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1 Introduction

The idea of nonAbelian monopoles and the associated concept of nonAbelian duality has

proven to be peculiarly elusive. The exact Seiberg-Witten solutions and its generalizations

in the context of N = 2 supersymmetric theories [1–9] show that the massless monopoles

appearing at various simple singularities of the quantum modiuli space of vacua (QMS)

are Abelian. There are clear evidences [1]–[13] that they are indeed the ’t Hooft-Polyakov

monopoles becoming light by quantum effects. This has (mis-)led some people to believe

that the monopoles seen in the low-energy dual theories of the soluble N = 2 models are

always Abelian. Actually, in many degenerate singularities where Abelian vacua coalesce

(e.g., at certain values of the bare masses and/or at special points of the vacuum moduli

space), nonAbelian monopoles regularly make appearance [14–17] as dual, massless degrees

of freedom. They correctly describe the infrared phenomena such as confinement and global
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symmetry breaking.1 NonAbelian monopoles are also known to appear in infrared-fixed-

points of N = 1 supersymmetric theories, those in Seiberg’s conformal window (N = 1

SQCD, for 3
2Nc < Nf < 3Nc) [18] being the most celebrated examples.2 Even more

intriguing is the situation in highly singular vacua occurring in the context of N = 2 SQCD

for some critical quark mass in SU(N) theories [19, 20] or in the massless limit of SO(N)

or USp(2N) theories [14–16, 21, 22]. These infrared-fixed-point SCFT’s are described by

a set of relatively nonlocal and strongly-coupled monopoles and dyons, and it is quite a

nontrivial matter to analyze what happens when a N = 1 deformation is introduced in

the theory. Is the system brought into confinement phase? And if so, how is it described?

Only quite recently some progress was made concerning these questions [23], taking full

advantage of some beautiful results of Argyres, Gaiotto, Seiberg, Tachikawa and others [24–

26]. Confinement vacua near such highly singular SCFT exhibit interesting features which

could provide important hints about the not-yet-known confinement mechanism in QCD.

Leaving aside this deep issue here, the point is that appearance of the nonAbelian

monopoles as infrared degrees of freedom is quite common in strongly interacting non-

Abelian gauge theories. What is lacking still is the understanding of these quantum ob-

jects, or in other words, of their semi-classical origin. This question is a relevant one, in

view of the difficulties associated with the straightforward idea of semi-classical nonAbelian

monopoles [27–34].

It is our aim in this paper to take a few more steps towards elucidating the mysteries

of nonAbelian duality. For this purpose we study a system with hierarchical symme-

try breaking3

SU(N+1)color ⊗ SU(N)flavor
v1−→ (SU(N)×U(1))color ⊗ SU(N)flavor

v2−→ SU(N)C+F , (1.1)

with

v1 ≫ v2 , (1.2)

as in [35]–[40]. The homotopy group associated with the gauge symmetry breaking,

Π2(SU(N + 1)/SU(N)×U(1)) ∼ Z (1.3)

1A typical example is the so-called r-vacua [14–17] of N = 2, SU(N) SQCD with Nf quarks in the equal

mass limit, where an exact flavor SU(Nf ) symmetry and the dual SU(r) (r < Nf/2) gauge symmetry appear

simultaneously. Evidently the correct realization of the global symmetry (SU(Nf )) and renormalization

group flow (r < Nf/2) are interrelated subtly.
2There is a good reason for the frequent appearance of nonAbelian monopoles in the nontrivial fixed-

point conformal theories. Due to renormalization-group flow, non-Abelian monopoles tend to interact too

strongly in the infrared: unless they do not acquire sufficiently large flavor content, they would not be seen

in the infrared. Abelian monopoles are infrared free, so they can appear more easily as infrared degrees of

freedom. The limit r ≤ Nf/2 for the r-vacua is a manifestation of this fact. The nontrivial IFPT conformal

theories are the critical cases: nonAbelian monopoles and quarks appear together as low-energy massless

degrees of freedom.
3Although for definiteness we here consider SU(N) theories only, the idea of hierarchical symmetry

breaking and the monopole-vortex connection in a color-flavor locked vacuum can naturally be extended

to other gauge theories such as SO(2N) or USp(2N) [41–43]. Such an extension is straightforward but

interesting: the monopoles transform according to spinor representations of the dual Spin(2N) or SO(2N +

1), respectively, in these cases.
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supports monopoles with quantized magnetic charges, whereas the low-energy U(N) sym-

metry breaking with

Π1(SU(N)×U(1)) ∼ Z (1.4)

implies vortices. As neither of them exists in the full theory,

Π2(SU(N + 1)) = Π1(SU(N + 1)) = 1, (1.5)

the vortex must end: the endpoints are the monopoles. This fact can be rephrased by the

short exact sequence of the associated homotopy groups:

1 = Π2(SU(N +1)) → Π2

(

SU(N+1)

SU(N)×U(1)

)

→ Π1(SU(N)×U(1)) → Π1(SU(N +1)) = 1 .

(1.6)

The fact that neither monopole or vortex exist as stable solitons of the full theory does

not prevent us from investigating these configurations. The idea is to keep the mass-scale

hierarchy v1 ≫ v2 as strong as we wish, so that the concept of monopole or vortex is as

good as any approximation used in physics.4

Note that the topological classifications such as eqs. (1.3), (1.4), are not fine enough

to specify the minimum-energy configuration in each class. There are continuously infi-

nite degeneracy of such minimum configurations due to the breaking of the exact global

color-favor SU(N)C+F symmetry by the vortex and monopole. The connection implied by

eq. (1.6) however means that each minimal vortex configuration of the minimum class of

eq. (1.4) ends at a monopole of the miminum class eq. (1.4). This connection endows the

monopole with the same CPN−1 orientation moduli of the nonAbelian vortex.

The new SU(N) quantum number of the monopole arises as the isometry group of

this CPN−1 moduli space, following from the exact color-flavor symmetry of the original

gauge system. The monopole transforms in the fundamental representation of this SU(N).

Fluctuation of the monopole SU(N) charge excites the well-known non-Abelian vortex

zero modes [35, 44], which propagate as massless particles in the 2D worldsheet. One

way of thinking about this result is that the non-normalizable 3D gauge zero modes of the

monopole, when dressed by flavor charges, turn into normalizable 2D modes on the vortex

world sheet.

The new SU(N) symmetry is a result of the color-flavor combined transformations

acting on the soliton monopole-vortex configurations: the latter is a nonlocal field transfor-

mation. Nevertheless, in the dual description the new SU(N) acts locally on the monopole.

This is typical of electromagnetic duality.

This SU(N) charge of the monopole is a confined charge, as the excitation does not

propagate outside the monopole-vortex-antimonopole complex. The M − V − M̄ complex

is a singlet as a whole. The monopoles appear as confined objects, the vortex playing the

role of the confining string. This is correct as the original SU(N) gauge system is in a

completely broken, Higgs phase. The dual system must be in confinement phase.

The following is an attempt to make these ideas a little more concrete.

4Of course, quantization of the radial and rotational motions of the monopoles can stabilize such a

system dynamically, without need of the hierarchy, v1 ≫ v2.
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2 The model

Our aim is to study a simplest possible model which realizes the hierarchical symmetry

breaking eq. (1.1) in which the light matter and gauge fields interact with the monopole

arising from the higher-mass symmetry breaking. The action can be taken in the form,

L = −1

4
(Fµν)

2 + |Dµφ|2 +
NF
∑

I=1

|DµqI |2 − V (φ, q) , (2.1)

where φ is a scalar field in the adjoint representation of SU(N + 1), qI , where I =

1, 2, . . . , NF = N , are a set of other scalar fields, in the fundamental representation. In-

spired by the N = 2 theories, we take

V =
∑

A

∣

∣

∣
µφA + λ q†I T

AqI
∣

∣

∣

2
+
∑

I,i

∣

∣(TAφA +mI)ij q
I
j

∣

∣

2
, (2.2)

where m1,m2, . . .mN are the (bare) masses of the scalar fields q, and µ ≪ |mI |. The

quartic coupling λ does not play a particular role in our discussion below, and will be set

to unity. In order to attain the minimum of the potential, V = 0, the scalar field qI is either

a non vanishing eigenvector of the φ with eigenvalue, mI , or must vanish. We shall take

the equal mass limit, m1 = m2 = . . . = mN = m0 and choose to work in the vacuum with

〈φ〉 = 〈φATA〉 = m0

(

N

−1N

)

(2.3)

breaking the SU(N + 1) gauge symmetry to SU(N) × U(1). An inspection of the second

term of the potential shows that the first (color) component of the scalars qI becomes

massive for all I (with vanishing VEV), with mass

v1 ≡ m0(N + 1), (2.4)

and decouples at mass scales lower than that. The other components are nontrivial eigen-

vectors qI of φ. Nf = N eigenvectors can be taken to be orthogonal to each other,

