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Abstract. We study enumeration problems for the acyclic orientations
of an undirected graph with n nodes and m edges, where each edge must
be assigned a direction so that the resulting directed graph is acyclic.
When the acyclic orientations have single or multiple sources specified
as input along with the graph, our algorithms are the first ones to provide
guaranteed bounds, giving new bounds with a delay of O(m ·n) time per
solution and O(m + n) working space. When no sources are specified,
our algorithms improve over previous work by reducing the delay from
O(m · n) to O(m) time, and are the first ones with linear delay.

1 Introduction

An orientation of an undirected graph G(V,E) is the directed graph
−→
G(V,

−→
E )

where
−→
E is an orientation of E, namely, an assignment of direction to each

edge in E. The orientation
−→
G is acyclic when it does not contain cycles, and

a node s is a source in
−→
G if it has indegree zero, that is, (x, s) 6∈

−→
E for any

x ∈ V . For instance, the transitive tournament is an acyclic orientation of a
clique corresponding to a total ordering of its vertices, with one source.

Acyclic orientations of graphs are related to several basic problems in graph
theory. Alon and Tarsi [1] look for special orientations to give bounds on the
size of the maximum independent set or the chromatic number. Gallai, Roy,
and Vitaver [5] independently discovered a well-known result stating that every
orientation of a graph with chromatic number k contains a simple directed path
with k vertices. There are further problems that can be addressed by looking
at acyclic orientations. For instance, Benson et al. [4] show that there exists a
bijection between the set of the so-called superstable configurations of a graph
and the set of its acyclic orientations with a unique source.

Counting how many acyclic orientations can be found in a graph is a funda-
mental problem in combinatorics, dating back to the 70s or earlier [14]. Linial [9]
proves that this problem is #P-complete. Stanley [13] shows how the number of
acyclic orientations can be computed by using the chromatic polynomial (a spe-
cial case of Tutte’s polynomial). Another approach that concerns the number of
acyclic orientations is the acyclic orientation game. Alon et al. [2] inquire about
the amount of oriented edges needed to define a unique orientation of G, and
find this number to be almost surely Θ(|V | log |V |). Pikhurko [10] shows that
the number of these edges in the worst case is no greater than ( 14 + o(1))|V |2.



Problems addressed. Our paper investigates efficient algorithms to enumer-
ate patterns for this interesting problem in graph theory, given an undirected
connected graph G(V,E) with n nodes and m edges.

single source acyclic orientations (ssao): Given a node s ∈ V , enumerate
all the acyclic orientations

−→
G of G, such that s is the only source.

multiple source acyclic orientations (weak msao): Given a set of nodes
S ⊆ V , enumerate all the acyclic orientations

−→
G of G such that if x is a

source then x ∈ S.3
multiple source acyclic orientations (strong msao): Given a set of nodes

S ⊆ V , enumerate all the acyclic orientations
−→
G of G such that all the nodes

in S are the only sources.4

acyclic orientations (ao): Enumerate all the acyclic orientations
−→
G of G.

These problems are intimately related each other, and reduce to ssao, so
that there is a one-to-one correspondence between their solutions.

We analyze the cost of an enumeration algorithm for ssao, weak msao,
strong msao, and ao in terms of its delay cost, which is a well-known measure
of performance for enumeration algorithms corresponding to the worst-case time
between any two consecutively enumerated solutions (e.g. [7]). We are interested
in algorithms with guaranteed delay and linear space.

Previous work. We are not aware of any provably good bounds for problems
ssao, weak msao, and strong msao. Johnson’s backtracking algorithm [8] for
ssao has been presented over 30 years ago to solve problems on network relia-
bility. However its complexity is not given and is hard to estimate, as it is based
on a backtracking approach with dead ends.

