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Both local geometry and collective extended excitations drive the moves of a particle in the cage of its
neighbours in dense liquids. The strength of their influence is investigated by the molecular dynamics
simulations of a supercooled liquid of fully flexible trimers with semirigid or rigid bonds. The rattling
in the cage is investigated on different length scales. First, the rattling anisotropy due to local order
is characterized by two order parameters sensing the monomers succeeding or failing to escape
from the cage. Then the collective response of the surroundings excited by the monomer-monomer
collisions is considered. The collective response is initially restricted to the nearest neighbours of the
colliding particle by a Voronoi analysis revealing elastic contributions. Then the long-range excitation
of the farthest neighbours is scrutinised by searching spatially extended correlations between the
simultaneously fast displacements of the caged particle and the surroundings. It is found that the
longitudinal component has stronger spatial modulation than the transverse one with a wavelength
of about one particle diameter, in close resemblance with experimental findings on colloids. It is
concluded that the cage rattling is largely affected by solid-like extended modes. Published by AIP

Publishing. [http://dx.doi.org/10.1063/1.4945756]

I. INTRODUCTION

The relation between the structure and the dynamics is a
key problem in liquid-state' and polymer™® physics. Here,
we address the case of dense supercooled liquids where each
particle is temporarily trapped by the cage formed by the first
neighbours. The lifetime of the cage is set by the structural
relaxation and quantified by the structural relaxation time
7, Which exceeds the rattling times of the particle in the
cage several orders of magnitude upon approaching the glass
transition from above.

Which are the key aspects driving the moves of the
trapped particle in the cage? At very short times, fractions
of picoseconds, the local geometry plays the leading role.
This inspired the free-volume model” which has been recently
re-examined.>!! The role of the local structure is seen by,
e.g., considering the short-time expansion of the mean square
displacement (MSD),

1
(1)) = 3v%% - 1 VO 1)

where v = VkgT/m is the thermal velocity.'? Initially, MSD
is ballistic but early collisions with the first neighbours slow
down the particle. Qy is an effective collision frequency. More
precisely, Qg is the frequency at which the tagged particle
would vibrate if it were undergoing small oscillations in the
potential well produced by the surrounding monomers when
kept fixed at their mean equilibrium positions.'? Collisions
also lead to correlation loss of the velocity and the related
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correlation function starts to decay as

QZ
C,o(t) = 3u2(1 - 7°z2+---). )

After a few collisions, velocity correlations reveal oscillatory
components due to sound waves that, owing to the low
compressibility of liquids, reach wavelengths of a few particle
diameters.""'> This means that the particle displacement is
also affected by collective, elastic modes. Later, the particle
completes the exploration of the cage in a time ¢, a few
picoseconds, and, in the absence of escape processes, MSD
would level off at (r*(t)) = (u?), the mean square amplitude
of the cage rattling (related to the Debye-Waller factor). In
actual cases, early breakouts cause MSD to increase for ¢ > t*
and an inflection point appears at ¢* in the log-log plot of
(r2(t)).2’9*14

We aim at clarifying by extensive molecular-dynamics
(MD) numerical simulations of a supercooled molecular
liquid if the single-particle fast dynamics up to ~¢* is more
contributed by the local geometry of the cage or the solid-like
extended modes. To be more precise, the influence of the local
geometry will be examined by considering how the positions
of the particles forming the cage at a given initial time affect
the direction of the subsequent displacement of the particle in
the cage. Instead, the influence of extended collective modes
will be studied by the correlations between the direction
of the displacement of the particle in the cage with the
simultaneous displacements of the surrounding particles. The
present study contributes to our continuing effort to understand
the microscopic origin of the universal correlation between
the fast dynamics, by using (u) as metric, and the relaxation
and transport, found in simulations of polymers,' 7

Published by AIP Publishing.


http://dx.doi.org/10.1063/1.4945756
http://dx.doi.org/10.1063/1.4945756
http://dx.doi.org/10.1063/1.4945756
http://dx.doi.org/10.1063/1.4945756
http://dx.doi.org/10.1063/1.4945756
http://dx.doi.org/10.1063/1.4945756
http://dx.doi.org/10.1063/1.4945756
http://dx.doi.org/10.1063/1.4945756
http://dx.doi.org/10.1063/1.4945756
http://dx.doi.org/10.1063/1.4945756
mailto:dino.leporini@unipi.it
mailto:dino.leporini@unipi.it
mailto:dino.leporini@unipi.it
mailto:dino.leporini@unipi.it
mailto:dino.leporini@unipi.it
mailto:dino.leporini@unipi.it
mailto:dino.leporini@unipi.it
mailto:dino.leporini@unipi.it
mailto:dino.leporini@unipi.it
mailto:dino.leporini@unipi.it
mailto:dino.leporini@unipi.it
mailto:dino.leporini@unipi.it
mailto:dino.leporini@unipi.it
mailto:dino.leporini@unipi.it
mailto:dino.leporini@unipi.it
mailto:dino.leporini@unipi.it
mailto:dino.leporini@unipi.it
mailto:dino.leporini@unipi.it
mailto:dino.leporini@unipi.it
mailto:dino.leporini@unipi.it
mailto:dino.leporini@unipi.it
mailto:dino.leporini@unipi.it
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4945756&domain=pdf&date_stamp=2016-04-14

144505-2 S. Bernini and D. Leporini

supercooled binary atomic mixtures,'®!'® colloidal gels,"

and antiplasticized polymers,'®?° and supported by the
experimental data concerning several glassformers in a
wide fragility range (20 < m < 191).151821-23 On a wider
perspective, our investigations on the correlation between
(u*) and the relaxation are part of the intense ongoing
research on the relation between the vibrational dynamics
and the relaxation in glassforming systems. As a matter
of fact, despite the huge range of time scales, older’* and
recent theoretical'*>=3! studies addressed the rattling process
in the cage to understand the structural relaxation, gaining
support from numerical®!%14-23:3245 and experimental works
on glassforming liquids'%#%*7 and glasses.?848->3

The coupling between the rattling process and extended,
fast modes has been indicated.'**!~78 Recent support to
the collective character of the cage rattling is the evidence
of spatially extended correlations (up to about the fourth
shell) between the simultaneous fast displacements of the
caged particle and the surrounding ones.***> They revealed
a rather promising feature, i.e., states with identical spatial
correlations exhibit equal mean square amplitude of the cage
rattling (u®) and structural relaxation time 7, *** The role of
extended modes in the cage rattling and the relaxation process
is also suggested by the so-called elastic models, see Refs. 54
and 55 for excellent reviews and Refs. 20, 43, 52, 56-66, and
106 for recent related papers. Recent improvements include
the finding of the universal correlation between the cage
rattling and the linear elasticity drawn by simulation*’ and
supported by comparison with the experiments.®

