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Abstract: This paper presents a cooperative and distributed control law for multiple Au-
tonomous Underwater Vehicles (AUVs) executing a mission while meeting mutual commu-
nication constraints. Virtual couplings define interaction control forces between neighbouring
vehicles. Moreover, the couplings are designed to enforce a desired vehicle-vehicle and vehicle-
target spacing. The whole network is modelled in the passive, energy-based, port-Hamiltonian
framework. Such framework allows to prove closed-loop stability using the whole system kinetic
and virtual potential energy by constructing a suitable Lyapunov function. Furthermore, the
robustness to communication delays is also demonstrated. Simulation results are given to
illustrate the effectiveness of the proposed approach.
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1. INTRODUCTION

Recent advances in robotics have made AUVs more reli-
able and affordable allowing the execution of tasks that
were previously dangerous, expensive and time consum-
ing when performed by humans. The simultaneous use
of a team of robots can provide significant benefits in
several applications ranging from surveillance, patrolling
to seabed search and mapping (Curtin et al. (1993)). All
these application scenarios involve communication among
multiple agents. In the underwater domain, due to the
well known limitations of the acoustic channel (Caiti et al.
(2013b); Stojanovic (2007)), it is of paramount importance
to maintain desired communication performances in order
to achieve the mission objectives.

Starting from the above mentioned considerations, this
work focuses on the study and the implementation of a
distributed control algorithm for the group coordination
of a team of agents, applied to an AUV swarm. In our pre-
vious works, we proposed cooperative control algorithms
based on the behavioural approach paradigm Caiti et al.
(2012) and its adaptation as potential game Caiti et al.
(2013a), to maintain desired communication performances
and fulfil each agent task. These algorithm were able to
guarantee the local stability of equilibria points. In this
paper we propose a distributed control framework based on
the definition of artificial potentials (Leonard and Fiorelli
(2001)); furthermore, the passivity theory is exploited for
guaranteeing the stability in the large even in presence of

communication delays. Moreover, the degrees of freedom
offered by the passivity based approach allow to tune the
desired motion of the group in terms of transient behaviour
and reached equilibria. Passivity techniques have been
widely studied in the domain of bilateral teleoperations
for the control of a traditional single-master/single-slave
system (Hokayem and Spong (2006); Secchi et al. (2008)),
or for a more complex single-master/multiple-slaves sys-
tem (Franchi et al. (2011)). In spite of take advantage of
the operator’s intelligence for solving complex tasks as in
bilateral teleoperations, the proposed framework seeks to
provide full autonomy to the agents in order to accomplish
the cooperative mission. The multi-agent problem tackled
is the following: each AUV within a team of l vehicles
has to accomplish its own task (or tasks), while keep-
ing the communication connectivity with the other team
members. The fulfilment of the communication constraints
among the agents is included as a fundamental require-
ment for the success of the collective mission. As a matter
of fact, the loss of communication, because the agents are
too far away from each other, implies the degradation of
the performance, or even the failure, of the overall task.

The paper is organized as follows: Sec. 2 presents the
essentials mathematical and theoretical tools implied in
the framework; Sec. 3 outlines the implementation details
of the cooperative algorithm and demonstrates stability
of the solution including delays on communication links,
with Sec. 4 illustrating the effectiveness of the proposed
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framework in different application scenarios. Finally, Sec.
5 summarizes the work and draws the main conclusions.

2. BACKGROUND AND PRELIMINARIES

This section provides the essentials from the main an-
alytical and theoretical tools required for the upcoming
mathematical treatment. In particular, some reminders to
graph theory, passivity and port-Hamiltonian systems will
be very useful for a proper understanding.

2.1 Graph theory

A graph G = (V,E) is formally defined by a finite
set of nodes (or vertices) V and a set of edges E ⊂
V × V , connecting pairs of nodes. The node set V =
{v1, v2, . . . , vl} has l = |V | elements, while the edge set
E = {e1, e2, . . . , em} contains m = |E| elements. Given
ej ∈ E, then there exist a pair vi, vj ∈ V such that
ej = (vi, vj); in this way, vi and vj are said to be adjacent,
while (vi, vi) is called a self-loop. If the edges in graphs are
to be interpreted as enabling information to flow between
the vertices on the corresponding edge, these flows can be
directed as well as undirected. Hence, direct and indirect
graph can be distinguished. In the first case, edges have a
fixed direction (i.e. the tail and the head of the edge are
setted), while in the second case, if (vi, vj) belongs to E,
then (vj, vi) belongs to E too. However, for indirect graph,
one can arbitrarily assign an orientation to each edge.