〈qaI 〉 = cI δ
a
I . The first term tells

tr tA
∑

I

( qI q
† I) = 0 , tA ⊂ SU(N), (2.5)

that is,
∑

I qI q
† I ∝ 1N . In other words, all cI ’s are equal. Their normalization is fixed by

the A = 0 (see eq. (3.1)) term to be

〈qaI 〉 = v2 δ
a
I , v2 ≡

√

2(N + 1)µm0 ≪ v1 , (2.6)

showing that the gauge symmetry is completely broken at low energies, leaving however

the color-flavor diagonal symmetry SU(N)C+F unbroken.
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3 Point: the monopole

Let us write the VEV of φ as

φ(x) = v1M(x), 〈M〉 =
√

2N

N + 1
T (0), T (0) =

1
√

2N(N + 1)

(

N

−1N

)

. (3.1)

As the system admits the topological defect (the monopole), we need to retain the degrees

of freedom corresponding to the nontrivial winding

Π2(SU(N + 1)/U(N)) = Z

that is,

M(x) =

√

2N

N + 1
U(x)T (0) U †(x), Tr (T (0))2 =

1

2
. (3.2)

The M(x) (U(x)) field defines the direction of the symmetry breaking,

SU(N + 1)/U(N) ∼ CPN , (3.3)

and can be expressed by a complex (N + 1)-component vector field z(x) as

M = z z̄ − 1

N + 1
1, z̄ z = 1. (3.4)

By introducing the N + 1 orthonormal eigenvectors of M , z(x) and ei(x) (i = 1, 2, . . . N)

with eigenvalues,

N

N + 1
, − 1

N + 1
, − 1

N + 1
, . . . , − 1

N + 1
,

U(x) can be written as

U(x) =












z












e1






· · ·






eN












. (3.5)

The za and eai can be thought of as local vielbeins [45].

The gauge field can be taken so as to satisfy the so-called Cho gauge [46]

(Dµφ)/v1 = DµM = ∂µM − ig [Aµ,M ] = 0 , (3.6)

which amounts to the low-energy (large distance) approximation where the monopole ap-

pears as a point. Namely, only the winding directions, SU(N + 1)/SU(N)×U(1) ∼ CPN ,

are kept as the dynamical degrees of freedom associated with the monopole. Explicitly, we

take the gauge field in the form,

Aµ = CµM(x) +
i

g
[M(x), ∂µM(x)] +Bµ, (3.7)

– 5 –
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where

Ba
µ b =

N
∑

i,j=1

eai b
i
µ j ē

j
b , a, b = 1, 2, . . . , N + 1 . (3.8)

Cµ is the Abelian gauge field in the direction of the scalar VEV, biµ j are the components of

the gauge fields of the “unbroken” SU(N), and i [M(x), ∂µM(x)]/g represents the monopole

field. It can be easily checked that the connection eq. (3.7) indeed satisfies the gauge

condition eq. (3.6).

Note that the Cho condition eq. (3.6) does not uniquely determine the component of

the gauge field Aµ orthogonal to zz†, as

[e(. . .)ē,M ] = 0 .

In eq. (3.7) we have chosen Aµ so that it contains precisely the monopole configuration5

i [M(x), ∂µM(x)] ⊂ su(2) ⊂ su(N + 1), (3.9)

besides the “unbroken” massless SU(N) gauge fields bµν and the Abelian gauge field Cµ
(the U(1) rotations around M direction).

The transformation properties of the gauge connection above have been studied in [45].

Under the U(1) transformation around the M direction,

U = eiαM = eiα
N

N+1 zz̄ + e−iα
1

N+1 eē (3.10)

the Abelian field Cµ transforms as expected:

Cµ → Cµ − ∂µα . (3.11)

Under the SU(N) transformations commuting with M ,

U = exp(i ωAe tAē) = eΩ ē+ zz̄ , Ω = exp(i ωAtA) . (3.12)

where (tA)ij (i, j = 1, 2, . . . N) are SU(N) generators, bµ transforms as the usual nonAbelian

gauge field:

bµ → bUµ = Ω bµΩ
† − i ∂µΩΩ† . (3.13)

5The connection eq. (3.7) in fact differs from the one discussed in [45] by a term of the form, e(. . .)ē,

more precisely by

Ea
µ b = i eai

[

ēic∂µe
c
j − δij

1

N
Tr(ē ∂µe)

]

ējb .

This term was subtracted from Aµ in [45], in order to keep the monopole term of the connection invariant

under the “unbroken” SU(N) gauge transformation. For the purpose of the present paper of studying how

the monopole transforms (in a fixed gauge) it is not only unnecessary but somewhat misleading to make

such a rearrangement of the gauge field. The monopole simply resides in a broken su(2) ⊂ su(N+1), whose

embedding direction is locked with the low-energy vortex direction in color and flavor, and they transform

together. See below.

– 6 –
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3.1 The minimal monopoles

For the minimal monopole one can choose z and one of the e’s to live in a SU(2) ∈ SU(N+1)

subgroup and consider their winding only [45],

z =























cos θ2
0
...

eiϕ sin θ
2

0
...























, ei =























−e−iϕ sin θ
2

0
...

cos θ2
0
...























; (3.14)

eaj = δaj+1, a = 1, . . . N + 1, j = 1, . . . , N, j 6= i . (3.15)

In other words, only the vielbeins z and ei in the first and (i+ 1)-th color components are

relevant for the monopole. They take the form of normalized spin 1/2 wave functions, spin

up for z, spin down for ei, all the rest of the components being zero. Other vielbeins ej ,

j 6= i, have canonical, orthonormal unit vector forms. z and e’s are not independent but

are related by the completeness and orthonormality conditions

zaz̄b +

N
∑

i=1

eai ē
i
b = δab , z̄az

a = 1, ēiae
a
j = δij , z̄ae

a
i = 0 , (3.16)

but it is an arbitrary choice which of the vielbeins e winds together with z.

For the minimal monopole, eq. (3.14), the (N + 1) × (N + 1) matrix field M takes

the form,

M = φ/v1 = z z̄ − 1

N + 1
1 =

n · τ
2

+
11,i+1

2
− 1

N + 1
, (3.17)

n =
r

r
= (sin θ cosϕ, sin θ sinϕ, cos θ) , (3.18)

where τ and 11,i+1 are the Pauli matrices and the 2×2 unit matrix in the (1, i+1) subspace.

The monopole part of the gauge field eq. (3.7) is simply:

A(monopole)
µ =

i

g
[M,∂µM ] = − τ

2g
· (n× ∂µn) , (3.19)

which is indeed the singular Wu-Yang monopole lying in the su(2) ⊂ su(N +1) algebra in

the (1, i + 1) subspace. This is nothing but the asymptotic form of the ’t Hooft-Polyakov

monopole, far from its center (R≫ 1/v1).

Rotating this monopole field in one of the legs (i = 1, 2, . . . , N), i.e., in the “unbro-

ken” SU(N) group, amounts to the straightforward idea of nonAbelian monopoles: a set

of configurations of degenerate mass, which apparently belong to the fundamental repre-

sentation of the SU(N). A closer examination however reveals the well-known difficulties

(e.g., the topological obstruction [27–30]). Any deeper understanding of the non-Abelian

monopole notion necessarily involves an exact flavor symmetry, as is fairly well known, and

our following discussion is precisely based on such a consideration.

– 7 –



J
H
E
P
0
9
(
2
0
1
4
)
0
3
9

The gauge field tensor can be calculated straightforwardly:

(Fµν)
a
b = (∂µAν − ∂νAµ − ig [Aµ, Aν ])

a
b (3.20)

= za
{

Mµν

2
+

N

N + 1
Cµν

}

z̄b + eai

{

(Kµν)
i
j −

1

N + 1
Cµνδ

i
j + (bµν)

i
j + (hµν)

i
j

}

ējb

where

Cµν = ∂µCν − ∂νCµ, Mµν ≡ ∂µNν − ∂νNµ, Nµ ≡ 2i

g
z̄a∂µz

a ; (3.21)

(Kµν)
i
j = ∂µ(Pν)

i
j − ∂ν(Pµ)

i
j − i g [Pµ, Pν ]

i
j , (Pµ)

i
j =

i

g
ēia∂µe

a
j ; (3.22)

bµν = ∂µbν − ∂νbµ − i g [bµ, bν ] ; hµν = −ig ([Pµ, bν ]− [Pν , bµ]) .

(3.23)

4 The matter coupling: vortex and the low-energy effective action

The scalar matter fields q in the fundamental representation of SU(N +1) (“squarks”) can

be decomposed as

qaI (x) = zaχI + eai η
i
I , (4.1)

where

a = 1, 2, . . . , N + 1 , i = 1, 2, . . . , N , I = 1, 2, . . . Nf = N , (4.2)

namely, into the component parallel to the symmetry breaking direction, z, (see eq. (3.3))

and those orthogonal to it, eai ’s.

As one sees from the fact that

U † qI = U †(zχI + eηI) =













χI
η1I
...

