap-MPC the

bound κ∞ is required, which can be obtained by solving

Algorithm 1 CR-MPC with Hölder’s inequality.

1: Input: x, κ∞

2: Calculate set Ĩ2 using Lemma 2 and set Ĩ∞ = ∅.
3: for all i = 1 to q do
4: if

∥

∥Gi
∥

∥

1
κ∞ < Eix + wi, then Constr. i is inactive at

state x: Ĩ∞ ← Ĩ∞ ∪ {i}.

5: end for
6: Use best bound for constraint removal:
7: if |I2| < |I∞| then Q ← Q\I∞.
8: else Q ← Q\I2.

9: if Q = ∅ then QP is unconstrained: U⋆(x) = −H−1F ′x.

10: else Solve reduced QP P̃(x).

11: Output: U⋆(x), V ⋆(x).

mN linear programs. In summary, we have

O
(

m3N3
)

+mNϑLP(mN + n, q)

for this MPC variant.

B. Online computational effort of the variants (11)

The number of constraints in the reduced optimization prob-

lem P̃(x) is denoted by q̃ = q − |Ĩ| for brevity.

prelyap-MPC, höl-prelyap-MPC: The prelyap-MPC vari-

ant requires testing whether V ⋆(x) < σ⋆
i for every i which

involves only the comparison of two real numbers. Thus, q
operations are required to construct the set Ĩ . The optimal

input can be found by solving the reduced optimization

problem P̃(x), which requires ϑQP(mN, q̃) operations. Thus,

q + ϑQP(mN, q̃) operations are required in total. The same

computations need to be carried out in the höl-prelyap-MPC

variant, which, however, additionally uses the bound κ∞

and the criterion stated in Lem. 4. Since, evaluating the

criterion (9) from Lemma 4 amounts to qO (n) operations,

qO (n) + ϑQP(mN, q̃) (12)

operations are necessary in total. We assume κ∞ is available

from the offline calculations.

lyap-MPC, höl-lyap-MPC: The criterion (7) must be eval-

uated for every constraint, for which the bound κ2(x) is

needed. Simple calculations show that this involves qO (n)
and O

(

n2 + nmN
)

operations, respectively. Thus, in sum-

mary the calculation of the control law with lyap-MPC

requires qO (n)+O
(

n2 + nmN
)

+ϑQP(mN, q̃) arithmetic

operations. Again, höl-lyap-MPC additionally performs the

inclusion test (9) for every constraint, which amounts to an

additional qO (n) operations. Therefore, a total of

2qO (n) +O
(

n2 + nmN
)

+ ϑQP(mN, q̃) (13)

are required for höl-lyap-MPC.

The results stated in Sects. V-A and V-B are summarized in

Tab. I.

C. Achievable reduction with constraint removal

We show that the effort of identifying inactive constraints

is outweighed by the savings even in the worst case for

both active-set and interior-point solvers in this section. This

implies that a reduction of the required number of arithmetic

operations results for all proposed methods.

From comparing (12) to (13) we infer that the worst-case

effort to set up and solve P̃(x) is required by höl-lyap-MPC.

Thus, we compare (13) to the number of arithmetic opera-

tions required by full-MPC, i.e., to solve the QP P(x) without

any reduction. We analyze the achievable acceleration for

active-set and interior-point algorithms separately.

Acceleration achieved for active-set algorithms

The number of arithmetic operations required to solve a QP

with mN decision variables and q constraints with an active-

set algorithm is given by

ϑAS
QP =

(

(mN + nY)
3 + 2m2N2 + 4mNq

)

ρAS(mN, q),
(14)

where ρAS(mN, q) is the number of iterations and nY

is the average number of constraints inside the working

set [11]. Let ϕ = q̃
q , ϕ ∈ [0, 1]. Combining (13) with

(14) yields the number of operations required to identify

the inactive constraints and to solve the reduced optimiza-

tion problem P̃(x) with an active-set algorithm, which is

ϑ̃AS
QP =

(

(mN + nY)
3 + 2m2N2 + 4mNq̃

)

ρAS(mN, q̃) +

2qO (n) +O
(

n2 + nmN
)

