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Abstract When using small area estimation models, the presence of outlying
observations in the response and/or in the auxiliary variables can severely
affect the estimates of the model parameters, which can in turn affect the
small area estimates produced using these models. In this paper we propose
an M-quantile estimator of the small area mean that is robust to the presence
of outliers in the response variable and in the continuous auxiliary variables.
To estimate the variability of this estimator we propose a non-parametric
bootstrap estimator. The performance of the proposed estimator is evaluated
by means of model- and design-based simulations and by an application to real
data. In these comparisons we also include the extension of the Robust EBLUP
able to down-weight the outliers in the auxiliary variables. The results show
that in the presence of outliers in the auxiliary variables the proposed estimator
outperforms its traditional version that takes into account the presence of
outliers only in the response variable.

Keywords Robust estimation · Robust EBLUP · Bootstrap estimation ·
Trisquared redescending function · Unit level models

1 Introduction

In the past years there has been growing interest among policy makers and
public administrators at both national and local level concerning the need for
accurate, timely and reliable data as a prerequisite for good planning, proper
management and effective governance (ESS, 2014).

Survey sampling has been recognized as the effective way to obtain reliable
estimates at national level or at a given level of aggregation, i.e. sub-national
areas. Usually the areas (or domains) not designed in the sample have sample
sizes not large enough to allow for reliable direct estimation - i.e. estimates
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based only on area observations. In these cases one can resort to small area
estimation (SAE) techniques.

Various efficient mixed-model-based SAE methods has been developed
(Rao and Molina, 2015; Jiang and Lahiri, 2006). For example, the empiri-
cal best linear unbiased predictor (EBLUP) based on a linear mixed model is
often recommended when the target of inference is the small area average of a
continuously distributed variable (Battese et al, 1988; Prasad and Rao, 1990).

Since the presence of outliers is a common feature in real data applications,
the issue of outlier robust model-based estimation has recently attracted some
interest in the small area estimation literature (Chambers and Tzavidis, 2006;
Sinha and Rao, 2009; Tzavidis et al, 2010; Dongmo Jiongo et al, 2013; Cham-
bers et al, 2014). Chambers (1986) differentiates between two typologies of
outliers, representative and non-representative. A non-representative outlier is
a gross error in the sample data, caused by deficiencies in survey processing
(e.g. miscoding). A representative outlier is, instead, a sample outlier that is
potentially drawn from a group of population outliers and hence cannot be
unit-weighted in estimation.

Chambers and Tzavidis (2006) and Sinha and Rao (2009) proposed robust
techniques that can be used to down-weight outliers in the response variable
when fitting the underlying model. Chambers and Tzavidis (2006) addressed
the issue of outlier robustness in SAE using an approach based on fitting M-
quantile models (Breckling and Chambers, 1988) to the survey data. Sinha and
Rao (2009) addressed this issue from the perspective of linear mixed models.
A comparison of these two alternative approaches can be found in Giusti et al
(2014). Chambers et al (2014) defined such methods as robust projective, since
they project the behaviour of the robust working model of the sample onto
the non-sampled part of the population. Tzavidis et al (2010) and Chambers
et al (2014) proposed methods that allow for contributions from representative
sample outliers and they are defined as robust predictive methods since they
attempt to predict the contribution of the population outliers to target param-
eters. Gershunskaya (2010) proposed a slight modification of a classical linear
mixed model assuming that the underlying distribution is a scale mixture of
two normal distributions, where outliers are assumed to have a larger variance
than the regular observations. This model explicitly describes the behaviour
of the outlying observations relative to the other units; thus, it automatically
produces estimates (e.g., using MLE) that account for outliers.

None of the above authors have studied the presence of outlying values
in the auxiliary variables, except for a final remark in Sinha and Rao (2009).
Outlying values in the auxiliary variables may occur in many real data appli-
cations, as representative or non-representative outliers. For example, repre-
sentative outlying values can be present in income data which can be used to
predict consumption expenditure. Non representative outliers can be present
in the data when, for example, measurement errors are systematically present
but it is not possible to identify them (e.g. satellite data, big data). The pres-
ence of outliers in the auxiliary variables may influence the fitting process and
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the prediction in SAE. It can lead to biased estimates because they can be
high leverage points in the factor space (Cook and Weisberg, 1980).

Sinha and Rao (2009) proposed to use a weight function based on the
Mahalanobis distance to down-weight any outlier in the continuous auxiliary
variables, x’s, when estimating the target parameters (see also Maronna et al,
2006; Hubert et al, 2008; Filzmosera et al, 2008; Carroll and Pederson, 1993).
However, the authors did not investigate the performance of the small area
predictor including this weight function in the auxiliary variables neither by
simulation experiments nor by a real data application.

In this article we propose a M-quantile-based estimator for small area
means that is robust to the presence of outliers both in the response and
auxiliary variables. In particular, the proposed estimator is based on a ro-
bust method that down-weights outliers in auxiliary variables by using the
trisquared redescending weight function (Carroll and Pederson, 1993). More-
over, we also evaluate the performance of the Robust EBLUP defined following
the proposal in Sinha and Rao (2009) by using the trisquared redescending
weight function. The main aim is to check if these two new estimators out-
perform their traditional version when outliers are present in the auxiliary
variables, and not to make a comparison between them. The study is limited
to the case of continuous x’s values.

The rest of the paper is organized as follows. In Section 2 we review the lin-
ear mixed model and the EBLUP of the small area mean under this model. In
this Section we also show the robust version of the EBLUP proposed by Sinha
and Rao (2009) and their suggestion to down-weight outliers in the auxiliary
variables. In Section 3 we describe the M-quantile approach to small area esti-
mation. In Section 4 we present the proposed M-quantile-based estimator. In
Section 5 the traditional and outlier-robust small area methodologies are con-
trasted using model- and design-based simulations that employ a wide range
of contamination mechanisms for generating population data with outliers in
the response variable and in the covariates. In Section 6 the traditional and
outlier-robust small area estimators are applied to real data on the produc-
tion of olives in 53 agrarian regions of Tuscany, Italy. Finally, in Section 7 we
summarize our main findings and provide suggestions for further work.

2 Small area estimation using linear mixed model estimators

In a typical small area estimation problem we consider a population U of size
N divided into D non-overlapping subsets Ui (domains of study or areas) of
size Ni, i = 1, ..., D. The unit level models commonly assume that a vector
xij of p auxiliary variables is known without error for each unit j belonging
to area i, while the values of the variable of interest yij are available in each
area only for a sample of population units, si ⊂ Ui of size ni ≥ 0, i = 1, . . . , D.
The set ri ⊂ Ui contains the Ni − ni indices of the non-sampled units in area
i. Thus, the yij (j ∈ si, i = 1, . . . , D) values are observed only for the sample
units belonging to the sets si, while they are unknown for non-sample units
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in the sets ri. The goal is to use these data to estimate the mean mi for the
variable y in each area. However, when the number of sample units in area i is
limited, estimating the area means of y using a direct estimator would usually
lead to unreliable estimates and small area methodologies should be used.

Roughly speaking, model-based small area estimation methods “borrow
strength” from all the available observations trough an explicit model to obtain
more precise estimates for small areas. The most popular approach to model-
based small area estimation is based on random effects models, also known as
linear mixed models, that include random area effects to account for between
area variations (Battese et al, 1988). These models are based on the hypothesis
that the following nested error regression model holds at the unit level:

yij = xTijβ + vi + eij , (1)

where, i = 1, . . . , D, j ∈ Ui, β is a vector of fixed effects, vi is an area-level
random effect and eij is a unit-level random error. It is also assumed that
the sample data obey the same model (with ni replacing Ni) thus implying
that the sampling design is ignorable given the auxiliary variables included

in the model. For the error terms it is assumed that vi
i.i.d.∼ N(0, σ2

v) and

eij
i.i.d.∼ N(0, σ2

e). Under this model the EBLUP of the mean is

m̂EBLUP
i = N−1i

∑
j∈si

yij +
∑
j∈ri

(xTijβ̂ + v̂i)

 , (2)

where β̂ and v̂i are maximum likelihood or restricted maximum likelihood (ML
or REML) estimates for the unknown model parameters β and vi (further
details in Rao and Molina, 2015). The mean squared error (MSE) of (2) can
be estimated with the estimator proposed by Prasad and Rao (1990), based
on a Taylor approximation.