ηNI













, (4.3)

χ and η’s are nothing but the scalar field components in the singular gauge of the monopole

(in which the adjoint scalar field does not wind and approaches a fixed VEV in all direc-

tions). The monopole fields Nµ, Pµ which couple to the projected scalars χ and η have

automatically the (asymptotic) form of the ’t Hooft-Polyakov monopole in the singular

gauge. As is well known the monopole field develops a Dirac string singularity attached to

it in such a gauge.

By using the orthonormality and completeness of the vielbeins, one arrives at the

following decomposition

{(∂µ − igAµ) qI}a = za
{

∂µχI + (z̄ ∂µz)χI − ig
N

N + 1
CµχI

}

+ eaj

{

(∂µ − i g bµ)
j
k η

k
I + ējb ∂µe

b
i η

i
I + i

g

N + 1
Cµη

j
I

}

. (4.4)

– 8 –
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Both χ and η have U(1) electric charge, whereas only the η fields carry non-Abelian SU(N)

charges. The matter kinetic term thus decomposes as

Tr |(∂µ − igAµ) qI |2 = |∂µχI − ig
Nµ

2
χI − ig

N

N + 1
CµχI |2

+|(∂µ − i g bµ)
j
k η

k
I − ig(Pµ)

j
i η

i
I + i

g

N + 1
C(0)
µ ηjI |2 . (4.5)

The minimization of the potential eq. (2.2) leads to

|(φ+m01) q|2 = |(m0(N + 1)M +m01) q|2 = |m0(N + 1)χI |2 , (4.6)

which shows that the scalars in the z direction, χI , are massive, which can be integrated

out. The low-energy effective action considered below describes the physics of the massless

fields ηI , the “unbroken” gauge fields bµ and the monopole Pµ,
6

L = −1

2
TrFµνF

µν +
∑

I,j

∣

∣

∣

∣

(∂µ − i g bµ)
j
k η

k
I − ig(Pµ)

j
i η

i
I + i

g

N + 1
Cµ η

j
I

∣

∣

∣

∣

2

− Vη

≡ Lgauge + Lscalar − Vη , (4.7)

where

TrFµνF
µν =

(

Mµν

2
+

N

N + 1
Cµν

)2

+

+tr

(

(Kµν)
i
j −

1

N + 1
Cµνδ

i
j + (bµν)

i
j + (hµν)

i
j

)2

(4.8)

and Mµν , (Kµν)
i
j , Cµν , (bµν)

i
j , (hµν)

i
j are defined in eqs. (3.21)–(3.23). For the minimum

monopole lying in the (1, i+ 1) su(2) subalgebra, (eqs. (3.14), (3.18)),

z̄ ∂ϕz = i
1− cos θ

2
, ēi ∂ϕei = −z̄ ∂ϕz = −i1− cos θ

2
, (no sum over i) , (4.9)

ēj ∂µei = 0, j 6= i, z̄ ∂θz = ēi ∂θei = 0 . (4.10)

eq. (4.9) is precisely the Wu-Yang monopole in the singular gauge, with Dirac string along

the negative z axis, z ∈ (−∞, 0),

ADirac
ϕ =

1− cos θ

ρg
, (4.11)

where ρ is the distance from the z axis. Taking into account the factor 1
2 due to the

su(2) ⊂ su(N + 1) embedding τ
2 , we see that the light scalars η is coupled to such a

6Unlike in some earlier attempts to study nonAbelian duality [47, 48] we here keep account only of

the massless scalar and gauge degrees of freedom (besides the monopoles and antimonopole): they are the

relevant degrees of freedom describing the infrared physics, i.e., at the mass scale below v1. The lower-

mass-scale scale (v2) symmetry breaking and formation of the vortices are described by these light degrees

of freedom. The physics below the second symmetry breaking scale v2, is the massless Nambu-Goldstone

like excitation modes living on the vortex-monopole world strip, the subject of our study below.
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monopole only through the (Pµ)
i
i term:

Pµ =
1

2



















. . .

0

ADirac
ϕ

0
. . .



















(4.12)

The minimization of the potential Vη then leads to the VEV (appendix A)

ηiI = δiI v2 . (4.13)

This VEV brings the low-energy system into a color-flavor locked, completely Higgsed

phase. In such a vacuum, due to the exact flavor SU(N)C+F symmetry, broken by indi-

vidual vortex solution, the latter develops non-Abelian orientational zero modes.

4.1 Symmetries

The low-enegy system eq. (4.7) arose from the gauge symmetry breaking,

SU(N + 1) → SU(N)×U(1) (4.14)

and if the monopole fields Nµ and Pµ are dropped it would be the standard SU(N)×U(1)

gauge theory action. It is clear, however, that in the presence of a minimal monopole,

(eqs. (3.14), (3.18), (3.19)), the local color SU(N) symmetry is broken by the specific

direction M(x) = zz̄− (1/(N +1))1N+1 the monopole points. Attempts to define a global

unbroken “orthogonal” SU(N) group in the presence of the monopole background, lead

inevitably to the well-known difficulties [27–30, 34].

There are however some local and global symmetries which are left intact. In order to

fix the idea, let us take the monopole in the (a, b) = 1, 2 color subspace. That is, we choose

particular monopole orientation with i = 1, in eqs. (3.14), (3.18), (3.19). In this case the

only nonvanishing component of Pµ is:

P 1
ϕ 1 =

i

g
ē1 ∂ϕe1 = − i

g
z̄ ∂ϕz =

1− cos θ

2g
, P jµ i = 0, i 6= 1, or j 6= 1 . (4.15)

The action eq. (4.7), eq. (4.8) is invariant under

(i) a local U(1) symmetry:

ηi → eiαηi, Cµ → Cµ − β ∂µα , β = (N + 1)/g ; (4.16)

(ii) a local U(1) symmetry:

η → Uη, bµ → U(bµ −
i

g
∂µ)U

† , U =

(

ei(N−1)γ 0

0 e−iγ 1N−1

)

, (4.17)
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(iii) a local SU(N − 1) symmetry:

η → Uη, bµ → U(bµ −
i

g
∂µ)U

† , U =

(

1 0

0 VN−1

)

, (4.18)

(ii), (iii) are subgroups of the local SU(N) group broken by the particular orientation of

the monopole.

Finally, the action is invariant under

(iv) a global flavor SU(N)F symmetry:

η → η U†, U ∈ SU(N) . (4.19)

All the local ((i)-(iii)) and global ((iv)) symmetries are broken by the VEV of the scalars

η, eq. (4.13). However there remains

(v) an exact global color-flavor diagonal SU(N) symmetry

η → U η U†, Pµ → U Pµ U†, bµ → U bµ U†, U ∈ SU(N) . (4.20)

Note that Kµν , bµν , hµν all transform covariantly under eq. (4.20).

In particular, the invariance of the action under (v) requires that, together with the light

matter and gauge fields, the monopole Pµ = (i/g) ē ∂µe be also transformed with U .

4.2 Monopole-vortex soliton complex

If it is not for the terms due to the monopole, Pµ, Nµ, the action in eq. (4.7) (eq. (4.8)),

would be exactly the SU(N)×U(1) gauge theory with SU(N) flavor symmetry where the

vortices with nonAbelian CPN−1 orientational zero modes has been first discovered [35, 44].

The homotopy-group argument applied to the system with hierarchical gauge symmetry

breaking (eq. (1.1)), tells us that the vortex must end at the monopole. The nonAbelian

orientational zero modes of the vortex endow the endpoint monopoles with the same CPN−1

zero modes.

On the other hand, if the nonAbelian gauge fields bµ were neglected, the above action

would reduce to the low-energy U(1) theory arising from the symmetry breaking of an

SU(2) gauge theory. The SU(2) origin of such a theory is signaled by the presence of

the monopole term: performing the electromagnetic duality transformation explicitly [49],

keeping account of the presence of the monopole (SU(2)/U(1) winding), one gets an effective

action of a static monopole acting as a source of the vortex emanating from it. This analysis

was repeated in the θ vacua of the original SU(2) theory [50]. The resulting equation

of motion has been solved analytically, reproducing the Witten effect correctly near the

monopole and showing a rather nontrivial behavior of magnetic and electric fields near

the monopole-vortex complex. Our aim here is to generalize this construction to a more

general setting here, where both the vortex and monopole carry nonAbelian orientational

zero modes.

– 11 –
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Figure 1. The magnetic field in the monopole-vortex-antimonopole soliton complex. Taken from

Cipriani, et al. [39].

The fact that the low-energy vortex must end at the monopole can be seen more

directly. The monopole term ē ∂µe is really a non local term: it contains the Dirac-string

singularity running along the negative z-axis, eq. (4.11). In itself, it would give rise to

an infinite energy, unless the scalar field vanishes precisely along the same half line z ∈
(−∞, 0): a vortex ending at the monopole (z = 0) and extending to its left.