In his paper presenting an algorithm for ao, Squire [12] writes that he has
been unable to efficiently implement Johnson’s approach because of its dead
ends. Squire’s algorithm for ao uses Gray codes and has an amortized cost of
O(n) per solution, but its delay can be O(n3) time for a solution. The algorithm
by Barbosa and Szwarcfiterb [3] solves ao with an amortized time complexity
of O(n +m) per solution, delay O(n ·m), and space O(n +m). The algorithm
builds the oriented graph incrementally by iteratively adding the nodes to an
empty directed graph. Moreover, it is worth observing that by replacing each
edge with a double arc and applying any algorithm for maximal feedback arc
set enumeration, one can obtain all the acyclic orientations of G. State of the
art approaches for the latter problem guarantee a delay Ω(n3) as shown by
Schwikowski and Speckenmeyer [11].

All the techniques above for ao seem not to extend smoothly to ssao, weak
msao, and strong msao. In a previous work [6], we studied the related problem
of enumerating the cyclic orientations of an undirected graph, but the proposed
techniques cannot be reused for the problems in this paper.

3 Not all nodes in S must be sources, but there cannot be sources in V \ S.
4 These orientations are possible if and only if S is an independent set.
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Our results. Our contribution is the design of the first enumeration algorithms
with guaranteed bounds for ssao, weak msao, and strong msao: the complexity
is O(m · n) delay per solution using O(n+m) space. For ao, we also show how
to obtain O(m) delay, improving the delay of [3, 12, 11].

We observe that the problems studied in this paper reduce to ssao. Let
us begin with the weak msao. To solve it, we create a dummy node s, and
connect it to every node in S. More formally, we build G′(V ∪ {s}, E ∪ Es),
where Es = {{s, x} : x ∈ S}. Any weak msao of G can be transformed into
a ssao of G′ if we add s and all edges in Es (oriented away from s): s is a
source and all nodes in S are no longer sources since they can be reached from s,
hence s is the single source. Note that the orientation is still acyclic as s is a
source and cannot be part of a cycle. The opposite is true as well: any ssao
of G′ can be transformed into a weak msao of G by removing s and the edges
in Es. This process only removes edges incident to nodes in S, hence only nodes
in S possibly become sources. Clearly the orientation is still acyclic as removing
nodes and edges cannot create cycles.

Continuing the discussion, consider the strong msao. To solve it, we simply
collapse all nodes of S into one node s. More formally, we generate G′′(V ∪{s}\
S,E ∪ Es), where Es = {{s, x} : y ∈ S ∧ {y, x} ∈ E}. As s and all nodes in S
must be sources, all of their incident edges must be oriented away from them in
all acyclic orientations, while the rest of the graph is exactly the same for both
cases. Clearly, any ssao for G′′ induces a strong msao of G that can be obtained
by removing s and Es and re-integrating S and the edges between S and V \ S
(oriented away from S). Similarly, removing S (and the edges between S and
V \S) and integrating s and Es (with edges oriented away from s), creates a ssao
for G′′: there is an edge from s to any node in V \S that was previously connected
with S, hence these nodes cannot be sources; all other nodes in V \ S were not
connected to S and hence their in-degrees and out-degrees are unchanged.

As for ao, it can also be obtained from weak msao by setting V = S. A direct
reduction to ssao is described in [12]. We therefore focus on ssao in the first
part of the paper, and then show an optimization that holds for the case of ao.
We use novel ideas based on the observation that, at any given partial solution,
we have a guarantee that extensions of the partial solution will enumerate new
acyclic orientations. To this aim, we solve several non-trivial issues.

– We use a recursive approach where each call surely leads to a solution. For
ssao this is achieved also by using a suitable ordering of the nodes.

– We quickly identify the next recursion calls within the claimed time delay.
– We do a careful analysis of the recursion tree, and show how to check effi-

ciently for node reachability during recursion.
– In the case of ao we exploit the fact that the recursion tree does not contain

unary nodes.

The paper is organized as follows. We give the necessary definitions and ter-
minology in Section 2. We then discuss how to solve ssao in Section 3 and further
reduce the delay for ao in Section 4. We draw some conclusions in Section 5.
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2 Preliminaries

Given an undirected graph G(V,E) with n nodes and m edges, an orientation
of G is the directed graph

−→
G(V,

−→
E ) where

−→
E is an orientation of E. We say

that
−→
E is an orientation of E when for any pair {u, v} ∈ E either (u, v) ∈

−→
E or

(v, u) ∈
−→
E . In other words, given an undirected graph G(V,E), an orientation of

G is simply an assignment of direction to each edge. We say that the orientation−→
G is acyclic when

−→
G does not contain cycles. For the sake of clarity, in the

following we will call edges the unordered pairs {x, y} (undirected graph), while
we will call arcs the two possible orientations (x, y) and (y, x) (directed graphs).
We assume wlog that G is connected and does not contain self-loops.