The influence of local order on the rattling motion in
the cage has been recently considered. The local structure
was found to correlate poorly with the cage rattling and then
structural relaxation in liquids of linear trimers®”-%® and atomic
mixtures.®’ In particular, it was found that

e physical states with equal mean square amplitude of
the cage rattling (¥?) and structural relaxation time 7,,
have different distributions of the cage geometries,®”-%

o for a given state of a liquid of linear chains (trimers or
decamers), the end and the central monomers, which
have different distributions of the cage geometries, have
equal (u*) and structural relaxation time 7,,.%

Notice that the coincidence of (u?) and 7, of two states mirror
the coincidence of the self-part of the van Hove function
Gy(r,t*) and G(r,7,), respectively.'”!® These findings are
fully consistent with Berthier and Jack who concluded that
the influence of structure on dynamics is weak on short length
scale and becomes much stronger on long length scale.®”
Several approaches suggest that structural aspects matter in
the dynamics of glassforming systems. This includes the
Adam-Gibbs derivation of the structural relaxation,*!:’° built
on the thermodynamic notion of the configurational entropy,’!
the mode-coupling theory? and extensions,’? the random first-
order transition theory,” the frustration-based approach,’
as well as the so-called elastic models®?0:43:2:34-39.62-66 jp
that the modulus is set by the arrangement of the particles
in mechanical equilibrium and their mutual interactions.**
It was concluded that the proper inclusion of many-body
static correlations in theories of the glass transition appears
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crucial for the description of the dynamics of fragile glass
formers.”> The search of a link between structural ordering
and slow dynamics motivated several studies in liquids,’®3°
colloids,®'~#3 and polymeric systems.3! 848

To discriminate between the roles of the local geometry
and the collective extended modes in the single-particle
vibrational dynamics, the cage rattling will be examined
on different length scales. First, we characterize the rattling
process by local anisotropies, namely, order parameters which
are projections of the direction of the displacement of the
central particle onto a fixed local axis. We are inspired by a
seminal work by Rahman in an atomic liquid,”° studying the
directional correlations between the particle displacement of
the trapped particle in the cage and the position of the centroid
C of the vertices of the associated Voronoi polyhedron (VP).
The interest relies on the fact that the VP vertices are located
close to the voids between the particles and thus mark the
weak spots of the cage. It has been shown in simulations of
atomic liquids® and experiments on granular matter'' that
the particle initially moves towards the centroid, so that cage
rattling and VP geometry are correlated at very short times.
We extend such studies to later times to reveal the sharp
crossover to a regime where the anisotropic rattling excites
the collective response of the surroundings. The collective
response is initially restricted to the nearest neighbours of the
colliding particle by investigating statics and fluctuations of
the VP surface, volume, and asphericity.’' Then, the long-
range excitation of the farthest neighbours is evidenced as
spatially extended correlations between the simultaneous fast
displacements of the caged particle and the surroundings.

The paper is organized as follows. In Sec. II the molecular
models and the MD algorithms are presented. The results are
discussed in Sec. III. In particular, Sec. III A presents the
general aspects of the transport and relaxation of interest. The
cage rattling process is examined on the local, intermediate,
and large length scales in Secs. III B-III D, respectively.
Finally, the main conclusions are summarized in Sec. IV.

Il. METHODS

A coarse-grained model of a melt of N, linear fully
flexible molecules with three monomers per chain is
considered. Full flexibility is ensured by the absence of both
torsional or bending potentials hindering the bond orientations.
The total number of particles is N =2001. Non-bonded
monomers at a distance r interact via a truncated Lennard-
Jones (LJ) potential Up/(r) = & [(cr*/r)‘2 - 2(0’*/1’)6] + Unr

for r < r. = 2.5 0 and zero otherwise, where o™ = (’/50' is
the position of the potential minimum with depth &. The
value of the constant U, is chosen to ensure that Uy ,(r)
is continuous at r = r.. In the case of semirigid bonds, the
bonded monomers interact by a potential which is the sum
of the LJ potential and the FENE (finitely extended nonlinear
elastic) potential UF*VE(r) = —1/2 kRS In(1 — r?/R}) where
k measures the magnitude of the interaction and Ry is the
maximum elongation distance.®%® The parameters k and Ry
have been set to 30&/c? and 1.50, respectively.”> The
resulting bond length is b = 0.970 within a few percent.
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All quantities are in reduced units: length in units of o,
temperature in units of £/ kg (with kg the Boltzmann constant),
and time 7yp in units of o-ym/e where m is the monomer
mass. We set m = kg = 1. One time unit corresponds to a
few picoseconds.®® We investigate states with number density
p = 1.086 and temperature T = 0.6,0.63,0.7,0.8,0.9, 1. States
with rigid bonds having bond length b,;,;q = 0.97 are also
studied with the same density and 7 = 0.6,0.9. We also
considered a crystalline state, with the same density of
the other states, obtained by spontaneous crystallization of
an equilibrated liquid made of trimers with rigid bonds
at T =0.7. Apart from the crystalline state, the average
pressure of the other states ranges between P = 6.0 at
T=0.6 and P=10.2 at T =1 for the semirigid system
and very similar results for rigid bonds (7 = 0.6,P = 6.5).
This corresponds to a compressibility factor Z = P/pT ~
10, comparable to other studies, e.g., Kremer and Grest
found 4.84 < P < 5.55 with density p=0.85 and T =1,
corresponding to Z ~ 6.1.%% Periodic boundary conditions are
used. NVT ensemble (constant number of particles, volume,
and temperature) has been used for equilibration runs with
Nosé-Hoover thermostat (damping parameter 0.3), while
NVE ensemble (constant number of particles, volume, and
energy) has been used for production runs for a given state
point.”* The simulations of systems with semirigid bonds are
carried out by using LAMMPS molecular dynamics software
(http://lammps.sandia.gov).”” The equations of motion of the
system with rigid bonds are integrated by using a dedicated
software developed in-house”®?” with a Verlet algorithm in
velocity form and RATTLE algorithm.’* Both LAMMPS and
the in-house software set the time step at 3 - 1073, yielding
an energy drift of about 1% in NVE runs. For each state we
averaged over at least sixteen different runs (twenty-four runs
at T = 0.6 due to increasing dynamical heterogeneity*). This
effort was needed to reach appreciable statistical accuracy in
the evaluation of several collective quantities, including the
extremely time-consuming evaluation of the tiny anisotropies
of the monomer random walk, see Sec. III B, and the VP
volume and surface correlation functions, see Sec. III C 2.
The equilibration procedure involves runs with time lengths
At,, exceeding at least three times the average reorientation
time of the end-end vector.”® The procedure ensures that the
slowest correlation functions of interest drop at Az, to a
few percent of their maximum value. In order to test the
equilibration procedure, we checked whether the states under
study comply with the universal correlation between the mean
square amplitude of the cage rattling and the relaxation in
metastable liquids, see Sec. III A and Refs. 10 and 15-23.
Since the correlation is highly sensitive to non-equilibrium
effects, the observed perfect agreement, see Fig. 2 (bottom),
provides confidence about the equilibration procedure. It
must be pointed out that the present work is interested
only in the time window where the structural relaxation is
completed. From this respect, given the considerable effort to
reach significant accuracy, the production runs at the lowest
temperatures were extended only up to ~10 7,,.