A microscopic study of such a monopole-vortex complex has been made by Cipriani et

al. [39], including the numerical determination of the field configurations interpolating the

regular ’t Hooft-Polyakov monopoles to the known vortex solution in between. See figure 1

taken from [39]. We have not been successful so far in generalizing the derivation of the

effective action for the orientational zeromodes directly from the microscopic field-matter

action as done for the nonAbelian vortex [35, 43] to the present case of complex soliton of

mixed codimensions.7

Here we instead go to large distances first: the monopole is pointlike (this approx-

imation has already been made), and the vortex is a line, without width (see figure 2).

Implementing this last approximation the scalar field takes the form,

(η)iI = v2

(

eiψ 0

0 1N−1

)

, (4.21)

whereas the relevant nonvanishing gauge fields are Cµ, and (bµ)
i
j of the form,

(bµ)
i
j =













(bµ)
1
1

(bµ)
2
2
. . .

(bµ)
N
N













. (4.22)

7Such a straightforward derivation of the effective action for the monopole-vortex mixed soliton systems

has been achieved in [51], in a particular BPS saturated model. The model considered there is different

from ours: the “monopole” appears as a kink between the two degenerate vortices, one Abelian and the

other nonAbelian.
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Monopole
VortexAntimonopole

Figure 2. The monopole, vortex and anti-monopole complex of the preceding figure, seen from

large distances.

The monopole term is of the form,

(Pµ)
i
j =













−Nµ/2

0
. . .

0













. (4.23)

Note the matched orientation in color for the vortex and monopole in eqs. (4.21) and (4.23).

The scalar kinetic term in the action, eq. (4.7), takes the form,

Lscalar =
∑

I,j

∣

∣

∣

∣

∣

∣

∣

∣











∂µ − ig







(bµ)
1
1

(bµ)
2
2
. . .






+ ig







−Nµ/2

0
. . .






+
ig Cµ
N + 1

1N











j

i

ηiI

∣

∣

∣

∣

∣

∣

∣

∣

2

.

(4.24)

Clearly the minimum-energy condition for I = 2, 3, . . . terms requires that

(bµ)
2
2 = (bµ)

3
3 = . . . = (bµ)

N
N =

1

N + 1
Cµ . (4.25)

But as tr (bµ) = 0, this means that

(bµ)
1
1 = −(N − 1)(bµ)

2
2 = −N − 1

N + 1
Cµ . (4.26)

The I = 1 term of eq. (4.24) then becomes

Lscalar = v22

∣

∣

∣

∣

{

∂µψ − g(bµ)
1
1 + g

Nµ

2
+

g

N + 1
Cµ

} ∣

∣

∣

∣

2

=

(

∂µψ + g
Nµ

2
+ g

N

N + 1
Cµ

)2

v22 . (4.27)

On the other hand, the gauge kinetic term becomes

Lgauge = −1

2

(

Mµν

2
+

N

N + 1
Cµν

)2

− 1

2

(

Mµν

2
+

1

N + 1
Cµν − (bµν)

1
1

)2

= −1

4

(

Mµν +
2N

N + 1
Cµν

)2

. (4.28)
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Far from the vortex-monopole, the potential can be set to be equal to its value in the bulk,

V = 0. The action reduces finally to the monopole-vortex Lagrangian

LMV = −1

4
(Mµν + cN Cµν)

2 +

(

∂µψ + g
Nµ

2
+
g

2
cN Cµ

)2

v22 , cN ≡ 2N

N + 1

= −1

4
(Mµν + Cµν)

2 + (∂µψ + eNµ + eCµ)
2 v22 , (4.29)

where in the last line we have re-normalized the Abelian gauge field Cµ by a constant and

defined the Abelian gauge coupling e by

cN Cµ → Cµ , e ≡ g

2
. (4.30)

In the discussion which follows, we take the monopole fields Nµ and Mµν in eq. (4.29)

as a sum representing a monopole at r1 and an anti-monopole at r2, at the two ends of

the vortex.

4.3 Orientational zeromodes

The action, eq. (4.7), is invariant under the global color-flavor SU(N) transformations,

eq. (4.20). The monopole-vortex field oriented in a particular direction, eqs. (4.21)–(4.26)

breaks this symmetry to SU(N − 1)×U(1); applying U on it

η → U η U†, Pµ → U Pµ U†, bµ → U bµ U†, (4.31)

generates a continuous set of degenerate configurations which span the coset,

SU(N)

SU(N − 1)×U(1)
∼ CPN−1. (4.32)

The moduli space can be parametrized by the so-called reducing matrix [52, 53],

U(B) =

(

1 −B†

0 1N−1

)(

X
1

2 0

0 Y − 1

2

)(

1 0

B 1N−1

)

=

(

X− 1

2 −B†Y − 1

2

BX− 1

2 Y − 1

2

)

, (4.33)

X ≡ 1 +B†B , Y ≡ 1N−1 +BB† . (4.34)

acting on the light fields η and bµ and on the monopole field e, as in eq. (4.20). B is an

N − 1 component complex vector, the inhomogeneous coordinates of CPN−1.

The fields corresponding to the particular “(1, 1)” orientation of the vortex-monopole,

eqs. (4.21)–(4.29), are of the form,

η = eiψ
1N + T

2
+
1N − T

2
, ∂µη = ∂µe

iψ 1N + T

2
,

−bµ +
1

N
Cµ1N =

N

N + 1

1N + T

2
Cµ,

Pµ = −Nµ
1N + T

2
, T ≡

(

1

−1N−1

)

. (4.35)
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The action is then calculated to be

tr

(

1N + T

2

)2

· LMV = LMV (4.36)

where LMV is given in eq. (4.29). When a global (xµ-independent) color-flavor transfor-

mation U acts on it, a new solution is generated by {η, bµ, Pµ} → U{η, bµ, Pµ}U† , that is

η = eiψ
1N + UTU†

2
+
1N − UTU†

2
, ∂µη = ∂µe

iψ 1N + UTU†

2
,

−bµ +
1

N
Cµ1N =

N

N + 1

1N + UTU†

2
Cµ,

Pµ = −Nµ
1N + UTU†

2
. (4.37)

All the fields now have complicated, nondiagonal forms both in color and flavor spaces.

Note however that

ΠB ≡ 1N + UTU†

2
, ΠO ≡ 1N − UTU†

2
, (4.38)

act as the projection operators to the directions in color-flavor space, along the vortex-

monopole orientation and perpendicular to it:

Π2
B = ΠB, Π2

O = ΠO, ΠB ·ΠO = 0 ; trΠ2
B = 1 . (4.39)

By using these, the action corresponding to the color-flavor rotated configuration, eq. (4.37)

is seen to be still given by

trLscalarΠ
2
B = Lscalar , trLgaugeΠ

2
B = Lgauge , trΠ2

B LMV = LMV , (4.40)

reflecting the exact CPN−1 moduli of the monopole-vortex solutions, following from the

breaking of the exact color-flavor symmetry, eq. (4.20). Therefore the CPN−1 modes B of

eqs. (4.31)–(4.34) represent exact zero modes of the monopole-vortex action, eq. (4.7).

4.4 Spacetime dependent B

The configurations eq. (4.24)–(4.29), or the color-flavor rotated version, eq. (4.37), repre-

sents the long-distance approximation of the nonAbelian vortex with monopoles attached

at the ends. They are basically an Abelian configuration embedded in a particular direction

in SU(N)C+F ,

ΠB ≡ 1N + U(B)TU(B)†

2
,

This is so (i.e., Abelian) even if the scalar field and gauge (and monopole) fields all have

nontrivial matrix form in general in color and flavor, as they all commute with each other.

When the orientational moduli parameterB is made to depend weakly on the spacetime

variables xµ, however, such an Abelian structure cannot be maintained. The derivative

acting on ΠB in the scalar field induces the change of charge and current

∂µ(ηΠB) = (∂µη)ΠB + η ∂µ(UTU†)

– 15 –
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Σ

M

M
xα

xβxi

Figure 3. Worldsheet strip Σ spanned between the worldlines of the monopole and antimonopole.

along the vortex. It implies, through the equations of motion,

1

g2
DiF aiα = i

∑

I

[

η†I t
aDαηI − (DαηI)

†taηI
]

, (4.41)

new gauge field components, A
(B)
α . This can be understood as nonAbelian Biot-Savart or

Gauss’ law. Following [43] we have introduced the index α to indicate the two spacetime

coordinates in the vortex-monopole worldsheet Σ, while indicating with “i” the other two

coordinates of the plane perpendicular to the vortex length. See figure 3. For a straight

vortex in the ẑ direction, α = 3, 0 whereas i = 1, 2. By assumption B, hence U , is a slowly

varying function of xα. It is not difficult to show8 that A
(B)
α is oriented in the direction

A(B)
α ∝ ∂α(UTU†)UTU† = 2U(U†∂αU)⊥ U†, (4.42)

in color-flavor mixed space, where

(U†∂αU)⊥ =
1

2
(U†∂αU − T U†∂αU T ) . (4.43)

(U†∂αU)⊥ is just the Nambu-Goldstone modes [43, 52, 53] in a fixed vortex background,

eq. (4.35); as the vortex-monopole rotates (4.37), one has to rotate them in order to keep

them orthogonal to the latter.