Given an undirected graph G(V,E), let v1, . . . , vn ∈ V be an ordering of the
nodes of G. We define V≤i as the set {v1, . . . , vi}, N(vi) = {x : {vi, x} ∈ E}
as the set of neighbors of the node vi, and N≤i(v) as the set N(v) ∩ V≤i. For
brevity, N<(vj) means N≤j(vj). Clearly we have

∑n
j=1 |N<(vj)| = m.

Starting from an empty directed graph, for increasing values of i = 1, 2, . . . , n,
our algorithms add vi to the current graph and recursively exploit all the possible
ways of directing the edges {vi, x} with x ∈ N<(vi), called direction assignments:
a direction assignment

−→
Z for vi is an orientation of the set of edges {{vi, x} :

x ∈ N<(vi)}. We refer to the following assignments as

Xi = {(x, vi) : x ∈ N<(vi)}

Yi = {(vi, x) : x ∈ N<(vi)}

We denote by
−→
G0 the starting empty directed graph, and by

−→
G i the graph whose

last added node is vi, with 1 ≤ i ≤ n.

3 Single Source Acyclic Orientations (ssao)

Given a graph G and a node s, this section describes how to enumerate its acyclic
orientations

−→
G such that s is the unique source in

−→
G . Starting from an empty

graph
−→
G0, our algorithm adds vi to

−→
G i−1 for i = 1, 2, . . . , n. For the edges in

N<(vi), it exploits all the suitable direction assignments
−→
Z : each assignment

gives a certain
−→
G i, on which it recurses. Every time it adds the last vertex vn in

a recursive call, it outputs the corresponding
−→
Gn as a new solution

−→
G .

The above simple scheme can lead to dead ends in its recursive calls, where
partial orientations

−→
G i cannot be extended to reach

−→
Gn, i.e. an acyclic

−→
G whose

only source is s. We prevent this situation by examining the nodes of G in a
suitable order that allows us to exploit the following notions.

Definition 1 (full node). Given an ordering v1, . . . , vn of the nodes in G, a
node vj (1 ≤ j ≤ i) is full in

−→
G i if N≤i(vj) = N(vj).

Definition 2 (valid direction assignment). Given
−→
G i−1(V≤i−1,

−→
E ), the di-

rection assignment
−→
Z is valid if
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–
−→
G i(V≤i,

−→
E ∪

−→
Z ) is acyclic, and

– any vj 6= s that is full in
−→
G i(V≤i,

−→
E ∪

−→
Z ) is not a source, for 1 ≤ j ≤ i.

The rationale is the following. When dealing with
−→
G i, full nodes are the ones

whose edges in G have been all already assigned in
−→
G i. This means that if a full

node is a source in
−→
G i it will be a source also in any extension of

−→
G i, i.e. in

the final orientation
−→
G . A valid direction assignment imposes that we are not

creating cycles and each full node (except s) is not a source.
We will deal with graphs

−→
G i that are the outcome of a sequence of valid

direction assignments: we will refer to them as valid acyclic orientations.
In order to efficiently find valid direction assignments, our algorithm uses an

ordering of the nodes v1, . . . , vn that satisfies the conditions below.

Definition 3. An ordering of the nodes v1, . . . , vn is good if

– vn = s, and
– N<(vi) ⊂ N(vi), for 1 ≤ i < n.

The first condition in Definition 3 says that s should be the last node as it is
the only source. The second condition says that there is at least one unassigned
incident edge for each vi, when adding the latter to

−→
G i−1. Dead ends can be

avoided in this way: when adding vi to
−→
G i−1, we have at least one solution

extending
−→
G i−1 in which vi is not a source. Indeed the following property holds.

