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Abstract. Reaction systems are a qualitative formalism for modeling
systems of biochemical reactions characterized by the non-permanency
of the elements: molecules disappear if not produced by any enabled
reaction. Reaction systems execute in an environment that provides new
molecules at each step. Brijder, Ehrenfeucht and Rozemberg introduced
the idea of predictors. A predictor of a molecule s, for a given n, is the
set of molecules to be observed in the environment in order to determine
whether s is produced or not by the system at step n.
We introduced the notion of formula based predictor, that is a proposi-
tional logic formula that precisely characterizes environments that lead
to the production of s after n steps. In this paper we revise the notion
of formula based predictor by defining a specialized version that assumes
the environment to provide molecules according to what expressed by
a temporal logic formula. As an application, we use specialized formula
based predictors to give theoretical grounds to previously obtained re-
sults on a model of gene regulation.

1 Introduction

In the context of Natural Computing [?,?], reaction systems [?,?] have been
proposed as a model for the description of biochemical processes driven by the
interaction among reactions in living cells. A reaction system consists of a set
of objects S representing molecules and a set of rewrite rules (called reactions)
representing chemical reactions. A reaction is a triple (R, I, P ), where R, I and P
are sets of objects representing reactants, inhibitors and products, respectively.
A state of a reaction system is a subset of S representing available molecules.
The presence of an object in the state expresses the fact that the corresponding
biological entity, in the real system being modeled, is present in a number of
copies as high as needed. This is called the threshold supply assumption and
characterizes reaction systems as a qualitative modeling formalism.

The dynamics of a reaction system is given by occurrences of reactions (i.e.
rewrite rule applications) based on two opposite mechanisms: facilitation and
inhibition. Facilitation means that a reaction can occur only if all its reactants
are present, while inhibition means that the reaction cannot occur if any of
its inhibitors is present. The threshold supply assumption ensures that different
reactions never compete for their reactants, and hence all the applicable reactions
in a step are always applied. The application of a set of reactions results in the
introduction of all of their products in the next state of the system. Reaction
systems assume the non permanency of the elements, namely the next state
consists only of the products of the reactions applied in the current step.



The overall behavior of a reaction system model is driven by the (set of)
contextual elements which are received from the external environment at each
step. Such elements join the current state of the system and, as the other objects
in the system state, can enable or disable reactions. The computation of the
next state of a reaction system is a deterministic procedure. However, since the
contextual elements that can be received at each step can be any subset of the
support set S, the overall system dynamics is non deterministic.

Theoretical aspects of reaction systems have been studied in [?,?,?,?,?,?,?].
In [?] Brijder, Ehrenfeucht and Rozemberg introduced the idea of predictor.
Assume that one is interested in knowing whether an object s ∈ S will be
present after n steps of execution of a reaction system. Since the only source
of non-determinism are the contextual elements received at each step, observing
such elements can allow us to predict the production of s after n steps. In general,
not all contextual elements are relevant for determining if s will be produced.
A predictor is hence the subset Q of S that is actually essential to be observed
among contextual elements for predicting whether s will be produced after n
steps or not.

In [?] we continued the investigation on predictors by introducing the new
notion of formula based predictor. Formula based predictors consist in a proposi-
tional logic formula to be satisfied by the sequence of (sets of) elements provided
by the environment. Satisfaction of the logic formula precisely discriminates the
cases in which s will be produced after n steps from those in which it will not.

Formula based predictors (as well as standard predictors) do not assume any-
thing about the elements provided by the environment. However, it is very often
the case that the sequences of sets of object provided by the environment follow
specific patterns or, more generally, have specific dynamical properties. For ex-
ample, it might happen that some object are never provided by the environment,
or that some objects are provided only after some others.

In this paper we revise formula based predictors by introducing specialized
formula based predictors. The revised notion is specialized with respect to a
temporal logic formula expressing the dynamical properties of the environment.
More specifically, a specialized formula based predictor is a propositional logical
formula that predicts the production of an object s after n steps, by considering
only the subset of the context sequences satisfying the given temporal logic
formula. A specialized predictor can be substantially a simpler formula than the
corresponding (non-specialized) formula based predictor.