The effect is to produce the electric and magnetic fields lying in the plane perpendicular

to the vortex direction, Fiα, along the vortex.

By using the orthogonality relations

trΠB ∂α(UTU†) = trΠB ∂α(UTU†)UTU† = 0, (4.44)

8Ai and
∑

I ηIη
†
I have both the form a11 + a2 UTU

†, where a1,2 are some functions of the transverse

variables xi. ∂α acts only on U . Repeated use of

∂α(UTU
†)UTU† UTU† = ∂α(UTU

†), [∂α(UTU
†)UTU†,UTU†] = 2 ∂α(UTU

†)

and (UTU†)2 = 1 in eq. (4.41) yields eq. (4.42).
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it is easily seen that the terms containing the derivatives ∂µU or ∂µU† give rise to the

correction

L({η, bµ, Pµ} → L(U{η, bµ, Pµ}U†) = Lscalar + δL ,

∆L = const. tr
(

∂α(UTU†)
)2

∝ tr
{

X−1∂αB
†Y −1∂αB

}

, (4.45)

which yields the well-known CPN−1 action

S1+1 = 2β

∫

Σ
d2x tr

{

(

1N +B†B
)−1

∂αB
†
(

1N +BB†
)−1

∂αB

}

, (4.46)

where the coupling constant β arises as the result of integration of the vortex-monopole pro-

file functions, in the plane perpendicular to the vortex axis. The xα-dependence through B,

by definition at much larger wavelengths than the vortex width / monopole size, factorizes

and give rise to the CPN−1 action defined on the worldstrip.

A proper derivation of such a 2D worldsheet action for the vortex system including the

determination of β requires to maintain a profile functions f(r) in (4.21), eiψ → f(r) eiψ,

f(0) = 0; f(∞) = 1 and study its equation of motion. Although this can be done straight-

forwardly for the pure vortex configuration (without monopoles) [54, 55], the analysis has

not been done in the presence of the endpoint monopoles. We plan to come back to this

more careful analysis elsewhere. A microscopic study of the vortex in a non-BPS system

which is very close to our model, has been done by Auzzi et al. [56], without however

attempts to determine the vortex effective action.

5 Dual description

Following [49, 50, 54, 57, 58] we now dualize the system, eq. (4.29):

− 1

4
(Mµν + Cµν)

2 + (∂µψ + eNµ + eCµ)
2 v22 . (5.1)

All the fields above live in the particular direction in the color-flavor space, for instance,

Π
(0)
B ≡ 1N + T

2
=













1 0 . . . 0

0 0 0
. . .

...

0 0 0













, (5.2)

(see eq. (4.21)-eq. (4.23)). The factor tr(Π
(0)
B )2 = 1 in the action is left implicit. Decompose

ψ field into its regular and singular part:

ψ = ψr + ψs . (5.3)

The latter (non-trivial winding of the scalar field) is related to the vortex worldsheet loci

by [54, 57, 58]

ǫµνρσ∂ρ∂σψ
s ≡ Σµν(x)

= 2πn

∫

Σ
∂ax

µ∂bx
ν(dξa ∧ dξb) δ4(x− x(ξ)) (5.4)
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and ξa = (τ, σ), σ ∈ (0, π), are the worldsheet coordinates and n is the winding. Σµν is

often referred to as the vorticity in the literature. Below we shall limit ourselves to the case

n = 1 (the minimum winding) for the purpose of studying the transformation properties

of the vortex and monopole.9 We assume that the monopole and anti-monopole are at the

edges of the worldstrip (σ = 0, π):

r1 = r(τ, 0), r2 = r(τ, π). (5.5)

It then follows from eq. (5.4) that

∂µΣ
µν(x) = 2πjν (5.6)

where jν represents the monopole and antimonopole currents:

jν =

∫

dτ
dxν

dτ
δ4(x− x(τ, π))−

∫

dτ
dxν

dτ
δ4(x− x(τ, 0)), (5.7)

with xµ(τ, π) and xµ(τ, 0) standing for their worldlines. We shall see below that the equa-

tions of the dual system consistently reproduces this “monopole confinement” condition.

The regular part ψr can be integrated out by introducing the Lagrange multiplier

− 1

4v22
λ2µ + λµ (∂µψ

r + ∂µψ
s + eNµ + eCµ) , (5.8)

which gives rise to a functional delta function

δ(∂µλµ(x)) . (5.9)

The constraint can be solved by introducing an antisymmetric field Bµν(x),

λµ =
v2√
2
ǫµνρσ∂νBρσ =

v2

3
√
2
ǫµνρσHνρσ , (5.10)

Hνρσ ≡ ∂νBρσ + ∂ρBσν + ∂σBνρ

being a completely antisymmetric tensor field. One is left with the Lagrangian

L = −1

4
(Mµν + Cµν)

2 +
e v2√

2
ǫµνρσCµ∂νBρσ

+
1

12
H2
µνλ +

v2√
2
BµνΣ

µν +
e v2

2
√
2
ǫµνρσMµνBρσ . (5.11)

Now we dualize Cµ by writing10

∫

[dCµ] exp i

∫

d4x

{

−1

4
(Mµν + Cµν)

2 +
e v2√

2
ǫµνρσCµ∂νBρσ

}

=

∫

[dCµ][dχµν ] exp i

∫

d4x

{

−χ2
µν + χµν ǫ

µνρσ(Mρσ + Cρσ)/2 +
e v2√

2
ǫµνρσCµ∂νBρσ

}

=

∫

[dχµν ] δ(ǫ
µνρσ∂ν(χρσ + e v2Bρσ/

√
2)) exp i

∫

d4x {−χ2
µν + χµνǫ

µνρσMρσ/2} . (5.12)

9Eq. (5.4) can be seen as the change of field variables from ψ(x) to the string variable xµ(τ, σ). Keeping

track of the Jacobian of this transformation leads to the Nambu-Goto action,
∫

dτdσ (det |∂ax
µ∂bx

ν |)1/2,

describing the string dynamics, and possible corrections. We shall not write these terms explicitly below in

the effective action as our main interest lies in the internal, color flavor, orientational zeromodes.
10This is the standard Legendre transformation of the electromagnetic duality.
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Again the constraint can be solved by setting

χµν =
1√
2
(∂µADν − ∂νADµ −

√
2 e v2Bµν) (5.13)

and taking the dual gauge field ADµ as the independent variables. The Lagrangian is now

L =
1

12
H2
µνλ −

1

4
(∂µADν − ∂νADµ −

√
2 e v2Bµν)

2 +
v2√
2
BµνΣ

µν +ADµ J
µ , (5.14)

where

Hνρσ ≡ ∂νGρσ + ∂ρGσν + ∂σGνρ , Gµν ≡ Bµν − 1√
2 e v2

(∂µAνD − ∂νAµD) , (5.15)

and

Jµ = ∂ν
1

2
ǫµνρσMρσ = ∂ν M̃

µν (5.16)

represents the monopole magnetic current.11 One sees from eq. (5.12) and eq. (5.13)

that AµD is indeed locally coupled to Jµ. Finally, observing that there is a (super) gauge

invariance of the form,

δBµν =
1√
2 e v2

(∂µΛν − ∂νΛµ); δAµD = Λµ , (5.17)

one can write the Lagrangian in terms of the gauge-invariant field Gµν ,

L =
1

12
H2
µνλ −

m2

2
G2
µν +

v2√
2
GµνΣ

µν , m ≡ e v2 . (5.18)

Note that use of the gauge invariance under, eq. (5.17) — or the integration over AD in

eq. (5.14) — introduces a constraint

∂µΣ
µν = e Jν . (5.19)

Let us comment on the relation between this equation and the constraint, (5.6), (5.7).

For the static minimum monopole, eq. (3.21), with the form of z given in eq. (3.14),

one finds

J0 = ∂ν
1

2
ǫ0νρσMρσ = ∂i

1

2
ǫijkMjk = ∂iBi, (5.20)

where Bi is the magnetic Coulomb field,

Bi = −1

g
∇i

1

r
(5.21)

following from eq. (3.21) and eq. (4.9).12 Thus

J0 = −1

g
∇ · ∇1

r
=

4π

g
δ3(r) (5.22)

11To distinguish the monopole magnetic charge current from the point-particle “mechanical” current

(eq. (5.6)), we use Jµ (for the former) and jµ (for the latter), respectively. See eq. (5.24) below.
12We recall that the form of the vector potential eq. (4.9) in the cylindrical coordinates gives precisely

the isotropic Coulomb magnetic field.
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showing that it has the well-known magnetic charge,

gm =
4π

g
, (5.23)

of a ’t Hooft-Polyakov monopole, consistent with the Dirac condition (after setting g = 2 e).

