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Abstract— Tube-based model predictive control (MPC) is a
variant of MPC that is suitable for constrained linear systems
subject to additive bounded disturbances. We extend constraint
removal, a technique recently introduced to accelerate nominal
MPC, to tube-based MPC. Constraint removal detects inactive
constraints before actually solving the MPC problem. By
removing constraints that are known to be inactive from the
optimization problem, the computational time required to solve
it can be reduced considerably. We show that the number
of constraints to be considered in the optimization problem
decreases along any trajectory of the closed-loop system, until
only the unconstrained optimization problem remains. The
proposed variant of constraint removal is easy to apply. Since
it does not depend on details of the optimization algorithm, it
can easily be added to existing implementations of tube-based
MPC.

I. INTRODUCTION

Model predictive control (MPC) is a popular method for
the control of constrained multi-input multi-output systems.
MPC builds on the fact that for nominal systems feedback
and open-loop control are equivalent. As a consequence,
the optimal control action can be found by solving an
open-loop optimal control problem [1], [2]. However, if the
system under consideration is subject to disturbances this
equivalence does not hold, and the solution of the nominal
problem is no longer optimal [2], [3].

Several approaches have been developed to overcome this
limitation, see e.g. [4], [5] for surveys. The authors in [3], [6],
for example, suggest to ignore the disturbance and rely on the
inherent robustness of nominal MPC. Min-max MPC is based
on minimizing a series of control laws over the worst case
disturbance [2], [7]. In tube-based MPC a series of linear
control laws is used to keep the state of the real system
in a tube around the reference trajectory of the nominal
system [1], [3], [8], [9].

We present a method to reduce the computational effort
required in tube-based MPC. Our method is based on detect-
ing inactive constraints before solving the MPC problem, re-
moving these constraints, and saving computational time by
solving the reduced optimization problem. Specifically, we
use a variant of constraint removal that relies on the decrease
of the cost function, which serves as a Lyapunov function. As
opposed to earlier variants of constraint removal [10]–[12],
Lyapunov function-based constraint removal is particularly
easy to implement and does not require costly preparatory
calculations. The proposed acceleration technique has been
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presented in [13] for the first time to the knowledge of the
authors. It is the point of the present paper to extend this
technique to tube-based MPC.

The paper is organized as follows. We start with sum-
marizing notation and preliminaries and concisely state the
problem in Section II. In Section III we present the main
result of this paper, i.e. the constraint removal technique and
the formulation of the reduced, equivalent finite-horizon opti-
mal control problem. An example is discussed in Section IV.
The paper closes with conclusions and a brief outlook in
Section V.

Notation and Preliminaries

Let ⊕ and 	 denote set addition and subtraction, respec-
tively, i.e., for A ⊂ Rn and B ⊂ Rn we have A ⊕ B =
{a+ b |a ∈ A, b ∈ B } and A 	 B = {a |a⊕B ⊆ A}. For
any vector x ∈ Rn, ‖x‖ denotes the Euclidean norm of x.
For any set S let |S| denote its cardinality. If M ∈ Rn×n is
a positive definite matrix, we write M � 0. We denote the
identity matrix in Rn by In×n. Finally, we summarize some
properties on ellipsoids that are required in Section III.

Lemma 1 Let M ∈ Rs×s be a symmetric positive definite
matrix, and consider any ξ ∈ Rs and α ≥ 0. Then ξ′Mξ ≤
α2 implies ‖ξ‖ ≤ α√

λmin(M)
.

Proof. First note λmin(M)ξ′ξ ≤ ξ′Mξ (see e.g.
[14, Lemma 8.4.3]). Therefore ξ′Mξ ≤ α2 implies
λmin(M)ξ′ξ ≤ α2. Since M � 0, we have λmin(M) > 0,
therefore

√
λmin(M) is meaningful and the claim holds. �

II. PROBLEM FORMULATION

We consider constrained linear discrete-time state space
systems subject to an additive (unknown) disturbance

xk+1 = Axk +Buk + dk, (1)

where x ∈ Rn is the state, u ∈ Rm is the input, d ∈ Rn is
the disturbance and (A,B) with A ∈ Rn×n, B ∈ Rn×m is
stabilizable. We assume constraints

uk ∈ U, xk ∈ X (2)

apply for all k, where U and X are compact (closed and
bounded) polyhedral sets that contain the origin as an interior
point. Moreover, we assume

dk ∈ D (3)

for all k, where D is a compact polyhedral set containing the
origin in its interior.