We illustrate specialized formula based predictors on a model of the lac
operon expression in the E. coli bacterium originally proposed in [?].

2 Reaction Systems

In this section we recall the basic definition of reaction systems [?,?]. Let S be a
finite set of symbols, called objects. A reaction is formally a triple (R, I, P ) with
R, I, P ⊆ S, composed of reactants R, inhibitors I, and products P . We assume
reactants and inhibitors to be disjoint (R∩ I = ∅), otherwise the reaction would
never be applicable. Reactants and inhibitors R∪ I of a reaction are collectively
called resources of such a reaction. The set of all possible reactions over a set
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S is denoted by rac(S). Finally, a reaction system is a pair A = (S,A), with S
being the finite background set, and A ⊆ rac(S) being its set of reactions.

The state of a reaction system is described by a set of objects. Let a =
(Ra, Ia, Pa) be a reaction and T a set of objects. The result resa(T ) of the
application of a to T is either Pa, if T separates Ra from Ia (i.e. Ra ⊆ T
and Ia ∩ T = ∅), or the empty set ∅ otherwise. The application of multiple
reactions at the same time occurs without any competition for the used reactants
(threshold supply assumption). Therefore, each reaction which is not inhibited
can be applied, and the result of application of multiple reactions is cumulative.
Formally, given a reaction system A = (S,A), the result of application of A to
a set T ⊆ S is defined as resA(T ) = resA(T ) =

⋃
a∈A resa(T ).

The dynamics of a reaction system is driven by the contextual objects, namely
the objects which are supplied to the system by the external environment at each
step. An important characteristic of reaction systems is the assumption about
the non-permanency of objects. Under such an assumption the objects carried
over to the next step are only those produced by reactions. All the other objects
vanish, even if they are not involved any reaction.

Formally, the dynamics of a reaction system A = (S,A) is defined as an
interactive process π = (γ, δ), with γ and δ being finite sequences of sets of
objects called the context sequence and the result sequence, respectively. The
sequences are of the form γ = C0, C1, . . . , Cn and δ = D0, D1, . . . , Dn for some
n ≥ 1, with Ci, Di ⊆ S, and D0 = ∅. Each set Di, for i ≥ 1, in the result
sequence is obtained from the application of reactions A to a state composed
of both the results of the previous step Di−1 and the objects Ci−1 from the
context; formally Di = resA(Ci−1 ∪ Di−1) for all 1 ≤ i ≤ n. Finally, the state
sequence of π is defined as the sequence W0,W1, . . . ,Wn, where Wi = Ci ∪ Di

for all 1 ≤ i ≤ n. In the following we say that γ = C0, C1, . . . , Cn is a n-step
context sequence.

3 Preliminaries

In order to describe the causes of a given product, we use objects of reaction
systems as propositional symbols of formulas. Formally, we introduce the set FS

of propositional formulas on S defined in the standard way: S ∪ {true, false} ⊆
FS and ¬f1, f1 ∨ f2, f1 ∧ f2 ∈ FS if f1, f2 ∈ FS .

The propositional formulas FS are interpreted with respect to subsets of the
objects C ⊆ S. Intuitively, s ∈ C denotes the presence of element s and therefore
the truth of the corresponding propositional symbol. The complete definition of
the satisfaction is as follows.

Definition 1. Let C ⊆ S for a set of objects S. Given a propositional formula
f ∈ FS, the satisfaction relation C |= f is inductively defined as follows:

C |= s iff s ∈ C, C |= true,
C |= ¬f ′ iff C 6|= f ′, C |= f1 ∨ f2 iff either C |= f1 or C |= f2,
C |= f1 ∧ f2 iff C |= f1 and C |= f2.

In the following ≡l stands for the logical equivalence on propositional formulas
FS . Moreover, given a formula f ∈ FS we use atom(f) to denote the set of propo-
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sitional symbols that appear in f and simpl(f) to denote the simplified version of
f . The simplified version of a formula is obtained applying the standard formula
simplification procedure of propositional logic converting a formula to Conjunc-
tive Normal Form. We recall that for any formula f ∈ FS the simplified formula
simpl(f) is equivalent to f , it is minimal with respect to the propositional sym-
bols. Thus, we have f ≡l simpl(f) and atom(simpl(f)) ⊆ atom(f) and there
exists no formula f ′ such that f ′ ≡l f and atom(f ′) ⊂ atom(simpl(f)).

