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We investigate by thorough molecular dynamics simulations the thermodynamic scaling (TS) of a
polymer melt. Two distinct models, with strong and weak virial-energy correlations, are considered.
Both evidence the joint TS with the same characteristic exponent γts of the fast mobility—the mean
square amplitude of the picosecond rattling motion inside the cage—and the much slower structural
relaxation and chain reorientation. If the cage effect is appreciable, the TS master curves of the
fast mobility are nearly linear, grouping in a bundle of approximately concurrent lines for different
fragilities. An expression of the TS master curve of the structural relaxation with one adjustable
parameter less than the available three-parameter alternatives is derived. The novel expression fits
well with the experimental TS master curves of thirty-four glassformers and, in particular, their slope
at the glass transition, i.e., the isochoric fragility. For the glassformer OTP, the isochoric fragility allows
to satisfactorily predict the TS master curve of the fast mobility with no adjustments. Published by
AIP Publishing. [http://dx.doi.org/10.1063/1.4971297]

I. INTRODUCTION

Understanding the structural arrest of a supercooled liquid
leading to the glass formation is a major scientific challenge
in condensed matter physics.1,2 A remarkable development
in understanding the relaxation and the transport of liquids
and polymer melts was the discovery that the temperature
(T ) and the density (ρ) dependence of, e.g., the structural
relaxation time τα and the viscosity η can be scaled to a
material-dependent master curve,3–9

log τα, log η = FTS(T ρ−γts ). (1)

In Eq. (1) both the form of the master curveF and the exponent
γts are system-specific. The above scaling is usually referred
to as “temperature-density scaling” or “thermodynamic scal-
ing” (TS). TS applies to van der Waals liquids, polymers,
ionic liquids,7–12 liquid crystals,13 and plastic crystals14 but
not to all of the hydrogen-bonded liquids since the equilib-
rium structure of the liquid and its degree of hydrogen bonding
are expected to change when temperature and pressure are
changed.15 Regarding network-bonded inorganic glass form-
ers such as silica glasses, from the experimental and numerical
studies it seems that the relation of Eq. (1) is kept only locally,
i.e., over limited T-P ranges, and the exponent describing the
density scaling varies with temperature and volume in a non-
monotonic way, due to changes in the local environment of the
bonded atoms.16–18 In general, the scaling exponent γts, which
is a measure of the contribution of density relative to that of
temperature, varies in the range from 0.13 to 8.5.7
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TS is attractive for encompassing the changes of both
temperature and density so that it represents a severe test of
theory and models of the structural arrest occurring at the glass
transition (GT). Among the possible justifications of TS, one
hypothesis is that the scaling exponent γts is strictly related to
the intermolecular potential. Indeed, for a liquid having a pair-
wise additive intermolecular potential described by an inverse
power law (IPL) v(r) ∝ r−n, all the reduced thermodynamic
and dynamic properties can be expressed in terms of the vari-
able ρn/3/T .19 The conformance of real materials to TS may
result from their intermolecular potential being approximated
by an IPL, at least in some definite range of intermolecular dis-
tance, and consideration of certain dynamic properties.20 On a
more general ground, Dyre and co-workers proved that liquids
with strong correlation of the fluctuations of the virial pres-
sure (W) and the potential energy (U), the so-called strongly
correlating liquids, exhibit TS and 3γts is interpreted as the
n exponent of an effective IPL potential.21–23 Even if suffi-
cient, strong virial-energy correlations are not necessary for
TS. Indeed, TS is observed in experiments concerning a few
hydrogen-bonded liquids (e.g., glycerol and sorbitol)7 and
molecular-dynamics (MD) simulations of supercooled metal-
lic liquids.24 All these systems are not strongly correlating
liquids since glassformers with competing interactions have
poor virial-energy correlations.25,26 Competing interactions
are also present in molecular systems where distinct bonding
and non-bonding interactions are present. In particular, nearly
missing virial-energy correlations have been reported in poly-
mer models made of linear chains with stiff, but not rigid,
bonds.27,28

The TS master curve is not the same for different dynamic
properties. As to the structural relaxation, an interpretation of
the scaling is to consider the τα(T , ρ) dependence as ther-
mally activated with a V dependent activation energy τα(T , ρ)
∼ exp(EA(ρ)/T ).29 Imposing EA(ρ) ∝ ργts , density scaling is
recovered, though such a picture is in contrast with the fact
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that τα is not an exponential function of T ρ−γts .7 Entropy
has been considered to better understand TS. Casalini et al.
used the entropy model of Avramov30 to derive an expres-
sion of the relaxation time in terms of the pressure and the
temperature which accurately fits the experimental data of sev-
eral glass-forming liquids and polymers with two adjustable
parameters, having taken γts from the experiment and using
τα(Tg) = 102 s.31,32 Another expression, with the same number
of adjustable parameters, based on an entropic model recently
formulated by Mauro et al.33 has been investigated.34

TS has been mostly investigated on the time scale of
the structural relaxation or viscous flow. Is it also observed
on shorter time scales? Here we address the picosecond rat-
tling motion, with mean square amplitude 〈u2〉, of the par-
ticles trapped by the cage of their neighbours. Henceforth
〈u2〉, which is strictly related to the familiar Debye-Waller
factor, will be referred to as “fast mobility.” It is worth
noting that, since in viscous liquids the relaxation times
τα fairly exceed the picosecond time scale, at any given
moment of time, the fraction of particles undergoing vibra-
tional motion φvib is large, φvib ∼ 1 − (ωDτα)−1 ∼ 1, where
ωD ∼ 1013 rad/s is the Debye frequency.35 Rattling, a man-
ifestation of the vibrational dynamics, occurs in a soft cage
so that the fast mobility is in principle affected by both local
aspects, like cage geometry or local rearrangements, as well
as extended collective properties like elasticity.35–41 The tem-
porary trapping and subsequent escape mechanisms lead to
large fluctuations around the averaged dynamical behavior
with strong heterogeneous dynamics1,2 and non-exponential
relaxation.42 The presence of rattling and escape processes
in liquids and relationships between them were first pro-
posed by Maxwell43 and Frenkel,44–46 see a recent review.35