It proves useful to define the nominal system

x̂k+1 = Ax̂k +Bûk. (4)



Nominal MPC builds on repeatedly calculating the optimal
control sequence

u = [û0, . . . , ûN−1] (5)

for the system (4) by solving an open-loop optimal control
problem with finite horizon N , and applying the first element
û0. Tube-based MPC counteracts the disturbance in (1) by
repeatedly calculating a sequence of control laws

u(x) = [µ0(x), . . . , µN−1(x)] (6)

instead of the control signals (5), and applying the first con-
trol law to (1). While the control sequence (5) results from
a finite-dimensional optimal control problem, finding (6)
requires to solve an infinite-dimensional problem. Since this
problem is typically too complex [1], [3], the sequence of
control laws (6) is replaced by a sequence of linear control
laws

µi(xk) = ûk+i+K(xk+i− x̂k+i), i = 0, . . . , N−1 (7)

In (7) K ∈ Rm×n is a state feedback controller that is
assumed to stabilize the nominal closed-loop system x̂k+1 =
AK x̂k, AK = A+BK. In other words, AK must only have
eigenvalues strictly inside the unit disc.

Since the system (1) is subject to a disturbance d(k), it will
not remain at the origin if a controller drives it there. The best
we can achieve is to keep the system in a robust positively
invariant (RPI) set that contains the origin. More formally, if
Z ⊂ Rn is such an RPI set, then we have AKZ⊕D ⊆ Z by
definition of Z [1]. Since we want the state of the closed-loop
system to be as close as possible to the origin, Z should be
as small as possible. The minimal RPI set can be constructed
for special cases [1], [15], for example, if AK is nilpotent.
In general, the minimal RPI set can only be approximated
conservatively. An iterative method for the construction of a
positively invariant outer approximation of the minimal RPI
set is provided in [15].

The constraints (2) need to be tightened in order to guar-
antee their satisfaction in the presence of disturbances [1].
This yields

Û = U	KZ, X̂ = X	 Z.

Note that Û and X̂ are required to contain the origin
in their interior despite the tightening. Roughly speaking,
this condition is fulfilled if the constraints (2) are not too
restrictive and the disturbance set is relatively small.

Tube-based MPC calculates the optimal sequence of con-
trol policies of the form (7) by solving the quadratic program

V ?(x) = min
x̂,û

`f (x̂N ) +

N−1∑
i=0

`(x̂i, ûi) (8a)

s.t. x̂i+1 = Ax̂i +Bûi, i = 0, . . . , N − 1, (8b)

x̂i ∈ X̂, i = 0, . . . , N − 1, (8c)

ûi ∈ Û, i = 0, . . . , N − 1, (8d)

x̂N ∈ X̂f , (8e)
x ∈ x̂0 ⊕ Z. (8f)

where û = [û0, . . . ,ûN−1], x̂ = [x̂0, . . . ,x̂N−1], `f (x̂N ) =
1
2 x̂
′
NPx̂N is the terminal cost function with weighting matrix

P ∈ Rn×n, P � 0, `(x̂, û) = 1
2 (x̂′Qx̂+ û′Rû) is the stage

cost with Q ∈ Rn×n, Q � 0 and R ∈ Rm×m, R � 0, N
is the problem horizon and X̂f ⊂ X̂ is a positively invariant
terminal set. We note for later use that the constraints in (8)
define the set

UN (x) =
{
û ∈ RmN |∃x̂ such that (8b)–(8e) hold

}
.

We refer by û?(x) and x̂?(x) to the optimal solution of (8)
and by û?0(x) and x̂?0(x) to the first m elements of û?(x)
and the first n elements of x̂?(x), respectively. Moreover, we
denote by V ?(x) to the optimal value function.