Since the model with rigid bonds exhibits weak
crystallization resistance, we have paid particular attention
to detect any crystallization signature. The detailed discussion

J. Chem. Phys. 144, 144505 (2016)

is deferred to Appendix B. We summarize the results: (i)
no crystalline fraction is revealed in all the systems with
semirigid bonds, and the system with rigid bonds at 7' = 0.9;
(ii) the possible crystalline fraction of the system with rigid
bonds at T = 0.6, if present, is so small as to play no role.

lll. RESULTS AND DISCUSSION

We now present and discuss the results about our trimeric
liquid. The states represent a significant set spanning a
wide range of relaxation times. Below, it will be shown
that they exhibit key features of the supercooled liquids,
e.g., the stretching of the relaxation*'>*° and the presence
of dynamical heterogeneity,*'>>1%0 and all comply with the
universal scaling between the cage rattling and the structural
relaxation found in several glass-forming systems.!®!5-23
From this respect, we believe that the conclusions to be drawn
by their analysis are broadly representative of supercooled
molecular liquids.

A. Transport and relaxation: General aspects

The cage effect is well evidenced by the velocity self-
correlation function C,,(¢),! which is shown in Fig. 1. Initially,
the decay is well accounted for by Eq. (2). Later, a negative
region develops due to backscattering from the cage wall
leading, on average, to the reversal of the velocity of the
particle. A minimum is seen at ¢ ~ t,, = 0.175. Superimposed
to the slower decay faster oscillations are seen. By replacing
the semirigid bond with a rigid one, they largely disappear,
see Fig. 1 (inset), so that they are ascribed to bond vibrations.
Nonetheless, some oscillatory components are still present
after the minimum. In atomic liquids, e.g., rubidium, similar
components are due to sound waves that, owing to the
low compressibility, reach wavelengths of a few particle
diameters.!

FIG. 1. Velocity correlation function of the monomers at selected tempera-
tures. The left dashed line marks the minimum of the correlation function at
time ¢, =0.175. The position of the right dashed line is the time #*=1.023
defined in Fig. 2 and marks the end of the exploration of the cage by the
trapped particle. During the selected time window (., <t $t*) the cou-
pling with the solid-like collective motion of the surroundings develops, see
Sec. III D. The fast oscillations superimposed to the slower decay are largely
due to the bond vibrations and are mostly suppressed by replacing the semi-
rigid bond with a rigid one (see inset). The residual oscillations observed after
the minimum in the presence of rigid bonds are ascribed to collective density
waves in analogy with atomic liquids like rubidium.!
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FIG. 2. Monomer dynamics in the molecular liquid. As reference, a crystal
state having the same density of the other states, obtained by spontaneous
crystallization of an equilibrated liquid made of trimers with rigid bonds
at T=0.7 is also plotted (maroon line). Top: MSD. The knee at about
tm =0.175 corresponds to the minimum of the velocity correlation func-
tion, see Fig. 1. Middle: corresponding ISF curves. The long-time decay
is stretched with stretching parameter S ~0.6. Bottom: scaling of the non-
crystalline states on the universal master curve logrg vs (u2)~! (dotted-
dashed line) expressing the universal correlation between the fast vibrational
dynamics and the slow relaxation.'® (12) is the MSD evaluated at the time
t*=1.023 where log MSD vs. logt has the inflection point, see top panel. ¢*
marks the end of the exploration of the cage by the trapped particle. The ex-
pression of the dotted-dashed master curve is logr, = @ +BuH w2
with @ = -0.424(1), 8=2.7(1)- 1072,y =3.41(3) - 1073.1°

We define the monomer displacement in a time ¢ as
Ar;(t) = ri(t) — r;(0), 3)

where r;(¢) is the vector position of the ith monomer at time 7.
The mean square displacement (MSD) (r%(¢)) is expressed as

N
() = <% 3 ||Ari(r)||2>, @
i=1

where brackets denote the ensemble average. In addition to
MSD the incoherent, self-part of the intermediate scattering
function (ISF) is also considered

N
Fi(q.t) = <% Z eiq-Arj(f)> . (5)

j=1
ISF was evaluated at ¢ = g4y, the maximum of the static
structure factor (7.29 < gax < 7.395).

J. Chem. Phys. 144, 144505 (2016)

Fig. 2 shows MSD of the molecular monomers (top)
and ISF (middle) curves of the states of interest. At very
short times (ballistic regime) MSD increases according to
(r*(t)) = (3kpT/m)t* and ISF starts to decay. The repeated
collisions slow the displacement of the tagged monomer, as
evinced by the knee of MSD at ¢ ~ ¢, = 0.175, i.e., very close
to the minimum of the velocity correlation function, see Fig. 1.
At later times a quasi-plateau region, also found in ISF, occurs
when the temperature is lowered. This signals the increased
caging of the particle. Trapping is permanent in the crystalline
state so that neither MSD nor ISF decay. In the other states, an
inflection point is seen at t* = 1.023 in the log-log MSD plot,
see Fig. 2 (top). t* is state-independent in the present model. '
The inflection point signals the end of the exploration of the
cage by the trapped particle and the subsequent early escapes.
The average escape time yields the structural relaxation time
T4, defined by the relation Fy(ga 7o) = €. For t > 7, MSD
increases more steeply and finally ends up in the diffusive
regime, whereas ISF decays to zero as a stretched exponential
with stretching parameter 8 ~ 0.6.

Fig. 2 (bottom) shows that all the states under study
(apart from the crystalline state) comply with the universal
scaling between the fast vibrational dynamics and the slow
relaxation in glass-forming systems, as expressed by the
master curve between the mean square amplitude of the
cage rattling (u%) = (r’(t*)) and the structural relaxation time
7, 10.15-23
It is known'>!% that the mean square amplitude of the
cage rattling (u?) scales also the non-gaussian parameter a»,
a measure of the non-gaussian character of the dynamics,
and then of its heterogeneous character (@, vanishes for
gaussian, homogeneous dynamics).” Scaling means that the
maximum of the non-gaussian parameter ' is a universal
function of the structural relaxation time.'>'% On this basis,
given the structural relaxation time 7, of the states under
study, we see that they range from states with virtually
no dynamical heterogeneity, ay* ~ 0.2, up to states with
significant heterogeneity, a'** ~ 3.4.