, or, equivalently,

ϑ̃AS
QP =

(

(mN + nY)
3
+ 2m2N2 + 4mNϕq

)

ρAS(mN,ϕq)

+ 2qO (n) +O
(

n2 + nmN
)

.
(15)

We examine the reduction achieved by CR using the opera-

tion count ratio τAS, which we define as the quotient of the

number of arithmetic operations required to solve P̃(x) and

the number of arithmetic operations required to solve P(x),
i.e., the ratio between ϑ̃AS

QP and ϑAS
QP. Dividing (15) by (14),

yields

τAS =
(m2N + 2m) + ϕ8(m+ n)

m2N + 10m+ 8n

+
O
(

n2N + nmN
)

(m3N2 + 10m2N + 8mnN)ρAS(mN, q)
,

(16)

where we assumed that (a) q = 2mN + 2nN , which holds

if both the states and the inputs are subject to lower and

upper bounds, (b) nY ≪ mN , and (c) ρAS(mN, q) =
ρAS(mN,ϕq), i.e., the same number of iterations is re-

quired to solve P̃(x) and P(x). The last term in (16)

vanishes for sufficiently large horizons N > n, since

m3N2ρAS(mN, q) ≫ n2N . This yields

τAS =
(m2N + 2m) + ϕ8(m+ n)

m2N + 10m+ 8n
. (17)

We analyze τAS by considering the cases m = n and m ≪ n
separately. Consider the case m = n first. Equation (17)

simplifies to

τAS
m=n =

mN + 2

mN + 18
+ ϕ

16

mN + 18
.

Note that τAS
m=n ≈ 1 if mN ≫ 18 even for ϕ → 0. Hence,

we can conclude that the number of arithmetic operations

required to solve P̃(x) and P(x) is approximately equal.

Consider m ≪ n next. The operation count ratio (17)

simplifies to

τAS
m≪n =

m2N

m2N + 8n
+ ϕ

8n

m2N + 8n
.

Again, we have τAS
m≪n ≈ 1 if m2N ≫ 8n even if ϕ → 0,

which implies again that the number of arithmetic operations

required to solve P̃(x) and P(x) is approximately equal.

Acceleration achieved for interior-point algorithms

We discuss the reduction achievable if interior-point algo-

rithms are used to solve the QPs online. The number of

TABLE I: Computational effort of the variants (11). We use n̄ = mN + n− 1, q̄ = q − 1, and wi(x+) = Eix+ + wi for short.

Name Description Inclusion test Offline Effort Online Effort

full-MPC
classical MPC without

preprocessing
– – ϑQP(mN, q)

prelyap-MPC
lower bounds on the cost

function
V ⋆(x) < σi ⇒ i ∈ I(x) qϑQP(n̄, q̄) q + ϑQP(mN, q̃)

höl-prelyap-MPC
prelyap-MPC together V ⋆(x) < σi ⇒ i ∈ I(x)

qϑQP(n̄, q̄) + mNϑLP(mN + n, q) qO (n) + ϑQP(mN, q̃)
with κ∞ and Lem. 4

∥

∥Gi
∥

∥

1
κ∞ < wi(x+) ⇒ i ∈ I(x)

lyap-MPC online constraint removal
∥

∥Gi
∥

∥

2
κ2(x) < wi(x+) ⇒ i ∈ I(x) O

(

m3N3
) qO (n) + O

(

n2 + nmN
)

+
ϑQP(mN, q̃)

höl-lyap-MPC
lyap-MPC together

∥

∥Gi
∥

∥

2
κ2(x) < wi(x+) ⇒ i ∈ I(x)

O
(

m3N3
)

+ mNϑLP(mN + n, q)
2qO (n) + O

(

n2 + nmN
)

+

with κ∞ and Lem. 4
∥

∥Gi
∥

∥

1
κ∞ < wi(x+) ⇒ i ∈ I(x) ϑQP(mN, q̃)

arithmetic operations required by a typical interior-point

algorithm to solve a strictly convex QP with mN decision

variables and q constraints is

ϑIP
QP =

(

(mN)3 + (mN)2(2q + 2.5)
)

