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Abstract—We deal with the determination of the composition 

of bronze alloys measured through Laser-Induced Breakdown 

Spectroscopy (LIBS) analysis. The relation between LIBS spectra 

and bronze alloy composition, represented by means of the 

concentrations of constituting elements, is modeled by adopting 

an ensemble of learning machines, fed with different inputs. 

Then, the combiner computes the final response. The results 

obtained on the test set show that the ensemble model manages to 

determine the composition of alloy samples with mean squared 

error of about 6.53 10-2. 

Keywords—ensemble; feature selection; Laser-Induced 

Breakdown Spectroscopy; neural networks 

I. INTRODUCTION 

Recently, the advances in analytical science and 
instrumentation technology have led to the improvement in 
analysis techniques to determine the elemental composition of 
a sample, e.g., in biomedical, environmental, archaeological, 
and cultural heritage fields. Elemental analysis may be 
qualitative, if it is devoted to determine what elements are 
present in the sample, or quantitative, if it deals with detecting 
the quantity of each element composing the sample. In the 
analysis of samples it is of the utmost importance to assure 
their preservation and integrity. In addition, samples are not 
always transportable to the laboratory for the analysis. For all 
these reasons it is necessary to develop efficient, 
nondestructive, and applicable in situ techniques [1].  

Laser-Induced Breakdown Spectroscopy (LIBS) is a 
spectroscopic technique frequently applied to identify the 
absolute concentrations of chemical elements, thus performing 
both qualitative and quantitative elemental analysis of several 
types of samples, such as soils, metal alloys, and rocks [2]. 
LIBS represents a valid fast and non-destructive alternative to 
other spectroscopic, mass spectrometric, or X-ray techniques. 
Further, it can be used with samples of any shape in liquid, gas 
or solid state, can be applied in situ, and it does not need a 
preliminary sample treatment. During LIBS analysis (Fig. 1), a 
high power laser beam is focused for a few seconds on the 
sample surface so as to cause the ablation of an amount of mass 
of the order of nanograms or picograms, thanks to fast increase 
of temperature in the heated region. The ablated mass interacts 

with the laser pulse and produces a high-temperature plasma on 
the sample surface. Afterwards, the plasma expands and cools 
so that the characteristic atomic emission lines of the elements 
can be observed. More precisely, the light emitted by the 
plasma is composed of discrete spectral peaks collected with a 
spectrograph, and is processed to determine the composition of 
the sample, given that each chemical element is identified by 
univocal LIBS spectral peaks. The principal drawbacks of 
LIBS analysis are limited precision and sensitivity, which 
negatively influence accuracy [3]. 

In the following, a few classical approaches for LIBS 
quantitative analysis are briefly recalled. The typical approach 
uses calibration curves (CC-LIBS) [4]. The calibration curves 
(intensity of the emission line vs. concentration of the related 
element) are obtained according to appropriate reference 
standards, and then employed to detect the composition of 
similar samples. The principal disadvantage of this method is 
the requirement for reference calibration samples. Another 
method to solve this problem, is the Calibration-Free LIBS 
(CF-LIBS) [5]. It takes into account the plasma temperature, 
and the electron number density, and assumes stringent 
experimental conditions. Its disadvantages are the requirements 
of a long temporal analysis and of the detection of one line for 
each element in the plasma with known atomic data. Cavalcanti 
et al. [6] proposed the One-Point Calibration method (OPC-
LIBS), which gives the best results and requires the use of one 
reference sample to calibrate the model. 

Another issue concerning LIBS analysis is the high-
dimensionality of the input space. LIBS spectra are generally 
represented by means of N spectral lines (where N is of the 
order of thousands). In fact, the use of too many features tends 
to increase complexity and decrease the accuracy of the 
analysis, thus making dimension reduction a necessary 
preliminary phase. Typically, Partial Least Squares (PLS) 
Regression [7], or Principal Component Analysis are adopted 
so as to extract important information from the spectrum, with 
the aim of achieving the required accuracy and maintaining the 
lowest possible complexity of the approximation. For this 
reason, feature selection (FS) is typically adopted to decrease 
the number of considered input intensities of spectral lines to 
the minimum value n (with n << N). Frequently used methods 
for FS are forward feature selection (FFS) [8] and genetic 
algorithms (GA) [9]. E.g., the authors in [10] deal with This work was supported by the project “Analisi di dati sensoriali: dai sensori 
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classification of explosives with diverse composition using 
LIBS data. They reduce the large dimensionality of LIBS 
spectra by selecting the smallest possible subset of 
discriminatory features in two different ways: i) choice of the 
spectral areas based on a priori knowledge of the chemical 
composition of the samples; ii) spectral areas determined by a 
GA. In both cases, they achieve classification performance 
higher than that obtained by corresponding algorithms that 
employ the full spectral data. However, the number of selected 
features, though being an order of magnitude smaller than the 
original features, is still sensibly high. 