It has been well documented (Fellner, 1986; Huggins, 1993; Richardson and
Welsh, 1995) that the estimators of β and of the variance components in (1)
are sensitive to outliers in the distribution of the random area effect and of the
random errors (and then in the response variable), which in turn can affect the
small area estimates. For this reason Sinha and Rao (2009) proposed a small
area estimator of the mean using an outlier robust version of (2). Denoting
by subscript ψ the robust estimates of the fixed and the random effects, the
robust version of EBLUP, called Robust EBLUP (REBLUP), is

m̂REBLUP
i = N−1i

∑
j∈si

yij +
∑
j∈ri

(xTijβ̂ψ + v̂i,ψ)

 . (3)

In this expression the fixed effects and variance components are obtained using
the Robust ML Proposal II in Richardson and Welsh (1995). The robust ran-
dom effects are estimated using the equation by Fellner (1986). For estimating
the MSE of (3) Sinha and Rao (2009) proposed a parametric bootstrap based
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on the paper of Hall and Maiti (2006). Estimator (3) is based on the assump-
tion that non-sample data follows the assumed working model. Therefore, this
estimator aims to estimating robustly the expected value of the non-sample
sum (or mean) of the study variable under this working model on the basis
of the outlier-contaminated sample data. This assumption typically leads to
biased estimators. Chambers et al (2014) proposed a robust-bias corrected
version of (3).

Sinha and Rao (2009) in the final discussion also drew the attention to
the presence of outliers in the auxiliary variables. In particular, they briefly
suggested to modify the robust ML estimating equation of βψ in (3) by ap-
plying to the x some weight function in order to down-weight the outliers in
the auxiliary variables. When the x are continuous Sinha and Rao (2009) sug-
gested to choose a weight function that is based on the Mahalanobis distance
(x − µ)TV −1(x − µ), where µ and V denote some robust estimates of the
location and scale of x. However, they did not present any additional detail
or result for these proposed estimators.

3 The M-quantile approach to small area estimation

Chambers and Tzavidis (2006) proposed an alternative approach to small area
estimation that relaxes the parametric assumptions of mixed effects models
underlying the EBLUP. This method is based on M-quantile regression and
it guarantees robustness with respect to outlier observations in the target
variable. In this part of the Section we define the linear M-quantile regression
model.

The M-quantile of order q ∈ (0, 1) for the conditional density of y given
the set of covariates x, f(y|x), is defined as the solution Qy(q|x, ψ) of an
estimating equation

∫
ψq{y −Qy(q|x, ψ)}f(y|x) dy = 0, where ψq denotes an

asymmetric influence function, which is the derivative of an asymmetric loss
function ρq. In particular, a linear M-quantile regression model for yij given
xij is one where we assume that

Qy(q|xij , ψ) = xTijβψ(q). (4)

That is, we allow a different set of p regression parameters for each value of q ∈
(0, 1). The estimator of βψ(q) can be obtained by solving

∑D
i=1

∑
j∈si ψq(yij−

xTijβψ(q))xij = 0 with respect to βψ(q), assuming that ψq(yij − xTijβψ(q)) =

2ψ{s−1(yij−xTijβψ(q))}{qI(yij−xTijβψ(q) > 0)+(1−q)I(yij−xTijβψ(q) ≤ 0)},
where s is a suitable robust estimate of scale, e.g. the MAD estimate s =
median

∣∣yij − xTijβψ(q)
∣∣ /0.6745. A popular choice for the influence function

is the Huber, ψ(u) = uI(|u| ≤ c)+c sgn(u)I(|u| > c) (Chambers and Tzavidis,
2006). However, other influence functions are also possible. Provided that the
tuning constant c is strictly greater than zero, estimates of βψ(q) are obtained
using iterative weighted least squares (IWLS).

Chambers and Tzavidis (2006) extended the use of M-quantile regression
models to small area estimation. They characterized the conditional variability



6

across the population of interest by the M-quantile coefficients of the popu-
lation units. For unit j in area i this coefficient is the value qij such that
Qy(qij |xij , ψ) = yij . The M-quantile coefficients are determined at the popu-
lation level. Consequently, if a hierarchical structure does explain part of the
variability in the population data, then we expect units within clusters defined
by this hierarchy to have similar M-quantile coefficients.

When the conditional M-quantiles are assumed to follow the linear model
(4), with βψ(q) a sufficiently smooth function of q, the M-quantile (MQ) esti-
mator of the mean in area i can be defined as

m̂MQ
i = N−1i

{∑
j∈si

yij +
∑
j∈ri

xTijβ̂ψ(θ̂i)
}
, (5)

where θ̂i is an estimate of the average value of the M-quantile coefficients of
the units in area i. See Chambers and Tzavidis (2006) for further details on
the estimation of the M-quantile coefficients at unit level and for the computa-
tion of the small area M-quantile coefficients. Chambers and Tzavidis (2006)
observed that the M-quantile mean estimator (5) can be biased, especially in
the presence of heteroskedastic and/or asymmetric errors. This observation
motivated the work in Tzavidis et al (2010) and Chambers et al (2014).

Analytic estimators of the MSE of (5) are described in Chambers and Tza-
vidis (2006), Chambers et al (2011) and Chambers et al (2014). The estimator
proposed by Chambers et al (2011) is a first order approximation to the MSE
of (5) and has been proved to be bias robust against model misspecification;
however, its main criticism is that it can be unstable especially with small area-
specific sample sizes. Chambers et al (2014) proposed an alternative analytic
estimator conditional on the realized values of the area effects, which is defined
by the solution of a set of robust estimating equations. Under this approach,
the MSE of (5) is shown to be the sum of a prediction variance, a squared
bias term and a correction term accounting for the sampling variability of pa-
rameter estimates. Tzavidis et al (2010) proposed a non-parametric bootstrap
approach to estimate the MSE of (5), based on the approach of Lombard́ıa
et al (2003). This bootstrap estimator can be applied both for small area means
and for non-linear quantities such as small area quantiles and poverty indica-
tors estimated using M-quantile estimators (Marchetti et al, 2012). Although
computationally intensive, the non-parametric bootstrap MSE estimator has
smaller bias and is more stable than the analytic MSE estimator proposed by
Chambers et al (2011).

4 M-quantile estimators with outliers in the auxiliary variables

When auxiliary variables are affected by the presence of outlying observations,
traditional M-quantile estimators of the small area mean may be not appro-
priate, since they can lead to biased estimates. In this Section we propose a
M-quantile estimator of the small area mean that is robust to the presence of
outliers in the auxiliary variables.
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Under two alternative scenarios we suppose that a proportion ζ of the xij
in the population (scenario 1) or in the sample (scenario 2) are contaminated,
so we observe x∗ij = {(1 − ζ)xij , ζ(xij + ηij)} where ηij ∼ N(γ, σ2

η). That
is, a proportion ζ of the observed covariates x∗ij is affected by the presence
of outlying observations that cause a shift both in location and variability
with respect to the population or sampled xij . We propose to deal with the
presence of these outlying observations using a robust method that down-
weights on the basis of extreme leverage values (Carroll and Pederson, 1993).
The qth M-quantile Qy(q|x∗, ψ) of the conditional distribution of y given x∗

in the population satisfies:

Qy(q|x∗ij , ψ) = x∗Tij βψ,w(q) (6)

where ψ denotes the influence function associated with the M-quantile, and
w is the weighted function used to down-weight the extreme values of the
auxiliary variables.