Other early investigations47,48 and recent theoretical49–60 stud-
ies addressed the rattling process in the cage to understand
the structural relaxation—the escape process—gaining sup-
port from numerical36,37,56,60–83 and experimental84–87 works
on glass-forming liquids. In particular, the role of vibra-
tional anharmonicity as a key ingredient of the relaxation has
been noted.52,53,65,88

Renewed interest about the fast mobility was raised by
extensive MD simulations evidencing the universal correlation
between the structural relaxation time τα and 〈u2〉. Insight into
the correlation is offered by the remark that the height of the
barrier to be surmounted for structure rearrangement increases
with the curvature near the minimum of the potential well tem-
porarily trapping the particles, as first noted by Tobolsky et al.47

via a simple viscoelastic model and put on a firmer ground by
Hall and Wolynes who related the barrier height to 1/〈u2〉.49

The correlation was reported in polymeric systems,72–74 binary
atomic mixtures,39,73,75,79 colloidal gels,76 and antiplasticized
polymers56,78 and compared with the experimental data con-
cerning several glassformers in a wide range of fragility—the
steepness m of the temperature-dependence of the logarithm
of the structural relaxation time at GT defined by Angell89

(20 ≤ m ≤ 191)—including polymers, van der Waals and
hydrogen-bondedliquids,metallicglasses,moltensalts,andthe
strongest inorganic glassformers.72,75,77,80,81,87 The correlation
between structural relaxation and fast mobility is summarized
by the universal master curve,72

log τα = FFM (〈u2〉) (2)

= α + β̃ *
,

〈u2
g〉

〈u2〉
+
-
+ γ̃*

,

〈u2
g〉

〈u2〉
+
-

2

, (3)

where 〈u2
g〉 is the fast mobility at GT, β̃ and γ̃ are suitable uni-

versal constants independent of the kinetic fragility,72,75 and
α = 2 − β̃ − γ̃ to comply with the usual definition τα = 100 s
at the glass transition. Therefore, it is noteworthy that a dif-
ferent definition for the time scale related to the GT modifies
the expression of Eq. (3) only by shifting for a constant value.
Eq. (3) has been tested on experimental data72,75,77,80,81,87 as
well as numerical models of polymers,38,39,72–74,82 colloids,76

and atomic liquids.39,73,75 Douglas and co-workers developed
a localization model predicting the alternative master curve
FFM (〈u2〉) ∝ 〈u2〉

−3/2
relating the structural relaxation time

and the fast mobility.56,78,79 Both the latter form and Eq. (3)
account for the convexity of the master curve, evidenced by
the experiments and simulations, and improve the original lin-
ear relation proposed by Hall and Wolynes in their pioneering
work.49

We carry out a detailed study of TS of, jointly, the
fast dynamics—as sensed by the fast mobility—and the
much slower structural relaxation and chain reorientation.
The matter is investigated by MD simulations of a coarse-
grained polymer model and comparison with the available
experimental data. In the MD study, the polymer chain is mod-
elled with either rigid or semi-rigid bonds (SR). The variant
of the polymer model with semi-rigid bonds, differently from
the one with rigid bonds,90 is not a strongly correlating liquid,
as previously noted27 and recently reported28 for a closely
related model, owing to the competition between the bonding
and the non-bonding interactions.25,26 This means that there is
no effective inverse-power law potential replacing the actual
particle-particle interaction potential, thus precluding the usual
TS interpretation.

TS of the fast mobility of the molten salt CKN,91 poly-
mers,92 and binary atomic mixtures75 has been reported by
previous MD studies.

The paper is organized as follows: Sec. II gives details
about the MD simulations and Sec. III presents the results of
the MD simulations and the comparison with the experimental
data. Finally, Sec. IV summarizes the conclusions.

II. METHODS

A coarse-grained model of a melt of linear fully flexible
unentangled polymer chains with M monomers each is used.
The chains are fully flexible, i.e., bond-bending and bond-
torsions potentials are not present. The system has N = 2000
monomers in all cases but M = 3, where N = 2001. Non-
bonded monomers at a distance r interact via the truncated
Mie potential,39

Uq, p(r) =
ε

q − p

[
p

(
σ∗

r

)q

− q

(
σ∗

r

)p]
+ Ucut , (4)

for r < rc = 2.5σ and zero otherwise, where Uq ,p(r) = Up,q(r)
and σ∗ = 21/6σ is the position of the potential minimum with
depth ε . The value of the constant Ucut is chosen to ensure that
Uq ,p(r) is continuous at r = rc. U6,12 is the usual Lennard-Jones
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(LJ) potential. Changing the p and q parameters does not affect
the position r = σ∗ or the depth ε of the potential minimum
but only the steepness of the repulsive and the attractive wings,
see Fig. 2. We varied the number density ρ, the temperature T,
the chain length, and the (p, q) parameters of the non-bonding
potential Uq ,p(r), Eq. (4). In particular, we changed the q
parameter with the prescription q > p = 6, i.e., we mod-
elled the attractive tail by the London dispersion interaction
and varied the steepness of the repulsive part.93 Two different
kinds of bonding are also considered. In the case of semi-
rigid bonds (SB), bonded monomers interact with a potential
which is the sum of the finitely extendible nonlinear elastic
(FENE) potential and the LJ potential.94 The resulting bond
length is b = 0.97σ within few percent. Alternatively, in the
case of rigid bonds (RB), bonded monomers are constrained
to a distance b = 0.97σ by using the RATTLE algorithm.95

All the ∼230 states are simulated and listed in Appendix A2
of Ref. 27. With the purpose of plotting Fig. 9, the melt of
trimers with non-bonding LJ potential, (p, q) = (6,12), is also
studied at the following densities and temperatures [ρ; T1,
T2, . . .]: [1; 1, 1.2, 1.4, 1.6, 1.8, 2, 2.2, 2.4, 2.6, 2.8, 3], [0.95;
3], [0.9; 3], [0.85; 2, 3], [1.05; 1.3, 2, 2.65, 3.3, 3.98, 4.65,
5.3], [1.025; 1.44, 2.02, 2.6, 3.17, 3.75, 4.33, 4.9].