Property 1. For any valid acyclic orientation
−→
G i, there is always an acyclic ori-

entation
−→
G for G that has unique source s and includes

−→
G i.

Proof. For any j > i, consider the valid direction assignment Yj , i.e. {(vj , x) :
x ∈ N<(vj)} obtaining

−→
G . These direction assignments cannot create cycles in−→

G j and the only final source is s. ut

A good ordering for G and s can be found in linear time by performing a
DFS from s and considering its nodes in postorder. Observe that this is a good
order according to our definition: node s is the last node and, for each node, its
parent in the DFS tree appears after it in the order.

Our recursive algorithm is shown in Algorithm 1, where the good ordering
of the nodes is employed. The initial call is single-source-acyclic(G,

−→
G0, 1).

The algorithm recursively exploits all the possible ways of expanding the cur-
rent partial solution

−→
G i−1 by iterating over all the valid direction assignments,

starting from Yi, which is surely valid. The latter assignments are generated
by a recursive computation. The general picture of our solution can be seen as
follows: we have the primary recursion tree to generate all the wanted cyclic
orientations (Algorithm 1), where each node has associated a secondary recur-
sion tree to generate locally all the valid direction assignments (Algorithm 2).
A naive implementation would simply consider each of the 2|N<(vi)| direction
assignments checking whether it is valid or not (e.g. using a DFS in O(m) time).
Instead, the following section introduces an efficient method that allows us to
iterate through valid direction assignments only.
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Algorithm 1: single-source-acyclic

Input: Graph G(V,E), a valid acyclic orientation
−→
G i−1(V≤i−1,

−→
E ), integer i

Output: Acyclic orientations of G containing
−→
G i−1(V≤i,

−→
E ) with source s

if i > n then output
−→
G ; return ;

Execute Algorithm 2;
for any valid direction assignment

−→
Z for vi starting from

−→
Z = Yi do

single-source-acyclic(G,
−→
G i(V≤i,

−→
E ∪

−→
Z ), i+ 1);

Algorithm 2: Returning valid direction assignments

Input: Graph G(V,E), a valid acyclic orientation
−→
G i−1(V≤i−1,

−→
E ), node vi

Output: Valid direction assignments
−→
Z

−→
Z ← Yi;
Fi ← set of full nodes in

−→
G i that are sources and not full in

−→
G i−1;

Let x1, . . . , xk be the nodes in N<(vi) \ Fi;
Execute Generate (G,

−→
G, vi,

−→
Z , 1, ∅, ∅).

Procedure Generate (G(V,E),
−→
G i−1(V≤i−1,

−→
E ), vi,

−→
W, j,R,B)

if j > k then add
−→
W to the output list; return ;

Update B as the set of nodes leading to vi in
−→
G i(V≤i,

−→
E ∪

−→
W );

if xj 6∈ B then Generate (G,
−→
G i−1, vi,

−→
W ∪ {(vi, xj)}, j + 1, R,B);

Update R as the set of nodes reachable from vi in
−→
G i(V≤i,

−→
E ∪

−→
W );

if xj 6∈ R then Generate (G,
−→
G i−1, vi,

−→
W ∪ {(xj , vi)}, j + 1, R,B);

3.1 Iterating over valid direction assignments

Given
−→
G i−1 and node vi, we show how to iterate over valid direction assign-

ments: our approach is shown in Algorithm 2. By definition, each valid direction
assignment

−→
W of the edges in {{vi, x} : x ∈ N<(vi)} should guarantee that we

are not creating a cycle and no new full node becomes a source.
Let Fi be the set of nodes which are: (a) full in

−→
G i, (b) sources in

−→
G i−1,

(c) not full in
−→
G i−1. Note that Fi ⊆ N<(vi). All the valid direction assignments

should guarantee that nodes in Fi are not sources in
−→
G i: this can be easily done

by adding the arcs {(vi, x) : x ∈ Fi} to
−→
W . Observe that this is mandatory for

the orientations of the corresponding edges because otherwise a node in Fi would
become a source in the final orientation

−→
G . Also,

−→
G i(V≤i,

−→
E ∪

−→
W ) is acyclic.