ρIP(mN, q), (18)

where the unknown function ρIP(mN, q) describes the re-

quired number of iterations [11]. In (18), we neglect linear

and bilinear terms in mN and q for simplicity. Let ϕ = q̃
q

again. The number of arithmetic operations required to detect

the inactive constraints and to set up and solve the reduced

optimization problem P̃(x) with an interior-point solver is

ϑ̃IP
QP = ((mN)3+(mN)2(2q̃+2.5))ρIP(mN, q̃)+2qO (n)+

O
(

n2 + nmN
)

, or equivalently

ϑ̃IP
QP =

(

(mN)3 + (mN)2(2ϕq + 2.5)
)

ρIP(mN,ϕq)

+ 2qO (n) +O
(

n2 + nmN
)

,
(19)

which follows from combining (18) with (13). We analyze

the achieved reduction using the operation count ratio τ IP

again, which we define as the ratio between ϑ̃IP
QP and ϑIP

QP.

Thus, dividing (19) by (18) yields

τ IP =
m

(5m+ 4n)
+ ϕ

4(m+ n)

(5m+ 4n)

+
O
(

n2N + nmN
)

(m3N2 + 4m2N2(m+ n)) ρIP(mN, q)
,

(20)

where we used q = 2mN + 2nN as before and assumed

(a) m3N3 ≫ 2.5m2N2 and (b) ρIP(mN, q) = ρIP(mN,ϕq).
Using m3N2ρAS(mN, q) ≫ n2N again the last term in (20)

vanishes, and we have

τ IP =
m

(5m+ 4n)
+ ϕ

4(m+ n)

(5m+ 4n)
. (21)

We analyze the operation count ration τ IP by considering the

cases m = n and m ≪ n separately. First, assume m = n.

In this case, (21) simplifies to

τ IP
m=n =

1

9
+

8

9
ϕ.

Note that we have τ IP
m=n → 1

9 for ϕ → 0. Thus, if nearly all

constraints are removed by constraint removal, the number of

arithmetic operations is reduced by the factor 9. Now assume

m ≪ n. In this case, the first term in (21) vanishes and the

operation count ratio simplifies to

τ IP
m≪n = ϕ.

This operation count ratio implies that the number of arith-

metic operations decreases as constraints are removed from

consideration.

It can be summarized that the effort of detecting a priori

inactive constraints is outweighed by the savings for both

active-set and interior-point solvers. However, the benefit of

solving a reduced optimization problem is larger for interior-

point solvers. Essentially, this results because interior-point

solvers always involve all constraints in their calculations.

Removing constraints from consideration has a large effect

here, since the inequality constraints are treated as equality

constraints with slack variables. In contrast, active-set solvers

work only with a subset of the constraints (i.e., the candidate

active set), and therefore may not consider an a priori inactive

constraint, regardless of whether it is removed in advance or

not.

VI. EXAMPLE

We consider the state space system that results from dis-

cretizing the continuous-time transfer function

G(s) =







−5s+1
36s2+6s+1

0.5s
8s+1 0

0 0.1(−10s+1)
s(8s+1)

−0.1
(64s2+6s+1)s

−2s+1
12s2+3s+1 0 2(−5s+1)

16s2+2s+1






, (22)

with ZOH and Ts = 1s. The state and input constraints read

−10 ≤ xi(k) ≤ 10 for i = 1, . . . , 10 and −1 ≤ uj(k) ≤ 1
for j = 1, . . . , 3, respectively. The matrix P is set to the

solution of the discrete-time algebraic Riccati equation, and

the weighting matrices on the states and inputs are Q = In×n

and R = 0.25Im×m, respectively. The horizon is chosen

to be N = 30. We used the approach proposed in [12] to

calculate the terminal set Xf with the Riccati controller2. The

resulting QP has 898 constraints and 90 decision variables.

We chose 3405 random initial values and calculated trajecto-

ries for the closed-loop system until the state is sufficiently

close to the origin. In total, 560513 QPs are solved. We

measured the time required to calculate the optimal control

law for classical MPC, i.e. MPC without preprocessing of

its constraints (named full-MPC for convenience), and the

constraint removal variants prelyap-MPC, höl-prelyap-MPC,

lyap-MPC, and höl-lyap-MPC (see (11) for details). We

solved the quadratic programs with the active-set solver

QPAS and the interior-point solver QPIP from the QPC

library [13]3.