The causes of an object in a reaction system are defined by a propositional
formula on the set of objects S. First of all we define the applicability predicate
of a reaction a as a propositional logic formula on S describing the requirements
for applicability of a, namely that all reactants have to be present and inhibitors
have to be absent. This is represented by the conjunction of all atomic formulas
representing reactants and the negations of all atomic formulas representing
inhibitors of the considered reaction.

Definition 2. Let a = (R, I, P ) be a reaction with R, I, P ⊆ S for a set of ob-
jects S. The applicability predicate of a, denoted by ap(a), is defined as follows:
ap(a) =

(∧
sr∈R sr

)
∧
(∧

si∈I ¬si
)
.

The causal predicate of a given object s is a propositional formula on S repre-
senting the conditions for the production of s in one step, namely that at least
one reaction having s as a product has to be applicable.

Definition 3. Let A = (S,A) be a r.s. and s ∈ S. The causal predicate of s in
A, denoted by cause(s,A) (or cause(s), when A is clear from the context), is
defined as follows1: cause(s,A) =

∨
{(R,I,P )∈A|s∈P} ap ((R, I, P )) .

We introduce a simple reaction system as running example.

Example 1. Let A = ({A, . . . , G}, {a1, a2, a3}) be a reaction system with

a1 = ({A}, {}, {B}) a2 = ({C,D}, {}, {E,F}) a3 = ({G}, {B}, {E}).

The applicability predicates of the reactions are ap(a1) = A, ap(a2) = C ∧D and
ap(a3) = G ∧ ¬B. Thus, the causal predicates of the objects are

cause(A) = cause(C) = cause(D) = cause(G) = false,
cause(B) = A, cause(F ) = C ∧D, cause(E) = (G ∧ ¬B) ∨ (C ∧D)

Note that cause(A) = false given that A cannot be produced by any reaction.
An analogous reasoning holds for objects C, D and G.

4 Formula Based Predictors

We introduce the notion of formula based predictors, originally presented in [?].
A formula based predictor for an object s at step n+1 is a propositional formula
satisfied exactly by the context sequences leading to the production of s at step
n+ 1. Minimal formula based predictors can be calculated in an effective way.

1 We assume that cause(s) = false if there is no (R, I, P ) ∈ A such that s ∈ P .
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Given a set of objects S, we consider a corresponding set of labelled objects
S × IN. For the sake of legibility, we denote (s, i) ∈ S × IN simply as si and
we introduce Sn =

⋃n
i=0 Si where Si = {si | s ∈ S}. Propositional formulas on

labelled objects Sn describe properties of n-step context sequences. The set of
propositional formulas on Sn, denoted by FSn , is defined analogously to the set
FS (presented in Sect. ??) by replacing S with Sn. The satisfaction relation of
Def. ?? applies also to formulas in FSn on subsets of Sn.

A labelled object si represents the presence (or the absence, if negated) of
object s in the i-th element Ci of the n-step context sequence γ = C0, C1, . . . Cn.
This interpretation leads to the following definition of satisfaction relation for
propositional formulas on context sequences.

Definition 4. Let γ = C0, C1, . . . Cn be a n-step context sequence and f ∈ FSn

a propositional formula. The satisfaction relation γ |= f is defined as

{si | s ∈ Ci, 0 ≤ i ≤ n} |= f .

As an example, let us consider the context sequence γ = C0, C1 where C0 =
{A,C} and C1 = {B}. We have that γ satisfies the formula A0∧B1 (i.e. γ |= A0∧
B1) while γ does not satisfy the formula A0∧(¬B1∨C1) (i.e. γ 6|= A0∧(¬B1∨C1)).

The latter notion of satisfaction allows us to define formula based predictor.

Definition 5 (Formula based Predictor). Let A = (S,A) be a r.s. s ∈ S
and f ∈ FSn a propositional formula. We say that f f-predicts s in n+ 1 steps
if for any n-step context sequence γ = C0, . . . , Cn

γ |= f ⇔ s ∈ Dn+1

where δ = D0, . . . , Dn is the result sequence corresponding to γ and Dn+1 =
resA(Cn ∪Dn).