Equation (5.19) then becomes

∂µΣ
µ0 = e J0 = 2πj0, (5.24)

where j0(x) = δ3(r) is the mechanical particle current. This is indeed the monopole

confinement condition, eq. (5.6) and eq. (5.7).

Inverting the logic, one may say that the (super) gauge invariance eq. (5.17) hence the

possibility of writing the effective action in terms of the gauge field Gµν , follows from the

built-in monopole confinement condition, ∂µΣ
µν = 2πjν .

The monopole thus acts as the source (or the sink) of the worldsheet and at the same

time plays the role of the magnetic point source for the dual gauge fields. The equations

of motion for Gµν are:

∂λH
λµν = −m2Gµν +

m√
2 e

Σµν . (5.25)

By taking a further derivative and by using eq. (5.19) one finds

∂µG
µν =

1√
2m

Jν . (5.26)

These equations of motion have been studied in [50] in the general case of a θ vacuum

of the original high-energy theory. The main results are reported in appendix C. There are

a few remarkable features which will be useful below. First of all, outside the worldsheet

strip, Σµν = 0, so eq. (5.25) tells that Gµν are massive field which die out exponentially

in all directions, away from the monopole-vortex complex. Second, there are two distinct

nonvanishing components of Gµν . One is what makes up the vortex cloud, the dominant

part being the constant (in the vortex length direction) magnetic field along the vortex

direction, and having a transverse thickness of the order of 1/gv2. Another component

is a spherically symmetric, Coulomb magnetic field cloud around the monopole, of the

radial size, 1/gv1. This includes, in the θ vacuum, the Coulomb electric field due to the

Witten effect.

6 Orientational CP
N−1 zeromodes in the dual theory

The dualization procedure above can be repeated starting from the monopole-vortex com-

plex of generic orientation, eq. (4.37). The result is the effective action having the identical

form as eq. (5.18) but with all fields replaced by

G(0)
µν → G(B)

µν ≡ G(0)
µνΠB , ΠB ≡ 1N + U(B)T U†(B)

2
; (6.1)

H
(0)
µνλ → H

(B)
µνλ ≡ ∂µG

(B)
νλ + ∂νG

(B)
λµ + ∂λG

(B)
µν ; (6.2)

Jµ = ∂ν
1

2
ǫµνρσMρσ = ∂νM̃

µν → ∂ν(M̃
µνΠB) = ∂νM̃

µν (B) . (6.3)
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{ q, A }   

{ q, A }

G Gµν µν
(0)

B
B

U U
-1

+ A

(B)
+ Gµν

Figure 4. The muduli space of monopole-vortex configuration in the electric variables (the left

figure) and in the magnetic dual variables (on the right). The points in the two CPN−1 spaces are

in one-to-one correspondence. The motion in CPN−1 moduli space in real space-time requires the

fields to be transformed nontrivially, both in the electric and magnetic descriptions.

The equation of motion for Hσµν

∂λH
λµν (B) = −m2Gµν (B) +

m√
2 e

Σµν (B) , m ≡ gv2, (6.4)

and the equation for Gµν (which follows by differentiating the above and using eq. (5.6))

∂µG
µν (B) =

1√
2m

Jν (B) (6.5)

all hold with Gµν (B) and Jν (B) lying in the color-flavor direction ΠB. As

trΠ2
B = 1, (6.6)

the action

L =
1

12
tr (H

(B) 2
µνλ )− m2

4
tr (G(B) 2

µν ) +
1√
2
tr (G(B)

µν Σµν (B)) (6.7)

is independent of B, as long as B is constant .

We find therefore a CPN−1 moduli space of degenerate monopole-vortex configurations

described by the dual variables, eq. (6.7), each point of which is in one-to-one correspon-

dence with that of the the monopole-vortex solutions in the electric description, eq. (4.37).

See figure 4.

6.1 Spacetime dependent B and the effective action

Allow now the orientational moduli parameter B to fluctuate in spacetime. A näıve guess

is to assume

G(0)
µν → G(B)

µν (6.8)
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also for spacetime dependent B and to study the excitation of the action due to the

derivatives ∂/∂xα acting on ΠB in the kinetic term of G
(B)
µν , 1

12tr (H
(B)
µνλ)

2, i.e., H
(B)
µνλ ≡

∂µG
(B)
νλ + (cyclic). This however is not correct.

In moving in the CPN−1 moduli space one must make sure that the massive modes

are not excited. This is the reason, in the electric description, for the introduction of

the new gauge modes Aα, such that the YM-matter equations of motions continue to be

satisfied, i.e., to stay in the minimum-action subspace. In other words, one must stay on

the minimum subsurface13
δS

δGµν
= 0 (6.9)

in all (color-flavor) directions. For δGµν ∝ ΠB, this is automatic; this condition must

also satisfied for orthogonal fluctuations δGµν ∝ ∂αΠB, if the system tends to generate

them. Quadratic fluctuation in ∂αB computed at such minimum trough then gives the

correct effective action. Another equivalent way to state it is that one must maintain the

correct 2D Nambu-Goldstone direction as the scalar and gauge fields are rotated in the

color-flavor [43].

As we noted above equations of motion (6.4) and (6.5) continue to hold as long as

the derivatives ∂/∂xα do not act on ΠB. Here and below we again use the indices α, β

to indicate the coordinates on the worldsheet, whereas the indices i, j are reserved for

those in the plane perpendicular to the vortex length direction (see figure 3). Eq. (6.4) for

(µ, ν) = (α, β) contains the equations of motion for constant B (plus corrections of at least

second order in the derivative of Π). Equations with (µ, ν) = (i, j) are of higher orders in

∂α, ∂β. Potential first-order corrections are in the (µ, ν) = (β, i) equation:

∂αH
αβi (B) + ∂jH

jβi (B) = −m2Gβi (B) (6.10)

(Σµν term is present only for µ, ν = α, β (see eq. (5.4)), or wrtten extensively

∂α[∂βG
(B)
iα + ∂iG

(B)
αβ + ∂αG

(B)
βi ] + ∂j [∂βG

(B)
ij + ∂iG

(B)
jβ + ∂jG

(B)
βi ] = −m2G

(B)
βi . (6.11)

The gauge field for static B (“unperturbed” solution with respect to ∂αΠB) contains only

G
(B)
αβ =

1

2
ǫαβijF

(B) ij = ǫαβ B(vor)ΠB, ǫαβ =

{

1 αβ = 03

−1 αβ = 30
(6.12)

in the vortex region, far from the monopoles, where Bi = δi3Bvor stands for the vortex

magnetic field, see eq. (C.7). Eq. (6.11) shows that new gauge components G(B)βi are

generated, satisfying

∂j [∂iG
(B)
jβ + ∂jG

(B)
βi ] +m2G

(B)
βi = −∂α∂iG(B)

αβ (6.13)

where we have dropped terms higher order in ∂ΠB.

13As we have noted already, this is a nonAbelian analogue of Gauss or Biot-Savart law. In a closer context

of soliton physics, this is also the essence of Manton’s “moduli-space approximation” [62] for describing

the slow motion of soliton monopoles, although here we are concerned with the “motion” of the soliton

monopole-vortex in the internal color-flavor space.
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Eq. (6.13) can be solved for G(B)βi by setting

G
(B)
βi = ǫβiαkR

k ∂αΠB , (6.14)

and substituting it into eq. (6.13) and recalling eq. (6.12). One finds after a simple calcu-

lation that

Ri = ǫij
xj
m2ρ

∂ρB(vor), ρ =
√

x21 + x22, ǫ12 = −ǫ21 = 1 , (6.15)

where B(vor) is the usual vortex magnetic field, eq. (C.7), eq. (C.8). G(B)βi can also be

found more directly as follows. We first convert equations of motion (6.4) and (6.5) into

the form,

∂λ∂
λGµν (B) +m2Gµν (B) =

m√
2e

Σµν (B) − 1√
2em

(∂ν∂λΣ
λµ (B) − ∂µ∂λΣ

λν (B)). (6.16)

For a static monopole and far from the monopole, we have

(∂i∂
i +m2)Gαβ (B) =

m√
2e

Σαβ (B) ; (6.17)

(∂j∂
j +m2)Gαi (B) =

1√
2em

∂iΣαβ∂βΠB . (6.18)

The solution for the first equation is

Gαβ (B) =
m√
2e
K0(mρ)ΠB (6.19)

where K0 is a modified Bessel function of the second kind. Solution to the second equation

is then

Gαi (B) =
1

m2
∂iGαβ∂βΠ , (6.20)

in agreement with eqs. (6.14), (6.15).

