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The betatron radiation from laser-plasma accelerated electrons in dielectric capillary waveguides

is investigated. The multimode laser propagation is responsible for a modulated plasma wakefield

structure, which affects the electron transverse dynamics, therefore influencing the betatron radi-

ation spectra. Such a phenomenon can be exploited to tune the energy spectrum of the betatron

radiation by controlling the excitation of the capillary modes. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4975185]

I. INTRODUCTION

Innovative acceleration techniques based on wakefields

induced by ultrashort lasers propagating in underdense plas-

mas are actually suitable for the realization of compact bright

X-ray secondary sources.1–8 The use of a capillary waveguide

filled with plasma9–14 is particularly important as a solution to

increase the laser plasma interaction region by guiding the

laser intensity over many Rayleigh lengths and accelerate

electrons to very high energies.15 The modal structure

imposed by the boundary conditions of the capillary affects

the laser dynamics and consequently the plasma response to

the laser pulse, which is a fundamental characteristic of the

system to be taken into consideration in order to design and

perform acceleration experiments, for example, the external

injection.16 In this scheme, an electron bunch must be injected

on the right phase of the wakefield to undergo an acceleration

as if it was in a conventional LINAC structure. In the present

work, a numerical fluid model17 is exploited to characterize

the plasma response to the laser pulse excitation along the

capillary. It is shown that the multimodal propagation of the

laser reveals itself in the beating among the propagating

modes imposed by the capillary structure. This effect produ-

ces a modulated structure of the wakefield affecting the elec-

tron plasma dynamics and therefore the characteristics of the

emitted betatron radiation. The calculated wakefields are used

to track the trajectories of single electrons of an externally

injected electron bunch. Finally, by starting from the calcu-

lated electron trajectories, the betatron spectrum of the radia-

tion is evaluated. The electron dynamics is studied in different

cases of multimodal laser propagation. The differences in the

emitted betatron spectra are pointed out, revealing the possi-

bility to correlate specific mode-mixture of the laser inside the

capillary to specific frequency tuning of the betatron spectra.

II. BRIEF DESCRIPTION OF THE LASER
PROPAGATION MODEL

We refer to the propagation model of Ref. 17. The prop-

agation of a laser pulse in a dielectric capillary gives rise to a

modal structure, coupling a linearly polarized laser, imping-

ing at the entrance of a capillary waveguide, to the so called

hybrid modes. The general equation governing the propaga-

tion of a linearly polarized laser pulse inside a plasma

medium along the z axis is11

(a ¼ 1

c2

@2

@t2
� @2

@z2
�r2

?

� �
a ¼ �k2

p0

ne

cn0

a; (1)

where the Lorentz factor is11 cðr; z; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ aðr; z; tÞ2=2

q
;

a ¼ eA=mc is the normalized vector potential, e is the elec-

tron charge, A is the modulus of the laser vector potential, m
is electron mass, c is the speed of light in vacuum, kp0 is the

plasma wavenumber corresponding to the background den-

sity n0, and ne is the plasma electron density. The boundary

conditions are dictated by the continuity of the electromag-

netic field components at the capillary walls and are the

same of Ref. 9. Let us denote with an ¼ anðrÞanðz; tÞ the

hybrid mode of order n, which is a solution of the vacuum

homogeneous equation (an ¼ 0. In Table I, the quantities

of interest are listed, where an0 is the initial normalized vec-

tor potential amplitude of the nth mode, r is the radial coor-

dinate in cylindric symmetry, er is the relative dielectric

constant, Rcap is the capillary radius, k0 and x0 are the laser

wave number and pulsation, respectively, s is the laser pulse

duration parameter, J0 is the zero order Bessel function of

the first kind, and un the nth zero of J0.

The coupling efficiency of a flat top profile laser focused

into a vacuum capillary is given by

Cm ¼
4

J2
1 umð Þ

����
ð1

0

J1

�2Rcapx

r0

� �
J0 umxð Þdx

����
2

; (2)

where r0 is the focus radius defined at the second zero

�2¼ 7.0156 of J1. This assumption is required by the fact

that high power lasers have a flat-top radial beam profile on

the focusing element giving a bessel-like structure at focus.

From Fig. 1, the maximum coupling efficiency is obtained
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for Rcap/r0� 0.5, resulting in 83% of the laser energy coupled

to the EH11 mode and in the damping of the secondary lobe

on the wall of the capillary entrance surface. The general solu-

tion of (1) in vacuum is a ¼
P

n cnan, where cn are constant

coefficients determined by the initial conditions. As in Ref.