Recently, computational intelligence techniques, and in 
particular artificial neural networks (NNs) and fuzzy inference 
systems (FISs), have been successfully employed in [11]-[15] 
for quantitative analysis of LIBS spectra. In particular, 
ensembles of intelligent machines are typically adopted in the 
literature to solve problems concerning classification and 
regression through the appropriate combination of the outputs 
of independent learning systems. These systems independently 
perform the same task and their responses are combined in 
order to obtain a global response that is better than each 
individual response [8], [16]-[19]. The performance of such an 
ensemble is affected by, e.g.,: i) the adoption of different 
training sets, input representation, and training algorithms, ii) 
the system architecture, iii) the combination criterion. Actually, 
the appropriate combination of a collection of imperfect 
experts enables compensating the limitations of the single 
experts [16], thus obtaining higher accuracy with respect to the 
simple choice of the best expert. Even if the most used 
combining strategy is the averaging method [20], the results 
can be combined in other ways, such as minimum, maximum, 
median, weighted average, e.g., taking into account the experts’ 
performances. 

In this paper we aim to detect the elemental composition of 
bronze alloy samples, based only on a subset of the spectral 
lines describing the samples. For this reason, we propose an 
ensemble of independent learning machines, with inputs 
chosen based on different FS procedures. The paper is 
organized as follows. Sections II and III describe, respectively, 
the theoretical background on NNs, FISs, FS and the LIBS 
measurements of bronze alloy data used in the experiments. 
Section IV introduces the proposed ensemble model to detect 
the composition of alloy samples. Section V and VI present, 
respectively, the experimental results, and the conclusions. 

 
Fig. 1. LIBS analysis [12]. 

 

II. THEORETICAL BACKGROUND 

In the following we briefly describe the basic theory about 
the machine learning techniques involved in this work. 

NNs are intelligent systems which show the remarkable 
capability to learn from examples. They are able to 
approximate each input-output relationship with any degree of 
accuracy. A frequently adopted feed-forward NN model is the 
radial basis function (RBF) NN. An RBF NN [21] has, in its 
most typical form, an input layer, which receives input signals, 
a linear/non-linear output layer, which produces the outputs, 
and one non-linear hidden layer. The activation function of 
each hidden neuron is a radial basis function (most often the 
Gaussian function), whose response decreases, or increases, 
monotonically with distance from the function center. The 
training of RBF networks consists in determining the centers 
and spreads of the radial basis functions, and the weights that 
connect hidden neurons to output neurons.  

Even though NNs are frequently adopted as individual 
systems to approximate input-output relationships, they have 
also been employed successfully in combination with other 
techniques, in particular fuzzy systems, to solve fitting or 
classification problems. The resulting neuro-fuzzy hybrid 
system allows exploiting at the same time the capability of 
NNs of learning from examples and the interpretability of the 
fuzzy rules. A well-known neuro-fuzzy hybrid system is the 
Adaptive Neuro-Fuzzy Inference System (ANFIS) [22], a 
Sugeno fuzzy inference system which employs a hybrid 
learning process to automatically determine, from an input-
output data set, the fuzzy system’s membership function 
parameters, and the fuzzy rules. The typical learning process of 
ANFIS combines least-squares and backpropagation gradient 
descent methods. 

Regarding feature selection, FFS is a well-known method 
for input dimensionality reduction. It starts by considering and 
evaluating, based on a given criterion function, all sets 
containing a single feature to approximate the input-output 
relationship. Then, FFS generates the best subset containing 
two features (the one selected in the previous step and another 
feature from the remaining ones), three features, and so on. The 
final subset is the best among all the subsets generated. 
Another well-known method used for feature selection is based 
on GAs [9]. A GA is an optimization algorithm based on the 
mechanics of natural selection and genetics, which describes 
the candidate solution to the optimization problem as an 
individual (or chromosome) having a set of characteristics (i.e., 
free parameters of the problem) and then evolves a population 
of individuals toward the optimal solution for the problem, 
according to a fitness function, which measures the quality of 
each individual in approximating the functional relationship 
between inputs and outputs. Generally, GAs start with a 
randomly generated initial population of chromosomes, 
representing candidate solutions to the problem, and evolve 
toward populations with chromosomes having, on average, a 
better fitness. This is achieved thanks to the application of 
genetic operators like crossover, mutation, and selection. On 
the GA convergence, the chromosome associated with the best 
fitness value is typically chosen as the optimal solution. 