We choose the Trisquared redescending weight function (Carroll and Ped-
erson, 1993) to down-weight the values of the auxiliary variables - excluding
the intercept - that is defined as follows

w(t) = {1− (t/k)2}3I(|t| ≤ k),

where k is a tuning constant. A weight function w(t) depends on the influence
function ψ(t) since w(t) = ψ(t)/t. A ψ-function is called redescending if ψ(x) =
0 for all x ≥ xr for xr < ∞, and xr is often called rejection point. The
advantages on the use of redescending functions in M-estimation is explained
in Maronna et al (2006).

To down-weight outlying values of the auxiliary variables we use a robust
Mahalanobis distance, as suggested in Sinha and Rao (2009). In particular, we
define for each observation the value zij = (x∗ij−µ)TV −1(x∗ij−µ), where µ is
a p−1 vector of robust estimates of the centres of the p−1 auxiliary variables
(intercept is excluded) and V is a robust estimate of the (p − 1) × (p − 1)
covariance matrix of the auxiliary variables. Defining u2ij = zij/(p − 1), the
weight used to down-weight the extreme values is

w(uij) = w(x∗ij) = {1− (uij/k)2}3I(|uij | ≤ k), (7)

where we underline that uij is a function of x∗ij . Given that uij is a distance
from the centre, choosing k = 8 gives weight 0.75 or greater to those points
with distance less than or equal to 2.5, weight 0.5 or greater if the distance
is less than or equal to 3.6, and weight 0.25 or greater if the distance is less
than 5.0 (Carroll and Pederson, 1993). The value of the tuning constant can
be chosen using a cross-validation technique as the one presented in Section 5.

We have also compared the weights obtained from the Trisquared func-
tion with the widely used Bisquare function and also with other weighting
functions such as the Hampel, the Generalized Gaussian Weight (GGW), the
Linear Quadratic Quadratic (LQQ) and the Welsh. All these funtions are in
the class of redescending functions (Maronna et al, 2006; Koller and Stahel,
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2011; Hampel et al, 1986). The results of this comparison are discussed in
Section 5.

The estimator of βψ,w(q) can be obtained by solving

D∑
i=1

∑
j∈si

ψq(yij − x∗Tij βψ,w(q))w(x∗ij)x
∗T
ij = 0

with respect to βψ,w(q). For fixed q the estimator of βψ,w(q) is as follows

β̂ψ,w(q) =
{
X∗TW ∗(q,x∗)X∗

}−1
X∗TW ∗(q,x∗)y, (8)

where y is the n-vector of response values, X∗ is the corresponding n× p ma-
trix of the observed auxiliary variables and W ∗(q,x∗) = W 1(X∗)W 2(q) is a
diagonal matrix of order n which contains the final set of weights produced
by the IWLS algorithm used to compute β̂ψ,w(q). Here, W 1(X∗) is an n× n
diagonal matrix with elements w(x∗ij) and W 2(q) is a diagonal matrix of order

n with elements ψq(yij − x∗Tij βψ,w(q))/(yij − x∗Tij βψ,w(q)). The equation (8)
takes into account both the down-weight of the influence points for the re-
sponse and auxiliary variables. Moreover, the IWLS algorithm guarantees the
convergence to a unique solution (Kokic et al, 1997; Chambers and Tzavidis,
2006).

When (6) holds, the proposed M-quantile estimator (MQ/RobX) of mi that
accounts for the presence of outliers in both the response and the auxiliary
variables is as follows

m̂
MQ/RobX
i = N−1i

[∑
j∈si

yij +
Ni∑

j∈ri w(x∗ij)

∑
j∈ri

w(x∗ij)x
∗T
ij β̂ψ,w(θ̂i)

]
. (9)

Equation (9) follows from the assumption that the mean of the down-
weighted auxiliary variables is equal to the mean of the unobservable uncon-
taminated auxiliary variables:(∑

j∈ri

w(x∗ij)

)−1 ∑
j∈ri

w(x∗ij)x
∗
ij = N−1i

∑
j∈ri

xij . (10)

Using the equality (10) in (5) it is straightforward to obtain the estimator in
(9).

Note that estimators m̂MQ
i and m̂

MQ/RobX
i differ in the method used to

estimate the regression coefficients (βψ in (5) and βψ,w in (9)), and in the use
of the weighted x in equation (9).

We also defined and tested an alternative version of estimator in (9) by
including the bias adjustment proposed in Tzavidis et al (2010). However, this
adjustment though reducing the bias, caused a great increase in the variabil-
ity of the estimator resulting in a worse MSE when compared to (9). This
behaviour has been already noticed in the literature (Chambers et al, 2014;
Giusti et al, 2014).
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The estimator proposed in (9) may provide systematic bias if outliers in
auxiliary variables are concentrated only in few areas. If this is the case, we
propose to compute the weights w(x∗ij) conditional to the areas (or group of
areas) - i.e. use only area i units in (7). So for those areas where there are no
outliers the weights should be approximately equal to one and for those areas
where there are outliers in the auxiliary variables the weights will down-weight
the outlying values.

Applying the weight function (7) to the REBLUP estimator and following
the proposal in Section 8 of Sinha and Rao (2009) we obtain a REBLUP that
is robust also for outliers in the auxiliary variables, hereafter REBLUP/RobX.

We remark that estimators MQ/RobX and REBLUP/RobX depend on
unit level auxiliary variables for non-sampled units unlike the ordinary MQ
and REBLUP estimators where only area level totals are needed for small area
estimation of the mean.

The contamination model can be considered similar to models that as-
sume one ore more auxiliary variables subject to measurement error. Ybarra
and Lohr (2008) proposed an area-level small area estimator based on the Fay-
Herriot model that accounts for sampling variability in the auxiliary informa-
tion, and derived its properties, in particular showing that it is approximately
unbiased. Ghosh et al (2006) proposed a nested error linear regression popula-
tion model with an area-level covariate, x, subject to a structural measurement
error, but the proposed Bayes predictor does not involve sample information
on the covariate. Torabi et al (2009) proposed a full efficient Bayes predictor
and then the EB predictor. In the last two papers the authors assume that
the true value of covariate (say xi) remains the same for all the units in a
small area, and it is measured with error as xij = xi + ηij for the j-th sample
unit in small area i. This is the main difference with our proposal, since we
assume the presence of outliers in auxiliary variables only for some units of
the population. The use of the models proposed by Ghosh et al (2006) and
Torabi et al (2009) in presence of outliers could be an aim of future research.

4.1 Mean-squared error estimation

In this Section we propose a non-parametric bootstrap technique to estimate

the mean squared error of m̂
MQ/RobX
i . This technique follows the work in

Marchetti et al (2012).
We start from the following M-quantile model:

yij = x∗Tij βψ,w(θi) + eij , (11)

where θi is the unknown M-quantile of area i, βψ,w is the unknown vector of
regression parameters for unknown M-quantile θi and eij is a vector of random
errors.

Estimate the parameters of (11) according to the method described in

Section 4, then compute the residuals êij = yij − x∗Tij β̂ψ,w(θ̂i). Generate B
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bootstrap populations as follows:

y?bij = w(x∗ij)x
∗T
ij β̂ψ,w(θ̂i) + ê?bij j ∈ si, i = 1, . . . , D (12)

y?bik = w(x∗ik)x∗Tik β̂ψ,w(θ̂i) + ê?bik k ∈ ri, i = 1, . . . , D (13)

where ê?bij and ê?bik are obtained sampling with replacement from a smoothed
distribution of the re-centred model residuals êij . The tuning constant k of the

weight function in (12) and (13) is computed minimizing
∑D
i=1

∑
j∈si(yij −

ŷ?bij )2 with respect to k. Since β̂ψ,w is held fixed, this minimization is fast.

From each of the B bootstrap populations generate L samples (y?bl,x∗bl)
with the same sample sizes of the original sample as follow

y?blij = x∗Tij β̂ψ,w(θ̂i) + ê?blij ,

where ê?blij is drown conditionally to the areas from the re-centred residuals êij
(Chambers et al, 2016).