All quantities are in reduced units: length in units of σ,
temperature in units of ε/kB, and time in units ofσ

√
µ/ε where

µ is the monomer mass.96 We set µ = kB = 1. It is interesting
to map the reduced MD units to real physical units. As an
example for polyethylene and polystyrene, it was found that
σ = 5.3 Å, ε/kB = 443 K, τMD = 1.8 ps and σ = 9.7 Å,
ε/kB = 490 K, τMD = 9 ps, respectively.97

NPT and NTV ensembles have been used for equilibra-
tion runs, while NVE ensemble has been used for produc-
tion runs for a given state point. NPT and NTV ensembles
are studied by the extended system method introduced by
Andersen98 and Nosé.99 The numerical integration of the
augmented Hamiltonian is performed through the multiple
time step algorithm, reversible Reference System Propagator
Algorithm (r-RESPA), developed by Tuckerman et al.100 In
particular, the NPT and NTV operators are factorized using
the Trotter theorem101 separating the short range and long
range contributions of the potential, according to the Weeks-
Chandler-Andersen (WCA) decomposition.102 Other details
are given elsewhere.72–74

III. RESULTS AND DISCUSSION
A. General aspects
1. Mobility and relaxation

We define the monomer displacement in a time t as

∆ri(t) = ri(t) − ri(0), (5)

where ri(t) is the vector position of the ith monomer at time t.
The mean square displacement (MSD) 〈r2(t)〉 is expressed as

〈r2(t)〉 =

〈
1
N

N∑
i=1

‖∆ri(t)‖
2
〉

, (6)

where brackets denote the ensemble average. In addition to
MSD, the incoherent self part of the intermediate scattering

function (ISF) is also considered,

Fs(q, t) =

〈
1
N

N∑
j=1

eiq ·∆rj(t)
〉

. (7)

ISF was evaluated at q = qmax, the maximum of the static
structure factor (7.06 ≤ qmax ≤ 7.35).

Fig. 1 shows illustrative examples of the monomer MSD
(top) and ISF (bottom) curves for states at temperature
T = 0.6 and different densities. At very short times (ballis-
tic regime), MSD increases according to 〈r2(t)〉 � (3kBT/m)t2

and ISF starts to decay. The repeated collisions slow the dis-
placement of the tagged monomer, as evinced by the knee of
MSD at t ∼ tm = 0.175 which is very close to the minimum
of the velocity correlation function.38 At later times, when
the temperature is lowered and/or the density is increased,
a quasi-plateau region occurs in both MSD and ISF, and an
inflection point is seen at t∗ ' 1.023 in the log-log MSD plot,
see Fig. 1 (top) and, for more details, Ref. 72. The time t∗

has been interpreted as the fast β-relaxation time scale, as
described by mode coupling theory.103 t∗ is state-independent
in the present model.72 The inflection point signals the end
of the exploration of the cage by the trapped particle and the
subsequent early escapes. We define the fast mobility of the
monomers of the linear chains as the MSD at t∗,72

〈u2〉 = 〈r2(t = t∗)〉. (8)

The fast mobility is the mean square amplitude of the position
fluctuations of the tagged particle in the cage of the neighbours.
The inflection point in the log-log MSD plot disappears if
〈u2〉 > 〈u2

m〉 = 0.125 signalling the absence of significant cage
effect by the neighbours of the tagged particle.72 The structural
relaxation time τα, the average escape time from the cage, is
defined by the relation Fs(qmax, τα) = e−1. For t > τα MSD
increases more steeply and finally ends up in the diffusive

FIG. 1. Monomer MSD, Eq. (6) (top) and corresponding ISF, Eq. (7) (bottom)
from MD simulations of the SB trimers with LJ non-bonding potential at
T = 0.6 and different densities. The triangles and dots mark the positions of
the inflection point in the MSD (t∗) and the relaxation time (τα), respectively.
All the quantities are in reduced MD units.
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FIG. 2. Reduced temperature dependence of the relaxation time from MD
simulations of SB trimers (M = 3) with different forms of the interaction
potential between non-bonded monomers, Eq. (4) (insert). T r is the tem-
perature where τα = 104. The number density is ρ= 1.033. The fragility
increases by decreasing the steepness of the potential around the mini-
mum. The lines are Eq. (17) with parameters as given in Table I and
α = −0.424(1), β = 2.7(1) · 10−2, γ = 3.41(3) · 10−3.72 All the quantities
are in reduced MD units.

regime, whereas ISF decays to zero as a stretched exponential
with stretching parameter β ∼ 0.6.104

Fig. 2 presents the temperature dependence of the struc-
tural relaxation of the SB trimers for a given density. Data are
presented as an Angell plot89 in terms of the reference temper-
ature T r where τα = 104 in MD units, corresponding to about
10–100 ns. The plot illustrates the changes of the fragility
resulting from the different choices of the nonbonding poten-
tial. We remind that fragility is a measure of the steepness
of the temperature-dependence of the logarithm of the struc-
tural relaxation time on approaching GT.89 It is seen that more
gradual potentials, giving origin to broader energy minima,
associate to higher fragility, as already noted.65

2. Virial-energy correlations

In the case of pair potentials, the virial W, i.e., the
configurational contribution to pressure, is given by95

W = −
1
3

∑
i>j

w(|ri − rj |), (9)

where w(r)= rυ′(r), υ′ being the derivative of the pair
potential υ(r). For an IPL potential, υ(r) ∝ r−n, one has
w(r)= − n υ(r) and the virial is proportional to the potential
energy U =

∑
i>j v(|r i − r j |),

W =
n
3

U. (10)

Eq. (10) states that in IPL systems, irrespective of the physi-
cal state, the scatter plot of the instantaneous potential energy
and virial shows perfect correlation with slope n/3. Liq-
uids with strong virial-energy correlations exhibit TS with
γts = n/3.21–23 Figure 3 plots the instantaneous virial and
potential energy fluctuations of SB trimers with non-bonding
LJ potential. The degree of correlation is quantified by the
correlation coefficient R,

R =
〈∆W ∆U〉√

〈(∆W )2〉

√
〈(∆U)2〉

, (11)

FIG. 3. Correlation plot of the virial and the configurational energy per par-
ticle from MD simulations of SB trimers with LJ non-bonding potential for
states with same density and different temperatures. All the quantities are in
reduced MD units.