III. BRONZE ALLOYS DATASET 

The dataset used in this work was collected by analyzing 6 
different physical samples of modern bronze alloys with the 
concentrations of the four constituting chemical elements 
shown in Table I: the majority element Copper (Cu), Zinc (Zn), 
Tin (Sn), and Lead (Pb). In the following, the word “sample” 
refers to a particular modern bronze alloy, that is, a particular 
composition of 4 chemical elements. Further, the word 
“spectrum” is used to indicate a particular instance of a sample. 
Stated in other words, a sample represents a set of spectra. 150 
spectra for each sample were collected and elaborated, thus 
obtaining a total of 900 spectra. The LIBS spectra represent the 
intensity of the LIBS signal at 3606 wavelength or spectral 
lines (in the range 200÷900 nm), so a spectrum is represented 

in 
3606

. With the aim of having all the emission lines on the 
same intensity scale, we preprocessed the data, by normalizing 
the intensity values in [0÷1] based on the max-min formula. 
Fig. 2 shows a typical spectrum. As stated before, each spectral 
line indicates weather the corresponding chemical element is 
present (or absent) in the sample, and the intensity of the 
spectral line suggests the corresponding concentration of the 
chemical element. 

The data introduced above are the same as those used in 
[19] but with a different purpose, namely, the prediction of the 
chemical composition of unknown modern bronze alloy 
samples. 

TABLE I.  COMPOSITON OF THE BRONZE ALLOYS SAMPLES 

Sample 

Id 

Composition (% in weight) 

Copper Zinc Tin Lead 

S160 83.6 1.9 11.4 3.1 

S161 87.1 5 5.5 2.4 

S162 90.9 0.3 7.8 1 

S163 84.1 1.4 10.5 4 

S164 85.7 9.5 3.6 1.2 

S165 87.3 3.7 6.6 2.4 

IV. PROPOSED ARCHITECTURE 

We chose to develop the system as an ensemble of learning 
machines, by performing the following two main steps: 

1) development of K (K ≥ 2) NN-based experts performing the 
same task. The task consists in approximating the 
functional relationship between each spectrum represented 

in 
3606

 (the 3606 spectral lines) and the corresponding 

composition represented in 
4
 (the concentrations of the 

four chemical elements in the alloy). Each expert is a model 
appropriately trained to perform the input-output mapping 
(see Sections IV.A, IV.B, and IV.C).  
More in detail, this step requires a preliminary objective, 
i.e., to solve a high-dimensional feature selection problem, 
with the aim of choosing the most significant spectral lines 
of the LIBS spectrum so as to significantly decrease the 
problem dimensionality, while preserving a highly accurate 
approximating model. Thus, step 1) consists in performing 
two sub-steps: 
a) an FS process tailored to each expert (the FS 

parameters for each expert are summarized in Table 
II), which selects the appropriate set of features SFi, 

i = 1,…, K, used to represent the inputs to the expert 
(thus, the inputs to the experts may be different from 
each other), and 

b) the setup of the model parameters (e.g., number of 
hidden neurons) based on the features selected; 

2) choice of the optimal way of combining the outputs coming 
from the experts into a single response (see Section IV.D). 
 
In the experiments we developed an ensemble of K = 3 

experts, namely, two RBF NNs, and one ANFIS system. 
Referring to the last, actually we built four ANFIS models, one 
for each concentration value to be estimated, as the classical 
implementation of ANFIS is single-output. 

The ensemble is first trained and tuned on a subset of the 
spectra (training set), then it is tested on the remaining spectra 
(test set) in order to check the behavior of the ensemble on 
previously unseen spectra. We build the training set and test set 
as follows. The training set corresponds to about 80% of the 
available spectra (spectra randomly selected within each 
sample in order to have the same number of spectra for each 
sample), while the test set corresponds to the remaining 
spectra. The following sub-sections describe the development 
of the learning machines, and of the combiner. Fig. 3 depicts 
the architecture of the proposed ensemble model developed 
within the Matlab

®
 environment. The details are given in the 

following. 
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Fig. 2. A LIBS spectrum of sample S160 showing some associations 

between spectral line and chemical element. 

A. First Expert 

The first expert (rbf_nn1 in Fig. 3) is an RBF network 
whose inputs are the features selected with an FFS process 
applied to the training set expressed in terms of the original 
3606 features. 