The estimator of the mean in area i for the bootstrap population b using the

bootstrap sample l (l = 1, . . . , L), m̂
MQ/RobX,bl
i , is obtained applying equation

(9) on (y?bl,x∗bl). For the bootstrap population b the true mean in area i is
mb
i = N−1i

∑
j∈Ui

y?bij .

The bootstrap estimators of the bias and variance of the estimated target

small area parameter, m̂
MQ/RobX
i , are defined respectively by

B̂ias
(
m̂
MQ/RobX
i

)
= B−1L−1

B∑
b=1

L∑
l=1

(
m̂
MQ/RobX,bl
i −mb

i

)
V̂ ar

(
m̂
MQ/RobX
i

)
= B−1L−1

B∑
b=1

L∑
l=1

(
m̂
MQ/RobX,bl
i − ¯̂m

MQ/RobX,bl
i

)2
,

where ¯̂m
MQ/RobX,bl
i = L−1

∑L
l=1 m̂

MQ/RobX,bl
i .

Finally, the bootstrap MSE estimator of the estimated small area target
parameter is then defined as follows:

mse
(
m̂
MQ/RobX
i

)
= V̂ ar

(
m̂
MQ/RobX
i

)
+ B̂ias

(
m̂
MQ/RobX
i

)2
. (14)

A less computationally demanding MSE estimator could be developed fol-
lowing the ideas that are set out in Chambers et al (2011) and Chambers et al
(2014). The first proposal is a bias robust MSE estimator that is based on the
pseudolinearization approach of Chambers et al (2011). The second method is
based on first-order approximations to the variances of solutions of estimating
equations (Chambers et al, 2014). However, this extension is not an objective
of this paper and its research worth pursuing in the future.
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5 Empirical evaluation of the performance of the proposed
estimators

In this Section we use model-based Monte-Carlo simulations and a design-
based simulation to provide empirical evidence of the performance of the pro-
posed small area robust estimators of the mean. Moreover, we also evaluate
the performance of the proposed bootstrap MSE estimator of the MQ/RobX
mean estimator.

5.1 Model-based simulations

The behaviour of the mean estimators by means of model-based simulations
is assessed under four different scenarios: A) non-representative outliers in
the auxiliary variable and absence of outliers in the target variable; B) non-
representative outliers in the auxiliary variable and presence of outliers in the
target variable; C) representative outliers in the auxiliary variable and absence
of outliers in the target variable; D) representative outliers in the auxiliary
variable and presence of outliers in the target variable.

In what follows subscript i identifies small areas, i = 1, . . . , D and sub-
script j identifies units in a given area. Population data for D = 30 areas are
generated under a random intercept model,

yij = 1 + 2xij + vi + eij .

In each of the four scenarios the area population size is set to Ni = 100 units
∀ i and a simple random sample of size ni = 5 and 10 is selected from each
area. The use of two alternative sample sizes enables us to assess the effect of
the domain sample sizes both on the bias and the stability of the small area
mean estimator.

In scenarios A and B the population values of the auxiliary variable are
generated from the Normal distribution with mean 5 and variance 1. Then, the
sampled values of the auxiliary variable xij are contaminated with a proportion
of ζ = 0.01, 0.03, 0.05 values drawn from a Normal distribution with mean 15
and variance 1. In scenarios C and D the population values of the auxiliary
variable are generated from a contaminated distribution with a proportion of
(1− ζ) values drawn from a Normal distribution with mean 5 and variance 1,
and the remaining ζ values drawn from a Normal distribution with mean 15
and variance 1 (table 1).

Table 1 Auxiliary variable generation scheme in the four simulation scenarios

xij (population) x∗ij (sample)

Scenario A and B N(5, 1) (1 − ζ)N(5, 1) + ζN(15, 1)
Scenario C and D (1 − ζ)N(5, 1) + ζN(15, 1) –



12

In scenarios B and D the area-specific random effects vi are generated from
a contaminated distribution. The notation used in table 2 for scenarios B and
D means that a given proportion (0.85) of the vi’s are generated from the
underlying “true” distribution N(0, 3) and the remaining proportion (0.15) of
the random effects are generated from the contaminated distribution N(0, 30).
The same technique is used to generate unit random effects.

Table 2 Area and unit random errors generation schemes in the four simulation scenarios.

vi eij
Scenario A and C N(0, 3) N(0, 6)
Scenario B and D 0.85N(0, 3) + 0.15N(0, 30) 0.9N(0, 6) + 0.1N(0, 150)

Combining alternative sample size values (ni = 5, 10) with three different
contamination proportions (ζ = 0.01, 0.03, 0.05) for each of the four scenarios
(A, B, C and D) results in a total of 24 alternative simulation configurations.

For the estimator MQ/RobX we choose ψ as the Huber function (with
tuning constant equal to 1.345). The tuning constant in equation (7) is set to
k = 10, 12, 14 respectively to the contaminated proportions of the auxiliary
variable ζ = 0.05, 0.03, 0.01. As an alternative, to choose the tuning constant
value in practical applications we propose a cross validation criterion, similar in
spirit to the one proposed by Rudemo (1982), Stone (1984) and Bowman (1984)
(see also Stone (1974)). The idea is to use the leave-one-out cross validation
to minimize a squared loss function with respect to the tuning constant k. Let
m̂RobX
i be the mean estimates in area i and let m̂RobX

i,−j be the mean estimate
in area i estimated without observation j. Note that leaving one observation
out affects the estimates in all the areas given that some parameters (i.e. the
βψ,w) are estimated using all the sample values. The optimal parameter k
minimizes the following cross validation function:

D∑
i=1

∑
j∈si

(m̂RobX
i − m̂RobX

i,−j )2 .

Given that this criterion is computationally intensive, it is not feasible to com-
pute the k parameter for each Monte Carlo run. This is why we set three fixed
values for the three corresponding levels of contamination for the auxiliary
variable.

We run in total 1000 Monte-Carlo simulations. Denoting by mi the true
mean in small area i and by m̂i a corresponding estimate, the performance
of the estimators is evaluated using the Relative Bias (RB) and the efficiency
with respect to the empirical RMSE of the EBLUP (EFF). Their definition is
as follows
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RB(m̂i) = H−1
H∑
h=1

(m̂i,h −mi,h

mi,h

)
, (15)

EFF (m̂i) =

√∑H
h=1(m̂i,h −mi,h)2/H−1√∑H

h=1(m̂EBLUP
i,h −mi,h)2/H−1

, (16)

where for area i and Monte Carlo iteration h = 1, . . . ,H = 1000, mi,h and
m̂i,h are respectively the population mean and an estimated mean of the y
variable (MQ, MQ/RobX, REBLUP, REBLUP/RobX, EBLUP).

In tables 3, 4, 5 and 6 we show the results of the simulations in terms of
percentage RB and percentage EFF for scenarios A, B, C and D respectively.
Our aim is to check if the MQ/RobX performs better than the MQ, and if the
REBLUP/RobX performs better than the REBLUP. The EBLUP estimator
is used as benchmark. Furthermore, the use of MQ, REBLUP and EBLUP
estimators allows us to check if the contamination of the auxiliary variable in-
fluences those estimators that do not take into account the presence of outliers
in the auxiliary variables.

Table 3 Scenario A. Averages over areas and simulations of the RB(%) and the EFF (%)
for EBLUP, MQ, REBLUP, MQ/RobX, REBLUP/RobX.

ζ = 0.01 ζ = 0.03 ζ = 0.05
RB% EFF% RB% EFF% RB% EFF%

ni=5
EBLUP -0.66 100.0 -1.21 100.0 -1.41 100.0

MQ -0.40 94.8 -1.24 98.3 -1.45 102.6
REBLUP -0.27 91.9 -1.05 100.6 -1.37 104.8

MQ/RobX -0.21 91.3 -0.77 85.4 -1.25 87.2
REBLUP/RobX -0.09 90.2 -0.25 84.1 -0.42 87.1

ni=10
EBLUP -0.88 100.0 -1.32 100.0 -1.41 100.0

MQ -0.59 101.9 -1.31 106.7 -1.37 108.5
REBLUP -0.41 88.8 -1.18 101.6 -1.38 104.6

MQ/RobX -0.31 98.5 -0.83 94.0 -1.16 95.4
REBLUP/RobX -0.09 85.1 -0.19 80.0 -0.32 83.2

We can see that estimators robust to outliers in the auxiliary variables
always show a gain in efficiency with respect to the corresponding non robust
(against outliers in auxiliary variables) estimators.