Any key feature of a graph can be well described by means
of different matrices. In particular, the incidence matrix
B(G) is a l ×m matrix defined as follows:

[B(G)]
ij
= bij =




−1 if vi is the tail of ej,

1 if vi is the head of ej,

0 otherwise.

(1)

The l rows of B(G) correspond to the nodes of G, while the
m columns denotes the edges of such graph. For further
details on the graph theory, refer to Mesbahi and Egerstedt
(2010).

2.2 Port-Hamiltonian systems and Passivity

The port-Hamiltonian framework, introduced for the first
time in Maschke and Van der Schaft (1993), allows to
model complex (non-linear) systems as energy storing and
energy dissipating components, connected via ports to
power conserving transmissions and conversions. Basically,
it is an energy-based framework in which each element
interacts with the system via a port, that consists of a
couple of dual effort and flow quantities, whose product
gives the power flow in and out of the component. As
well described in Van der Schaft (2006), let x ∈ Rn

denotes the local coordinates for an n-dimensional state
space manifold X , u ∈ Rm the control input and y ∈ Rm

the output of the system. The generalized input-state-
output dynamics expressed in terms of port-Hamiltonian
framework is given by:{

ẋ = [J(x)−R(x)]
(

∂H(x)

∂x

)T
+ g(x)u,

y = gT (x)
(

∂H(x)

∂x

)T
,

(2)

where J(·) ∈ Rn×n is a skew-symmetric structure matrix,
g(·) ∈ Rn×m is also a structure function, H(·) is the

Hamiltonian that represents the whole energy stored in
the system and R(·) ∈ Rn×n a symmetric, positive semi-
definite dissipation matrix. The entries of both matrices
J(·) and R(·) depend smoothly on x. Modelling dynamical
system as (2) provides several benefits: in particular, a
basic property of a port-Hamiltonian system is related
to its energy balance, tightly coupled with the notion of
passivity. In fact, any port-Hamiltonian system is passive
w.r.t. the supply rate and storage function H(·) if H(·) is
bounded from below.

Definition 1. (from Duindam et al. (2009)). Let us con-
sider a generic, affine, non-linear system{

ẋ = f(x) + g(x)u,

y = h(x),
(3)

with the state vector x ∈ Rn, a control vector u ∈ Rm and
an output vector y ∈ Rm. f(·) : Rn → Rn, g(·) : Rn → Rm

and h(·) : Rn → Rm are non-linear functions of the state.
The above system is passive if there exists a continuous
and differentiable lower bounded function of the state
V (·) : Rn → R (called storage function) such that:

V̇ (x) ≤ uTy ⇐⇒ V (x(t))− V (x(0)) ≤
∫ t

0

uT (τ)y(τ) dτ

(4)

V (·) represents the internal stored energy and uTy the
energy flow exchanged with the external world (i.e. the
supply rate). The pair (u, y) is called power port, where
u and y are power variables: these latter allow to control
and interconnect passive systems.

Back to the port-Hamiltonian theory, due to the fact
that H(x) ≥ 0, the passivity is always guaranteed and

it is easy to show that Ḣ(x) ≤ uTy. In this way, port-
Hamiltonian framework provides a powerful tool for the
stability analysis of dynamical systems, in order to achieve
a feasible, stable and robust control.

3. COOPERATIVE ALGORITHM

The cooperative multi-agent problem tackled is the fol-
lowing: each AUV within a team has to accomplish its
own task (or tasks), while keeping the communication
connectivity with the other team members. In particular,
modelling the agents/targets network as an indirect graph
without any self-loop, the aim is to design a control law
that allows to maintain the predefined graph during the
development of the whole mission. The starting hypoth-
esis to fulfil the communication link maintenance is that
the connectivity is guaranteed if the agents lie within a
fixed relative range. Moreover, each vehicle is supposed
to be equipped with an acoustic positioning system, i.e.
an Ultra-Short Base Line (USBL), capable of measuring
the relative position of another vehicle with respect to
itself. Due to the limitation of acoustic propagation, the
presence of delays on the connectivity links is included and
conclusions about the stability are treated separately.