Note that if formula f f-predicts s in n + 1 steps and if f ′ ≡l f then also f ′

f-predicts s in n + 1. More specifically, we are interested in the formulas that
f-predict s in n+1 and contain the minimal numbers of propositional symbols, so
that their satisfiability can easily be verified. This is formalised by the following
approximation order on FSn .

Definition 6 (Approximation Order). Given f1, f2 ∈ FSn we say that f1 vf

f2 if and only if f1 ≡l f2 and atom(f1) ⊆ atom(f2).

It can be shown that there exists a unique equivalence class of formulas based
predictors for s in n+ 1 steps that is minimal w.r.t. the order vf .

We now define an operator fbp that allows formula based predictors to be
effectively computed.

Definition 7. Let A = (S,A) be a r.s. and s ∈ S. We define a function fbp :
S × IN → FSn as follows: fbp(s, n) = fbs(cause(s), n), where the auxiliary
function fbs : FS × IN→ FSn is recursively defined as follows:

fbs(s, 0) = s0 fbs(s, i) = si ∨ fbs(cause(s), i− 1) if i > 0
fbs((f ′), i) = (fbs(f ′, i)) fbs(f1 ∨ f2, i) = fbs(f1, i) ∨ fbs(f2, i)
fbs(¬f ′, i) = ¬fbs(f ′, i) fbs(f1 ∧ f2, i) = fbs(f1, i) ∧ fbs(f2, i)
fbs(true, i) = true fbs(false, i) = false
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The function fbp gives a formula based predictor that, in general, may not be
minimal w.r.t. to vf . Therefore, the calculation of a minimal formula based
predictor requires the application of a standard simplification procedure to the
obtained logic formula.

Theorem 1. Let A = (S,A) be a r.s.. For any object s ∈ S,

– fbp(s, n) f-predicts s in n+ 1 steps;
– simpl(fbp(s, n)) f-predicts s in n+ 1 steps and is minimal w.r.t. vf .

Example 2. Let us consider again the reaction system of Ex. ??. We are inter-
ested in the production of E after 4 steps. Hence, we calculate the logic formula
that f-predicts E in 4 steps applying the function fbp:

fbp(E, 3) = fbs
(
(G ∧ ¬B) ∨ (C ∧D), 3

)
=

(
fbs(G, 3) ∧ ¬fbs(B, 3)

)
∨
(
fbs(C, 3) ∧ fbs(D, 3)

)
=

(
(G3) ∧ ¬(B3 ∨ fbs(A, 2))) ∨ (C3 ∧D3)

=
(
G3 ∧ ¬B3 ∧ ¬A2

)
∨ (C3 ∧D3)

)
A context sequence satisfies fbp(E, 3) iff the execution of the reaction system
leads to the production of object E after 4 steps. Furthermore, in this case the
obtained formula is also minimal given that simpl(fbp(E, 3)) = fbp(E, 3).

5 The temporal logic for context sequences

We introduce a linear temporal logic for the description of properties of finite
context sequences. In the logic, propositional formulas describe the properties
of single contexts (i.e. the symbols that can/cannot appear in an element of
a context sequence). Hence, such formulas play the role of state formulas in
traditional temporal logics. Temporal properties are expressed by variants of the
usual next and until operators, and by derived eventually and globally operators.

Definition 8 (Temporal Formulas). Let S be a set of objects. The syntax of
temporal logic formulas on S is defined by the following grammar:

ψ ::= f
∣∣ ψ ∨ ψ

∣∣ ψ ∧ ψ
∣∣ Xψ

∣∣ ψUkψ
∣∣ Fkψ

∣∣ Gkψ

where f ∈ FS and k ∈ IN ∪ {∞}. We denote with TLS the set of all temporal
logic formulas on S.