B. Inside the cage

We now turn our attention on how the cage rattling is
affected by the cage shape. We correlate the direction of
the monomer displacement #;(f) with the direction of the
elongation of the VP surrounding the ith particle at the initial
time ¢ = 0. Fig. 3 visualises the quantities of interest. The
direction of the elongation is defined as*”

af = i
|Cil
C,; is the position of the centroid, the center of mass of the VP
vertices, with respect to the position of the ith particle

(6)

1 Nv,i

C = N, 2 v, N
T

where N, ; and V{ are the number of vertices and the position
of the VP jth vertex with respect to the position of the ith
particle, respectively.
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111

FIG. 3. Quantities of interest to characterize the correlation between the
displacement of the particle (green dot) and the cage shape. The magenta
dot is the centroid of the vertices of the associated Voronoi polyhedron (VP)
at the initial time, Eq. (7). The highlighted regions are limited by planes
perpendicular to C; and passing through either the initial position of the
particle or the centroid.

In order to investigate the correlation between the
displacement of the trapped particle and the shape of
the cage, we consider the time evolution of two distinct
order parameters, namely, the anisotropy of the particle
displacement relative to the centroid with respect to the initial
direction of the centroid, see Fig. 3,

N [Ar(7) - C;
(cos 0.()) = <% Z; % - ﬁ?]> ®)

and the anisotropy of the particle displacement with respect
to the initial direction of the centroid,” see Fig. 3,

=|

N
(cos 0,(1)) = < ! D) ﬁf>. )
i=1

Complete isotropy yields (cos#;) =0 (i =p,c). Perfect
alignment of @;(r) with respect to ﬁl.c yields (cos@,) =1,
whereas perfect alignment of [Ar;(r) — C;] with respect
to —ﬁl.c yields (cosf.) = 1. Furthermore, if the monomer
displacement is large with respect to |C;|, 0,(¢) =~ m — 6.(¢)
and (cos 6,,(t)) = —(cos 6.(t)). The order parameters defined
by Egs. (8) and (9) provide complementary information. By
referring to Fig. 3, positive values of {(cos 8,.(¢)) signal that the
particle is preferentially located in regions I and II, whereas
positive values of (cos 6,(¢)) denote preferential location of
the particle in regions II and III.

Fig. 4 (top) shows detailed plots of {(cos8.(¢)), Eq. (8).
At very short times the displacement Ar;(f) is small and
(cos 8.(t)) ~ 1. Then, the anisotropy drops in a temperature-
independent way up to 7,,, the time needed by most particles to
reverse their initial velocity, see Fig. 1. At later times the decay
slows down and becomes temperature-dependent. The decay
stops at about the structural relaxation time 7,. At t > 7,
a mild increase of (cos@.(¢)) is observed to be followed
by a later decay. The description of the non-monotonous
relaxation of the order parameter in this viscoelastic regime
goes beyond the purposes of the present paper and is presented
elsewhere.!?’

J. Chem. Phys. 144, 144505 (2016)
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FIG. 4. Local anisotropies of the cage rattling. Top: {(cosf.(t)), Eq. (8),
at different temperatures. The unlabeled inset shows the complete decay.
Bottom: (cos@),(t)), Eq. (9). The dots mark the structural relaxation time 7.
The left dashed line marks the minimum of the velocity correlation function
at t =t,,, see Fig. 1. The right dashed line marks the time needed by the
trapped particle to explore the cage t*, see Fig. 2. Up to t ~0.65 (cosf,(t))
is nearly temperature-independent. The maximum of (cos8,(t)) signals that
the particle, as in atomic systems,’” tends initially to move to the centroid.
The insets labelled as “Rigid” plot the anisotropies for 7'=0.6,0.9 having
replaced the semirigid bond with a rigid one and leaving any other pa-
rameter unchanged. They evidence that the oscillations in the time window
tm St < t* of the main panels are due to the finite stiffness of the bond.

Fig. 4 (bottom) plots (cos 6,(t)), Eq. (9), at different
temperatures. At very short times the direction of the particle
displacement ;(¢) is almost isotropic and (cos 8,,(¢)) is small.
Later, the particle approaches the initial position of the centroid
of the VP vertices, (cosf,(t)) increases and reaches the
maximum at ¢,,, when C,,(t) is at the minimum. The initial
tendency of the trapped particle to move to the centroid
has been reported'*" and is clear indication that initially
there is growing correlation between the local structure
and the particle displacement. However, at later times the
correlation decreases, up to ¢ ~ 0.65 in an almost temperature-
independent way. For ¢ 2 0.65 the decrease of (cos 6,(¢)) is
slowed down and becomes strongly temperature-dependent.
The declining anisotropy (cos 8,(¢)) is consistent with our
previous finding that the influence of both the size and
the shape of the cage on the mean square displacement is
lost within ¢* ~ 1.7 For times longer than the structural
relaxation time the escape from the cage reduces the order
parameter further, and a negative tail is observed. The tail
follows by the approximate relation (cos 6,,(¢)) ~ —(cos 0.(t)),
which holds at long times, and the positiveness of {cos 6.(¢)).

It seems proper to compare the decrease of the two
order parameters in the range ¢, <t < t* where structural
relaxation is virtually missing.!>!'%*? First, by replacing the
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semirigid bond with a rigid one, one clarifies that the small
oscillations which are superimposed to their decay in this time
window are due to the finite stiffness of the bonds, see Fig. 4
(insets). One also notices that, differently from (cos 6.(z)),
(cos 6,,(1)) is largely temperature-independent if ¢ < 0.65, see
Fig. 4. This is due to the different characters of the two order
parameters. The time-dependence of (cosd,(t)) around its
maximum at f,, tracks the bounce of the particle with the
cage wall. This process is nearly temperature-independent,
see Fig. 1. Instead, the anisotropy (cos 6.(¢)) decreases if the
population of particles, initially located in regions I and II of
Fig. 3, displaces appreciably to region III. The same process
affects (cos 6,,(1)) less because region III may be reached from
region II also with no change of 6,,. To reach the region III the
particle initially approaches the centroid of the VP vertices,
located close to the voids between the particles marking the
weak spots of the cage. The approach to the centroid, and
then the decay of {(cos@.(t)), is limited by the softness of
the cage,”*3-*% which is temperature-dependent. The elastic
response by the cage will be dealt with in Sec. III C 2.

The above discussion suggests that {cos 6,,(¢)) tracks the
monomers being backscattered by the cage wall, whereas
(cos 8.(1)) is more sensitive to the monomers escaping from
the cage. This picture is reinforced by observing the changes
of the two anisotropies around #*. We remind that at t* early
breakouts from the cage start to take place, see Fig. 2 and
Sec. III A.">1® (cos 0,,()) has an inflection point at #* which
develops in {cos6.(t)) only at the lowest temperature, see
Fig. 4. The accelerated decay of {cos 6.(¢)) around ¢* suggests
that (cos 6.(t)) is more affected by the monomers leaving
the cage, since they lose correlation with the cage geometry,
whereas (cos 6,,(¢)) is more sensitive to the trapped particles
which keep on being affected by the cage geometry. At low
temperature, being the escapes quite rare, the two anisotropies
are more similar.