In more details, the MQ/RobX estimator shows a gain in efficiency (smaller
EFF) with respect to the MQ while the relative bias (RB) is similar. The same
applies to the REBLUP/RobX and the REBLUP. In scenarios A and C - where
there are no outliers in the response variable - the MQ is sometime worse than
the EBLUP while the MQ/RobX is always more efficient that the EBLUP, but
the gain in efficiency with respect to the EBLUP is small. Also the REBLUP
in some cases is outperformed by the EBLUP, while the REBLUP/RobX is
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Table 4 Scenario B. Averages over areas and simulations of the RB(%) and the EFF (%)
for the EBLUP, MQ, REBLUP, MQ/RobX, REBLUP/RobX.

ζ = 0.01 ζ = 0.03 ζ = 0.05
RB% EFF% RB% EFF% RB% EFF%

ni=5
EBLUP -0.80 100.0 -1.40 100.0 -1.57 100.0

MQ -0.47 64.5 -1.32 70.1 -1.54 72.7
REBLUP -0.38 58.7 -1.24 66.8 -1.51 69.3

MQ/RobX -0.22 62.7 -0.85 63.6 -1.26 66.6
REBLUP/RobX -0.12 57.6 -0.32 58.9 -0.47 63.2

ni=10
EBLUP -0.75 100.0 -1.18 100.0 -1.25 100.0

MQ -0.55 68.8 -1.16 73.2 -1.25 74.4
REBLUP -0.40 55.6 -1.10 64.4 -1.33 66.8

MQ/RobX -0.26 67.2 -0.88 69.1 -1.19 70.7
REBLUP/RobX -0.03 53.5 -0.10 54.5 -0.16 58.2

Table 5 Scenario C. Averages over areas and simulations of the RB(%) and the EFF (%)
for the EBLUP, MQ, REBLUP, MQ/RobX, REBLUP/RobX.

ζ = 0.01 ζ = 0.03 ζ = 0.05
RB% EFF% RB% EFF% RB% EFF%

ni=5
EBLUP 0.28 100.0 0.19 100.0 0.05 100.0

MQ 0.64 98.8 0.76 102.7 0.33 105.1
REBLUP 0.85 97.1 0.86 103.4 0.30 104.9

MQ/RobX -0.11 90.9 -0.54 86.4 -1.27 89.6
REBLUP/RobX 0.09 89.6 0.00 86.1 -0.35 92.9

ni=10
EBLUP 0.21 100.0 0.06 100.0 0.30 100.0

MQ 0.75 107.0 0.54 106.8 0.59 107.1
REBLUP 0.92 95.9 0.60 104.1 0.52 104.8

MQ/RobX 0.02 99.9 -0.46 95.9 -0.89 96.2
REBLUP/RobX 0.21 85.9 0.14 82.8 -0.12 83.7

always better if we look at the efficiency. Looking at scenarios B and D the
results are different. The MQ is always more efficient than the EBLUP, as ex-
pected. The same applies to the REBLUP. Moreover, the simulations show an
additional gain in efficiency of the MQ/RobX and the REBLUP/RobX with
respect to the MQ and the REBLUP respectively. As expected, the smaller
EFF is showed by the REBLUP/RobX, given that the simulation configura-
tions are based on a linear mixed model with symmetric error terms. Different
results are obtained under the design-based simulation where the generation
process of the data is unknown.

From the model-based simulation results we observe that as the contamina-
tion proportion ζ grows, the variability of the estimators also becomes higher,
as expected (these results are not showed here). A higher small area sample
size ni and the absence of outliers in the target variable have instead the ef-
fect of decreasing the variability of the estimators, all the other factors being
constant.
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Table 6 Scenario D. Averages over areas and simulations of the RB(%) and the EFF (%)
for the EBLUP, MQ, REBLUP, MQ/RobX, REBLUP/RobX.

ζ = 0.01 ζ = 0.03 ζ = 0.05
RB% EFF% RB% EFF% RB% EFF%

ni=5
EBLUP 0.34 100.0 0.14 100.0 0.22 100.0

MQ 0.60 66.1 0.58 72.8 0.35 73.9
REBLUP 0.75 61.9 0.65 68.8 0.35 70.5

MQ/RobX -0.09 62.2 -0.60 65.2 -1.11 68.1
REBLUP/RobX 0.11 58.0 0.05 60.9 -0.28 67.9

ni=10
EBLUP 0.12 100.0 0.18 100.0 0.25 100.0

MQ 0.52 69.1 0.58 73.1 0.48 74.0
REBLUP 0.69 57.1 0.68 64.5 0.42 66.1

MQ/RobX -0.14 66.4 -0.47 68.4 -0.98 71.5
REBLUP/RobX 0.11 52.8 0.29 55.1 -0.02 57.6

5.2 Design-based simulation

The design-based simulation is based on an artificial population of enterprises
generated using real tax-turnover data coming from the Structural Business
Survey carried out by the Central Bureau of Statistics, Netherlands. The tar-
get variable is the tax-turnover in the sector of retail trade. The auxiliary
variable is the turnover, which is highly correlated with the target. The target
of estimation is the average tax-turnover in 20 industry domains.

The original artificial population has about 64000 units. Since the R func-
tion we use to estimate the REBLUP and REBLUP/RobX performs slowly,
we decide to select randomly a sub set from the original artificial population.
The population sub set has been selected with a stratified random sample
where the strata are the 20 industry domains, obtaining a domain size that
varies between 100 and 840 units for a total of about 6600 units that represent
our target population. The correlation between target and auxiliary variable
is about 0.96 and there is presence of heteroschedasticity.

In our artificial population the target variables Y –i.e. the tax-turnover–
varies between -0.017 to 261.8 with an average of 4.5 (standard deviation
10) and a median of 1.7. The auxiliary variable X –i.e. the turnover– varies
between -0.014 to 121.6 with an average of 4.3 (standard deviation 9) and a
median equal to 1.7.

To evaluate the effect of outliers in the auxiliary variable we randomly
select 5% of units in the population and we add to them a constant value
equal to 25. The contaminated units in the population are held fixed in the
simulation. The correlation between target and auxiliary variables decreases to
0.82 after the contamination. The contaminated X variable has the same range
of the uncontaminated one, a median of 1.8 and an average of 5.6 (standard
deviation 10.5).

From the new artificial population we select 500 samples with a sample
size that is the 5% of the population size, so it varies between 5 and 42 units
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with an average sample size of 16. On each sample we estimate the average
tax-turnover in the 20 industry domains using the EBLUP, REBLUP, MQ,
REBLUP/RobX and MQ/RobX.

The simulation results are summarized in table 7 where we report the
percentage relative bias and the percentage efficiency computed accordingly
to (15) and (16) respectively. We can see that the less biased estimator is
the MQ/RobX (-3%) followed by the EBLUP (4%) and the MQ (8%). The
REBLUP and REBLUP/RobX in this simulation are highly biased (32% and
26% respectively). These results are probably due to the bias of the estimates
of the random area effects, because, with these data, the normality assumption
of the linear mixed model is violated. Looking at the efficiency with respect
to the EBLUP, we can see that the MQ/RobX is more efficient than the
MQ (84.6% vs 89%), the REBLUP/RobX is more efficient than the REBLUP
(85.9% vs 97%) and the MQ/RobX performs the best. All the estimators are
more efficient than the EBLUP.

The results of the design-based simulation justify the use of the MQ/RobX
estimator as an alternative to the REBLUP/RobX.