17, we expand the solution of the inhomogeneous equation on

the basis functions an, letting the expansion coefficients vary-

ing in (z, t) coordinates. From now on, cn � cnðz; tÞ.
Using the homogeneous equation and expressing

a ¼
P

n cnðz; tÞan, Equation (1) becomes

(aþ P̂a ¼
X

n

an(cnðz; tÞ þ P̂ancnðz; tÞ ¼ 0; (3)

where we defined the plasma operator P̂ ¼ k2
p0ne=cn0. After

performing straightforward algebra and under the assumptions

x0s � 1 and Lcapjð1=vg;n � 1=vg;mÞj=s� 1 with Lcap the

length of the capillary and kp0 � Dknm; k
l
n, the following final

equation in the co-moving frame (f, t), where f¼ z � vgt and

vg¼ vg,1 is the group velocity of the fundamental mode is

obtained:

@2

c2@t2
� 2

c

@2

@f@t

� �
cn f; tð Þ þ 1

a2
n0

X
m

Pnm f; tð Þcm f; tð Þ ¼ 0: (4)

The assumptions made above correspond, respectively, to

slowly varying envelope approximation of the laser pulse, to

a negligible longitudinal modal dispersion (the different

modes do not separate along the propagation path) and to the

choice of an electron plasma density such that the beating

frequency is much lower than the plasma frequency. In the

linear regime a< 1, the plasma electron density perturbation

driven by the laser pulse is11

Dne ¼
n0c2

2xp0

ðt

0

dt0 sin xp0 t� t0ð Þ
� 	

r2a2: (5)

The plasma operator can be expressed in a more explicit

form in the following way:

Pnm

k2
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where the product Pnm ¼ hanjP̂jami is defined as17

hanjP̂jami � 2an0am0e�
z�vg;ntð Þ2

c2s2

ð1

0

dxJ0 unxð ÞxP̂J0 umxð Þ

J2
1 umð Þ

: (7)

For our calculations, we focus on the following parameters:

capillary radius Rcap¼ 60 lm, capillary length Lcap¼ 5 cm,

and dielectric relative constant (for the glass type of the

capillary) er¼ 2.25. A background electron plasma density

of n0¼ 1017 cm�3 is considered, and consequently, the

gaussian laser pulse temporal duration s �
ffiffiffi
2
p

=xp is fixed to

be resonant with the plasma density.18 In this paragraph,

we report calculations of the laser-driven plasma density

perturbation based on initial conditions for the coupling

coefficients at the entrance of the capillary corresponding to

Rcap/r0¼ 0.5, 1, 1.5, 2, 2.5, 3, according to Fig. 1. In other

words, different initial matching configurations of the laser

into the capillary are considered. These conditions allow to

couple the laser energy in such a way that an effective initial

normalized vector potential value at the entrance of the capil-

lary of a0� 0.8 is obtained for each matching configuration,

taking into account of the total laser intensity distributed

among the different modes. The initial matching of the laser

pulse to the capillary is then slightly modified also by the

interaction with the plasma, including the scattering with the

laser-produced electron plasma wave and the self-channeling

effects.17 In Figs. 2–7 the modulated amplitude of the wake-

fields generated by the laser pulse propagating through the

totally preionized gas (we consider hydrogen) is reported for

the initial matching configurations Rcap/r0¼ 0.5, 1, 1.5, 2, 2.5,

3. As shown in Ref. 17, the electron plasma wave in the case

of the capillary guided laser propagation can be expressed as

Dne ¼ dneðz; rÞ sinðkp0fÞ, where dne(z, r) is the plasma wave

amplitude modulated along the capillary (z¼ vgt).
Even in the case of perfect matching of the laser pulse

inside the capillary in vacuum, i.e., when only the fundamen-

tal mode is expected propagating in vacuum, if the laser

pulse propagates through an underdense plasma exciting an

electron plasma wave, this in turn can excite higher modes,

determining a complex structure of the wakefields. The con-

trolled excitation of higher modes, performed with a specific
FIG. 1. The coupling efficiency coefficients for a flat top profile laser

focused into a dielectric capillary tube.

TABLE I. The quantities of interest for the hybrid modes of order n.