C. Cage border

Sec. III B discussed how the cage rattling of the trapped
monomers is affected by the neighbours. Here, we reverse the
point of view and investigate how the neighbours are affected
by the collisions of the trapped monomer. To this aim, we
consider the geometry of the cage in terms of the volume
Vi, the surface S; and the asphericity a; of the ith VP. The
asphericity is defined as

53

=—1t 1 10
367er.2 (10)

ai;

It is non-negative and vanishes for a sphere. For the system
under study a ~ 0.35-0.45, namely, the VPs are moderately
non-spherical (the asphericities of the dodecahedron and the
octahedron are 0.325 and 0.654, respectively).®”-% Since each
VP includes one particle only, the VP volume is a measure of
the local density.

1. Statics: Volume-surface correlations

There are no correlations between the asphericity and
the volume. Fig. 5 shows a representative example. No

J. Chem. Phys. 144, 144505 (2016)
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FIG. 5. Correlation plot of the asphericity and the volume of VPs of the melt
of trimers at 7' = 1. No correlation is apparent.

correlations are also found between the asphericity and the
surface of the VPs (not shown). Instead, Fig. 6 evidences the
strong correlation between the surface and the volume of VPs.
It follows from the good packing and the subsequent relatively
narrow width of the distribution of the asphericity.®”-® To show
that, we recast Eq. (10) as

s=[36n(@+D]" v, 11

Then, we neglect the fluctuations of the asphericity a and
treat it as an adjustable parameter to best-fit Eq. (11)

FIG. 6. Correlation plot of the surface and the volume of VPs of the melt
of trimers at T =1 (Pearson correlation coefficient » =0.973). The lines are
Eq. (11) with the indicated values of the asphericity. The best-fit value of the
asphericity (a = 0.404) compares well with the average asphericity of the VPs
(a)=0.405).
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to the correlation plot. The result is superimposed to the
numerical data in Fig. 6. It provides a nice fit with
best-fit asphericity rather close to the average asphericity
of the VPs of the state under consideration. The plot
also shows that the cloud of data is bounded within
the approximate range of the asphericity, a ~ 0.35-0.45,
see Fig. 5.

2. Dynamics: Elastic response

Volume, surface, and asphericity of the ith VP fluctuate
around their average values due to the rearrangement of both
the tagged ith particle and the surroundings.

To give clear impression of the surface-volume corre-
lations we plot in Fig. 7 a selected time-frame of the
fluctuations of volume, surface, and asphericity of the VP
surrounding two specific central and end monomers. The
strong correlation of the volume and the surface is quite
apparent. Differently, the fluctuations of the asphericity
have poor resemblance with the ones of the volume and
surface.

To characterize the fluctuations in a quantitative way, we
define the correlation function
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FIG. 7. Selected time-frame of the surface (top), volume (middle), and
asphericity (bottom) of the VP surrounding particular central (green) and
end (magenta) monomers of different trimers of the melt at 7 = 1. Note the
extreme similarity of the fluctuations of the volume and the surface and the
different characters of the ones of the asphericity.
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N

3 [xi0) = ()] [xi(0) = (x)] - .
) = | = - : (12)
2 [xi0) = ()] - 6x

i=1

with x =V, S,a. ({x)) denotes the average of x over all the
N monomers. Eq. (12) yields C,(0) = 1. To ensure that C,(t)
vanishes at long times we set
2
5y = e [ - (] (13)
where ((x)). and ({x)), are the average of x restricted to the N,
central and the N, end monomers, respectively (N, + N, = N).
Eq. (13) is derived in Appendix A.

Fig. 8 shows C,(f) with x =V (top panel), S (middle
panel), and a (bottom panel) at different temperatures. As
anticipated, there is strong similarity between Cy (¢) and Cs(?).
Within the time 7, needed by most particles to reverse their
initial velocity, a large part of the correlations of the cage
geometry is lost. For ¢ > t,, = 0.175, the decay becomes
extremely slow and strongly dependent on the temperature.
This parallels the time dependence of the order parameter
(cos 6.(1)), see Fig. 4 (top). At long times, the structural
relaxation erases the residual correlations of the cage geometry
and Cx(1,) 0.1, x = V, S, a.

We now address the fluctuation correlation in the time
window t,, <t < t* where both the velocity correlations,
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FIG. 8. Correlation functions, Eq. (12), of volume (top), surface (middle)
and asphericity (bottom) of VPs at different temperatures. The dashed lines
mark the region #,, <t <t* as in Figs. 1 and 4. Insets: magnification of the
oscillatory behavior at intermediate times. The insets labelled as “Rigid” plot
the correlation function for 7' =0.6,0.9 having replaced the semirigid bond
with a rigid one and leaving any other parameter unchanged. They evidence
that the oscillations are not due to the finite stiffness of the bond but due to
the elastic response of the local structure.



144505-8 S. Bernini and D. Leporini

Fig. 1, and the order parameters, Fig. 4, hint at the elastic
response of the cage to the colliding trapped particle. The
insets of Fig. 8 focus on this time interval. Correlation
oscillations in VP size, but not in shape, are apparent. The
oscillations are still present if one replaces the semirigid
bonds by rigid bonds (see insets labelled as “Rigid” in Fig. 8),
proving that they are not due to bond vibrations. We interpret
the minimum of Cy(t) and Cs(t) as due to the deformation
of the local structure following the disordering collision of
the central particle with the cage, whereas the successive
maximum and the later smaller oscillations reflect the elastic
response to recover the original arrangement. This sort of
collective “cage ringing” is not tracked by the asphericity, see
Fig. 8 (bottom), confirming the poor correlation between the
size and the shape of the cage. It is worth noting that the
elastic effects seen via the VP volume and surface are small,
in that the fluctuations of the VP size and shape are quite
limited in size, as seen by Figs. 5 and 6.

D. Beyond the cage border

Secs. III B and III C investigated the cage rattling and
the effects on the closest neighbours, respectively. Here, we
complete the analysis and extend the range of the neighbours.
It will be now shown that in a time about ¢,, = 0.175,
needed by most particles to bounce back from the cage
wall (Fig. 1), extended modes involving particles beyond
the first shell appear. The modes have solid-like character
since 7, > 1,194 j e, they are distinct in nature from the
hydrodynamic modes developed by the drag force of a moving
particle.'”! We divide the discussion in two parts by first
describing the onset of extended displacement correlations
for t <t*, when the trapped particle completes the cage
exploration, and then their persistence and decay for ¢ > ¢*. In
particular, in Sec. III D 1 we will compare the influence of the
extended modes on the moves of the trapped particle in a time
t* with the one of the local geometry. Sec. III B noted that the
influence of the cage shape at #* is smaller than at ¢,,.