where ∆ denotes the deviation from the average value of the
given quantity and 〈. . .〉 denotes the thermal averages. We
find low correlation, R ∼ 0.45−0.52, depending on the state.
Differently, in the case of RB chains the correlation is high,
R > 0.8 (not shown), as in previous studies on linear chains
with rigid bonds.27,90 The drop of the virial-energy correla-
tions by replacing rigid bonds with semirigid ones in linear
chains has been noted27 and recently reported28 and is ascribed
to the competition between the bonding and the non-bonding
interactions.25,26

B. Thermodynamic scaling of the fast mobility
1. Master curve in the cage regime

We now derive the expression of the TS master curve of the
fast mobility. We start by investigating the temperature depen-
dence of 〈u2〉. In Fig. 4 the temperature behavior of the fast
mobility along different isochores is shown for SB trimers with
different non-bonding potential, leading to different fragility,

FIG. 4. Temperature dependence of the fast mobility 〈u2〉 along different
isochores, from MD simulations of SB trimers and non-bonding potential,
Eq. (4), with p, q = 6,7 (top) and p, q = 6,12 (bottom). The dashed lines are
the best-fit curves according to Eq. (12). Their extrapolation to T → 0 gives
the parameter a0. All the quantities are in reduced MD units.
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TABLE I. The density scaling exponent γts and the parameters a0 and a1 of
Eq. (14) for the systems of Figures 6 and 7.

Bonds M (p, q) γts a0 a1

A SB 3 (6, 7) 3.9(1) −0.039(2) 0.317(5)
B SB 10 (6, 8) 4.7(2) −0.036(2) 0.283(6)
C SB 3 (6, 8) 4.3(1) −0.037(1) 0.279(4)
D SB 10 (6, 10) 5.9(2) −0.032(1) 0.229(5)
E SB 3 (6, 10) 5.2.(1) −0.040(1) 0.244(6)
F SB 10 (6, 12) 6.7(1) −0.022(1) 0.170(4)
G RB 10 (6, 12) 6.65(5) −0.029(1) 0.162(5)
H SB 3 (6, 12) 5.80(1) −0.029(1) 0.172(4)
I RB 3 (6, 12) 5.85(5) −0.033(2) 0.169(5)
L SB 3 (6, 18) 7.6(2) −0.029(2) 0.110(5)
M SB 3 (6, 24) 8.4(2) −0.023(1) 0.074(5)

see Fig. 2. We observe that in the considered temperature range
〈u2〉 shows a well-defined linear variation, which is well fitted
by the following equation:

〈u2(T )〉 = a0 + m · T , (12)

where a0 and m are suitable constants. Fig. 4 shows that a0

depends very weakly on the density within the errors. Instead,
the slope of 〈u2(T )〉 is a decreasing function of the density.
Table I lists the a0 best-fit values of all the systems of interest.
For a given system, at least two different isochores are used.

According to Figure 4, the fast mobility 〈u2(T )〉 van-
ishes at the finite temperature T (FM)

0 . Zhang et al. showed

that T (FM)
0 coincides, within the uncertainty, with the Vogel-

Fulcher-Tammann (VFT) temperature T0 where the struc-
tural relaxation time diverges.69 We test this conclusion
on the set where the temperature dependence was studied
in greatest detail (M = 3, ρ= 1.033, and p, q = 6,12, see
Fig. 2). We find that the fast mobility tends to vanish at
T (FM)

0 = 0.20(1), which is slightly smaller than the VFT tem-
perature T0 = 0.28(2), obtained by the best-fit of the corre-
sponding structural relaxation time τα. It has to be noted that
errors can arise from the determination of the VFT temperature
T0 evaluating a non-linear function on a higher temperature
range of data. In particular, the validity of VFT function well
below GT temperature is still a matter of debate.105,106

We now discuss the density dependence of the fast mobil-
ity. From the analysis of Fig. 4, we know that the ρ-dependence
of the fast mobility is virtually all incorporated in the slope m
in Eq. (12). Fig. 5 plots the quantity m ·T along two isotherms
for the systems of Fig. 4. It is seen that the slope m exhibits a
power-law dependence on density,

m = a1 · ρ
−γts . (13)

The above procedure involving isochores and isotherms leads
to the TS master curve of the fast mobility,

〈u2(T , ρ)〉 = a0 + a1 · T ρ
−γts , (14)

where the parameters a0, a1, and γts depend in general on the
chain length, the monomer-monomer non-bonding potential,
and the nature of the bonding interaction. Table I lists the best-
fit values of a1 and γts for the systems of interest. It will be
shown in Sec. III B 3 that Eq. (14) holds true also in the region
where the cage effect disappears for high T ρ−γts values. On the

FIG. 5. Density-dependence of the quantity 〈u2〉 − a0, see Eq. (12), along
different isotherms for the same systems of Fig. 4. The slope of the best-fit
lines (dashed line) gives the exponent of the power-law dependence on density.
Insets: the fast mobility 〈u2〉 versus the density for the same state points of
the main panels. All the quantities are in reduced MD units.

other hand, Eq. (14) breaks down for low T ρ−γts values where
it predicts a non-physical negative fast mobility since a0 < 0,
see Table I.

2. Thermodynamic scaling in the cage regime

We have extensively investigated TS of the fast mobility
in a wide range of different physical states of the systems
characterized by the chain length, the bonding, and the non-
bonding potentials listed in Table I. The results are presented
in Figs. 6 and 7. We always find that the procedure outlined in
Sec. III B 1 leads to a quite effective TS with the master curve
nicely fitted by Eq. (14).