Table 7 Design-based simulation. Averages over areas and simulations of the RB (%) and
the EFF (%) for EBLUP, MQ, REBLUP, MQ/RobX, REBLUP, REBLUP/RobX.

RB% EFF%
EBLUP 4.03 100.0

MQ 8.39 89.0
MQ/RobX -3.02 84.6

REBLUP 32.2 97.0
REBLUP/RobX 26.9 85.9

We conclude that taking into account for the outliers in the auxiliary vari-
ables can significantly increase the efficiency of the proposed estimators, in
particular when there are outliers both on the target and on the auxiliary
variables.

5.3 Sensitivity to the choice of the weight function

The robust function we use to down-weight the auxiliary variable seems to
work properly on both the MQ/RobX and on the REBLUP/RobX estimators.
We carry out a comparison among the different weight functions, computing
the down-scale weights on a variable generated similarly to the auxiliary of
the model-based simulations. We tune the weight functions constants so that
each influence function has an asymptotic efficiency of the regression estimator
equal to 95%. What emerges from this comparison is that the resulting weights
are very similar to each other, with thin differences. The correlation coefficients
between the Trisquared weights and the other redescending functions range
between 0.999 (Bisquared) to 0.979 (Hampel). The mean absolute difference
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ranges from 0.003 (Bisquared) to 0.044 (Hampel). Since the Hampel weights
seem to be the most different from the Trisquared ones, we carry out model-
based simulations on scenarios A, B, C and D using the Hampel function
to down-weight the x. We observe a very similar behaviour of MQ/RobX
and REBLUP/RobX estimators with respect to themselves with Trisquared
weights (results are not reported here). However, using the Hampel there is
a little bit less efficiency in both MQ/RobX and REBLUP/RobX. Since the
GGW and LQQ functions are more similar to the Hampel while the Bisquared
and Welsh functions are more similar to the Trisquared (being, however, all
very similar to each other), we suggest to use the latter redescending weight
functions as an alternative to the Trisquared.

5.4 Evaluation of the performance of the mean squared error estimator

As concerns the estimation of the MSE, we evaluate the bootstrap estimator
(14) proposed in Section 4.1. We use one bootstrap population (B = 1) from
which we draw 500 bootstrap samples. Since the evaluation of the bootstrap
MSE estimator is taking place within a Monte-Carlo framework, the genera-
tion of a new Monte-Carlo population and of a new bootstrap population at
each iteration imitates the generation of many bootstrap populations. For more
comments about the effect of the number of bootstrap populations B and on
the choice of the value of B in real applications refer to Marchetti et al (2012).
As specified in Section 4.1, we draw residuals from a smoothed version of the
error distribution unconditionally to the areas (for further details on this tech-
nique see Marchetti et al (2012)). In order to smooth the model residuals we
use the Epanechnikov kernel density, k(t) = (3/4)(1− t2)I(|t| < 1), where the
smoothing parameter is chosen so that it minimizes the cross-validation crite-
rion suggested by Bowman et al (1998). To compute the smoothing parameter
we use the np package (Hayfield and Racine, 2008) in the R environment (R
Development Core Team, 2010). In particular, we use the function npudensbw

to compute the smoothing parameter and the function npudist to derive the
smoothed distribution function of the residuals.

To check the performance of the proposed bootstrap estimator (14) we com-
pute the relative bias (RB) and the relative root mean squared error (RRMSE),

RB
(
mse(m̂i)

)
= H−1

H∑
h=1

(
mse(m̂i,h)−MSE(m̂i,h)

MSE(m̂i,h)

)
, (17)

RRMSE
(
mse(m̂i)

)
=

{∑H
h=1(mse(m̂i,h)−MSE(m̂i,h))2/H−1

}1/2

{
MSE(m̂i,h)

}1/2
, (18)

where mse(m̂i,h) is the bootstrap MSE estimator of the MQ/RobX esti-
mator in area i and simulation h and MSE(m̂i,h) is the empirical MSE of the
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MQ/RobX estimator observed over the Monte Carlo simulations (considered
as the “true” MSE of the estimator).

The results of the simulation are summarized in table 8 in terms of percent-
age RB and percentage RRMSE. Since we did not always observe a reduction
of the RRMSE increasing the sample size from 5 to 10 (scenario C and D,
ζ = 5%), we also run a simulation with sample size equal 20.

The values of the percentage RRMSE varies between 21% to 43%, with the
vast majority of them above the 35%. The increase of the sample size reduces
the RRMSE, particularly when ni = 20. We have also tested the effect of
further increments of the sample size, obtaining a further reduction of the
RRMSE, as expected (results are not reported here).

The percentage RB is between -10% and 10% with the exception of scenario
D for sample size equal 20 and ζ = 5% (RB=14.7%). In general, when the
sample size increases also the RB increases leading to conservative confidence
intervals. So we evaluated the limit of this growth with ni = 30 (results are
not reported here), and we observed results similar to ni = 20.

The performance of mse(m̂i) is also evaluated by computing for each small
area the average coverage rate of nominal 95% confidence intervals. The MSE
estimation provides reasonable average coverage performance, though there is
clear evidence that the intervals based on the bootstrap MSE estimator exhibit
under coverage (around 90%) with small sample size, ni = 5, 10. When the ni
increases the bootstrap MSE estimator improves its performance with a slight
over coverage. The results (not reported here) are available from the authors
upon request. However, the use of estimated MSEs to construct normal theory
confidence intervals, though widespread, has been criticized by Hall and Maiti
(2006). The results we obtained are consistent with their discussion.

The proposed bootstrap technique seems to work properly to evaluate the
uncertainty in the MQ/RobX estimates. The bias is small and the second order
properties are adequate.

6 Application: yield of olives in Tuscany

In this Section we apply the traditional and newly proposed estimators to
real data, to check if the presence of outliers in the auxiliary variables leads
to sub-optimal model-based small area estimators, as shown in model-based
simulations. We use agricultural data to estimate the yield of olives in Tuscany
agrarian regions (small areas). The Tuscan production of olive oil made by
local olives jointly with the production of grape and wine is an example of the
rich and excellent tradition of agricultural production in Italy and all over the
world.

In the application we use the official data on agricultural production col-
lected by the Italian National Statistical Insitute (Istat). We access the mi-
crodata of the sample of farms used by the Survey on the Structure and Pro-
duction of Italian farms (Struttura e Produzione delle aziende Agricole, Is-
tat 2003), jointly with the individual Italian Farms Census data (Censimento
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Table 8 Averages over areas and simulations of the RB% and RRMSE% of the bootstrap
MSE estimator of the MQ/RobX estimator

ζ = 0.01 ζ = 0.03 ζ = 0.05
RB% RRMSE% RB% RRMSE% RB% RRMSE%

Scenario A
ni = 5 -10.68 27.48 -10.12 28.20 -10.15 29.53
ni = 10 -3.14 23.96 -0.84 26.41 0.61 29.68
ni = 20 0.36 20.86 1.81 21.90 3.52 24.09

Scenario B
ni = 5 -8.20 35.35 -8.26 35.22 -9.56 36.28
ni = 10 -6.91 32.28 -5.50 34.00 -4.61 35.50
ni = 20 0.52 28.95 2.43 31.24 3.93 32.97

Scenario C
ni = 5 -5.27 27.43 -0.97 31.07 -0.28 33.89
ni = 10 0.86 24.94 6.04 30.32 10.44 36.77
ni = 20 5.47 21.70 9.66 25.67 14.44 31.40

Scenario D
ni = 5 -4.22 36.59 -4.10 37.98 -4.39 39.08
ni = 10 -0.63 34.36 2.93 36.34 10.27 43.26
ni = 20 5.95 29.61 11.06 33.51 14.68 38.66

dell’Agricoltura, Istat 2000). The data considered here are those of the Tus-
cany region, which is divided into 53 agrarian regions. The sample size within
the 53 agrarian regions varies between 2 and 185 farms (mean 45.34, median
34), while the population size varies between 475 and 8661 farms (mean 2592,
median 2064).