After that, we have to decide the orientation of the remaining edges. This
part relies on procedure Generate in Algorithm 2. In particular, we have to
assign a direction to the edges {vi, u} for each node u in N<(vi) \ Fi and check
if they do not create cycles. We take these nodes in arbitrary order as x1, . . . , xk
and, for increasing values of j = 1, 2, . . . , k, we do the following: if the arc e ∈
{(vi, xj), (xj , vi)} does not create a cycle in

−→
G i(V≤i,

−→
E ∪
−→
W ), proceed recursively

with
−→
W =

−→
W ∪ {e}.

For a given vi, the reachability tests above for xj (j = 1, 2, . . . , k) can be
performed with O(k) (forward and backward) DFS traversals, requiring overall
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O(k ·m) time. Since k is bounded by the degree of vi and can be O(n) in the
worst case, we propose a solution that reduces the cost from O(k ·m) to O(m)
time. It truncates the DFSes using sets B and R to avoid to visit the nodes in
these sets. Since the partially built graph is acyclic, B and R are disjoint, and
a node can belong to either one of them or none of them. Below we provide an
analysis based on coloring the nodes of B and R showing that the overall time
required by these tests for each valid direction assignment is O(m).

Lemma 1. Algorithm 2 returns valid direction assignments with delay O(m).

Proof. The arcs directed to nodes in Fi are unchanged for all the valid direction
assignments for vi and can be computed in O(m) time at the beginning.

When exploring the possible orientations of edges {vi, xj}, for j = 1, 2, . . . , k,
each time we have to decide whether (vi, xj) or (xj , vi) creates a cycle or not
when added to

−→
G i(V≤i,

−→
E ∪

−→
W ). To this aim we color incrementally the nodes:

all the nodes R reachable from vi are red ; all the nodes B that can lead to vi are
black ; the remaining nodes are uncolored. Initially, all the nodes are uncolored,
are R and B are empty. Since

−→
G i(V≤i,

−→
E ∪
−→
W ) is acyclic any node has just one

color or is uncolored.
We now show that the sum of the costs to update the colors to produce a

solution (valid direction assignment) is O(m). Since each leaf in the secondary
recursion tree induced by Generate corresponds to a distinct solution, we should
bound the sum of the costs along the k + 1 nodes from the root to that leaf.
Specifically, the delay is upper bounded by the sum of the costs along two paths:
the leaf-to-root path of the current solution and the root-to-next-leaf path for
the next solution (actually only the latter for the first solution). Observe that
the former cost is always O(|N<(vi)|).

We prove that the sum of the costs from the root to a leaf in the secondary
recursion tree induced by Generate is bounded by O(m). When j = 1, the red
colors are assigned with a forward traversal and the black colors are assigned with
a backward traversal in the graph

−→
G i(V≤i,

−→
E ∪

−→
W ). When j > 1, while adding

the arc (vi, xj) to
−→
W we have only to make the traversed uncolored nodes red:

since the forward traversal is rooted at vi, we continue the traversal avoiding
to visit red nodes. (No black node can be reached, otherwise xj would be black
also and thus

−→
G i cyclic). On the other hand, when adding the arc (xj , vi) to−→

W we have only to make the traversed uncolored nodes black: once again, this
corresponds to continue the backward traversal rooted in vi avoiding to visit
black nodes (no red node can be reached). Since this process traverses each arc
at most once for any 1 ≤ j ≤ k, the sum of the costs of a root to leaf path in
the secondary recursion tree induced by the Generate procedure is O(m). ut

Remark 1. After the last valid direction assignment has been returned, Algo-
rithm 2 recognizes that there are no more valid direction assignments, using
time O(m).

Lemma 2. Referring to Algorithm 1, the following holds.

1. All the acyclic orientations of G whose unique source is s are output.
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2. Only the acyclic orientations of G whose unique source is s are output.
3. There are no duplicates.

Proof. We prove the three statements separately.