Consider the generic network configuration in Fig. 1, with
l-vehicles and m-targets. Each link, which is a communica-
tion connection or not, is represented by a pair of spring-
damper element (virtual coupling). The graph G = (V,E)
associated to the concerned network is defined by:
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. . .
l

T1 T2

T3

Tm

kT1
1

kT2
2

kT1
3

dT1
1

dT2
2

dT3
3

dTm

l

kTm

l

k12

k13
k23

d12

d13

d23

i

Target

i-th AUV

Virtual coupling

Fig. 1. A team of l-AUVs (numbered red circles) in a
generic distribution in Rn. The blue circled crosses
suggest the target of the agents, while the spring-
damper couples represent the virtual couplings be-
tween agents and/or targets.

V = {1, 2, . . . , l, T1, T2, . . . , Tm} → |V | = l +m,

E = {(1, 2), (1, 3), . . . , (1, T1), . . .} → |E| = a+ t.
(5)

Note the separation between agent-agent and agent-target
edges, with cardinality a and t, respectively. Considering
the (i, j) edge, the vertex i is always seen as the tail and
j as the head of the link. Then, the incidence matrix
B ∈ R(l+m)×(a+t) is given by:

B =




−1 −1 · · · −1 · · ·
1 0 · · · 0 · · ·
0 1 · · · 0 · · ·
...

...
...

0 0 . . . 1 . . .
0 0 . . . 0 . . .
...

...
... . . .

0 0 . . . 0 . . .




(6)

Conventionally, the rows of B are sorted as the elements
in V , while the columns as those in E. In this way, the
first a columns represent the links between agents and the
second t stand for the agent-target connections. Each node
has a double-integrator dynamics. Consider the i-th AUV
and j-th target, then:

miq̈i = −d q̇i + ui, mTj
q̈Tj

= −d q̇Tj
+ uTj

, (7)

where mi, mTj
are the respective masses, qi, qTj

∈ Rn are

their positions (generalized coordinates) and ui, uTj
∈ Rn

are the control vectors. The d elements model a viscous
friction acting on targets and agents. The corresponding
linear momenta pi, pTj

∈ Rn are given by:

pi = m̄iq̇i pTj
= m̄Tj

q̇Tj
, (8)

with m̄i = Inmi, m̄Tj
= InmTj

and In is the n×n identity
matrix.

Now, consider the group of l + m vertices. To com-
pactly denote the agent dynamics, the vector form is
introduced. Thus, q = [qT

1 , q
T
2 , . . . , q

T
T1
, . . .]T ∈ Rn(l+m)

stands for the generalized coordinates vector, DA =
diag(In d, . . . , In d) ∈ Rn(l+m)×n(l+m) is the damping matrix
and u = [uT

1 , u
T
2 , . . . u

T
T1
, . . .]T ∈ Rn(l+m) is the control

vector. The linear momenta vector p ∈ Rn(l+m) is:

p = Mq̇, (9)

where M = diag(m̄1, . . . , m̄Tm) ∈ Rn(l+m)×n(l+m) is the
diagonal, positive definite matrix of masses. Basing on
the communication links, the relative distances vector
z ∈ Rn(a+t) is defined as:

z = (BT ⊗ In)q, (10)

where the operator ⊗ identifies the Kronecker product.

Including the virtual couplings, the energetic behaviour of
the network is analysed. The global Hamiltonian function

H(p, z) = Hk(p) +Ht(z) +Ha(z) (11)

is divided as the sum of three different terms, in which
the potential contribution of the spring is split between
AUV-target and AUV-AUV contributions. The first term
is given by:

Hk(p) =
1

2
pTM−1p. (12)

Consider the agent-target links. Then:

Ht(z) =
1

2
zTKTz, (13)

with KT = diag(0na×na, K̄T ) ∈ Rn(a+t)×n(a+t), K̄T =
diag(k̄1, . . . , k̄t), k̄i = Inkt

i and kt
i is the elastic constant of

the i-th vehicle-target coupling in E (for example, kt
1 = kT1

1

and kt
t = kTm

l in Fig. 1, for i = 1, . . . , t). Defining Rc

as the maximum distance at which the AUV can still
communicate with each other, and Rd ≤ Rc as the desired
distance to be maintained between two vehicles, the last
term of H(p, z) is given by:

Ha(z) =
1

2

a∑
i=1

ka

i (||zi||) · (||zi|| −Rd)
2. (14)

where the elastic constant ka
i (·) models a non-linear spring

over each agent-agent link and || · || denotes the Euclidean
norm. Now, it is possible to define the force vector f ∈
Rn(a+t) acting on the a+ t links as:

f =

(
∂H

∂z

)T

+DC(BT ⊗ In)

(
∂H

∂p

)T

, (15)

where DC = diag(d̄1, . . . , d̄a, . . . , d̄t) ∈ Rn(a+t)×n(a+t) is the
diagonal, positive definite matrix that contains the mutual
damping elements d̄i = Indi in E.

Assuming (p, z) as the state variables, the input-state
representation of the multi-agents open loop system in the
port-Hamiltonian framework is:

[
ṗ

ż

]
=

[
−DA 0n(l+m)×n(a+t)

BT ⊗ In 0n(a+t)×n(a+t)

] [ (
∂H

∂p

)T

(
∂H

∂z

)T

]
+

+

[
In(l+m)×n(l+m)

0n(a+t)×n(l+m)

]
u.

(16)

So far the targets are treated as agents. Now, Pfaffian
constraints are introduced to consider fixed targets. In this
way:

[
0nm×nl Inm×nm

]
︸ ︷︷ ︸

AT ∈Rnm×n(l+m)

∂H

∂p

T

= 0nm, (17)
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and a sort of selection matrix S ∈ Rn(l+m)×n(l+m) such that
ATS = 0nm×n(l+m) is computed:

S =

[
Inl×nl 0nl×nm

0nm×nl 0nm×nm

]
. (18)

Then, the open loop system in (16) assumes the following
form:[

ṗ

ż

]
=

[
−STDAS 0n(l+m)×n(a+t)

(BT ⊗ In)S 0n(a+t)×n(a+t)

][ (
∂H

∂p

)T

(
∂H

∂z

)T

]
+

+

[
S

0n(a+t)×n(l+m)

]
u.

(19)

3.1 Distributed control law without communication lags

First of all, only the dampers between agents and targets
are considered, neglecting those between agents (i.e. d̄1 =
. . . = d̄a = 0n×n). In order to synthesize a stable control
that fulfil the communication constraints, the Hamiltonian
H(p, z) is chosen as the Lyapunov candidate V (p, z) of the
multi-agents multi-targets network. Indeed, differentiating
with respect to time:

V̇ (p, z) =
∂Hk

∂p
ṗ+

∂

∂z
(Ht +Ha)ż, (20)

and replacing the dynamic (19) in (20), hence:

V̇ (p, z) =
∂H

∂p
Su− ∂H

∂p
STDAS

(
∂H

∂p

)T

+

+
∂H

∂p
ST (BT ⊗ In)

(
∂H

∂z

)T

.

(21)

Defining S̄ = (BT ⊗ In)S and choosing the control u as:

Su = −S̄T

(
∂H

∂z

)T

− S̄TDCS̄

(
∂H

∂p

)T

, (22)

the autonomous closed loop dynamic becomes:
[
ṗ

ż

]
=

[
−(STDAS + S̄TDCS̄) −S̄T

S̄ 0n(a+t)×n(a+t)

][ (
∂H

∂p

)T

(
∂H

∂z

)T

]
.

(23)
Invoking La Salle principle, applied to the obtained nega-
tive semi-definite V̇ (p, z), the trajectories of (23) converge
to the largest invariant set where p = 0, that is:

−S̄T

(
∂H

∂z

)T

= 0. (24)

When (∂H/∂z)T ∈ ker{S̄T}, the previous equation sug-
gests that the proposed control stabilizes the closed loop
system at the equilibrium point between the elastic forces
generated to the agent-agent, agent-target links. Note that
the control law in (22) is distributed. In fact, assuming the
position of the targets known beforehand, each AUV can
compute its control input knowing only the relative posi-
tion of the agents connected with itself which is measurable
directly by means of the on-board acoustic positioning
system.