Given a context sequence γ = C0, . . . , Cn, the simple temporal formula f states
that f is satisfied by C0, according to the definition of satisfiability of the propo-
sitional logic. Formula Xψ states that ψ is satisfied by the context sequence
after one step, namely by C1, . . . , Cn. Formula ψ1Ukψ2 states that there exists
k′ ≤ k such that C0, . . . , Ck′−1 satisfies ψ1 and Ck′ satisfies ψ2. Formula Fkψ
states that there exists k′ ≤ k such that Ck′ satisfies ψ. Formula Gkψ states
that for all i ≤ k context Ci satisfies ψ. Finally, operators ∨ and ∧ are as usual.

Note that the value of n has a significant role in the satisfiability of temporal
formulas. In particular, if n < k we have that ψ1Ukψ2 is satisfied also if ψ1 is
satisfied by all Ci with i ≤ n (never satisfying ψ2). Moreover, if n < k we have
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that Fkψ is always satisfied since, intuitively, ψ may be satisfied by a context
Cj , with n < j ≤ k, that is not contained in γ. An analogous reasoning holds
for Xψ when n = 0 (or XXψ when n = 1, etc...). As regards Gkψ, when n < k
it is equivalent to Gnψ.

As usual in temporal logics, formulas Fkψ and Gkψ are actually syntactic
sugar for trueUkψ and ψUkfalse, respectively. Moreover, if k ∈ IN, we have
that also ψ1Ukψ2 can be rewritten into ψ2 ∨ (ψ1 ∧X(ψ1Uk−1ψ2)), when k > 0,
and ψ2, when k = 0. Consequently, in the semantics of the temporal logic, we
can omit derived operators Fk and Gk, with k ∈ IN∪{∞}, and Uk with k ∈ IN.

The formal definition of satisfiability of temporal logic formulas on finite
n-step context sequences is as follows.

Definition 9. Let γ = C0, C1, . . . , Cn be a n-step context sequence with n ≥ 0.
Given a temporal logic formula ψ ∈ TLS, the satisfaction relation γ ` ψ is
inductively defined as follows:

γ ` f iff C0 |= f γ ` Xψ iff either n = 0 or γ′ ` ψ
γ ` ψ1 ∧ ψ2 iff γ ` ψ1 and γ ` ψ2

γ ` ψ1 ∨ ψ2 iff either γ ` ψ1 or γ ` ψ2

γ ` ψ1U∞ψ2 iff either γ ` ψ2

or γ ` ψ1 and if n > 0 then γ′ ` ψ1U∞ψ2

where γ′ = C ′0, . . . , C
′
n−1 with C ′i = Ci+1 for 0 ≤ i ≤ n− 1.

Finally, we present an encoding of temporal formulas on objects S into proposi-
tional formulas on labelled objects Sn. The encoding depends on the parameter
n ∈ IN reporting the length of the context sequences that we want to model.

Definition 10. Let S be a set of objects and n ∈ IN. The encoding of a temporal
logic formula ψ ∈ TLS into a propositional logic formula on Sn is given by [[ψ]]n0
where the function [[ ]]n : TLS × IN→ FSn is defined as follows:

[[f ]]ni =bfci [[Xψ]]ni =

{
[[ψ]]ni+1 if i < n

true if i = n

[[ψ1 ∨ ψ2]]ni =[[ψ1]]ni ∨ [[ψ2]]ni [[ψ1 ∧ ψ2]]ni = [[ψ1]]ni ∧ [[ψ2]]ni

[[ψ1U∞ψ2]]ni =

{
[[ψ2]]ni ∨

(
[[ψ1]]ni ∧ [[ψ1U∞ψ2]]ni+1

)
if i < n

[[ψ2]]ni ∨ [[ψ1]]ni if i = n

where b ci : FS → FSi
is a function that replaces, in a given propositional logic

formula f , every s ∈ S with the corresponding labelled object si ∈ Si.

The following theorem states the main property of the encoding of temporal
formulas: the result of the encoding of a temporal formula is equivalent.

Theorem 2. Let γ = C0, . . . , Cn be a n-step context sequence. For any temporal
formula ψ ∈ TLS it holds that γ ` ψ ⇐⇒ γ |= [[ψ]]n0 .
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6 Specialized Formula Based Predictors

We specialize the notion of formula based predictor (given in Def. ??) w.r.t. a
subset of context sequences characterized by a temporal logic formula ψ.