Eq. (6.14) implies that the excitation energy of the vortex part is given by

∆E = f tr (∂αΠB∂αΠB), f =
2π

m2

∫ ∞

0
dρ ρ (∂ρB(vor))2 . (6.21)

The integral defining f is logarithmically divergent at ρ = 0, which must be regularized at

the vortex width, ρ ∼ 1/gv2. By a simple manipulation (see e.g. [43]) this can be seen to

be a 2D CPN−1 action,

S2D = 2f

∫

Σ
d2xX−1∂αB†Y −1∂αB , (X ≡ 1 +B†B , Y ≡ 1N−1 +BB†) , (6.22)

defined on the worldstrip, Σ. Note that the original 4D integration factorized into 2 + 2,

because the CPN−1 coordinate B does not vary significantly over the range of the vortex

width, ∼ 1/gv2.
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The monopole contribution to the effective action can be found as follows. Near a

pointlike monopole, J0 = 4π
g
δ3(r), and the magnetic field G0i is the solution of eq. (6.5):

Bmonopole
i (r) =

1

g
∂i
e−gv2r

r
. (6.23)

Note that at distances larger than the vortex width, 1/gv2, this component is screened and

dies out; the magnetic field G0i is instead dominated by the constant vortex configuration.

On the other hand, near the monopole this is a standard Coulomb field. As J0 fluctuates

in time in color-flavor,

J0Π → J0Π+ const. J0∂0Π, (6.24)

G0i, i = 1, 2, 3, acquire a component in the ∂0Π direction, around the monopole, in order

to maintain eq. (6.5) satisfied. It gives a singular contribution:

γ ∼
∫

d3x
3
∑

i=1

G0iG
0i =

1

2m2

∫

d3x
∑

i

(Bmonopole
i (r))2 =

2π

m2g2

∫

dr

r2
, (6.25)

in the coefficient of the fluctuation amplitude, ∂0Π ∂0Π. The singularity is regularized

at the distances ∼ 1/gv1 where the monopole turns smoothly into the regular ’t Hooft-

Polyakov configuration. Therefore the integral in eq. (6.25) is dominated by the radial

region between 1/gv1 and 1/gv2, over which the moduli parameter B(r, t) is regarded as

constant. The 4D integration here factorizes into 4 = 3 + 1. The monopole contribution

to the effective action is therefore

S1D = γ

∫

i=M,M̄

dtX−1∂0B
†(ri, t)Y

−1∂0B(ri, t) , γ ∼ 2πv1
g3v22

∼ M

m2
, (6.26)

where M = v1/g is the monopole mass and m = gv2 is the W boson masses of the lower

mass scale symmetry breaking.

The total effective action is a 2D CPN−1 theory with boundaries,

S = S2D + S1D
M + S1D

M̄
. (6.27)

There is a nontrivial constraint on the variable B(xµ): on the boundary where the world-

sheet meets the monopole worldline, the CPN−1 variable matches:

B(x(σ, τ))|σ=0,π = BM,M̄ (t(τ)) , (6.28)

or

B(x3, x0)|x3=xM 3
= BM (x0) ; B(x3, x0)|x3=xM 3

= BM (x0) . (6.29)

This follows from eq. (4.37), i.e., from the fact that the orientational zeromode of

the monopole-vortex complex arises from the simultaneous SU(N)C+F rotations of the

monopole and the light fields.

By introducing the complex unit N -component vector nc (c = 1, 2, . . . , N):

nc =

(

X− 1

2

BX− 1

2

)

=
1√

1 +B†B

(

1

B

)

, (6.30)
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the vortex effective action above can be put into the familiar SU(N) form of the CPN−1

sigma model,

S2D = 2f

∫

Σ
d2xDαn

c †Dαn
c, Dαn

c ≡ {∂α − (n†∂αn)}nc, n†n = 1 (6.31)

and similarly for the monopole action:

S1D = γ

∫

K=M,M̄

dtD0n
c †
KD0n

c
K , (6.32)

together with the boundary condition

nc(x)|x=xM ,xM̄
= ncK |K=M,M̄ . (6.33)

The boundary condition eq. (6.28) or eq. (6.33) can be thought of as something between

Dirichlet (in the infinite monopole mass limit, γ → ∞) and Neumann (in the light monopole

limit), from the point of view of the 2D CPN−1 model defined on the worldstrip of

finite width.14

7 Discussion

Summarizing, we have studied the vortex-monopole complex soliton configurations, in

a theory with a hierarchical gauge symmetry breaking, so that the vortex ends at the

monopole or antimonopole arising from the higher-mass-scale symmetry breaking. The

model studied has an exact color-flavor diagonal SU(N)C+F symmetry unbroken in the 4D

bulk. The individual vortex-monopole soliton breaks it, acquiring orientational CPN−1

zeromodes. Their fluctuations are described by an effective CPN−1 action defined on

the worldstrip, the boundaries being the monopole and antimonopole worldlines; in other

words, the effective action is a 2D CPN−1 model with boundaries, with the boundary

condition, eq. (6.33), plus the monopole 1D CPN−1 action. The boundary variable nc is

a freely varying function of the worldline position, and acts as the source or sink of the

excitation in the worldsheet.

This illustrates the phenomenon mentioned in the Introduction. Color fluctuation of

an endpoint monopole, which in the theory without fundamental scalars suffers from the

non-normalizability of the associated gauge zeromodes [34] and would remain stuck (the

famous failure of the näıve nonAbelian monopole concept), escapes from the imprizonment

as the color gets mixed with flavor in a color-flavor locked vacuum, and propagates freely on

the vortex worldsheet. In the dual description the monopoles appear as pointlike objects,

transforming under the fundamental representation of this new SU(N) symmetry — the

isometry group of the CPN−1 action. It is a local SU(N) symmetry, albeit in a confinement

phase: these fluctuations do not propagate in the bulk outside the worldstrip. The M −
V − M̄ system as a whole is a singlet of the new SU(N). This is appropriate because the

original color SU(N) is in the Higgs phase. Its dual must be in a confinement phase.

14We thank Stefano Bolognesi for discussion on this point.
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We see now how a nonAbelian dual SU(N) system emerges, not plagued by any of the

known problems. The so-called topological obstruction is cured here, as the bare Dirac

string singularity of the monopole, which lies along the vortex core, is eaten by the vortex,

so to speak. The scalar field vanishes along the vortex core, and precisely cancels the

singularity in the action. This is most clearly seen in the explicit microscopic description

of the monopole-vortex complex such as in [39].

Let us end with some more remarks.

Magnetic monopoles have also been studied in the context of a U(N) theory in a color-

flavor locked vacuum (i.e., with Nf = N number of flavors), but without the underlying

SU(N+1) gauge theory [65–69]. By choosing unequal masses for the scalar fields, mi 6= mj

the flavor (and hence color-flavor) symmetry is explicitly broken, and degenerate N Abelian

vortices appear, instead of continuous set of nonAbelian vortices, parametrized by CPN−1

moduli. Monopoles appear as kinks connecting different vortices, having masses of order

of O(|mi −mj |/g). These are Abelian monopoles. In order to find candidate nonAbelian

monopoles in such a context, one must choose judiciously the scalar potential (partially

degenerate) [68–70] so that one finds in the same system degenerate vortices of Abelian

and nonAbelian types.

In the limit of equal masses mi = mj , the semiclassical analysis above is no longer

reliable. But since in these systems the vortex is infinitely long (stable), one can make use

of the facts known about the infrared dynamics of 2D CPN−1 theory. It is in fact known

that the quantum fluctuations of the CPN−1 modes become strongly coupled at long

distances (a 2D analogue of confinement) [63, 64]; it means that the vortex dynamically

Abelianizes [35, 65–67]. The masses of the kink monopoles are now replaced by O(Λ),

where Λ is the dynamical scale of the 2D CPN−1 theory. In particular, in the case of

an N = 2 supersymmetric model, the effective 2D theory on the vortex world sheet is

a (2, 2) supersymmetric CPN−1 model. Quantum effects lead to N degenerate vacua

(N Abelian vortices); monopoles appear as kinks connecting adjacent vortices. A close

connection of these objects and the 4D (Abelian) monopoles appearing in the infrared in

4D, N = 2 supersymmetric gauge theories has been noted [65–67], which seems to realize

the elegant 2D-4D duality proposal made earlier by N. Dorey [71]. These monopoles

are confined by two Abelian vortices [67], in contrast to the monopoles considered in the

present work.

Thus even though our system below the mass scale v1 has some similarities as those

considered in [65–67], they are clearly physically distinct. Our vortex has the endpoint

monopoles, whose properties have been our main interest. In fact, the effective world

sheet CPN−1 action found here is defined on a finite worldstrip, with endpoint monopoles

having their own CPN−1 dynamics. It is an open problem what the infrared dynamics of

the CPN−1 system defined on such a finite-width worldstrip with the boundary condition

eq. (6.33) is, and how the low-energy phase depends on the width of the worldstrip (the

vortex length).15

15A CPN−1 model with a Dirichlet boundary condition and at large N , was studied recently [59]. It

shows a phase transition from Higgs to confinement phase at a critical vortex length.
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The metastability of our vortex-monopole system also means that, when one tries to

stretch the vortex it will be broken by spontaneous creation of a monopole-antimonopole

pair. In this sense the vortex length itself is also a dynamical variable, dependent on the

ratio v2/v1.