1. Given a good order of the nodes, we show that any single source acyclic
orientation

−→
G can be expressed as a sequence of direction assignments

−→
Z i

for vi, for increasing values of i. Consider the following process: for decreasing
values of j remove vj from

−→
G , and set

−→
Z j equal to the current outgoing arcs

from u in
−→
G . The sequence of sets

−→
Z 1, . . . ,

−→
Z n will lead the algorithm to the

discovery of
−→
G . Note that each direction assignment

−→
Z j is valid otherwise

we have a cycle or a source different from s in
−→
G .

2. Each solution is acyclic, since each time we add a node vi and a valid direc-
tion assignment we do not introduce a cycle by definition of valid direction
assignment. We have to show that s is the unique source; any vj full in

−→
G i,

with j ≤ i < n, is not a source in
−→
G i: hence it is not a source in

−→
Gn =

−→
G .

Indeed, for the good ordering definition, each node vj not full in
−→
G i, with

j ≤ i, has a neighbor in V \ V≤i: if it is a source in
−→
G i, when considering its

last neighbor vz in the good order, it will not be a source anymore in
−→
Gz.

3. Given any two solutions, looking at the primary recursion tree induced by
Algorithm 1, they differ at least for the valid direction assignments branching
in their least common ancestor.

ut

Lemma 3. Algorithm 1 has delay O(n ·m).

Proof. We exploit the properties of the primary recursion tree induced by Algo-
rithm 1. First of all, notice that each internal node has at least one child because
of Property 1. This means that all the leaves correspond to a solution. Moreover,
observe that all the leaves are at the same depth n, which is the height of the
recursion tree. The first solution is clearly returned in time O(n ·m), which is
the height times the cost to get the first valid direction assignment for vi. This is
bounded by O(m) time by applying Lemma 1. For any two consecutive solutions,
the delay is bounded by the sum of the costs along a leaf-to-root path and the
root-to-next-leaf path. The former is bounded by O(n ·m): indeed the height of
the tree is O(n) and each time we return we spend O(m) to recognize that no
more valid direction assignments are possible, as highlighted by Remark 1. The
latter is still bounded by O(n ·m), applying n times Lemma 1. ut

Observing that each solution of ssao can be transformed into a solution
of weak msao and strong msao (see Section 1) and that this transformation
requires O(m) time, we can conclude the following result.

Theorem 1. Problems ssao, weak msao, and strong msao can be solved with
delay O(m · n) and space O(n+m).
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4 Acyclic orientations (ao)

This section deals with the problem of enumerating all the acyclic orientations
of an undirected graph G. The general scheme remains the same as discussed
in Section 3. Differently from before, we have no restriction about the possi-
ble sources when adding vi. Hence we redefine the concept of valid direction
assignment as follows.

Definition 4 (valid direction assignment). Given
−→
G i−1(V≤i−1,

−→
E ), a direc-

tion assignment
−→
Z is valid if

−→
G i(V≤i,

−→
E ∪

−→
Z ) is acyclic.

Another difference from the previous section is that we do not need the good
order (Definition 3). Namely for any order of the nodes we can prove that the
following property holds.

Property 2. For any vi there are always at least two valid direction assignments,
i.e. Xi = {(x, vi) : x ∈ N<(vi)} and Yi = {(vi, x) : x ∈ N<(vi)}.

Proof. While adding vi to
−→
G i−1, adding the arcs of Xi to

−→
G i−1 or adding the

arcs of Yi does not create a cycle. Indeed, inductively the following facts hold.−→
G0 does not contains a cycle. Assuming that

−→
G i−1 does not contain a cycle,

any cycle should involve vi. Since in the two orientations above vi is source or
target, adopting one of these direction assignments cannot make

−→
G i cyclic. ut

The actual scheme is summarized in Algorithm 3, whose starting call is
acyclic(G,

−→
G0, 1). At step i, given the acyclic orientation

−→
G i−1(V≤i−1,

−→
E ), each

recursive call is of the kind acyclic(G,
−→
G i, i+ 1) where

−→
G i(V≤i,

−→
E ∪
−→
Z ) is ob-

tained by adding a valid direction assignment
−→
Z . By Property 2,

−→
Z = Xi and−→

Z = Yi are always taken. The corresponding two recursive calls are done respec-
tively at the beginning and at the end of the procedure. All the other possible
valid direction assignments (if any) are explored in the other calls of the for
cycle. When i = n + 1, all the nodes have been added and all the edges have
been assigned a direction. In this case

−→
Gn is an acyclic orientation to be output.