Definition 11 (Specialized Formula based Predictor). Let A = (S,A) be
a r.s. s ∈ S, f ∈ FSn and ψ ∈ TLS. We say that f f-predicts s in n + 1 steps
with respect to ψ iff for any n-step context sequence γ = C0, . . . , Cn such that
γ ` ψ we have that

γ |= f ⇔ s ∈ Dn+1

where δ = D0, . . . , Dn is the result sequence corresponding to γ and Dn+1 =
resA(Cn ∪Dn).

It should be clear that any formula f that f-predicts s in n + 1 steps also
f-predicts s in n + 1 steps with respect to any logical formula ψ. In particular,
the formula fbp(s, n) (and its simplified version simpl(fbp(s, n)) is a specialized
predictor for s in n+ 1 steps for any ψ. However, the formula simpl(fbp(s, n))
typically is too general and therefore is not a minimal (w.r.t vf ) formula based
predictor specialized w.r.t. ψ.

Thus, we introduce a methodology that allows us to calculate minimal for-
mula based predictors for an object s at n+1 step, specialized w.r.t. ψ. The idea
is to use the encoding of the temporal formula ψ computed with respect to the
lenght of the context sequences n. The encoding [[ψ]]n0 is a propositional formula
on labelled objects Sn that models the n-step context sequences satisfying ψ.
A formula based predictor specialized w.r.t. ψ can be derived by exploiting the
encoding [[ψ]]n0 to simplify a corresponding formula based predictor.

More formally, suppose that f f-predicts s in n + 1 steps. A formula f ′

f-predicts s in n + 1 steps w.r.t a temporal formula ψ whenever f ′ is logically
equivalent to f considering the context sequences satisfying ψ, that is assuming
that the conditions formalized by the formula [[ψ]]n0 holds. The following theorem
establishes this fundamental property of specialized formula based predictors.

Theorem 3. Let A = (S,A) be a r.s., s ∈ S, and f ∈ FSn such that f f-predicts
s in n+ 1 steps. Given ψ ∈ TLS and f ′ ∈ FSn such that

[[ψ]]n0 ⇒
(
f ≡l f

′)
we have that f ′ f-predicts s in n+ 1 steps with respect to ψ.

We introduce a minimization algorithm that allows us to calculate a minimal
formula f ′ that satisfies the property of Theorem ??, given a predictor f and a
temporal logic formula ψ.

Let B = {true, false} and consider the incompletely specified booean function
F : Bn → B composed of the following two disjoint subsets Y es,DontC of Bn.
Y esF = {x1, .., xn | x1, .., xn is a boolean assignment that satisfies [[ψ]]n0 ∧ f} is
the subset of Bn where F is evaluated to 1 and
DontCF = {x1, .., xn | x1, .., xn is a boolean assignment that satisfies ¬[[ψ]]n0} is
a subset of Bn where the value of F is not specified. In each point of DontCF ,
called don’t care, F can assume the value 1 or 0. So there arem = 2|DontCF | differ-
ent functions equivalent to F that may take the place of F according to particular
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needs. Consider any possible extention of F , let us call them F 1, ..., Fm, obtained
by considering Y esF i = Y esF ∪Di with Di ⊆ DontCF and DontCF i = ∅. Each
F i is now a completely specified boolean function and it can be shown that in this
case its minimal sum of product form (SOP) also contains a minimal number of
different variables. Hence, any algorithm that computes the minimal SOP form
of F i (i.e. any well known algorithm looking for the prime implicants of F i) can
be applied in order to minimize the number of variables of F i. Then consider
the f ′ corresponding to the minimal SOP form between all the minimal SOP
form of F 1, ..., Fm, we are guaranteed that such f ′ has the minimal number of
variables.

It is worth noting that considering all possible extensions of the incompletely
specified boolean function F as well computing the SOP form of a completely
specified booean function F i has an exponential cost. However, some heuristic
that, in general, cannot guarantee minimality can be designed in order to improve
the efficiency.

Example 3. Let us consider the r.s. of Ex. ?? with the following reactions:

a1 = ({A}, {}, {B}) a2 = ({C,D}, {}, {E,F}) a3 = ({G}, {B}, {E}).