3.2 Including communication delays

The introduction of the agent-agent contributions require
that each vehicle has access to motion information not
directly measurable by means of on-board equipment (i.e.
the velocity of the other team members). This information

is affected by a communication delay on the connectivity
links; in the following we use the same framework as in Pa-
sumarthy and Kao (2009). The control policy synthesized
above can be restated as:

Su = −S̄T

(
∂H

∂z

)T

−

[
D̄

(
∂H

∂p

)T

− T̄

(
∂H

∂p

)T

τ(t)

]
, (25)

where D̄ and T̄ contain the diagonal and the out of
diagonal elements of S̄TDCS̄, respectively (in this case,
d̄1 = . . . = d̄a are non-zero matrices). The term
(∂H/∂p)τ(t) represents the partial derivative of the Hamil-
tonian function w.r.t. the linear momenta, computed
in according to the time varying delay vector τ(t) =
[τ1(t), . . . , τa(t), . . . , τt(t)]. Assuming that each τi(t) is a
non-negative, bounded above, Lipschitz function, i.e. 0 ≤
τ̇i(t) ≤ d̃ < 1, the proposed distributed control law in (25)
assures the stability of the networked system with com-
munication delays. In fact, omitting the time dependence
of τ and defining:

∇HT =

[ (
∂H

∂p

)T

(
∂H

∂z

)T

]
, ∇HT

τ =

[ (
∂H

∂p

)T

τ(
∂H

∂z

)T

τ

]
, (26)

the Lyapunov candidate is now chosen as:

V (p, z) = H(p, z) +

∫ t

t−τ

∇HsP∇HT

s ds, (27)

with P symmetric, positive semi-definite matrix. Then, the
derivative function is:

V̇ (p, z) =
d

dt
H(p, z) + [∇HP∇HT − (1− τ̇)∇HτP∇HT

τ ] .

(28)
Noting that only the term (∂H/∂p)τ of ∇Hτ is really
affected by lag, hence P = diag(P̄ , 0n(a+t)×n(a+t)). After
some manipulations, we get a quadratic form:

V̇ (p, z) ≤



(

∂H

∂p

)T

(
∂H

∂p

)T

τ




T

W



(

∂H

∂p

)T

(
∂H

∂p

)T

τ


 , (29)

that is negative definite iff:

W =

[
−STDAS − D̄ + P̄ T̄

0 −(1− d̃)P̄

]
< 0. (30)

In this way, if a matrix P exists that allows to solve
the Linear Matrix Inequalities (LMI) problem in (30),
the previous conclusions about stability of the closed loop
system described in (24) continue to apply.

3.3 A trivial example

The discussion just presented is now applied to the trivial
case of 2 agents 2 targets acting in R2 (Fig. 2). The aim is
to provide a clearer interpretation of the invariant set in
(24) that contains the trajectories of the controlled system
at the equilibrium.

So, the set E = {(1, 2), (1, T1), (2, T2)} contains the
different connectivity links, the selection matrix S =
diag(I4×4, 04×4) and the incidence matrix is:

B =



−1 −1 0
1 0 −1
0 1 0
0 0 1


 . (31)
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kT2
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k12

d12

T2

kT1
1

Fig. 2. A generic distribution in R2 for the 2 AUVs, 2
targets case.

Choosing a linear spring to model the agent-agent virtual
coupling (i.e. ka

1 (||z1||) = ka
1 ), the system (23) is stabilized

(with p = 0) to the set of z that fulfil the following system
of equations:



ka

1

(
1− Rd

||z1,2||

)
z1,2x + kt

1z1,T1x
= 0

ka

1

(
1− Rd

||z1,2||

)
z1,2y

+ kt

1z1,T1y
= 0

−ka

1

(
1− Rd

||z1,2||

)
z1,2x + kt

2z2,T2x
= 0

−ka

1

(
1− Rd

||z1,2||

)
z1,2y + kt

2z2,T2y
= 0,

(32)

where z1,2, z1,T1
and z2,T2

represent the relative distances
ordered in E, while ka

1 , k
t
1 and kt

2 the respective elastic
constants. As regards the choice of the control gains, the
proposed control law offers several degrees of freedom,
as well as strong stability guarantees. In fact, selecting
different elastic constants, is possible to determine in
advance which task has higher priority than the other
without any consequence about stability.

4. SIMULATIONS

The framework described in Section 3 can be applied
to a large variety of cooperative tasks in the marine
environment by changing properly the graph configuration
(nodes and edges).