Using the optimal solution obtained from solving (8)
together with (7) results in the feedback law

κ(x) = û?0(x) +K(x− x̂?0(x)), (9)

which implements the control sequence û?0(x) resulting for
the nominal MPC problem and the weighted error between
the true and the nominal system state K(x−x̂?0(x)). Roughly
speaking, the first part û?0(x) steers the nominal system
towards the origin while the weighted error K(x − x̂?0(x))
keeps the trajectory of the real system close to the trajectory
of the nominal system.

It was shown in [1] that the objective function V ?(x)
of (8) is strictly decreasing along any trajectory of the true
system (1) with control law (9), and zero within the RPI set
Z. More formally, it can be shown that there exists a strictly
positive constant c1 such that

V ?(x+)− V ?(x) ≤ −c1‖x̂?0(x)‖22,
for all x ∈ X\Z, x+ = Ax+Bκ(x) + d, d ∈ D (10a)

V ?(x) = 0, for all x ∈ Z, (10b)

Notice that x+ = Ax + Bκ(x) + d denotes any admissible
successor state that results from applying the control law (9)
to system (1). Furthermore, V ?(x) = 0 for all x ∈ Z because
it follows that x̂?0(x) = 0. Similarly, it follows that V ?(x) >
0 for all x ∈ X\Z because of (8f).

Thus, as proven in [1, Theorem 1, p. 222], V ?(x) is a
robust Lyapunov function of the closed-loop system xk+1 =
Axk +Bκ(xk) + dk, and the set Z is robustly exponentially
stable with region of attraction

X = {x ∈ Rn |∃x̂0 such that x ∈ x̂0 ⊕ Z,UN (x) 6= ∅} ,

where dk ∈ D for all k.
As a final preparation, we recall that the optimization

problem (8) can be rewritten as

V ?(x) = min
ẑ

1
2 ẑ
′Γẑ

s.t. Gẑ ≤ w(x),
(11)

by substituting the states x̂1, . . . ,x̂N . In (11), ẑ′ = [û′, x̂′0],
Γ ∈ RmN+n×mN+n, G ∈ Rq×mN+n and w : Rn → Rq is
an affine function of the state. It can be shown that Γ is a
positive definite matrix. This property is a direct consequence
of the fact that (8) is a strictly convex optimization problem



under the assumptions stated above (namely, R � 0 and
Q � 0).

We call the i−th constraint of (11) inactive at the optimum
if Giẑ?(x) < wi(x), and active if Giẑ?(x) = wi(x). The
sets of inactive and active constraints for an arbitrary but
fixed state x ∈ X are denoted by

I(x) =
{
i ∈ Q

∣∣Giẑ?(x) < wi(x)
}
,

A(x) =
{
i ∈ Q

∣∣Giẑ?(x) = wi(x)
}
,

(12)

respectively, where Q = {1, . . . , q}. For later use we note
that the solution of the unconstrained optimization prob-
lem (11) is given by

ẑ?(x) = 0, (13)

which immediately follows from the optimality conditions.
Since ẑ′ = [û′, x̂′0] by definition, (13) implies û?0(x) = 0
and x̂?0(x) = 0, and the optimal control law (9) reduces
to κ(x) = Kx. In other words, the robust state feedback
controller (9) is used to keep the system state inside the RPI
set Z if no constraints are active.

III. CONSTRAINT REMOVAL IN TUBE-BASED MPC

In this section we show how the number of constraints of
the optimization problem (11) can be reduced by identifying
constraints that are proved to be inactive at the optimal
solution before solving (11).

First, we show how inactive constraints can be identified
based on an upper bound on the optimal solution to (11).

Lemma 2 Let x ∈ X and c ∈ R, c > 0. Moreover, assume
that ‖ẑ?(x+)‖ ≤ c holds. Then ‖Gi‖c < wi(x)⇒ i ∈ I(x).