We introduce the following temporal formulas in order to describe the properties
of the context sequences:

ψ1 = G∞
(
¬B ∧ (¬C ∨D)

)
, ψ2 = G∞B, ψ3 = F3B

Formula ψ1 describes an invariant property which holds at any step of the con-
text sequence. The property models the situation in which object B is not a
synthesizable product, i.e., it can not be found in the environment but it has to
be produced by the reactions. Moreover, if the environment supplies C it also
supplies D at the same time. Similarly, formula ψ2 shows that the environment
always supply the object B. By contrast, formula ψ3 says that the environment
will eventually supply the object B within 3 steps.

We show the specialized formula based predictors w.r.t. the previous temporal
formulas considering again the production of E in 4-steps. We recall that the
corresponding minimal formula based predictor (presented in Ex. ??) is

simpl(fbp(E, 3)) = fbp(E, 3) =
(
G3 ∧ ¬B3 ∧ ¬A2

)
∨ (C3 ∧D3).

In order to calculate the specialized versions of predictor we compute the encod-
ing of the temporal formulas obtaining:

[[ψ1]]30 = (¬B0∧¬B1∧¬B2∧¬B3)∧(¬C0∨D0)∧(¬C1∨D1)∧(¬C2∨D2)∧(¬C3∨D3) ,

[[ψ2]]30 = B0 ∧B1 ∧B2 ∧B3 , [[ψ3]]30 = B0 ∨B1 ∨B2 ∨B3 .

By applying the minimization algorithm to fbp(E, 3) and to ψ1, ψ2 and ψ3,
we obtain the correponding specialized formulas f1, f2 and f3, respectively:

f1 = (G3 ∧ ¬A2) ∨ C3 f2 = (C3 ∧D3), f3 = fbp(E, 3).

In the case of formulas ψ1 and ψ2, the specialized formulas f1 and f2 are sub-
stantially reduced w.r.t. the formula based predictor, while formula ψ3 does not
lead to a reduced specialized predictor.
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7 Application

In this section we introduce a more complex biological example: the lac operon
expression in the E. coli bacterium. The lactose operon is a sequence of genes
that are responsible for producing enzymes for lactose degradation. We borrow
the formalization of this biological system as a reaction system from [?]. Let
A = (S, {a1, . . . , a10}) be the reaction system where

S = {lac, lacI, I, I-OP, cya, cAMP, crp, CAP, cAMP -CAP, lactose, glucose, Z, Y, A}

and the reaction rules are defined as follows

a1 = ({lac}, {}, {lac}) (lac operon duplication)

a2 = ({lacI}, {}, {lacI}) (repressor gene duplication)

a3 = ({lacI}, {}, {I}) (repressor gene expression)

a4 = ({I}, {lactose}, {I-OP}) (regulation mediated by lactose)

a5 = ({cya}, {}, {cya}) (cya duplication)

a6 = ({cya}, {}, {cAMP}) (cya expression)

a7 = ({crp}, {}, {crp}) (crp duplication)

a8 = ({crp}, {}, {CAP}) (crp expression)

a9 = ({cAMP,CAP}, {glucose}, {cAMP -CAP}) (regulation mediated by glucose)

a10 = ({lac, cAMP -CAP}, {I-OP}, {Z, Y,A}) (lac operon expression)

The regulation process is as follows: gene LacI encodes the lac repressor I,
which, in the absence of lactose, binds to gene OP (the operator). Transcription
of structural genes into mRNA is performed by the RNA polymerase enzyme
which transcribes the three structural genes represented by lac into a single
mRNA fragment. When the lac repressor I is bound to gene OP (that is, the
complex I-OP is present) it becomes an obstacle for the RNA polymerase, and
transcription of the structural genes is not performed. On the other hand, when
lactose is present inside the bacterium, it binds to the repressor thus inhibit-
ing the binding of I to OP . This inhibition allows the transcription of genes
represented by lac by the RNA polymerase.

Two more genes encode for the production of two particular proteins: cAMP
and CAP . These genes are called, respectively, cya and crp, and they are indi-
rectly involved in the regulation of the lac operon expression. When glucose is
not present, cAMP and CAP proteins can produce the complex cAMP -CAP
which can increase significantly the expression of lac genes. Also in presence of
the cAMP -CAP complex, the expression of the lac genes is inhibited by I-OP .