1. Onset of the displacement correlations (t < t*)

To reveal the modes, we characterize the degree of
correlation between the direction of the displacements
performed simultaneously in the same lapse of time ¢ by
two particles initially spaced by r;; via the space correlation

function***
1 N
Culr,t) = <N ;ﬁm : U,-<r,r>>, (14)
with
1 N
Ui(r,1) = o JZ; 0,(05(r - ri)), (15)

i£j
where @;(¢) and N(r) are the direction of Ar;(¢), Eq. (3), and the
average number of particles initially spaced by r, respectively.
If the displacements are perfectly correlated in direction, one
finds Cy(r,t) = 1. Cy(r,t) has some formal similarity with
(cos 6,(1)), Eq. (9), but the two quantities are quite different

J. Chem. Phys. 144, 144505 (2016)

e (cos 0,(t)) is a measure of the directional correlation of
the displacement performed in a time ¢ by the tagged
particle and the axis ﬁl.c set by the initial cage geometry.

e Cy(r,t) is a measure of the average directional corre-
lation of the simultaneous displacements performed in
a time ¢ between the tagged particle and each of the
surrounding particles at distance r.

Fig. 9 (top) plots the spatial distribution of the correlations
for different times ¢. It is seen that if the time is shorter than
tm = 0.175, the time needed by most particles to reverse
their initial velocity due to backscattering, the correlations
are limited to the bonded particles at r = r, = b and, weakly,
the first shell (Fig. 9, lower panels). For longer times, the
correlation grows in both magnitude and spatial extension with
characteristic peaks corresponding to the different neighbour
shells.** These spatial directional correlations have been
also observed in simulations on hard spheres and hard disks'??
and experiments on colloids.'”® Fig. 9 (lower panels) shows
that the onset of the correlations of both the third and the
fourth shells is delayed of about 0.4 time units due to the
finite propagation speed of the perturbation. It is also seen
that the growth of the correlation levels off at times ~¢* and
is temperature-independent, whereas their magnitude weakly
decreases with the temperature. The limited influence of the
temperature mirrors the one of the velocity correlation loss in
the intermediate range t,, St < t°.
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FIG. 9. Top panel: spatial distribution Cy(r, ) of the correlations between
the simultaneous displacements of the central particle and the surrounding
particles at distance r for different times ¢ and 7 =0.6. The time window
starts at £ =0.1<1¢,,=0.175 and ends at #*=1.023. The peak positions
correspond nearly to the ones of the radial distribution function.*** At
constant density they do not depend on the temperature. Bottom panels: onset
of the correlations at the peak positions at 7' =0.6 (left) and 7' =1 (right).
rp = b equals the bond length distance.
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Comparing (cos8,(t)), Fig. 4, and Cy(r,t), Fig. 9,
leads to a clearer picture of how the particle in the cage
progresses between ¢, and t*. Before ¢, the cage geometry
has increasing, even if weak, influence, see Fig. 4. After
tm, the displacement-displacement correlations increase and
extend in space, Fig. 9, with parallel decrease of the influence
of the cage geometry, Fig. 4. At the completion of the cage
exploration at t*, the anisotropy of the particle displacement
due to local order is small and declining, whereas the
displacement-displacement correlations reach their maximum.
The picture provides an interpretation of the puzzling finding
that for a given state of a liquid of linear chains (trimers
or decamers), the end and the central monomers, which
have different distributions of the cage size and shape, have
equal (r’(t*)) = (u*).°® On one hand, that finding exposes the
minor role of the cage geometry. On the other hand, it is
well explained by the extended displacement-displacement
correlations evidenced in Fig. 9, overriding the different local
order of the end and the central monomers. The leading role
of the extended displacement-displacement correlations in
setting the monomer moves on the time scale #* is proven by
the fact that physical states with identical spatial distributions
of the displacement-displacement correlations exhibit equal
mean square amplitude of the cage rattling (r(t*)) = (u?).***
The coupling between the rattling process and extended modes
has been indicated.'*31-3738

Displacement correlations have been evidenced in an
experimental study of a dense colloidal suspension.'?* Contact
with our simulations is allowed by splitting the displacement
direction in the transverse and the longitudinal components
with respect to the direction of the separation vector

=10, - By, (16)
N La

=u, —u,rj, (17)

where m =1i,j and F;; = (r; —r;)/r;; refers to the initial

configuration before the displacement occurs. Let us define
the related correlation functions as

N
Cp(r.1) = <m Z uf (t) - uf (t)o(r _rij)>’ (18)

i,j=1
i#j

N
Cr(r,t) = <m Z uj () - ) (1)6(r — rij)>~ 19)

The longitudinal and the transverse components are related to
the total correlation function by

Cu(r,t) = Cr(r,t) + Cr(r,1). (20)

Fig. 10 plots Cr(r,t) (top) and Cr(r,t) (middle). The
longitudinal correlations increase faster than the transverse
ones with increasing time ¢. This is seen in Fig. 10 (bottom)
plotting for selected positions the growth function

Cx(l",[) - Cx(r,O.l)
Cx(r,t%) ’
The longitudinal correlations have different spatial distribution

with respect to the transverse ones. Fig. 10 proves that
the bonded particles (r = 0.97) are correlated mostly via

Cx(r,1) = X e{LT}y. @I

J. Chem. Phys. 144, 144505 (2016)
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FIG. 10. Spatial distribution of the correlations between the simultaneous
longitudinal (top), Eq. (18), and transverse (middle), Eq. (19), components
of the displacements of the central particle and the surrounding particles
at distance r for different times ¢ and 7T =0.6. The time window starts at
t=0.1<t,,=0.175 and ends at t* = 1.023. The lower panel plots the growth
of the correlation, Eq. (21), at selected positions. The longitudinal correlations
increase faster than the transverse ones.

their longitudinal displacements. Fig. 10 also shows that
the oscillatory character of the total displacement correlation
function is largely due to the longitudinal component, whereas
the transverse component is much less sensitive to the radial
density distribution. Other salient features are the negative
minimum of Cr(r,7) at r = 1.4, corresponding to the first
minimum of g(r), and the pronounced maximum of Cr(r,t)
close to the same position. All these hallmarks have been
observed in an experimental study of a dense colloidal
suspension.'® This suggests that the key features of the
displacement correlations are not strictly affected by the
molecular connectivity.