Another issue to be kept in mind is the possible relevance of hierarchical symmetry

breaking but with reduced gauge and flavor symmetry at the first stage v1, such as SU(N+

1) → SU(r)× SU(N − r)× U(1). In that case the soliton vortex-monopole system carries

orientational moduli of a product form, CP r−1 × CPN−r−1. It is possible that in such a

system dynamical Abelianization occurs only partially [61], reminiscent of the quantum r

vacua of the N = 2 SQCD.

More generally, the monopole and antimonopole positions must also be treated as

soliton collective coordinates and their motion should be taken into account as an additional

piece to the action. In eq. (6.32) we assumed that the monopoles are very heavy (v1 ≫
v2) and do not move appreciably; taking their motion into account introduces a space

variable dependence of the monopole variable, nK(x0) → nK(x0, x3), K = M, M̄ , and the

CPN−1 dynamics and the space motion of the monopole positions will get mixed (see for

example [51])).

In the large-distance approximation we have adopted, the U(1) moduli of the classical

’t Hooft-Polyako monopole solutions — which rotates the exponentially damped part of the

configuration [31–33] — is not seen. The (internal) monopole moduli (CPN−1 rather than

CPN−1×S) coincides with that of the vortex attached to it. Of course, the electric charge

of the monopole due to Witten’s effect is correctly taken into account in our large-distance

approximation, see appendix C.

A final remark concerns the flavor quantum numbers of the monopole, arising from

e.g., the Jackiw-Rebbi effect [60]. In the case of a supersymmetric extension of the model

considered here (softly-broken N = 2 SQCD), due to the fermion zeromodes associated

with each scalar q in the fundamental representaiton of SU(N +1), the monopole acquires

flavor global charge. Due to the normalizability of the associated fermion 3D zeromodes,

this effect is localized near the monopole center (of distances ∼ 1/v1). Its fluctuation does

not propagate, and is clearly distinct from the role played by the flavor symmetry at large

distances ∼ 1/v2 ≫ 1/v1 in generating the dual local SU(N) system via the color-flavor

locking. The flavor quantum number of the monopole is, in turn, fundamental in the

renormalization-group behavior in the dual theory.

Global flavor symmetry thus plays several key roles, intertwined with soliton and gauge

dynamics, in generating local dual nonAbelian symmetry.
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A Minimizing the potential

The first term of eq. (2.2), after going to the matrix representation of the adjoint field

(φ ≡ φATA) and by using the Fierz relation (for SU(N + 1))

(TA)ab (T
A)cd = − 1

2(N + 1)
δab δ

c
d +

1

2
δadδ

c
b , (A.1)

reads

Vη = Tr

∣

∣

∣

∣

∣

µφ− 1

2(N + 1)

(

∑

I

q† aI qIa

)

1+
1

2
q q†

∣

∣

∣

∣

∣

2

. (A.2)

By dropping the massive χ fields, and by using the decompositions, eq. (3.4) and eq. (4.2),

this becomes

q† aI qIa = η†IηI , qaI q
†
b I = eai ē

j
b η

i
Iη

†
j I ≡ eēηη∗ ; (A.3)

Vη = Tr

∣

∣

∣

∣

µm0(N + 1)

(

zz̄ − 1

N + 1
1

)

− 1

2(N + 1)
(η†IηI)1+

1

2
eēηη∗

∣

∣

∣

∣

2

. (A.4)

By using the completeness

zz̄ + eē = 1, (A.5)

Vη = Tr

∣

∣

∣

∣

∣

(

µm0N − 1

2(N + 1)
(η†IηI)

)

zz̄ −
(

µm0 +
(η†IηI)

2(N + 1)

)

eē+
1

2
eēηη∗

∣

∣

∣

∣

∣

2

=

(

µm0N − 1

2(N + 1)
(η†IηI)

)2

+Tr

∣

∣

∣

∣

∣

(

µm0 +
(η†IηI)

2(N + 1)

)

eē− 1

2
eēηη∗

∣

∣

∣

∣

∣

2

. (A.6)

The minimum of the first term gives, writing

η†IηI ≡ N d2, (A.7)

N2

(

µm0 −
d2

2(N + 1)

)

= 0, ... d2 = 2(N + 1)µm0 . (A.8)

As for the second term, one has, by using

Tr(eiē
i)(ej ē

j) = N, Tr(eiē
i)(ej ē

kηjIη
I ∗
k ) = η†IηI = N d2, (A.9)

Tr(ej ē
kηjIη

∗
k I)(eℓē

mηℓJη
∗
mJ) = δkℓ δ

m
j η

j
Iη

∗
k Iη

ℓ
Jη

∗
mJ = (η†IηJ)(η

†
JηI), (A.10)

and the second term of eq. (A.6) becomes

N

[

(

µm0 +
Nd2

2(N + 1)

)2

−
(

µm0 +
Nd2

2(N + 1)

)

d2 +
d4

4

]

=
N

2

(

µm0 −
d2

2(N + 1)

)2

(A.11)

which gives the same condition as eq. (A.8). Eq. (A.6) leads also to the conditions
∑

I 6=J

|η†IηJ |2 = 0, ... η†IηJ = 0, I 6= J, η†1η1 = η†2η2 = . . . = η†NηN . (A.12)

These imply that

〈ηiI〉 = δiI
√

2(N + 1)µm0 ≡ v2 δ
i
I . (A.13)
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B Monopole and vortex flux matching

The fact that the monopole magnetic flux is precisely whisked away by the vortex attached

to it in the context of the hierarchical symmetry breaking, has been carefully studied by

Auzzi et al. [36, 37], and we recall simply the results in our setting. Although the monopole

is coupled to the light scalars through the field Pµ (see eq. (4.7)), the latter is a part of the

the su(2) ⊂ su(N + 1) field

Ba
i

τa

2
= B3

i

τ3

2
=

1

2g
∇i

1

r

(

1 0

0 −1

)

; (B.1)

the magnetic flux through a tiny sphere around the monopole is given by

∫

dS ·B = −2π

g
τ3 ,

∫

dS ·B3 = −4π

g
. (B.2)

The vortex gauge field Aµ is such that the winding of the scalar field is cancelled at large

distances from the vortex center, in the matter kinetic term,

|(∂µ − igAµ)q|2 . (B.3)

In the gauge where the light field η has the form, (eq. 4.21), the (11) component of the

SU(N) gauge field has the asymptotic behavior

Aφ ∼ − 1

gρ
. (B.4)

This must a part of the traceless SU(N + 1) gauge field

Aφ ∼ τ3
1

gρ
, (B.5)

belonging to U(1) ⊂ SU(2) ⊂ SU(N + 1). The vortex flux through a plane perpendicular

to the vortex axis is then
∫

d2x∇×Aφ =

∮

dxiA
i =

∫

ρ dφAφ =
2π

g
τ3 , (B.6)

which matches exactly the monopole flux, eq. (B.2).

C Solution of the dual equations of motion

In the presence of the static (heavy) monopoles at

r1 = r(τ, 0) = (0, 0,−z1), r2 = r(τ, π) = (0, 0, 0), (C.1)

the worldstrip is at

Σ30 = −Σ03 = 2πδ(x)δ(y)θ(−z)θ(z + z1) , Σµν = 0 (µν) 6= (30), (03) ; (C.2)
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which clearly satisfies the monopole confinement condition (5.6). The equation of motion

for Gµν has been solved in [50].

In order to interpret the result in terms of the original electric and magnetic fields, we

note that the duality transformation implies (α ≡ θg2/8π2):

Fµν = − m

1 + α2
(G̃µν − αGµν) = −1

g
Σ̃µν −

1

m
(∂µLν − ∂νLµ)

= −1

g
Σ̃µν −

1

�+m2

[

∂µ(αjν + j̃ν)− (µ↔ ν)
]

. (C.3)

For instance, let us consider a massive static monopole sitting at r = 0 with a vortex

attached to it and extending into the −ẑ direction:

Σ30 = −Σ03 = 4π δ(x)δ(y)θ(−z) , Σµν = 0 (µν) 6= (30), (03) ; (C.4)

j0 =
4π

g
δ3(r), ji = 0 ; i = 1, 2, 3 ; j̃ν = −1

g
ǫλν03 ∂λΣ03 . (C.5)

From eq. (C.3) one finds that (we recall α = θg2/8π2)

Ei = F0i = αB(mon)
i , Bi =

1

2
ǫijkFjk = B(mon)

i + B(vor)δ3i , (C.6)

where

B(mon)
i =

1

g
∂iG(r), B(vor) =

1

g
m2

∫ 0

−∞

dz′G(x, y, z − z′) , (C.7)

and G(r) is the Green function, having the Yukawa form

G(r) =
4π

−∆+m2
δ3(r) =

e−mr

r
. (C.8)

Note the clear-cut separation of the monopole and vortex contributions to magnetic (and

electric) fields, eq. (C.6). In the vortex region, the only nonvanishing component is the

magnetic field in the x3 (vortex length) direction, F12 ∼ G03 ∼ B(vor).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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