FIG. 6. TS of the fast mobility from MD simulations of SB trimers with
different non-bonding potential, Eq. (4) (p = 6, q = 7, 8, 10, 12, 18, 24). They
exhibit decreasing fragilities with increasing q values, see Fig. 2. The dashed
lines are the master curves Eq. (14) with parameters listed in Table I. The
dotted line marks 〈u2

g〉 ≈ 0.0166, the fast mobility at the glass transition.72

The dotted-dashed line marks the maximum fast mobility in the presence
of caging, 〈u2

m〉 = 0.125, see Sec. III A 1. The extrapolated master curves
intersect approximately at (0.08, �0.02). All the quantities are in reduced MD
units.
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FIG. 7. Top: TS of the fast mobility from MD simulations of SB and RB poly-
mer chains with different chain length M and non-bonding potential Uq ,p,
Eq. (4). For clarity reasons, data are horizontally shifted. A: SB M = 3,
p, q = 6, 7 (shift: +0.0); B: SB M = 10, p, q = 6, 8 (+0.1); C: SB M = 3,
p, q = 6, 8 (+0.2); D: SB M = 10, p, q = 6, 10 (+0.3); E: SB M = 3, p, q = 6, 10
(+0.4); F: SB M = 10, p, q = 6,12 (+0.5); G: RB M = 10, p, q = 6,12 (+0.6);
H: SB M = 3, p, q = 6,12 (+0.7); I: RB M = 3, p, q = 6, 12 (+0.8). The dashed
lines are the master curves Eq. (14) with parameters listed in Table I. The
dotted line marks 〈u2

g〉 ≈ 0.0166, the fast mobility at the glass transition.72

The dotted-dashed line marks the maximum fast mobility in the presence
of caging, 〈u2

m〉 = 0.125, see Sec. III A 1. Bottom: Approximated common
intersection of all the TS master curves. For clarity reasons, MD points are
removed. Details about the L and M lines, the two lines with smaller slope in
Fig. 6, are given in Table I. All the quantities are in reduced MD units.

In particular, Fig. 6 presents the results concerning SB
trimers with non-bonding potential having different steep-
nesses and then different fragilities, as in Fig. 2. Fig. 6 shows
that the linear master curves, Eq. (14), intersect approximately
in a single point, thus suggesting that the two parameters a0

and a1 are mutually dependent and, actually, each master curve
may be labelled by a single parameter, e.g., the slope. Given the
universal equation Eq. (3), connecting 〈u2〉 and τα, this implies
that TS of the structural relaxation of our melt of trimers is con-
trolled by a single parameter. By inspecting the results listed in

FIG. 8. Scaling exponent γts versus chain length M from MD simulations
of polymer systems with either SB (open symbols) or RB (full symbols)
and different non-bonding potential, Eq. (4), as indicated by the (p, q) pairs
in parenthesis. The dashed lines are guides for the eyes. The exponent γts
increases with: (i) the chain length and (ii) the steepness of the non-bonding
potential around the minimum, see Fig. 2.

FIG. 9. TS of the fast mobility from MD simulations of the trimer with SB and
LJ non-bonding potential for high Tρ−γts values. For 〈u2〉 > 〈u2

m〉 = 0.125 the
cage effect disappears, see Sec. III A 1. The linear TS master curve, Eq. (14),
is also drawn (dashed line) with parameters as in Table I. Note that Eq. (14)
approximates the TS master curve also in part of the region with no cage
effect. All the quantities are in reduced MD units.

Table I, one finds that the location of the (approximated) inter-
section depends only mildly on both the chain length and the
nature of the bond. The intersection is rooted in the coupling
between the fast dynamics and the anharmonic elasticity. The
proof goes fairly beyond the purposes of the present work and
will be presented elsewhere.107 Fig. 7 (top) plots the TS mas-
ter curves of a variety of systems with different chain length,
non-bonding potentials, and bond stiffness, see Table I. It is
seen that the linear master curve covers from close to the glass
transition up to the boundary of the regime where the cage
effect is apparent. Fig. 7 (bottom) shows that, as already noted
in Fig. 6, the master curves of the fast mobility intersect in a
narrow region, so that each master curve may be labelled by a
single parameter.

It seems proper to discuss the main factors affecting the
magnitude of the scaling exponent γts. We remind that our
linear chains are modelled as fully flexible, i.e., bond-bending
and bond-torsions potentials are not present. Fig. 8 shows
that the exponent γts increases with both the steepness of the
non-bonding potential around the minimum, see Fig. 2—as
expected since the approximating IPL potential becomes

FIG. 10. TS of the structural relaxation time τα from MD simulations of
chains with length M = 3,10, LJ non-bonding potential, and rigid bonds
(RB) or semi-rigid bonds (SB). The states span the ranges 0.95 ≤ ρ ≤ 1.2,
0.5 ≤ T ≤ 1.0. Details are found in Appendix A2 of Ref. 27. For illustra-
tive purpose, the density of the states of the trimers with SB is shown. For
clarity reasons, data are horizontally shifted: RB M = 3 (shift = +0.0),
SB M = 3 (shift = +0.2), RB M = 10 (shift = +0.4) and SB M = 10 (shift = +0.6).
The continuous line is Eq. (17) with parameters from Table I and
α = −0.424(1), β = 2.7(1) · 10−2, γ = 3.41(3) · 10−3.72 No adjustment is
done. The TS exponent γts is equal to the corresponding one of the fast
mobility. All the quantities are in reduced MD units.
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FIG. 11. TS of the chain reorientation timeτee for the same systems of Fig. 10.
For clarity reasons, data are horizontally shifted as in Fig. 10. The dashed lines
are guides for the eyes. All the quantities are in reduced MD units.

stiffer20—and, mildly, the chain length. Since increasing the
chain length replaces non-bonding interactions with stiffer
bonding ones, we may conclude that in a melt of fully flex-
ible chains, γts is a measure of the overall stiffness of the
system. The MD simulations of our polymer model yield γts

around 4–7. It is tempting to point out that the polysiloxanes,
which, like our model, have a very flexible chain, are charac-
terized by the scaling exponent γts & 5, independent of the
chain length.108 The influence of the chain flexibility on the

magnitude of the scaling exponent γts has distinct features. In
stiffer polymers, like polymethylmethacrylate, the exponent
decreases abruptly as the length of the chain increases.109 It
must be also pointed out that high molecular weight polymers
are characterized by small values of the exponent, γts < 3.7

These small values are mainly due to the relative stiffness of the
chain units, with respect to the mobility corresponding to the
intermolecular degrees of freedom that are thermally activated:
the stiff chain structure hinders rearrangements, resulting in
smaller sensitivity to volume effects.109 In other terms, adding
barriers to intramolecular degrees of freedom of polymers
makes the apparent potential softer:10 using a proper torsional
potential for bonding rotation, for instance an harmonic poten-
tial, Tsolou et al.110 obtained γts less than 3 for simulated
1,4-polybutadiene. On the other hand, our findings are in good
agreement with the results obtained on flexible LJ chain flu-
ids by MD simulations and comparison with experiments on
some real simple fluids (flexible alkanes), where the scaling
exponent was found to vary from 5 to 6.6 on increasing the
chain lengths.111