Normalized vector potential anðr; z; tÞ � an0J0ðunr=RcapÞ exp½�kl
nzþ iðx0t� kznzÞ � ðz� vg;ntÞ2=2c2s2�

Damping coefficient kl
n ¼ u2

nð1þ erÞ=2k2
znR3

capðer � 1Þ1=2

Longitudinal wave number kzn ¼ ðk2
0 � u2

n=R2
capÞ

1=2

Transverse wave number k?n¼ un/Rcap

Group velocity of mode nth vg;n ¼ cð1� ðk?n=k0Þ2Þ1=2
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choice of the background plasma density and of the initial

matching configuration, can allow to set specific amplitudes

for the single excited modes inside the waveguide in order to

create controlled modulations of the plasma wave amplitude.

In the next part of the present paper, we are going to study

the dynamics of electrons which are externally injected in

the laser-generated structured wakefields described in the

present section, then studying the effects on the betatron

radiation spectra.

III. ELECTRON DYNAMICS AND BETATRON
RADIATION

Once the wakefields are determined by the propagation

model described in Sec. II, the dynamics of externally

injected electrons can be studied. The equation of motion for

an electron accelerating and oscillating inside a plasma

wakefield structure is

dc~_r
dt
¼ � e

m
~EW ; (8)

where EW is the wakefield, related to the electron plasma per-

turbation by the Poisson equation e0
~r 	 ~EW ¼ �eDne. Being

the wake field related to the gradient of the normalized laser

intensity ~ra2, which in the capillary is decomposed in nor-

mal modes a2 ¼ ð
P

n anÞ2, the net force acting on the elec-

trons will consist of many terms related to the driving force

offered by pure modes (proportional to a2
n) and that offered

by beating modes (proportional to anam terms with m 6¼ n).

We are going to study in particular, the transverse dynamics

FIG. 2. 2D map of the plasma wave amplitude dne(z, r) (normalized to the

maximum value) modulations along the capillary generated by a guided

laser pulse propagating through a preionized gas for the initial matching

condition Rcap/r0¼ 0.5 according to Fig. 1.

FIG. 3. 2D map of the plasma wave amplitude dne(z, r) (normalized to the

maximum value) modulations along the capillary generated by a guided

laser pulse propagating through a preionized gas for the initial matching

condition Rcap/r0¼ 1 according to Fig. 1.

FIG. 4. 2D map of the plasma wave amplitude dne(z, r) (normalized to the

maximum value) modulations along the capillary generated by a guided

laser pulse propagating through a preionized gas for the initial matching

condition Rcap/r0¼ 1.5 according to Fig. 1.

FIG. 5. 2D map of the plasma wave amplitude dne(z, r) (normalized to the

maximum value) modulations along the capillary generated by a guided

laser pulse propagating through a preionized gas for the initial matching

condition Rcap/r0¼ 2 according to Fig. 1.
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of single electrons under the action of complex structured

wakefields, due to the multimodal propagation of a laser

pulse inside a capillary waveguide. Referring to the same

parameters for laser intensity (at the entrance of the capil-

lary), plasma density and capillary characteristics specified

in Sec. II we want to point out the differences in the betatron

oscillation dynamics for different configurations of the laser

coupling into the capillary. For our simulations, we choose

six working points for the initial matching of the laser into

the capillary, namely, by referring to Fig. 1, we choose a six

initial configurations with Rcap/r0¼ 0.5, 1, 1.5, 2, 2.5, 3. The

betatron oscillations relative to the first two configurations

present strong amplitude modulations, determining a blue-

shift of the radiation spectrum (Fig. 8). Then, the modula-

tions start to decrease because the average laser intensity

actually decreases for matching conditions such that Rcap/

r0> 1. Nevertheless the betatron oscillation amplitudes start

to be effectively modulated again when Rcap/r0> 2 because

the beating frequencies Dk45 and Dk56, which are effective in

the case of initial matching with Rcap/r0> 2, are comparable

(they start to resonate) with the proper betatron frequency of

the system, so inducing a growth19,20 of the electron betatron

oscillation amplitude. The tuning curve of the critical energy

at the plasma background density n0¼ 1017 cm�3 and for a

laser and a capillary as described above is reported in Fig. 9,

obtained with a polynomial fit based on the critical energy

values extracted from the spectra of Fig. 8. The critical

energy is defined as the photon energy of the spectrum which

separates half of the radiated energy below its value while

half above. The radiation spectra in Fig. 8 are calculated

by considering an externally injected gaussian electron

bunch with rms beam size rr¼ 2 lm, relative energy spread

dc/c¼ 0.005, rms time duration rt¼ 50 fs, charge Q¼ 50

pC, injection energy�mc2k0/kp0� 65 MeV, and energy gain

�510 MeV. We do not consider laser-plasma accelerated

electron beams for the external injection, but, for example,

electron beams coming from high-brightness photo-injectors

with typical duration of tens of femtoseconds. By the way,

electron beams with even shorter duration on the scale of

few femtoseconds (like those produced in typical laser-

plasma acceleration experiments) would be only better in

FIG. 6. 2D map of the plasma wave amplitude dne(z, r) (normalized to the

maximum value) modulations along the capillary generated by a guided

laser pulse propagating through a preionized gas for the initial matching

condition Rcap/r0¼ 2.5 according to Fig. 1.