Proof. Consider the relations

Giẑ?(x) ≤ |Giẑ?(x)| ≤ ‖Gi‖‖ẑ?(x)‖ ≤ ‖Gi‖c, (14)

where Giẑ?(x) ≤ |Giẑ?(x)| holds since ξ ≤ |ξ| for all ξ ∈
R, where |Giẑ?(x)| ≤ ‖Gi‖‖ẑ?(x)‖ holds due to Cauchy
and Schwarz’s inequality, and where ‖Gi‖‖ẑ?(x)‖ ≤ ‖Gi‖c
holds by assumption. Combining (14) and ‖Gi‖c < wi(x)
implies Giẑ?(x) < wi(x), which yields i ∈ I(x) by
definition of I(x). �

If a subset of constraints J (x) ⊆ Q is known to be
inactive before solving the optimization problem (11), these
constraints can be removed from consideration, since they
play no role at the optimum. We summarize this in the
following lemma and show how to create a reduced quadratic
program, which has the same solution as (11) but is smaller
in size.

Lemma 3 Let x ∈ X be arbitrary. Consider a set J (x) ⊆
Q, where it is assumed that ‖Gi‖c < wi(x), c > 0 holds for
every i ∈ J (x). Then both the reduced quadratic program

min
ẑ

1
2 ẑ
′Γẑ

s.t. Giẑ ≤ wi(x), i ∈ Q\J (x),
(15)

and (11) have the same unique solution ẑ?(x).

We state Lemma 3 without proof. Lemma 3 can easily be
proven by showing that the same set of KKT conditions
results for both (11) and (15), and by setting the Lagrange
multipliers λi, i ∈ J (x), to zero in the KKT conditions re-
sulting for (11). The corresponding statement for the nominal
case was proven in [12].

A. A priori bounds on ‖ẑ?‖
An upper bound c on the optimal solution, ‖ẑ?‖ ≤ c, is

required in Lemma 2. We show how to compute such a bound
in this section. Specifically, we would like to obtain such a
bound for the successor state x+, i.e. c such that ‖ẑ?(x+)‖ ≤
c, before solving the MPC problem for x+. It turns out the
desired bound can be derived from the solution to the MPC
problem from the current state. First, we state in Lemma 4
that ẑ?(x+) lies in an ellipsoid that can easily be calculated
before solving the MPC problem for x+ (Lemma 4). This
ellipsoid implies the desired bound (Corollary 5). Secondly,
we show in Lemma 6 how a simple upper bound can be
constructed from the constraints directly. This second bound
is independent of the state and therefore can be determined
before runtime of the MPC controller.

Lemma 4 Let x ∈ X be arbitrary and assume the optimal
solution ẑ?(x) for the current state x has already been
calculated. Then, the optimal input sequence ẑ?(x+) for the
successor state x+ lies in the ellipsoid

E(x) =
{
z ∈ RmN+n

∣∣ 1
2z
′Γz ≤ ρ(x)

}
(16)

where
ρ(x) = V ?(x) (17)

is strictly positive for all x ∈ X \ Z and ρ(x) = 0, ∀x ∈ Z.

Proof. First note that ρ(x) > 0 for all x ∈ X \ Z and
ρ(x) = 0 for all x ∈ Z holds according to (10). Recalling
that Γ is symmetric and positive definite, i.e., Γ′ = Γ, Γ � 0,
it follows that (16) defines an ellipsoid in the augmented
space (of inputs and initial nominal state).

It remains to show that ẑ?(x+) ∈ E(x). Consider the rela-
tion V ?(x+) ≤ V ?(x), which follows from (10). Substituting
V ?(x+) = 1

2 ẑ
?(x+)Γẑ?(x+) and using (17) yields

1
2 ẑ
?(x+)Γẑ?(x+) ≤ ρ(x),

which is equivalent to the inequality in (16) and therefore
proves ẑ?(x+) ∈ E . �

The following corollary states the upper bound on ẑ?(x+)
that results from ẑ?(x+) ∈ E(x).