We analyse the available data to identify the working model to carry out
the model-based small area estimates. Among the set of variables in common
between survey and census data, only the extension of the agricultural surface
area devoted to the production of olives (OAS for short) is chosen as predictive
to model the yield of olives (OY for short).

To detect the presence of outliers we use the multivariate outliers detection
approach based on Projection Pursuit (PP). The PP approach consists in
looking for low dimensional linear projections that are susceptible to reveal
outlying observations. More details are available in Ruiz-Gazen et al (2010).
The results of the PP outliers detection are shown in figure 1 together with box-
plot of OAS and OY to graphically detect outliers in a univariate perspective.

Looking at figure 1 the presence of outliers is evident in both the variables.
Also using a classical multivariate Mahalanobis distance detection approach
(results not shown here) there is evidence of outliers in target and auxiliary
variables.

The preliminary analysis suggests that the REBLUP/RobX and the MQ/RobX
should be more efficient (in terms of MSE) than the REBLUP, the MQ and
the EBLUP. We applied all the five estimators to our agricultural data. The
results are in tables 9 and 10.

The MSEs of all the compared estimators are estimated using the boot-
strap, accordingly to the techniques proposed in Section 4.1, and adapted
where necessary. Substantially, we estimate the model and generate a boot-
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Fig. 1 Left: Multivariate outliers detection using PP approach, outliers in red. Right: log
scale box-plot of OAS and OY

Table 9 Distribution over 53 agrarian regions of the estimated average yield of olives and
its mse and correlation between small area and direct estimates (ρ)

Point estimates Root mse ρ
Q. 0.25 Median Q. 0.75 Q. 0.25 Median Q. 0.75

EBLUP 2.77 4.91 9.80 11.46 14.62 17.46 0.77
EBLUPlog 2.47 5.80 10.82 2.66 5.65 9.11 0.86

REBLUP 2.76 5.81 11.84 2.33 2.84 3.67 0.84
MQ 1.38 5.44 10.35 0.57 1.04 1.63 0.87

REBLUP/RobX 2.12 4.93 8.37 1.43 1.64 2.06 0.77
MQ/RobX 1.43 4.84 10.00 0.50 0.84 1.22 0.86

strap population for each estimator. Then we generate 100 samples on which
we estimate the target, obtaining the MSE estimates.

Table 9 shows the distribution of the average yield of oil and its mse in the
53 agrarian regions of Tuscany. Point estimates have a similar distribution,
similar also to that of the direct estimates, as we can see from the correlation
coefficients ρ between direct and small area estimates. The exceptions are
the EBLUP and the REBLUP/RobX, which have a correlation less than 0.8.
Point estimates have been benchmarked using the ratio adjustment (Rao and
Molina, 2015). It consists of multiplying each point estimate by a common

adjustment factor given by
∑D
i=1 wim̂

DIR
i /

∑D
i=1 wim̂

SAE
i , where m̂DIR

i is the
direct estimate for area i, m̂SAE

i is a small area estimate for area i and wi =
Ni/N .

For what concerns the uncertainty, we can see that the EBLUP estima-
tor shows high root mses (rmse) with respect to the others estimators. This
result was expected, given that there is presence of very big outliers, both
in target and auxiliary variables. The MQ and REBLUP estimators account
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for the outliers in the target variable, so they show rmses remarkably lower
than the EBLUP. Among them the MQ shows the best performance, showing
rmses that halve the rmses of REBLUP. An alternative to avoid the effect of
the outliers on the target is to use a log transformation. We have tried such
transformation on the EBLUP (EBLUPlog in table 9), and we have obtained
better results than the EBLUP on the row scale. However, the EBLUPlog is
still not comparable in term of rmse with the REBLUP. On the contrary, by
using the log transformation on the REBLUP (results are not reported here)
the estimates have a very high variability.

The MQ/RobX and the REBLUP/RobX estimators account for outliers
both in the target and in the auxiliary variable. As expected, the REBLUP/RobX
shows rmses lower than the REBLUP and the same happens for the MQ/RobX
with respect to the MQ. Furthermore, the MQ/RobX shows the best perfor-
mance among all the estimators. Point estimates together with their rmse for
all the agrarian regions are reported in the appendix.

The model parameters used to predict the small area means are reported
in table 10. The OAS coefficient increases for REBLUP/RobX and MQ/RobX
with respect to their non-robust-on-auxiliary-variable versions. The group of
observations outlying in the OAS variable “pull down” the regression line,
while this effect is mitigated estimating the coefficient with the proposed
method. Consequently, the intercept decreases for REBLUP/RobX and MQ/RobX
with respect to REBLUP and MQ respectively.

Table 10 Application: model parameters. The regression coefficients for MQ and
MQ/RobX are estimated at the median.

Intercept OAS σu σe
EBLUP 7.448 0.051 18.927 73.449
EBLUPlog 1.024 0.001 0.635 1.335
REBLUP 1.242 0.037 2.247 6.198
MQ 0.423 0.037 - -
REBLUP/RobX 0.394 0.056 0.721 1.813
MQ/RobX 0.181 0.054 - -

In conclusion, we use survey and census agricultural data to estimate the
average production of olives in 53 agrarian regions (small areas) in Tuscany.
Exploratory analyses show the presence of outliers in both the target and
the auxiliary variables, giving us the opportunity to test different small area
estimators on a real data application. The results show that the EBLUP, which
doesn’t take into account the outliers, show the worst performance in terms of
MSE. The MQ and the REBLUP, which take into account the outliers in the
target variable, outperform the EBLUP, but are worse than the MQ/RobX
and the REBLUP/RobX, which take into account the outliers both in target
and auxiliary variables. As a note, by using the log transformation the EBLUP
improves in precision; however, it still does not reach the efficiency of the other
estimators.
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7 Conclusions

The presence of outliers in the auxiliary variables may lead to biased small
area estimates. In this paper we propose an M-quantile estimator of the small
area mean robust to the presence of outliers both in target and in continuous
auxiliary variables. We also define a similar estimator under the linear mixed
models approach to SAE, following the suggestion in Sinha and Rao (2009).

The results of the model- and design-based simulation studies show that in
the presence of outliers in the auxiliary variable the new estimators (MQ/RobX
and REBLUP/RobX) outperform their traditional version in terms of relative
bias and efficiency. Particularly, they both outperform the EBLUP. The RE-
BLUP/RobX shows the best performance in model-based simulations, where
unit and area level errors are generated symmetrically. Notwithstanding this,
the performance of the MQ/RobX and the REBLUP/RobX is similar in terms
of bias and MSE. On the contrary, the MQ/RobX shows the best performance
in the design-based simulation. These results suggest that the presence of out-
liers in the auxiliary variables can significantly impact upon the small area
estimates, recommending the use of appropriate small area methodologies.
These conclusions are also supported by the results of the application, based
on agricultural survey and census data collected in Tuscany (Italy).

In the model-based simulation studies we also evaluate the performance of
the bootstrap estimator proposed to estimate the variability of the MQ/RobX
estimator. The results obtained suggest that the bootstrap estimator has ad-
equate second order properties and it is able to correctly reproduce the vari-
ability of the small area mean MQ/RobX estimator.

Future developments will deal with the choice of the tuning constant for
the ψ influence function. An ‘optimal’ c-value could be potentially achieved
by using a cross-validation criterion (Bianchi et al, 2015).

As in many cases official survey data are discrete, a further topic of in-
terest will be the extension of the proposed methodology to discrete auxiliary
variables.
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Appendix

Table 11 Estimates (and rmse) of the average yield of olive oil in the agrarian regions of
Tuscany presented in Section 6. DIR are direct estimates.