FIG. 7. 2D map of the plasma wave amplitude dne(z, r) (normalized to the

maximum value) modulations along the capillary generated by a guided

laser pulse propagating through a preionized gas for the initial matching

condition Rcap/r0¼ 3 according to Fig. 1.

FIG. 8. Spectrum comparison for different initial matching configurations of

the laser into the waveguide (Rcap/r0¼ 0.5, 1, 1.5, 2, 2.5, 3).

FIG. 9. Tuning curve of the critical energy relative to the betatron radiation

spectra at the plasma background density n0¼ 1017 cm�3 for different initial

matching conditions between the laser spot size and the capillary radius.
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terms of the accumulated energy spread, which is propor-

tional, at the first order, to the product xprs. In fact, the

shorter is the electron bunch duration with respect to the

plasma period the less important is the energy spread accu-

mulated during the acceleration. The trajectories are evalu-

ated for ten thousand test electrons of the bunch

experiencing the wakefields calculated with the propagation

code introduced in Sec. II. In Ref. 21, formulas for the radia-

tion emitted by an accelerated charge in arbitrary motion are

reported in the special case when the divergence of the emit-

ting bunch is much greater than the natural aperture of the

cone of the emitted radiation. This corresponds to the physi-

cal conditions of our interest. The divergence of the electron

bunch whose electrons undergo betatron oscillations is eval-

uated as Kb/c, where the betatron strength parameter

Kb¼ crrkb is related to the rms transverse size of the bunch

rr, to the average electron energy c and to the betatron wave-

number kb. The natural divergence of the radiation is 1/c.

The condition for the applicability of the radiation formula

(9)21 becomes Kb � 1, which is the wiggler condition. The

radiation cone is dominated by the divergence of the electron

beam Kb/c

dI

dE
¼ � 2aEffiffiffi

p
p

�h

ðLcap=c

0

dt

c2 tð Þ
U0 uð Þ

u
þ 1

2

ð1
�1

duU uð Þ
� �

; (9)

where U(u) is the Airy function of first kind where we

defined

u ¼ 2E

�hck2
p0x tð Þc2 tð Þ

 !
: (10)

dI is the differential radiated energy, a the fine structure

constant, x(t) is the transverse coordinate of the electron

undergoing betatron oscillations, and E the energy of the

radiated photon. The calculated critical energies fall in the

soft X-rays region, where interesting applications in funda-

mental physics can be found; therefore, the possibility to

finely tune the emitted radiation could be an important tool

in this kind of experiments. The self-injection of electron

beams from the rear of the wakefields is not considered in

this paper because the regime which is studied is linear

(a< 1), while the self-injection is a strongly non-linear phe-

nomenon which occurs at higher local laser intensities. The

propagation code which is used by the authors takes also into

account the self-focusing phenomena; nevertheless at this

laser intensity level and for this order of electron plasma

density, they are not important, ensuring the preservation of

the linear regime of interaction over the whole capillary,

excluding the possibility of self-injected electron beams and

consequently the emitted betatron radiation. By looking at

Equation (6), which describes the interaction via the electron

plasma wave among the various laser modes propagating

through the capillary, we can see that the interaction does

not depend directly on the background electron plasma den-

sity n0, while it depends on the value of a0 and on the degree

of resonance of excitation of the plasma wave, controlled by

the parameter xps. Therefore, when considering different

values of n0, while keeping the same value of a0¼ 0.8 and

the optimal value (for a gaussian laser pulse) of the product

xps �
ffiffiffi
2
p

, the changes in the plasma structure are only

local, in the sense that the plasma oscillations change fre-

quency, higher for higher densities, but the structure of the

beatings among the modes is conserved. The changes in the

betatron radiation are described by Equation (11). The criti-

cal energy depends on the background electron plasma den-

sity both directly and through the term c2. In particular, the

c2 term is dominant and the critical energy decreases with

the increase in n0. By performing simulations considering

new values n0¼ 3, 7� 1017 cm�3, the tuning curves at differ-

ent n0 look like in Fig. 10.