A test of our results on the TS scaling of the fast mobility
of polymers is provided by the diffusivity D. We know from
previous studies on fully flexible, unentangled polymers74,82

and binary atomic mixtures75 that the diffusivity and the fast

FIG. 12. TS, logτα vs Tρ−γts , of glass-
formers (squares) with lower isochoric
fragility. The best-fit with Eq. (19) is
superimposed (continuous line). Best-fit
values are in Table II.
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FIG. 13. TS, logτα vs Tρ−γts , of glass-
formers (squares) with intermediate iso-
choric fragility. The best-fit with Eq. (19)
is superimposed (continuous line). Best-
fit values are in Table II.

mobility are related by the law,

D = M−αFα(〈u2〉), (15)

where Fα is a state-independent function and α is equal to 0
or 1 in binary mixtures or fully flexible, unentangled poly-
mers, respectively. A qualitative understanding of Eq. (15)
is provided by the following argument. For atomic systems
D ∼ 〈u2〉/τα, whereas for fully flexible unentangled polymers
D ∼ R2

ee/τee ∼ (M − 1)b2/(4M2τα) ∼ b2/(4Mτα) where b,
Ree, and τee are the bond length, the end-end distance, and
the average reorientation time of the polymer chain, respec-
tively.112 Reminding that 〈u2〉 is virtually independent of M72

and resorting to Eq. (3), we see that the previous approxi-
mated expressions of D comply with Eq. (15). By resorting to
Eq. (14), one concludes from Eq. (15) that the γts exponent of
the diffusivity must be equal to the one of the fast mobility (at
least for unentangled polymers and binary atomic mixtures).
Support to this conclusion is gained by considering the TS scal-
ing of decamers (M = 10) with semi-rigid bond and interacting
via the LJ potential ((p, q) = (6, 12)). The TS scaling of the fast
mobility occurs with γts = 6.7(1), see Table I, which is rather
close to the TS exponent of the diffusivity, γts = 6.113 Virtual
coincidence between the TS exponents of the fast mobility and
the diffusivity is found in binary mixtures.75

3. Thermodynamic scaling beyond the cage regime

The cage effect is missing if 〈u2〉 > 〈u2
m〉 = 0.125, see

Sec. III A 1. We observe TS of the fast mobility even if
〈u2〉 > 0.125. This is shown in Figure 9 where one observes
that the scaling exponent γts = 5.80 found in the cage regime
collapses the fast-mobility on a TS master curve also for
〈u2〉 > 〈u2

m〉. The finding strongly suggests that the ther-
modynamic scaling does not rely on specific aspects of the
supercooled regime. We also note that the linear form given in
Eq. (14) does not break down abruptly when the cage effect
disappears at 〈u2

m〉 but it provides a good approximation of the
TS master curve up to, say, ∼2〈u2

m〉.

C. Thermodynamic scaling of relaxation

We now show that the MD simulations indicate that TS
of the fast mobility with exponent γts also leads to TS of the
structural relaxation with the same exponent. To this aim, we
recast Eq. (3) as

log τα = α + β
1

〈u2〉
+ γ

1

〈u2〉
2

. (16)

For the present polymer model, irrespective of the non-
bonding potential and the chain length, one hasα = −0.424(1),
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FIG. 14. TS, logτα vs Tρ−γts , of glass-
formers (squares) with higher isochoric
fragility. The best-fit with Eq. (19) is
superimposed (continuous line). Best-fit
values are in Table II.

β = 2.7(1) · 10−2, γ = 3.41(3) · 10−3.72 Plugging the TS linear
master curve Eq. (14) into Eq. (16) gives

log τα = α +
β

(a0 + a1 · T ρ−γts )
+

γ

(a0 + a1 · T ρ−γts )2
(17)

with a0, a1, and γts as given in Table I.
Fig. 10 compares Eq. (17) with the structural relaxation

of a selected set of systems. We observe that (i) the TS expo-
nent γts of the fast mobility also results in TS of the structural
relaxation over about four decades of the relaxation time and
(ii) the TS master curve is well represented in Eq. (17).

To complete the analysis, we consider the average reori-
entation time τee of the chain, i.e., the decay time of the corre-
lations of the vector joining the end monomers of the chain.73

For fully flexible unentangled linear polymers τee increases as
M2, whereas τα depends weakly on M.112 Fig. 11 shows that
the exponent γts of the fast mobility also provides TS of τee. The
explicit form of the TS master curve of τee is not given here. In
fact, even if there is a strong correlation between τee and the fast
mobility, the relation differs from Eq. (16),73 so that we cannot
extend Eq. (17) to τee. The coincidence of the scaling exponent
for the segment relaxation and the chain reorientation has been
noted in poly(propylene glycol), 1,4-polyisoprene as well as in
poly(oxybutylene).114,115 Nonetheless, Fragiadakis et al.,

investigating very carefully the density scaling in 1,4-
polyisoprene (PI) of different molecular weight by dielectric
relaxation, noted that there is a small difference in the expo-
nent γts for the segmental and the chain modes of the lowest
molecular weight PI with a degree of polymerization 18.116

We conclude this section by stressing that even if the
coincidence of the TS exponent for different dynamical quan-
tity was reported,7 it is of remarkable interest here that the
same exponent γts is able to scale the picosecond fast mobil-
ity, the slow structural relaxation, and the even slower chain
reorientation up to diffusivity.

D. Comparison with the experiments

The results of the MD investigation concerning TS of the
fast mobility and relaxation pose the question whether they are
limited to the specific class of scrutinised glassformers or they
capture general aspects of TS. To this aim, motivated by the
findings of Secs. III B 2 and III C, we now establish contact
between the experimental and the MD results. First, we derive
the TS master curve of the structural relaxation by combining
the universal scaling Eq. (3) with the linear TS master curve
of the fast mobility, Eq. (14) recasts as

〈u2〉 = 〈u2
g〉

[
1 + κ

(
T ρ−γts − Tgρ

−γts
g

)]
, (18)
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TABLE II. Best-fit values of the parameters of the TS master curve Eq. (19) (κ and α′, adjusted in the range α − 0.5 ≤ α′ ≤ α + 0.5 with β̃ = 1.62(6) and
γ̃ = 12.3(1))72 for the glassformers in Figs. 12–14. The experimental characteristic exponent γts, the isochoric fragility mexp

v , Eq. (21), and the best-fit value
m fit
v , evaluated via Eq. (22), are also listed. The glassformers are listed in increasing order of the experimental isochoric fragility mexp

v .