Lemma 4. Referring to Algorithm 3, the following holds.

1. All the acyclic orientations of G are output.
2. Just the acyclic orientations of G are output.
3. There are no duplicates.

Proof. Similar to the proof of Lemma 2.

We introduce a method that, at running time, allows us to iterate just on valid
direction assignments: in particular, this method gets the first valid direction
assignment Xi in O(|N<(vi)|) time and the remaining ones with delay O(m), one
after the other. The point is that we spend O(m) time and get a new solution.
Here it is crucial that Yi is the last valid direction assignment for this purpose
as it indicates when stopping the search for valid direction assignments. The
motivation for this choice is given by the following lemma.
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Algorithm 3: acyclic

Input: Graph G(V,E), valid acyclic orientation
−→
G i−1(V≤i−1,

−→
E ), integer i

Output: Acyclic orientations of G containing
−→
G i−1(V≤i−1,

−→
E )

if i > n then output
−→
Gn; return ;

Execute Algorithm 4;
for any valid direction assignment

−→
Z for vi starting from

−→
Z = Xi to

−→
Z = Yi do

acyclic(G,
−→
G i(V≤i,

−→
E ∪

−→
Z ), i+ 1);

Algorithm 4: Returning valid direction assignments

Input: Graph G(V,E), valid acyclic orientation
−→
G i−1(V≤i−1,

−→
E ), node vi

Output: Valid direction assignments
−→
Z

Let x1, . . . , xk be the nodes of N<(vi);
Execute Generate (G,

−→
G, vi, ∅, 1, ∅, ∅).

Procedure Generate (G(V,E),
−→
G i−1(V≤i−1,

−→
E ), vi,

−→
W, j,R,B)

if j > k then add
−→
W to the output list; return ;

if
−→
W ∩ Yi 6= ∅ then
update R as the nodes reachable from vi in

−→
G i(V≤i,

−→
E ∪

−→
W )

if xj 6∈ R then Generate (G,
−→
G i−1, vi,

−→
W ∪ {(xj , vi)}, j + 1, R,B);

if
−→
W ∩Xi 6= ∅ then
update B as the nodes leading to vi in

−→
G i(V≤i,

−→
E ∪

−→
W )

if xj 6∈ B then Generate (G,
−→
G i−1, vi,

−→
W ∪ {(vi, xj)}, j + 1, R,B);

Lemma 5. When iterating over valid direction assignments
−→
Z , suppose that

the first assignment Xi is returned in O(|N<(vi)|) time and the delay between
any two consecutive valid direction assignments is O(m). Then Algorithm 3 has
delay O(m).

Proof. In the primary recursion tree, the internal nodes have at least two chil-
dren, the leaves are all the solutions, and their depth is n. The solution in the
first leaf is obtained by using always Xi sets, each one corresponding to a node
vi, and the cost is

∑n
i=1O(|N<(vi)|) = O(m), using the hypothesis of the lemma.

The delay between two consecutive solutions is upper bounded by the sum
of the costs of the recursive calls to go from a leaf to the next leaf in preorder.
Now let S and T be the solutions in two consecutive leaves. The paths from the
root to S and to T share the prefix until a recursive call Rj , corresponding to
the recursion while adding vj to

−→
G j−1, for some 1 ≤ j ≤ n − 1. Let S′ and T ′

be Rj ’s children that are respectively the ancestors of S and T . Note that the
path from S′ to S is made of Yi branches while the path from T ′ to T is made
of Xi branches (j + 1 ≤ i ≤ n). The cost from S to S′ is O(n − j) as we do
not need to check for further valid direction assignments after each Yi. The cost
from S′ to T ′ is O(m) by hypothesis as they are two consecutive valid direction

10



assignments for vj . The cost from T ′ to T is O(
∑n

i=j+1 |N<(vi)|) = O(m) by
hypothesis on the costs to get each Xi. ut

In the next section we will provide a way of iterating over valid direction
assignments fitting the hypothesis of Lemma 5.