We choose as maximum value n0¼ 7� 1017 cm�3

because it corresponds to a dephasing length Ldeph ¼ x2
0kp=

2x2
p � 5 cm, which is the capillary length. We are not inter-

ested in greater values of n0 because at higher densities the

dephasing length is shorter than the capillary length, which

is not an optimal condition for the final energy gain. The dif-

ference among the critical energy values relative to the

different laser modal structures in the waveguide seems to

be rather important, paving the possibility to finely tune the

X-ray radiation over a wide frequency band.

IV. GENERAL DISCUSSIONS

The scaling of the critical energy with respect to the

electron energy and to the background electron plasma den-

sity is

Ec / T
Rcap

r0

� �
c2n0rr; (11)

where T(Rcap/r0) is proportional to the tuning function of

Fig. 9. From Equation (11), we obtain

dEc

Ec
� 2

dc
c
þ dn0

n0

þ drr

rr
þ

d Rcap=r0

� 
Rcap=r0

�  : (12)

Equation (12) states that if the electron energy spread, the

background electron plasma density and the electron beam

size are shot-to-shot well-controlled quantities, the tuning

effect related to the last term in 12 is effective, and the curve

in Fig. 9 is the real tuning curve of the radiation source. In

realistic experimental conditions for an electron external

injection experimental setup, we can consider that the energy

spread, the background electron plasma density, and the

FIG. 10. The tuning curves of the critical energy related to the betatron radi-

ation spectra at different background electron plasma densities.
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beam size are quantity controlled at the percent level. The

energy spread value we chose for our simulations dc/

c¼ 0.005 is a pretty good value compared to what commonly

is obtained in laser-plasma acceleration experiments.

Nevertheless in the present paper, the external injection of

good quality electron beams is treated. The aim is that to

inject a good-quality electron beam and to accelerate it by

plasma wakefields to higher energies while preserving its ini-

tial quality. To the knowledge of the authors, only conven-

tional accelerators, for example, LINACs, can provide to

date low-energy spread (below the percent level) electron

beams also with stability in charge, pointing and energy fluc-

tuations at the injection into the plasma wave. Therefore

here, laser-plasma accelerated electron beams at the current

stage are not considered for the external injection. The influ-

ence of the energy spread on the betatron radiation spectrum

is that to modify the critical energy following Equation (12).

As far as the changes in the ratio Rcap/r0 are greater than the

quantity 2dc/c, the tuning is possible and effective. Actually,

except for energy spreads of the order of 100% (or even

greater) sometimes obtained in laser-plasma acceleration

experiments, the tuning is practically not importantly limited

by the energy spread of the electron beam. The tuning func-

tion of Fig. 9 shows that modifying the laser-capillary

matching conditions can yield a tuning of the critical energy

at the level of many tens of percent. Therefore at a good

level of approximation Fig. 9 represents the expected result

of betatron radiation tuning in an external injection based on

our choice of parameters for laser, plasma and capillary

waveguide.

V. CONCLUSIONS

The dynamics of electrons externally injected inside an

electron plasma wave generated by a laser driver guided in a

multimodal configuration into a capillary waveguide has

been studied on the base of a laser propagation model, by

which the plasma wakefields are calculated. The laser cou-

pling to the capillary modes is determined by the choice of

the capillary diameter size and material, by the size of the

laser beam at the entrance of the capillary, and by the laser

intensity and plasma density, in fact, the interaction between

the laser pulse and the generated electron plasma wave can

give rise to a further mode coupling mechanism. A specific

balance of electromagnetic modes inside the capillary can be

chosen by setting the initial laser, capillary, and plasma char-

acteristics. To a specific balance of electromagnetic modes

corresponds a specific structure of the wakefield along

the capillary. The wakefield structure actually affects the

electron dynamics, in particular, in the transverse plane

where betatron oscillations occur due to the focusing plasma

wakefields. The correlation between the electron transverse

dynamics and the emitted radiation spectra reveals the

possibility of tuning the radiation spectra by modifying the

mixture of the laser modes co-propagating inside the capil-

lary. By setting a specific mixture of modes inside the wave-

guide, the controlled tuning of the radiation spectra becomes

possible. This effect could be both used as indirect diagnos-

tics of the laser coupling inside the capillary and especially

as tuning mechanism for the betatron oscillations meant as

the underlying physical mechanism to design innovative X–c
ray secondary sources.22
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