System γts κ · 102 [K −1 (g/ cm3)
γts ] α′ m fit

v mexp
v References

1 PCB62 8.5 26.5 −11.18 28 ± 2 24 ± 1 117
2 BMPC 7.0 5.72 −11.45 28 ± 2 25 ± 1 118 and 119
3 BMMPC 8.5 0.891 −11.48 26 ± 2 26 ± 1 118
4 PCB54 6.7 10.23 −11.49 35 ± 3 31 ± 3 117
5 PCB42 5.5 6.16 −11.12 46 ± 4 35 ± 5 117
6 Vitamin E 3.9 0.52 −11.92 31 ± 2 36 ± 6 120
7 KDE 4.5 1.62 −11.01 42 ± 3 39 ± 3 121
8 Salol 5.2 3.16 −11.00 53 ± 4 40 ± 5 122
9 PCHMA 2.9 0.373 −12.00 30 ± 2 42 ± 8 123
10 PMMA-3 3.7 1.93 −11.65 42 ± 3 43 ± 2 109
11 PDE 4.4 2.58 −11.26 49 ± 3 45 ± 4 118, 121, 124
12 DC704 6.15 2.26 −11.10 56 ± 4 47 ± 5 125
13 PMMA-4 3.2 1.42 −11.70 44 ± 3 49 ± 3 109
14 POB 2.65 1.15 −11.77 47 ± 4 50 ± 6 126
15 1,4 PI 3.5 0.714 −11.92 47 ± 4 51 ± 7 7, 127, 128
16 PVAc 2.6 0.870 −11.39 46 ± 5 52 ± 5 129
17 PMPS 5.63 2.16 −11.37 61 ± 4 54 ± 3 130
18 OTP 4.0 1.30 −11.74 53 ± 4 54 ± 2 131–136
19 Verapamil HCl 2.47 0.969 −11.50 57 ± 3 57 ± 3 137 and 138
20 DGEBA 2.8 2.08 −12.49 68 ± 5 57 ± 7 139
21 DPVC 3.2 1.04 −11.42 66 ± 4 62 ± 3 140
22 PMTS 5.0 2.69 −11.71 54 ± 3 63 ± 2 141
23 PCGE 3.3 2.52 −11.38 61 ± 4 63 ± 3 142
24 1,4 PB 1.8 1.45 −11.56 55 ± 7 64 ± 6 6
25 PPGE 3.45 2.01 −11.36 69 ± 4 65 ± 4 143 and 144
26 PC 3.8 5.04 −11.00 72 ± 5 66 ± 4 145
27 PVME 2.5 0.923 −11.91 51 ± 4 66 ± 7 146
28 PMMA-20 1.94 0.818 −11.86 55 ± 4 67 ± 13 147
29 DGEBA-epon 3.5 2.19 −11.49 78 ± 5 70 ± 8 148
30 PPG4000 2.5 1.41 −11.93 67 ± 5 76 ± 15 149
31 PMMA-10 1.8 0.845 −12.00 65 ± 8 85 ± 20 109
32 1,2 PB 1.89 0.817 −12.00 56 ± 4 86 ± 15 121
33 PS 2.27 1.125 −11.46 101 ± 10 104 ± 8 150
34 Sorbitol 0.18 1.65 −11.62 108 ± 8 112 ± 10 4, 151, 152

where GT occurs when the scaling quantity T ρ−γts is equal to
Tgρ

−γts
g . When applied to experimental data, it is understood

that the quantity ρ is the mass density and not the number
density as in MD studies. Combining Eqs. (3) and (18), we
obtain

log τα = α
′ +

β̃[
1 + κ

(
Y − Yg

)] + γ̃[
1 + κ

(
Y − Yg

)]2
, (19)

where

Y ≡ T ρ−γts . (20)

In Eq. (19) rigorously α′ = α = 2 − β̃ − γ̃ with the definition
log τα = 2 where β̃ = 1.62(6) and γ̃ = 12.3(1) are universal
values, independent of the system.72 However, we consider α′

as mildly adjustable in the range α − 0.5 ≤ α′ ≤ α + 0.5
to account for small errors in the determination of the glass
transition. Taking Yg from the experiment, the total number of
adjustable parameters of Eq. (19) is two (α′ and the slope κ),
which is less than the number, three, of alternative expression
of the TS master curve of the structural relaxation.31,32,34

Figs. 12–14 show the comparison of Eq. (19) with the
TS master curves of the structural relaxation of thirty-four
different glassformers spanning a large range of the scal-
ing exponent which controls the density influence on relax-
ation (0.18 . γts . 8.5). The best-fit parameters are listed
in Table II. Despite Eq. (19) having only two adjustable
parameters—with narrowly boundedα′—it provides, all in all,
an effective analytical expression of the TS master curve over
a wide range of relaxation times, e.g., about fourteen decades
for BMPC, see Fig. 12, and the prototypical glassformer OTP,
see Fig. 13. Nonetheless, deviations are seen, especially for
short relaxation times. In principle, the deviations could be
ascribed to the limited accuracy of Eq. (19) for states with weak
cage effect. However, for some glassformers, e.g., PCHMA,
PDE, POB, and 1,2 PB, deviations are apparent already for
T ρ−γts/Tgρ

−γts
g & 1.35 and τα . 10−6−10−8 where the above

argument is untenable, so to date we are unable to reach a clear
conclusion about the issue. Since Eq. (19) relies on Eq. (3), one
could think that the latter breaks down at short relaxation times.
However, we know that experimental data validated Eq. (3)
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FIG. 15. Correlation plot between the best-fit value of the isochoric fragilities
evaluated according to Eq. (22) and the experimental one (Pearson correlation
coefficient R = 0.89). The dashed line is the bisectrix.

down to about 10–100 ps.72,81 Then, we believe that devia-
tions follow by the other relation leading to Eq. (19), i.e., the
TS master curve of the fast mobility, Eq. (18), which apparently
must be improved at high T ρ−γts values.