Note that the reactions {a1, a2, a5, a7} are needed to ensure the permanency
of the genes in the system.

In [?] the authors investigate the effects on the production of enzymes Z, Y
and A when the environment provides both glucose and lactose, only glucose,
only lactose, or none of them. The genomic elements lac, lacI, cya and crp
together with the proteins I, cAMP and CAP , that are normally present in
the bacterium, are supplied to the system by the starting context C0. Then, an
example context sequence γ = C0, . . . , C40 is considered, in which every element
Ci with 1 < i <= 40 is a subset of {glucose, lactose}. Such a context sequence
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represents an environment in which the supply of glucose and lactose varies
over time. By observing the result states D1, . . . , D40 obtained by executing the
reaction system, the authors conclude that the enzymes Z, Y and A are produced
in a step i only if lactose was the only element provided to the system two steps
before. Formally, this can be expressed as follows:

Z, Y,A ∈ Di iff Ci−2 = {lactose}, with i > 3.

This conclusion has been reached empirically, by observing a single execution
of the system with respect to an example context sequence. The conditions for
the production of Z, Y and A can instead be studied by applying the notions of
predictor we defined in this paper.

For sake of simplicity we consider the formula based predictors for the en-
zymes Z, Y and A in 4 steps, noting that the effects of all reactions can be
observed after four steps. We obtain the following formula

fbp(Z, 3) =fbp(Y, 3) = fbp(A, 3) =

((lac3 ∨ lac2 ∨ lac1 ∨ lac0) ∧ (cAMPCAP3 ∨ ((cAMP2 ∨ cya1 ∨ cya0)

∧ (CAP2 ∨ crp1 ∨ crp0) ∧ ¬glucose2))

∧ ((¬IOP3 ∧ ¬I2 ∧ ¬lacI1 ∧ ¬lacI0) ∨ lactose2)).

The obtained formula is minimal w.r.t. vf and therefore does not require
the application of simplification techniques. Since we are interested in studying
context sequences that supply only glucose and lactose it is useful to specialize
the previous formula based predictor for context sequences described by the
following temporal formula:

ψ = finitial ∧G∞¬finternal ∧XG∞¬f ′initial
where finitial = lac∧ lacI ∧ cya∧ crp∧ I ∧ cAMP ∧CAP , f ′initial = lac∨ lacI ∨
cya∨crp∨I ∨cAMP ∨CAP and finternal = I ∨IOP ∨cAMPCAP ∨Z∨Y ∨A.

Let us focus on the production ofA, noting that, since fbp(Z, 3) = fbp(Y, 3) =
fbp(A, 3), the same reasoning apply to enzymes Z and Y . By applying the min-
imization procedure described in Sect. ?? to fbp(A, 3) and ψ, we obtain the
following reduced predictor of A in 4 steps specialized w.r.t. ψ

f ′ = ¬glucose2 ∧ lactose2.

Formula f ′ clearly shows that the enzymes A is produced at step 4 only if lactose
was actually the only element provided to the system two steps before.

The specialized predictor f ′ we obtained agrees with the conclusion reached
in [?] by reasoning on an example of context sequence.

Note that the same conclusion was reached in [?] by simplifying predictor
fbp(A, 3) on the basis of informal reasoning on the properties of context se-
quences. In this paper, we have been able to obtain f ′ in a fully formalized and
automatic way, on the basis of fbp(A, 3) and ψ.

8 Conclusions

We have presented a revised notion of formula based predictor [?] in which the
predictor is specialized with respect to a temporal logic formula ψ expressing the
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properties of the context sequences. More specifically, the formula based predic-
tor models the necessary conditions for an object s to be produced in n steps,
assuming that the reaction system is executed with respect to a context sequence
satisfying ψ. The advantage of the specialized version of predictor is that the
resulting propositional formula can be substantially reduced with respect to the
corresponding formula based predictor. As a consequence, this approach is very
convenient whenever we are interested to observe whether an element s will be
produced after n steps or not for a certain class of context sequences rather than
for any possible context sequences.

As future work we plan to consider the application of the tabling and gener-
alization procedures described in [?] to specialized predictors.

12