Even if the full interpretation of the spatial pattern
of Cr(r,t) and Cy(r,t) is deferred to future work, some
preliminary remarks may be offered. The negative dip
of Cr(r,t) at r ~1.4 close to the maximum of Cr(r,t)
is consistent with particles approaching, or receding
from, each other in a compression/dilation motion while
transversely displacing the same way. The role of quasi-
linear arrangements of particles was suggested in regard
to the oscillatory behaviour of the longitudinal correlation
of the displacements.'> From this respect, evidence of
bond-bond alignment, i.e., three monomers in a row, is
reported for the molecular liquid under study.’’ Moreover,
in densely packed colloids it is known that straight paths of
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CT(r,t)

FIG. 11. Spatial distribution of the correlations between the simultaneous
overall (top), Eq. (14), longitudinal (middle), Eq. (18), and transverse (bot-
tom), Eq. (19), components of the displacements of the central particle and
the surrounding particles at distance r for different times ¢ >¢*=1.023
and T =1. At the selected temperature 7, =3 and the average molecular
reorientation time 7 = 126.16

£sp particles are exponentially distributed as ~exp[—Csp/sp)
with £gp ~ 0.73,0.87 depending on the sample preparation.'*
Interestingly, the height of the peaks of Cy(r,?), due to the
longitudinal component, decay exponentially with distance as
~exp[-r/&] with 0.7 < & < 1,*% suggesting a connection
with the distribution of the length of aligned particles.

We briefly discuss the weak negative tail observed in
Cr(r,t) at large r, Fig. 10 (middle), affecting Cy(r,?), Fig. 9.

0.3

® C,(r,t)
O C,(r,,t)
o C.(L,.t)
o C.(L,,t)
v C(T.t)
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FIG. 12. Time dependence of the overall, longitudinal and transverse corre-
lations at the indicated positions in Fig. 11. At the selected temperature 7, =3
and the average molecular reorientation time 7., = 126.16 The time window
starts before ¢,,, =0.175. Note the maximum at about #*=1.023.
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The tail disappears by increasing the size of the system (not
shown) and is due to the momentum conservation requiring
that, with fixed center of mass of the system, a displacement
of one particle induces correlated counter-displacements on
the other ones. The size effect does not affect the longitudinal
displacements when averaged over the sphere with radius r,
see Fig. 10 (top). This may be understood by reminding that
the direction of the displacement of the central particle sets
the sphere axis. Then, the larger size effect on the transverse
displacement follows from the larger weight of the equatorial
belt in the average with respect to the polar zones, so that
the induced counter-displacements contribute negative terms
to Cr(r,t) and negligibly to the average of Cr(r,?).

2. Persistence and decay of the displacement
correlations (t » t*)

What happens at the displacement correlations for longer
sampling times ¢t > t* = 1.023? We already know that small
changes are observed up to t = 7, even for sluggish states,
thus creating a plateau region on increasing ¢.*** In this range
the presence of quasi-static collective elastic fluctuations*?
set the magnitude of the direction correlations. A view of
the displacement correlations in space for ¢ > ¢* is given
in Fig. 11. The complete view of the growth, up to ¢ ~ t*,
the plateau region up to f ~ 7,, and the following decay
is presented in Fig. 12. Note that, since the decay is quite
slow, in order to visualise all the time range, a state with
short structural relaxation (7, = 3) is considered, thus limiting
the persistence of the maximum longitudinal and transverse
correlations. Fig. 11 shows that the spatial modulation of both
the longitudinal and the transverse correlations are averaged
for t > 7,. At longer sampling times the magnitude of the
correlations decreases further. From this respect, an important
time scale is the average molecular reorientation time 7.,
defined as C,.(t..) = 1/e where C,.(t) is the end-to-end time
correlation function.'® The correlations vanish for r > 2 and
t > 7,.. Nonetheless, some permanent correlations are left at
shorter distances. In particular, residual correlations due to
the intrachain connectivity are present for 1 < r < 2, together
with large correlations between bonded monomers at r =~ 0.97.
Thus, we see that the connectivity of the trimer does not affect
the correlation of the displacements of monomers spaced of
more than two diameters.

IV. CONCLUSIONS

The present paper investigates by MD simulations of a
dense molecular liquid the key aspects driving the moves of
the monomers in the cage of the surrounding ones. The aim is
clarifying if the displacements are driven by the local geometry
of the cage or the solid-like extended modes excited by the
monomer-monomer collisions. The main motivations reside
in both contributing to the intense ongoing research on the
relation between the vibrational dynamics and the relaxation in
glassforming systems, and improving our microscopic under-
standing of the universal correlation between the relaxation
and the mean-square amplitude of the rattling in the cage, (u?),
a quantity related to the Debye-Waller factor.
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To discriminate between the roles of the local geometry
and the collective extended modes in the single-particle
vibrational dynamics, the cage rattling is examined on
different length scales. First, the anisotropy of the rattling
process due to local order, i.e., the arrangement of the first
shell, is characterized by two order parameters sensing the
monomers succeeding or failing to escape from the cage. Then,
the collective response of the surroundings excited by the
monomer-monomer collisions is considered. The collective
response is initially restricted to the nearest neighbours of the
colliding particle by investigating statics and fluctuations of
the VP surface, volume, and asphericity. Then, the long-range
excitation of the farthest neighbours is scrutinised by searching
spatially extended correlations between the simultaneous fast
displacements of the caged particle and the surroundings.

Two characteristic times are found: ¢,,, = 0.175and t* ~ 1.
The former is the time when the velocity correlation function
reaches the minimum. The latter is the time needed by the
trapped particle to explore the cage with mean square rattling
amplitude (). One finds that the anisotropy of the random
walk driven by the local order develops up #,,, then decreases
and becomes small at t* ~ 1. On the other hand, between ¢,
and #* the monomer-monomer collisions excite both the elastic
response of the cage and the long-range collective modes of
the surroundings in parallel to the decreasing role of the local
anisotropies. The longitudinal component of the long-range
collective modes has stronger spatial modulation than the trans-
verse one with wavelength of about the particle diameter, in
close resemblance with experimental findings on colloids.

All in all, we conclude that the monomer dynamics at
t*, and then (u?), is largely affected by solid-like extended
modes and not the local geometry, in harmony with previous
findings,*#>646768 in particular reporting strong, universal
correlations with the elasticity,**%* and poor correlation
with the size and the shape of the cage.®”%® On a more
general ground, our study suggests, in close contact with
others,'*31:37-38 that the link between the fast dynamics and the
slow relaxation is rooted in the presence of modes extending
farther than the first shell.
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APPENDIX A: DERIVATION OF &4, EQ. (13)

Let us define the auxiliary quantity

N
X(0)= )" [xile) = (0] [x:0) = ()] (A1)
i=1
N¢
= > [Geje) = (em)(x10) = ()]
Jj=1
Ne
+ 3 [Gene) = oM @a0) = ()], (A2)
h=1

J. Chem. Phys. 144, 144505 (2016)

({x)) denotes the average of x over all the N monomers. Let
us define ((x)). and ((x)), as the averages of x restricted
to the N, central and the N, end monomers, respectively
(No+ N, = N). The average ((x)) is related to ({x)), and
{(x)), by the equation

() = SEQN + FE e

In Eq. (A2) we add and subtract ({x)). to x;(t), and do the
same to x;(0). Also, we add and subtract ({x)),, to x,(t) and do
the same to x,(0). If + — oo the fluctuations of (x;(z) — ({(x)).)
and the fluctuations of (x;(0) — ((x))..) have both zero average
and are uncorrelated. Analogously for the fluctuations of
(xn(?) — ({x)).) and the fluctuations of (x,(0) — ({x)),). Then,
we yield

(A3)

6, = lim X (1) (A4)

= NoJ()e = (0] + N[, - (0] (AS)
Plugging Eq. (A3) into Eq. (AS) yields

2
6= N Reeon, - Reccon|

2
N R, = e

= 2 [, = (o] (A6

Eq. (A6) coincides with Eq. (13).