Corollary 5 Let x ∈ X be arbitrary, assume the optimal
solution ẑ?(x) for the current state x has been found, and
let ρ(x) be defined as in (17). Then the norm of the optimal
solution to (11) at the next time step, ‖ẑ?(x+)‖, is bounded
above by

z̃(x) =

√
2ρ(x)

λmin(Γ)
, (18)

i.e., ‖ẑ?(x+)‖ ≤ z̃(x) holds.
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Fig. 1: Illustration of Lemma 4 and Corollary 5: (a) The optimal solution
ẑ?(x+) to the quadratic program (11) lies in the ellipsoid E(x) centered at
the origin. Thus, the largest semi-axes yields an upper bound on the vector
of decision variables ẑ?(x+). (b) The ellipsoids E(x), E(x+) are scaled by
the Lyapunov function V ?(x). Since V ?(x) decreases along any trajectory
of the system, E(x+) shrinks along any trajectory. As a consequence, the
number of constraints of the reduced optimization problem is nonincreasing
along any trajectory of the closed-loop system.

Proof. Let z ∈ E(x) be arbitrary. According to Lemma 1
this implies

‖z‖ ≤
√

2ρ(x)

λmin(Γ)
, (19)

where we used λmin( 1
2Γ) = 1

2λmin(Γ), which proves the
claim. �

A graphical interpretation of Corollary 5, which shows the
ellipsoid E(x) and the resulting upper bound z̃(x) is given
in Figure 1. We stress again that Corollary 5 yields a bound
on the optimal solution ‖ẑ?(x+)‖ for the successor state x+

from information derived from the optimal solution ‖ẑ?(x)‖
at the current state x.

Finally, we derive a simple bound on ‖ẑ?(x+)‖ that is
independent of x and x+. Since it does not depend on
the state, this bound can be calculated offline. It therefore
does not require any computation time during the runtime
of the MPC controller. Moreover, it applies before the MPC
problem is solved for the first time.

Lemma 6 Consider the optimal control problem (8). Let
ν =

(
ν1, . . . , νm

)
and ξ =

(
ξ1, . . . , ξn

)
where:

νl = arg max
u∈Û
|ul| l = 1, . . . ,m (20)

ξl = arg max
x∈X̂
|xl| l = 1, . . . , n (21)

Then, ‖ẑ?(x)‖ is bounded above by

z̄ =
√
N‖ν‖2 + ‖ξ‖2, (22)

i.e., ‖ẑ?(x)‖ ≤ z̄ holds for all x ∈ X .

Proof. From ẑ = (û′0, . . . , û
′
N−1, x̂)′ we infer ‖ẑ‖2 =∑N−1

i=0 ‖ûi‖2 + ‖x̂‖2. Since ûi ∈ Û, (20) implies ‖ûi‖2 ≤∑m
l=1(νl)2 for all i. Likewise, since x̂ ∈ X̂, (21) implies

‖x‖2 ≤∑n
l=1(ξl)2. Thus, we have ‖ẑ‖2 ≤ N ∑m

l=1(νl)2 +∑n
l=1(ξl)2, which proves the claim. �

We note that (20) and (21) can be solved as linear
programs (LP) in m + 2 and n + 2 variables, respectively.
Moreover, those LPs need to be solved once and offline.

B. Reduced MPC problem

Finally, we show how the bounds introduced in Corollary 5
and Lemma 6 can be used to detect and remove inactive
constraints in the MPC problem (15).

Lemma 7 Let x, x+, ρ(x), ẑ?(x), z̃(x) be as in Corollary 5,
let z̄ be as in Lemma 6, and let

J (x+) =
{
i ∈ Q

∣∣‖Gi‖min(z̃(x), z̄) < wi(x+)
}
.

Then the optimal input sequence ẑ?(x+) for the closed-loop
successor state x+ is the solution of the reduced QP

min
ẑ

1
2 ẑ
′Γẑ

s.t. Giẑ ≤ wi(x+), i ∈ Q\J (x+),
(23)

Proof. Corollary 5 and Lemma 6 imply that ‖ẑ?(x+)‖ ≤
z̃(x) and ‖ẑ?(x+)‖ ≤ z̄, respectively. Therefore,
‖ẑ?(x+)‖ ≤ min(z̃(x), z̄). Consider any i ∈ J (x+).
Applying Lemma 2 to x+ for c = min(z̃(x), z̄) yields i ∈ I
at ẑ?(x+). The claim then follows from Lemma 3. �

If the optimization problem (23) is unconstrained, i.e.
|J (x+)| = q, all constraints are inactive at the successor
state x+. Thus, the optimal solution is given by (13) and
the successor state x+ lies within the set Z. Since the set
Z is an RPI set of the closed-loop system that satisfies
AKZ ⊕ D ⊆ Z, the state remains inside Z for all future
time steps. We summarize this in the following remark.