At each step, FFS selects the optimal subset of features able 
to minimize the error of the criterion function, which is an RBF 
network whose inputs are, at each step, the selected features, 
and whose outputs are the 4 concentrations. We adopted an 
RBF NN with the Matlab

®
’s default values for the network 

parameters. The resulting set of selected features is the set of 4 
LIBS intensities SF1 = {914, 977, 1884, 1916} corresponding 
to the spectral lines (in nm) {326.15, 334.45, 472.05, 481.05}. 
We took into account only 4 features, as we observed that after 
adding the 5-th feature, the Mean Squared Error (MSE) does 



not decrease in a meaningful way 

The RBF architecture employed to implement the first 
expert has one hidden layer, with a maximum number of 
neurons set to 20, 4 inputs (the features previously selected) 
and 4 outputs. The transfer functions for hidden and output 
neurons are Gaussian and linear, respectively. An experimental 
analysis was performed to find out the best value for the 
spread. We considered values in the range from 0.1 to 1 with 
step 0.1, and for each of them, the RBF NN was trained 10 
times, by employing the training set. The final best RBF 
network resulted to be the one with the minimum average MSE 
on the 10 training sets. We finally found 0.1 as the optimal 
spread value, and 18 as the optimal number of hidden neurons.  
 

TABLE II.  PARAMETERS OF THE FEATURE SELECTION PROCESSES 

Expert 
Feature selection process 

FS kind Parameters 

First 

Expert 
FFS 

Criterion function: RBF NN function (20 

hidden neurons, spread value 1) 

Second 

Expert 

GA-
based 

Selection: stochastic uniform  

Crossover: single-point, probability 0.1 
Mutation: Gaussian  

Population size: 30 chromosomes 

Maximum number of generations: 200 
Fitness function: RBF NN function (20 hidden 

neurons, spread value 1) 

Third 

Expert 
FFS 

Criterion function: ANFIS model (grid 

partitioning, 3 triangular membership functions 
per variable) 

 

B. Second Expert 
The second expert is an RBF network (rbf_nn2 in Fig. 3) 

whose inputs are the spectral lines selected through a GA-
based FS process. Due to computational cost reasons, FS was 
applied on a reduced set of 480 features selected among the 
3606 by a human expert and already employed in [6]. Thus, 

each spectrum is represented in 
480

. In addition, we made a 
further simplification: we chose 10 as the maximum number of 
features, by adapting the GA mutation function. The 
representation of the chromosome is a binary-coded vector of 
480 genes, where each gene indicates weather the 
corresponding feature is present or not in the final set. Details 
about selection, crossover, and mutation operators are 
summarized in Table II. We set the maximum number of 
generations to 200, and the population size to 30 chromosomes. 
The fitness function is an RBF NN-based criterion function. In 
this case, too, we adopted an RBF NN with Matlab

®
’s default 

values for the network parameters. The GA-based FS found the 
set of 6 LIBS intensities SF2 = {715, 912, 977, 1155, 2560, 
2621} corresponding to the spectral lines (in nm) {299.56, 
325.88, 334.45, 357.60, 657.01, 673.12}. 

We wish to point out that, though the GA-based FS process 
was applied, for computational reasons, on a reduced set of 
features, where the significant information usually lies 
according to the experts in the field, starting from this reduced 
set of features does not limit the capability of the system. 
Indeed the final ensemble, as a whole, actually takes into 
account all the available features, thus allowing search for 
relevant information in features not taken into account in this 

reduced set.  

Finally, to choose the final best RBF NN to implement the 
second expert, we repeated the steps made in the case of the 
first expert. The final RBF architecture has 6 input variables 
and 4 output variables. As before, the transfer functions for 
hidden and output neurons are Gaussian and linear, 
respectively. The optimal values for the spread and the number 
of hidden neurons resulted to be 0.1, and 16, respectively. 
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Fig. 3. Architecture of the proposed ensemble of learning machines. 

C. Third Expert 
The third expert is an ANFIS-based model (anfis3 in Fig. 

3). More in detail, we developed four ANFIS models, one for 
each output concentration. We performed four different FS 
processes on the reduced set of 480 features, by employing 
FFS. The criterion function of each FFS is the standard ANFIS 
model (developed using the Matlab

®
‘s default values, i.e., grid 

partitioning with 3 triangular membership functions per 
variable), having as inputs, at each step, the selected features, 
and as output the considered concentration. The four FS 
processes found the following sets of LIBS intensities: 1) 
SF3,1 = {977, 1205}, corresponding to the set of spectral lines 
(in nm) {334.45, 364.02} for the Copper concentration; 2) 
SF3,2 = {922, 976}, corresponding to the set of spectral lines (in 
nm) {327.21, 343.32} for the Zinc concentration; 3) 
SF3,3 = {976, 1727}, corresponding to the set of spectral lines 
(in nm) {343.32, 428.63} for the Tin concentration; and 4) 
SF3,4 = {703, 977}, corresponding to the set of spectral lines (in 
nm) {297.94, 334.45} for the Lead concentration. We chose 
only the first two features selected by FFS because we verified 
that using a higher number of features did not improve 
significantly the results, and also to maintain the ANFIS 
models as simple as possible. 