APPENDIX B: ON THE PRESENCE
OF A CRYSTALLINE FRACTION

Since the model with rigid bonds exhibits weak
crystallization resistance, we have paid particular attention
to detect any crystallization signature. From this respect,
we have monitored some key quantities under equilibration
and production of both the rigid and semirigid systems. We
summarize the results:

(1) The radial distribution function compares rather well
with the one of atomic liquids, apart from the extra-peak
due to the bonded monomers.

(i) The pressure and the configurational energy exhibit
neither drops nor even slow decreases within 1%, during
the runs.

(iii) No global order and even microcrystalline domains are
seen by visual inspection of the samples. Note that, if
the sample crystallizes, ordering is strikingly visible,
e.g., see Fig. 10 of Ref. 91.

(iv) No order revealed by Steinhard global order parame-
ters.”!

(v) The mean square displacement always increases steadily
with time. In a crystalline sample it levels off, see Fig. 2
(top).

(vi) Full decorrelation of the incoherent part of the
intermediate scattering function in both equilibration
and production runs in all cases except the production
runs of the system with rigid bonds at 7 = 0.6. In the
presence of a solid-like fraction the incoherent part of the



144505-12 S. Bernini and D. Leporini

intermediate scattering function decays to a finite plateau
at long times, see Fig. 2 (middle).

It is worth noting that the crystalline state obtained by
spontaneous crystallization of an equilibrated liquid made of
trimers with rigid bonds at 7 = 0.7 considered in Fig. 2 does
not pass any of the above tests.

The tests (iv)—(vi) are now discussed in detail.

1. Test (iv): Absence of long-range order

To characterize the degree of global positional ordering
of our samples we resort to the metric Qy gopar’ '? To
this aim, one considers in a given coordinate system the
polar and azimuthal angles 6(r;;) and ¢(r;;) of the vector
r;; joining the ith central monomer with the jth one
belonging to the neighbors within a preset cutoff distance
r* = 1.2 0* = 1.35.19 The vector r;; is usually referred to as
a “bond” and has not to be confused with the actual chemical
bonds of the polymeric chain!

To define a global measure of the order in the system, one
calculates the quantity'%

np(i)

N
gelonl _ Nib Z Z nm[a(ru)ﬁ(riﬂ]’

i=1 j=1

(BD)

where n, (i) is the number of bonds of ith particle, N is the
total number of particles in the system, ¥;,,, denotes a spherical
harmonic and N, is the total number of bonds, i.e.,

N

Np = Z I’lb(i).

i=1

(B2)

The global orientational order parameter Q; opar is defined by
the rotationally invariant combination

172

l
O1.global = (214—Z1) Z |gsiobel2 (B3)
m=-1
In the absence of global ordering Qj giopar = 0 in systems
with infinite size. In the presence of long-range crystalline
order Q. giopat # 0, €.2., Q6. globar ~ 0.5,”11% with exact values
depending on the kind of order. Fig. 13 shows Qg giobai
vS. Qu gopa for all the states under investigation. They are
compared with one typical crystalline state of the system with
rigid bonds. Other crystalline states yield Q4 giopai-Os,giobal
pairs within the size of the diamond. The non-ideal values of
the order parameters of the crystalline state indicate imperfect

0.3
O Semirigid V'S
=, O Rigd
ié 0.2 Crystal
)
© 0.1}
o
o @ ‘ ‘ ‘
0 0.01 0.02 0.03
Q 4, global

FIG. 13. Global order parameters Qg giopar and Q4 giobar- The crystal state is
the same considered in Fig. 2 and is the only state exhibiting global order.

J. Chem. Phys. 144, 144505 (2016)

long-range ordering.”’"!%> We were unable to crystallize
the system with semirigid bonds which, however, having
b = b,igiq, s anticipated to have order parameters similar to
the rigid bond case. Fig. 13 shows that only the crystalline
state has global, long-range order.

2. Tests (v) and (vi): Absence of cristalline fractions

Fig. 2 shows that if the sample crystallizes the changes
of both MSD and ISF stop. In principle, the MSD increase in
time may be also seen if supercooled liquids and crystalline
fraction coexist.?® In this heterogeneous case the overall MSD
is largely contributed by the mobile phase, since the MSD
of the arrested phase levels off rapidly. However, ISF would
reach a plateau at long times due to the frozen phase unable
to lose the position correlation tracked by ISF. Fig. 2 shows
that ISF vanishes at long times in all states, except one to be
discussed below, ruling out the presence of polycrystallinity
at the end of the production runs, i.e., no crystalline regions
formed during the equilibration and the subsequent production
runs. The ISF of the system with rigid bonds at 7 = 0.6 is still
non-zero at the end of the production runs (due to our decision
to stop the simulation soon after 7). To get a rough estimate
of the maximum crystalline fraction ¢, we identify ¢
with the ratio of the residual ISF height, ISF,, with the ISF
plateau of the crystal state, ISF., (weakly dependent on T).
We get ¢, < ¢ = ISF, /ISF. = 0.09. We offer arguments to
conclude that the possible crystalline fraction of the system
with rigid bonds at T = 0.6, if present, is much less than the
upper limit ¢7'**, and, in any case, plays negligible role. In
fact:

(1) the system with rigid bonds at 7 = 0.6 passes the tests (i),
(i), (iid), (iv), (v);

(2) the same system at T = 0.9, where no crystalline fraction
is present, provides quite close, or even coincident, results
to the ones gathered at 7 = 0.6, see the insets of Figs. 1,
4, and 8. Note also that the results of the systems with
rigid and non-rigid bonds are also quite close, see Figs. 1
and 8;

(3) the cage rattling amplitude and the structural relaxation
of the system with rigid bonds at 7 = 0.6 fulfill the
universal scaling between the fast vibrational dynamics
and the slow relaxation in glass-forming systems, see
Fig. 2 (bottom) and Sec. III A.'®15-23 The universal
scaling is anticipated to fail in semicrystalline materials
where the frozen component has finite rattling amplitude
but no relaxation.
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