It is noteworthy that the deviations occur for times much
shorter than those where the so-called dynamic crossover has
been observed for the same systems.121 In other words, Eq. (19)
is able to represent data across the time range where a break
of the VFT has been observed, but it fails at much shorter
times. Other fitting functions, like that based on the Avramov
model, have an additional parameter, often taking into account
the anharmonicity of the potential. Thanks to these additional
parameters, they can provide a better scaling. Further experi-
mental and numerical studies will be carried out with the aim
to test the range of validity of Eq. (19).

The best-fit of Eq. (19) does not deviate from the exper-
imental TS master curves close to GT. This is worth noting
since Eq. (19) relies on Eq. (18) which fails at small T ρ−γts

values, see Sec. III B 2. By reminding that, for a given density
ρ0, the temperature T (FM)

0 where 〈u2(T )〉 vanishes has been
associated to the Vogel-Fulcher-Tammann (VFT) temperature
T0—which is lower than Tg

69—we speculate that around GT,
the linear approximation of the TS master curve of the fast
mobility Eq. (18), is still reliable.

To provide further evidence about the accuracy of Eq. (19)
close to GT, we now consider the isochoric fragility mv ,
namely, the slope of the master curve of the structural relax-
ation, Eq. (1), at the glass transition, which in terms of Eq. (20)
is given by

mv =
∂ log τα

∂
(
Yg/Y

) �������Yg

. (21)

Plugging Eq. (19) into Eq. (21) leads to

m̃v = κ
(
β̃ + 2γ̃

)
Tgρ

−γ
g . (22)

The comparisons between m fit
v , as taken from Eq. (22) with κ

from Table II, and the experimental isochoric fragility, mexp
v , as

taken from Eq. (21), are listed in Table II and plotted in Fig. 15.
It is seen that, apart from a few outliers, the correlation is
rather good, given the experimental uncertainties. This, again,
suggests that Eq. (19) is an effective TS master curve of the
structural relaxation also close to GT.

An attempt to test Eq. (18), stating the approximately lin-
ear character of the TS master curve of the fast mobility above

FIG. 16. Top: Fast mobility of OTP from incoherent elastic scattering inten-
sity S(Q, 0) as a function of temperature for different pressures.135 Bottom: TS
of the data with γts = 4 (equation of state from Ref. 132). The vertical dashed
lines mark the glass transition (τα = 102 s, Tgρ

−γts
g = 154 K cm12 g−4,

〈u2
g〉 = 0.0829 Å2), and the critical value Tcρ

−γts
c above which the quasielas-

tic broadening from structural relaxation contribution, being τα = 20 ns, has
to be taken into account135 and the measured 〈u2〉 cannot be longer interpreted
as the fast mobility within the cage. The thick solid line is Eq. (18) with κ
evaluated from Eq. (22) with m̃v = mexp

v , as taken from Table II. The two thin
black lines bound the uncertainty on the slope due to the one on mexp

v .

GT, is presented in Fig. 16 for the prototypical glassformer
OTP. Fig. 16 (top) shows the pressure dependence of the fast
mobility of OTP.135 The TS scaling in the supercooled regime
with the same characteristic exponent γts of the TS master
curve of the structural relaxation, see Table II, is in Fig. 16
(bottom). The resulting master curve is compared to Eq. (18)
with no adjustable parameters. In fact, we take Tgρ

−γts
g from

the OTP master curve in Fig. 13 where τα = 102 s and evalu-
ate the corresponding 〈u2

g〉 from Fig. 16 (top). The slope κ is
evaluated from Eq. (22) by setting m̃v = mexp

v , where mexp
v is

the experimental value of the isochoric fragility, see Table II.
The agreement, even in the presence of some concavity of
the experimental master curve, is quite satisfactory across the
supercooled regime down to the GT. It suggests that the TS
master curve of the fast mobility is effectively approximated
by a linear law in T ρ−γts in the supercooled regime. Notice that,
as a matter of fact, the above procedure predicts the TS master
curve of the fast mobility on the sole basis of the experimental
value of the isochoric fragility mexp

v , see Table II.

IV. CONCLUSIONS

The present paper investigates the thermodynamic scaling
of the fast vibrational dynamics. In particular, we address our-
selves to the fast mobility, the mean square amplitude of the
picosecond rattling motion inside the cage, which is studied
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by extensive MD simulations and comparison with experimen-
tal results. The MD simulations are carried out on a variety of
coarse-grained polymer models of a melt of unentangled linear
chains where both the bonding and non-bonding potentials as
well as the chain length are changed. The polymer model with
semi-rigid bonds exhibits TS with weak virial-energy corre-
lations. This precludes the usual TS interpretation in terms of
an effective inverse-power law potential replacing the actual
particle-particle interaction potential. One major result of the
MD simulations is the evidence of the joint TS with the same
characteristic exponent γts of both the fast mobility 〈u2〉 and
the much slower structural relaxation and chain reorientation.
We find that the TS master curve of the fast mobility in the
cage regime is well described by a simple linear relation in
T ρ−γts with slope κ. The linear TS master curve is expected
to be sufficiently accurate at GT and extends also in a part
of the liquid region where no caging is apparent, suggesting
that TS is not related to supercooling. The linear master curves
intersect nearly in a single point so that they can be approxi-
mately labelled by their slope which is strictly related to the
isochoric fragility. By combining the linear TS master curve of
the fast mobility with the universal relation linking the latter
to the structural relaxation, we derive an analytical expres-
sion of the TS master curve of the structural relaxation with
two adjustable parameters, one being narrowly bounded and
the other being the slope κ. The theoretical TS master curve
of the structural relaxation is compared with the experimen-
tal ones of thirty-four glassformers. It shows good accuracy,
especially close to GT, as confirmed by the good correlations
between the best-fit and the experimental isochoric fragility in
the range 24 ≤ mv ≤ 112. For the glassformer OTP, the iso-
choric fragility allows us to satisfactorily predict the TS master
curve of the fast mobility with no adjustments.
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