The resulting computation times are given in Figure 1(a,b)

as cumulative distribution functions cdf(tMPC). The function

cdf(tMPC) is defined as the fraction of values that are equal

or less than tMPC.

Consider the results for the QPIP solver first, cf. Figure 1(a).

About 55% of the QPs are found to be unconstrained by

constraint removal. No optimization problem needs to be

solved, but the unconstrained solution is applied directly.
2Note that with this choice of P and Xf the origin of the closed-loop

system x(k + 1) = Ax + Bµ(x), where µ(x) := u⋆
0
(x) is the MPC

control law, is exponentially stable and the optimal value function V ⋆(x)
is a Lyapunov function of the closed-loop system [9, Chp. 2.5.3.1, p. 142].

3All calculations were carried out in Matlab on an Intel i5-3570 CPU
with 8Gb RAM running Suse Linux with Kernel 3.11.10-7.

tMPC

cd
f
(t

M
P
C
)

prelyap-MPC

höl-prelyap-MPC

lyap-MPC

höl-lyap-MPC

full-MPC

0 5 10 15
×10−3

0

0.2

0.4

0.6

0.8

1

(a) QPIP
tMPC

cd
f
(t

M
P
C
)

prelyap-MPC

höl-prelyap-MPC

lyap-MPC

höl-lyap-MPC

full-MPC

0 1 2 3
×10−3

0

0.2

0.4

0.6

0.8

1

(b) QPAS

x
(t
)

u
(t
)

q
(t
)

t
0 10 20 30 40 50 60 70 80 90
0

800

-1

0

1
-10

0

10

(c)

Fig. 1: Results of the simulation study: cumulative distribution functions
(cdf) of the step times achieved by prelyap-MPC (red, solid), höl-prelyap-
MPC (green, dashed), lyap-MPC (blue, solid) and höl-lyap-MPC (orange,
dashed) with the QPIP solver (a) and QPAS solver (b). (c) states x(k)
(upper), inputs u(k) (middle) and number of constraints (bottom) of the
reduced QPs for a trajectory. The black solid line shows the number of

constraints of the full QP.

Since the control law can be calculated very quickly in these

cases, the leftmost shoulders result for all constraint removal

variants. Clearly, the cdfs resulting for all constraint removal

variants lie to the left of that resulting for full-MPC (black

curve). This implies a reduction of the average computation

time.

Consider the cdf for lyap-MPC (blue, solid curve) and

its extension höl-lyap-MPC (orange, dashed curve) next.

Clearly, both cdfs coincide for tMPC ≤ 2.5 · 10−3. This

results because the same criterion is chosen, in other words

the additional criterion from Lemma 4 together with the

bound κ∞ does not provide an improvement. However, for

tMPC > 2.5 ·10−3 an improvement results with the additional

criterion, and the cdf of höl-lyap-MPC lies to the left of that

of lyap-MPC. Similar results are obtained for prelyap-MPC

and its extension höl-prelyap-MPC.

The results are obtained for the QPAS solver are qualitatively

similar to those obtained with the QPIP solver. We therefore

omit a detailed discussion.

Consider Figure 1(c) next, which shows the states, the inputs

and the number of constraints of the reduced quadratic

programs. Clearly, the controller stabilizes the system and

we have lim
k→∞

x(k) = 0 (upper plot). The number of

constraints of the reduced QP are shown in the lowermost

plot for all constraint removal variants. Consider lyap-MPC

and its extension höl-lyap-MPC first (blue and orange curve,

respectively). The number of constraints resulting for höl-

lyap-MPC is smaller than for lyap-MPC for k < 30, and

identical for k ≥ 30. For k < 30 the additional criterion

based on the bound κ∞ reduces the number of constraints

compared to lyap-MPC. Similar results are obtained for

prelyap-MPC and höl-prelyap-MPC (red and green curve,

respectively).