To find the optimal architecture of each of the 4 ANFIS 
models (anfis3,1, anfis3,2, anfis3,3, anfis3,4 in Fig. 3) which 
constitute the third expert, we tried the following settings for 
the generations of the models:  

i) grid partitioning with 3, 4, or 5 membership functions 
per input, and linear membership functions for the output; we 
took into account also several membership functions types, i.e., 
triangular, Gaussian, trapezoidal, and generalized bell-shaped; 

ii) subtractive clustering with the default values proposed 
in Matlab

®
; 

iii) fuzzy c-means clustering with 2, 3, 4, or 5 clusters, and 
Matlab

®
’s default values for the other parameters. 



Each model architecture was trained 10 times, by 
employing the training set. The best model architecture for all 
the ANFIS models resulted to be the one built with the fuzzy c-
means clustering with 3 clusters. 

D. The Ensemble 
Once the optimal architectures of the three learning 

machines have been found, the ensemble model can be 
developed. The development of the ensemble consists in 
appropriately combining the responses from the 3 experts, 
related to the 4 concentration values of the elemental 
composition. Hence the combiner is a function having 12 
inputs and 4 outputs, i.e., the ensemble values of the 4 
concentrations. Each ensemble concentration value (e.g., 
Copper) produced by the combiner is the combination of the 
values of the corresponding concentrations (Copper) produced 
by the experts. The combination consists in the application of a 
combining function. We took into account several combining 
functions, i.e., mean, maximum, minimum, median, weighted 
average, geometric mean, weighted geometric mean, harmonic 
mean, Heronian mean. 

After the setup with the optimal values of the parameters, 
each learning machine is trained, and the output from each 
learning machine is fed as input to the combiner. We tried all 
the combining functions mentioned above. To keep 
computational time at an acceptable level, each experiment was 
repeated 10 times for each possible combining function. The 
best combining function resulted to be the weighted average, 
with the sum of weights being unity. The weights of the 
weighted average were chosen heuristically according to the 
performance of the corresponding experts during the training 
process. 

V. EXPERIMENTAL RESULTS 

In the experiments, the error after the combination is 
computed by comparing the estimated concentrations with the 

target concentrations of the four chemical elements on the 
training and test sets. The error produced by the model is 
computed as the average MSE over Q executions. We chose 
Q = 30, as suggested in [17]. Table III shows the obtained 
results related to the training and test sets in terms of MSE 
achieved by sample over the 30 trials. Table IV shows the MSE 
on the training and the test sets over the 30 executions obtained 
by the experts, and by the ensemble. 

As a final remark, we wish to point out that the proposed 
approach to LIBS quantitative analysis of samples is fast and 
easy and it overcomes the main drawbacks of the classical 
approaches, namely, complex calculations of spectral 
parameters, long times for analysis, need for strict experimental 
condition or for standard samples for calibration. In addition, it 
allows performing a fast and automatic analysis of a large 
number of spectra. 

VI. CONCLUSIONS 

This paper has proposed an ensemble of learning machines 
for determining the elemental composition of bronze alloys 
represented through LIBS spectra. We performed different FSs 
depending on the expert, to reduce the input dimensionality. 
With respect to classical approaches for LIBS analysis, we 
employ a remarkably limited number of spectral lines to detect 
the elemental composition. In addition, such a process could be 
easily automatized, e.g., in industrial applications with strict 
time requirements in data processing. 
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TABLE III.  AVERAGE MSES BY SAMPLE, ACHIEVED BY THE ENSEMBLE. 

 
Sample Id 

S160 S161 S162 S163 S164 S165 

Training 1.4·10-2 7.7·10-2 3.6·10-2 4.3·10-2 2.93·10-2 1.3·10-2 

Test 3.64·10-2 8.8·10-2 4.9·10-2 6.37·10-2 6.82·10-2 8.5·10-2 

 

 

TABLE IV.  AVERAGE MSES OBTAINED BY THE EXPERTS, AND BY THE ENSEMBLE. 

 First Expert Second Expert Third Expert Ensemble 

Training 3.72·10-2 1.131·10-1 4.442·10-1 3.55·10-2 

Test 6.76·10-2 2.055 4.484·10-1 6.53·10-2 
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