4.1 Iterating over valid direction assignments

Given the node vi and the current acyclic directed graph
−→
G i−1, this section

describes how to get all the valid direction assignments (i.e. such that adding
one of them and vi to

−→
G i−1, we obtain a

−→
G i which is still acyclic).

Algorithm 4 extends the current partial valid direction assignment
−→
W for vi:

for each edge in {vi, x} such that x ∈ N<(vi), it adds the arc (vi, x) or the arc
(x, vi) to

−→
W whether the partial direction assignment is still valid, i.e. no cycles

are created. It explores all of these extensions.
More formally, given

−→
G i−1(V≤i,

−→
E ) and vi, we consider the nodes x1, . . . , xk

in N<(vi) (where |N<(vi)| = k) one after the other. Initially, let
−→
W be an empty

set. For increasing values of j, with 1 ≤ j ≤ k, we do the following. If the arc
e ∈ {(vi, xj), (xj , vi)} does not create a cycle in

−→
G i−1(V≤i,

−→
E ∪
−→
W ), this arc can

be added to the ongoing solution
−→
W , exploring recursively the case

−→
W =

−→
W∪{e}.

Let R and B be respectively the set of nodes reachable from vi in
−→
G i(V≤i,

−→
E∪−→

W ) and the set of nodes leading to vi in
−→
G i(V≤i,

−→
E ∪
−→
W ). Adding the arc (vi, xj)

to
−→
W creates a cycle if and only if xj 6∈ B. Analogously, adding the arc (xj , vi) to−→

W creates a cycle if and only if xj 6∈ R. The scheme of the iterator is summarized
by Algorithm 4. Notice that the first valid direction assignment produced is
Xi and the last valid direction assignment is Yi, as required by Algorithm 3.
Moreover observe that the update of R and B is respectively not required when−→
W ∩ Yi = ∅ and

−→
W ∩Xi = ∅, since these conditions means respectively that the

outdegree and the indegree of vi in
−→
G i(V≤i,

−→
E ∪

−→
W ) is zero.

We remark that there are no dead ends. Indeed, if xj ∈ R then xj 6∈ B, mean-
ing that even if the first call is skipped the second one is performed. Similarly
xj ∈ B implies xj 6∈ R. This means that each call produces at least another call
unless the direction assignment is completed, that is, each call returns at least
one solution.

Lemma 6. Algorithm 4 returns the first valid direction assignment in time
O(|N<(vi)|), and the remaining ones with delay O(m).

Proof. Recall that the direction assignment Xi is always returned first while Yi
is returned last. For increasing values of i, adding the arcs of Xi (respectively Yi)
does not create cycles: in this case no check is needed. In particularXi is returned
in time O(|N<(vi)|) since the update of R is not needed and never performed in
Algorithm 4 (because

−→
W ∩ Yi = ∅, i.e. the outdegree of vi in

−→
G i(V≤i,

−→
E ∪
−→
W ) is

zero). Checking
−→
W ∩Yi 6= ∅ and

−→
W ∩Xi 6= ∅ can be done in constant time: these

are the out- and in-degree of xj in
−→
G(V≤i,

−→
E ∪

−→
W ) that can be updated while

updating
−→
W . The time is hence dominated by the cost to update R and B. As
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in Lemma 1, this can be done by growing R and B continuing the same forward
and backward traversals from vi: since each arc is traversed at most once, the
overall time to update R and B is O(m).

ut

By combining Lemma 5 and Lemma 6, we obtain the following result.

Theorem 2. Problem ao can be solved with delay O(m) and space O(n+m).

5 Conclusions

In this paper we have shown the first enumeration algorithms with guaranteed
bounds for ssao, weak msao, and strong msao, whose delay is O(m·n) time and
O(m+ n) space. The delay reduces to O(m) in the case of ao, improving prior
work. It would be interesting to reduce the delay of the former three problems
to O(m) as well.
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