The average computation time that results for full-MPC in

combination with the QPIP solver is 6.84ms. The reduction

achieved with the proposed constraint removal approaches

varies between 76% (achieved by lyap-MPC) and 84%

(achieved by höl-prelyap-MPC). In contrast, the average

computation time that results for full-MPC in combination

with the QPAS solver is 1.01ms. Here, the achievable reduc-

tion varies between 63% (lyap-MPC) and 68% (höl-prelyap-

MPC). The smaller reduction achieved with the QPAS solver

corroborates the theoretical results obtained in Sec. V-C, i.e.,

constraint removal is more effective in combination with

interior-point solvers.

VII. CONCLUSION

We proposed a new variant of constraint removal and dis-

cussed its properties. Furthermore, we compared the existing

variants and the new variant with respect to their computa-

tional effort in detail for the first time.

Further research must address the extension of constraint

removal to nonlinear MPC. Additionally, the robustness of

constraint removal has only been addressed in the framework

of tube-based MPC so far, whereas it is worth exploring how

constraint removal for nominal MPC performs in closed loop

with perturbed systems.

ACKNOWLEDGMENT

Support by the Deutsche Forschungsgemeinschaft (DFG)

under grant MO 1086/11-1 is gratefully acknowledged.

Furthermore, we would like to thank the reviewer of the

paper [14] for his helpful comment on the generalization of

Lemma 2 using Hölder’s inequality.

REFERENCES

[1] A. Bemporad, M. Morari, V. Dua, and E. N. Pistikopoulos, “The explicit linear

quadratic regulator for constrained systems,” Automatica, vol. 38, pp. 3 – 20,

2002.

[2] M. M. Seron, J. A. De Dona, and G. C. Goodwin, “Global analytical model

predictive control with input constraints,” in Proc. of the 39th IEEE CDC, 2000,

pp. 154 – 159.

[3] H. Ferreau, H. Bock, and M. Diehl, “An online active set strategy to overcome

the limitations of explicit MPC,” International Journal of Robust and Nonlinear

Control, vol. 18, pp. 816–830, 2008.

[4] G. Pannocchia, J. B. Rawlings, and S. J. Wright, “Fast, large-scale model

predictive control by partial enumeration,” Automatica, vol. 43, pp. 852–860,

2007.

[5] M. Jost and M. Mönnigmann, “Accelerating online MPC with partial explicit

information and linear storage complexity in the number of constraints,” in Proc.

of the ECC 2013, Zurich, Switzerland, 2013, pp. 35–40.

[6] ——, “Accelerating model predictive control by online constraint removal,” in

Proc. of the 52nd IEEE CDC, Florence, Italy, 2013, pp. 5764–5769.

[7] M. Jost, G. Pannocchia, and M. Mönnigmann, “Online constraint removal:

accelerating MPC with a Lyapunov function,” Automatica, vol. 57, pp. 164–169,

2015.

[8] ——, “Accelerating linear model predictive control by constraint removal,”

submitted, 2014.

[9] J. B. Rawlings and D. Q. Mayne, Model Predictive Control: Theory and Design.

Madison, WI: Nob Hill Publishing, 2009.

[10] M. Jost, G. Pannocchia, and M. Mönnigmann, “Assessing the speed-up achievable

by online constraint removal in MPC,” in Proc. of the ECC 2015, Linz, Austria,

2015, pp. 3439–3444.

[11] M. S. K. Lau, S. P. Yue, K. V. Ling, and J. M. Maciejowski, “A Comparison

of Interior-point and active-set methods for FPGA implementation of Model

Predictive Control,” in Proc. of the ECC 2009, Budapest, Hungary, 2009, pp.

156 – 161.

[12] E. G. Gilbert and K. T. Tan, “Linear systems with state and control constraints:

The theory and application of maximal output admissible sets,”IEEE Transactions

on Automatic Control, vol. 36, no. 9, pp. 1008–1020, 1991.

[13] D. A. Wills, QPC - Quadratic Programming in C, School of Electrical Engi-

neering and Computer Science, University of Newcastle, 2009-08-11. Available:

http://sigpromu.org/quadprog/index.html

[14] M. Jost, G. Pannocchia, and M. Mönnigmann, “Fast calculation of tube-based

model predictive control laws for constrained linear systems with bounded

disturbance.” in Proc. of the 54nd IEEE CDC, Osaka, Japan, 2015, pp. 3651–

3656.