Remark 8 If the QP is unconstrained for the state x(k̆) at
time k̆, the unconstrained solution (13) is optimal for all
k ≥ k̆.

An implementation of Lemma 7 is given in Algorithm 1.
The algorithm shows how the reduced quadratic program
can be constructed and solved for ẑ?(x+) at time step x+

based on the value of the Lyapunov function V ?(x) at the
previous time step x. If the reduced quadratic program is
detected to be unconstrained, i.e., |J (x+)| = q in line 11,
the unconstrained solution κ(x+) = Kx+ can be applied

Algorithm 1 Fast calculation of robust tube-based MPC
1: init (offline): compute z̄ from (22).
2: data: V ?(x), x+, x.
3: Set J (x+) = ∅.
4: Calculate bound z̃(x).
5: Use best upper bound c = min(z̃(x), z̄).
6: for all i = 1, . . . ,q do
7: if ‖Gi‖c < wi(x+) then
8: J (x+)← J (x+) ∪ i.
9: end if

10: end for
11: if |J (x+)| = q then
12: QP is unconstrained: ẑ?(x+) = 0.
13: else
14: Solve reduced QP (23) for ẑ?(x+).
15: end if
16: return: ẑ?(x+).



immediately (cf. line 12) and no optimization problem has
to be solved. Otherwise, the reduced QP (23) is solved for the
optimal ẑ?(x+) (cf. line 14). When solving the MPC problem
for the first time, the bound z̃(x) is not yet available, but z̄
can be used.

IV. EXAMPLE

We consider the discrete-time state space system that
results from discretizing the continuous-time system with
transfer function matrix

G(s) =

[
0.05

36s2+6s+1
0.02(2s+1)

8s+1
0.02(2s+1)

8s+1
0.05

12s2+3s+1

]
using zero-order hold with Ts = 1s. The resulting state space
system of the form (1) has n = 6 states and m = 2 inputs.
State space matrices are given in the appendix. We set the
horizon, weighting matrices and the controller to N = 40,
Q = 10I6×6, R = 0.01I2×2, the solution to the discrete-time
algebraic Riccati equation

P = Q+A′PA−A′PB(R+B′PB)−1B′PA,

and

K = −(R+B′PB)−1B′PA,

respectively. The state and input constraints (2) read (for all
k)

−15 ≤ xi(k) ≤ 15, i = 1, . . . , 6,
−3 ≤ ui(k) ≤ 3, i = 1, 2.

Finally, the disturbance (3) is assumed to satisfy (for all k)

−0.01 ≤ di(k) ≤ 0.01, i = 1, . . . , 6.

We used the algorithm presented in [15] to calculate an
invariant approximation of the minimal robust positively
invariant set Z with ε = 1 for A + BK. The terminal set
Xf was calculated with the algorithm presented in [16]. The
resulting QP to be solved during each time step has 840
constraints and 86 decision variables.

We calculated trajectories of the closed-loop system for
6250 random initial states for 40 time steps each and
compared the computation times required to solve the full
QP (11) to the times required to set up and solve the
reduced QP (15). All calculations were carried out with the
interior-point solver QPIP [17] and repeated with the active-
set solver QPAS [17] (6250 · 40 full QPs with QPIP and
QPAS each, 6250 · 40 reduced QPs with QPIP and QPAS
each)1. Results are summarized in Figure 2(a,b) by plotting
cumulative distribution functions cdf(tMPC). The cdf(tMPC)
is the fraction of values that are equal or less than the step
time tMPC.