The maintenance of the communication link among all
the vehicles of the team can be guaranteed by defining
a complete sub-graph between the agents. After choosing
a proper initial incidence matrix, the non-linear spring
associated to each agent-agent connection is modelled so
that the corresponding elastic potential is given by:

Hai(zi) =




K1 (‖zi‖ −Rd)
2 ‖zi‖ ≤ Rd

K2

(‖zi‖ −Rd)
2

Rc − ‖zi‖
otherwise

where K1,K2 > 0 are design parameters. As an example,
Fig. 3 shows the above function with a typical value for the
maximum communication range of a medium frequency
acoustic modem, e.g. Rc = 3000 m, andRd = 2000 m. Such
a choice ensures that if two agents start within the com-
munication range, they remain connected during the whole
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0

1

2

3

4

5

6

7

8

9

10

H
a
i
(z
)

×10
4

Rc

Fig. 3. Elastic potential associated to an agent-agent
connection, with Rc = 3000 m and Rd = 2000 m.

-100 0 100 200 300 400 500 600 700

x [m]

0

100

200

300

400

500

600

y
[m

]

Vehicle 1
Vehicle 2
Vehicle 3
Target 1

Fig. 4. Cooperative surveillance task. The vehicles start
from the positions indicated by the coloured stars.
At the end, the vehicles (coloured diamonds) are dis-
posed around the asset (black circle) while satisfying
the distance constraints, represented with the dotted
circles.

task, converging if possible to the desired distance Rd, also
maintaining the structure of the initial incidence matrix.
Note that the assumption of an existing communication
link among the vehicles at the beginning of the mission
is realistic in practice. In fact, the deployment of the
team vehicles during sea experimentations is commonly
operated by either a support ship or a docking station
within a restricted area.

On the other hand, the agent-target connections are
strictly dependent on the specific task to be accomplished.
In the following, we will present the simulation results
obtained with two types of tasks, inspired on our previous
works (Caiti et al., 2012, 2013a). Velocities are supposed
to be exchanged between the vehicles at a rate of 1 Hz.
Moreover, all the simulations are performed considering a
fixed communication delay of 1 s.

4.1 Surveillance task

In a surveillance or patrolling task, the vehicles of the
team have to cover a certain area around an asset to be
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Fig. 5. Cooperative coverage task. The vehicles start to
approach to the assigned targets until the communi-
cation limit (dotted circles) is attained.

defended. The only target in this scenario is represented
by the asset itself (m = 1). Hence, the agent-target
connections are modelled by a spring-damper couple from
each vehicle to the asset. Fig. 4 shows the results obtained
with three vehicles (l = 3), setting the desired intra-
agent range Rd = 100 m. As can be noticed, the team
reaches a stable configuration around the asset to be
defended. Furthermore, each vehicle remains within the
desired distance with respect to all the others.

4.2 Coverage task

In this case, each vehicle is assigned to a specific target (l =
m) with the overall objective of covering the maximum
area in the targets’ neighbourhood. Each coupling between
an agent and the associated target is modelled by a
spring-damper connection. Fig. 5 shows the trajectories
followed by the team members in a scenario with three
vehicles (l = m = 3) and a relative distance among the
agents Rd = 2500 m. In this case, the team reaches a
stable configuration in which no vehicle can move closer
to the corresponding target without breaking the imposed
constraints due to the communication maintenance.

5. CONCLUSIONS AND FUTURE WORKS

The proposed distance-based distributed control law al-
lows to fulfil communication constraints between inter-
connected marine vehicles during the execution of sev-
eral tasks. It also offers a lot of degrees of freedom to
be exploited upstream of the mission. The stability of
the networked system is guaranteed even in presence of
delays on the connectivity links, which are very common
in marine environment. The port-Hamiltonian framework,
tightly coupled with the passivity theory, provides a pow-
erful tool to model a swarm of AUVs performing several
tasks. Moreover, it suggests an easy way to draw quick
conclusions about the soundness and stability of the whole
system. However, there are some aspects that are to be
explored. In fact, the fixed targets assumption, as well
as the complete connectivity among the agents, can be
quite easily relaxed. Future works will investigate these
topics, including several considerations about network per-

formance degradations due to the presence of communica-
tion delays.
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