Approximately 25% of the QPs are detected to be uncon-
strained by the proposed method. Therefore, no optimization
problem needs to be solved at all in these cases. Instead,
the optimal control law of the unconstrained case (13) can

1All QPs were implemented in Matlab. The simulations are carried out
on an Intel i5-3570 CPU with 8Gb RAM running Suse Linux with Kernel
3.11.10-7.
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Fig. 2: Results of the simulation study: cumulative distribution functions
(cdf) of the step times achieved by solving the reduced QP (red) and
achieved by solving the full QP (blue) for 2.5 · 105 different quadratic
programs with the QPIP solver (a) and QPAS solver (b). (c) states x(k)
(upper), inputs u(k) (middle) and number of constraints (bottom) of the
reduced QP for the trajectory resulting from one of the 6250 random chosen
initial points. The black dashed line shows the number of constraints of the
full QP.

be applied immediately (line 11-13 of Algorithm 1). Since
the control law can be provided very quickly in these cases,
the leftmost shoulder of the red curves in Figure 2(a,b) is
obtained. Moreover, about 45% (resp. 38%) of the reduced
QPs are solved faster than the fastest time required to solve
the full QP with the QPIP solver (resp. QPAS solver). This
can be seen as follows: Consider a line parallel to the
ordinate that cuts the abscissa at the smallest computation
time achieved by the MPC variant without constraint removal
(blue curve). The intersection of this line with the cdf
resulting for solving the reduced QP (red curve) yields
the value we are looking for. We claim the results shown
in Figure 2(a,b) clearly indicate that the proposed method
results in an acceleration for both solvers.

Consider Figure 2(c) next, which shows the states of
the system, the inputs and the constraints of the reduced
quadratic program for one of the initial points. The system
states converge to the RPI set Z since the system is stable
under the tube-based control law (9) (upper plot). The
number of constraints q(k) of the reduced QP (red curve)
and the full QP (blue curve) are shown in the lowermost plot.
Clearly, q(k) of the reduced quadratic program converges to
zero along the trajectory. At k = 27 the optimization problem
is detected to be unconstrained and the optimal solution (13)
of the unconstrained problem is applied.

The full QP has 840 constraints in this example. The
number of constraints of the reduced QP varies between 0
and 474, with an average of 319.67. Thus, even in the worst
case ≈ 45% of the constraints are removed. About 63% of



the constraints are removed on average.

V. CONCLUSIONS

We showed how to accelerate tube-based MPC by con-
straint removal, a technique recently introduced for the
nominal MPC case [13]. Essentially, the cost function, which
is a Lyapunov function under the usual assumptions, is used
to detect, in the present time step, which constraints will be
inactive in the subsequent time step. By removing inactive
constraints from the MPC problem, the computational effort
needed to solve it can be reduced. We showed that consid-
erable reductions result with an example of moderate size.

We stress constraint removal does not require a specific
QP solver, but it can easily be integrated into existing tube-
based MPC implementations. We also note that no special
requirements need to be imposed for constraint removal to
be applicable. Finally, it is worth mentioning that it merely
is convenient but not necessary to remove the states from the
MPC problem formulation.

Future research has to address the identification of active
constraints. These constraints can be integrated as equality
constraints into the reduced quadratic program and, roughly
speaking, define a linear subspace that contains the optimal
solution. Moreover, extensions to nonlinear systems are
obviously worth investigating.
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APPENDIX
The state space matrices of the example system read

A =



8.34 · 10−1 −2.04 · 10−1 0.00 0.00 0.00 0.00

1.15 · 10−1 9.87 · 10−1 0.00 0.00 0.00 0.00

0.00 0.00 8.82 · 10−1 0.00 0.00 0.00

0.00 0.00 0.00 8.82 · 10−1 0.00 0.00

0.00 0.00 0.00 0.00 7.44 · 10−1 −2.91 · 10−1

0.00 0.00 0.00 0.00 2.18 · 10−1 9.62 · 10−1


,

B =



1.15 · 10−1 0.00

7.38 · 10−3 0.00

2.94 · 10−2 0.00

0.00 2.94 · 10−2

0.00 1.09 · 10−1

0.00 1.43 · 10−2


.
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