DIR. EBLUP EBLUP REBLUP REBLUP MQ MQ
log RobX RobX

0.65 2.37 (12.08) 1.53 (17.12) 1.58 (2.67) 1.22 (2.02) 0.48 (0.65) 0.7 (0.5)
1.67 1.86 (9.75) 2.01 (5.17) 2.06 (2.18) 2.52 (1.35) 2.56 (0.15) 2.43 (0.8)
0.43 2.74 (11.93) 1.5 (2.09) 1.34 (1.83) 1.51 (1.39) 0.6 (0.31) 0.75 (0.29)
0.81 3.52 (8.3) 2.62 (16.19) 2.76 (2.89) 2.34 (1.04) 1.79 (0.58) 2.44 (0.23)

0 4.92 (7.22) 1.93 (7.99) 2.83 (3.21) 1.31 (1.05) 0.08 (0.59) 0 (1.22)
6.43 4.91 (9.46) 5.53 (6.87) 6.26 (5.59) 5.53 (1.34) 1.28 (1.93) 1.69 (1.02)
0.89 4.17 (7.31) 2.09 (4.35) 2.49 (2.27) 1.94 (0.85) 0.17 (0.78) 0.49 (0.51)
4.91 5.03 (34.34) 8.02 (1.64) 6.06 (9.24) 7.24 (6.37) 6.16 (2.31) 6.28 (1.17)

0 4.93 (4.59) 2.56 (3.34) 2.22 (1.31) 1.86 (0.98) 0 (0.4) 0 (0.36)
1.12 0.96 (16.33) 0.77 (2.45) 1.55 (2.29) 2.12 (1.85) 0.55 (0.17) 0.72 (0.77)
3.01 2.61 (9.64) 3.8 (2.8) 4.35 (2.84) 3.53 (1.64) 2.62 (0.22) 2.64 (0.19)
3.8 0 (17.07) 0.86 (8.93) 1.6 (4.63) 1.87 (1.48) 0.83 (0.38) 0.85 (1.14)
3.5 3.06 (17.6) 1.09 (5.65) 3.42 (2.54) 3.22 (2.26) 1.38 (0.68) 1.32 (1.72)

6.95 3.6 (10.01) 3.53 (4.39) 5.68 (2.5) 3.71 (1.62) 3.54 (0.27) 2.59 (0.98)
0 3.04 (12.28) 0.66 (3.98) 1.89 (2.15) 0.96 (1.18) 0.05 (0.71) 0 (0.84)

41.74 71.79 (24.13) 29.2 (2.39) 18.91 (6.77) 27.51 (2.44) 38.18 (4.5) 47.51 (3.73)
8.6 0 (19.13) 10.6 (10.79) 10.26 (2.05) 7.09 (2.23) 12.81 (0.53) 8.37 (1.73)

5.14 9.8 (12.38) 8.32 (2.7) 11.84 (3.93) 6.67 (1.22) 13.69 (0.91) 7.63 (2.22)
48.11 9.91 (12.27) 17.87 (21.74) 14.75 (2.1) 6.6 (2.06) 21.28 (1.27) 14.46 (3.37)
21.62 13.77 (24.12) 23.53 (1.82) 18 (2.78) 11.4 (2.02) 18.73 (1.88) 16.98 (0.98)
27.95 18.56 (17.46) 22.89 (2.3) 18.59 (2.98) 19.68 (2.96) 38.85 (0.97) 41 (3.24)
19.44 5.17 (15.05) 13 (8.43) 13.02 (3.4) 6.58 (1.47) 18.92 (1.87) 10.91 (0.75)
4.25 2.77 (17.75) 7.81 (10.73) 4.37 (1.97) 2.64 (4.29) 4.34 (1.38) 4.36 (0.33)

20.85 9.82 (84.52) 10.82 (2.21) 11.85 (3.67) 12.14 (1.77) 8.53 (1.53) 9.65 (1.17)
28.36 30.49 (16.17) 25.5 (8.75) 25.35 (3.51) 35.71 (2) 27.47 (5.29) 22.74 (3.28)

4 4.04 (6.42) 4.27 (13.9) 2.38 (4.11) 1.29 (1.51) 1.32 (1.45) 1.72 (0.82)
4.7 3.06 (14.62) 4.19 (2.66) 6.41 (4.26) 5.44 (1.45) 4.95 (0.45) 4.42 (0.5)

4.94 8.62 (12.24) 5.93 (2.03) 9.02 (2.65) 7.01 (1.8) 5.97 (0.62) 6.11 (0.87)
0 2.05 (11.46) 0.59 (20.04) 1.38 (3.26) 1.24 (1.54) 0.01 (0.81) 0.01 (1.64)

13.2 9.05 (9.73) 8.19 (4.34) 9.07 (4.73) 7.57 (1.56) 10.35 (8.57) 9.71 (3.6)
16.5 15.11 (13.89) 22.85 (8.45) 21.92 (3.72) 28.09 (1.56) 30.35 (4.78) 21.92 (1.28)
2.91 1.15 (12.59) 0.96 (2.55) 1.4 (2.33) 1.35 (1.76) 0.48 (0.49) 0.89 (0.2)
6.75 2.45 (12.97) 2.47 (1.94) 4.72 (4.38) 2.92 (2.2) 2.23 (0.32) 1.43 (1.3)

0 3.32 (14.79) 0.97 (4.32) 1.3 (2.47) 1.02 (2.1) 0 (0.47) 0 (0.23)
4.52 9.71 (16.17) 6.99 (17.26) 4.85 (2.62) 3.81 (1.7) 6.06 (0.65) 5.8 (0.53)
0.92 2.84 (6.59) 2.22 (4.4) 1.76 (1.79) 1.59 (0.91) 1.45 (0.54) 1.39 (0.33)
3.64 6.61 (17.02) 6.08 (9.27) 7.25 (2.45) 7.22 (1.47) 5.44 (0.99) 4.84 (0.41)
5.99 8.09 (14.64) 9.48 (18.59) 10.95 (3.1) 11.24 (1.81) 7.41 (1.35) 7.01 (0.68)
2.5 4.18 (8.48) 6.53 (1.81) 4.59 (2.9) 1.96 (1.29) 3.12 (1.78) 2.62 (0.5)

4.61 3.72 (15.35) 5.8 (2.38) 5.81 (5.27) 4.57 (1.45) 6.64 (0.85) 5.98 (1.18)
46.97 48.17 (18.18) 28.18 (2.79) 31.8 (4.32) 45.41 (4.22) 36.62 (3.12) 57.42 (4.77)
4.93 1.9 (17.89) 3.6 (9.11) 5.37 (3.55) 3.83 (1.73) 4.21 (0.48) 3.8 (1.25)
7.77 5.13 (15.71) 6.6 (2.58) 5.75 (3.2) 6.11 (1.84) 7.48 (0.5) 10 (1.11)
3.07 5.32 (12.44) 4.63 (19.75) 6.08 (2.28) 5.01 (1.63) 4.8 (0.99) 4.37 (0.46)
5.29 0.74 (15.1) 5.16 (18.01) 4.01 (2.48) 3.16 (1.83) 5.74 (0.61) 5.47 (0.84)

11.97 8.71 (14.23) 9.89 (8.44) 9.67 (2.48) 8.37 (1.43) 9.6 (0.84) 8.85 (0.59)
14.05 18.61 (15.35) 22.71 (7.95) 17.91 (2.95) 20.51 (2.09) 20.69 (2.84) 22.12 (0.8)
10.31 11.15 (20.12) 13.47 (8.41) 11.42 (2.29) 12.8 (4.57) 9.47 (1.88) 13.24 (0.91)
8.46 14.93 (19.34) 12.5 (17.66) 12.88 (2.74) 10 (1.27) 13.47 (1.5) 12.24 (0.43)

10.78 19.28 (18.34) 14.59 (6.64) 14.5 (3.52) 17.36 (1.55) 14.32 (1.41) 18.15 (0.75)
15.72 18.39 (12.76) 10.84 (6.3) 13.35 (1.87) 16.96 (2.32) 10.32 (0.88) 15.82 (0.38)
3.36 4.67 (6.79) 4.78 (6.45) 4.44 (2.48) 2.45 (1.18) 2.39 (1.61) 2.39 (0.52)
5.49 0 (20.38) 3.69 (3.92) 7.46 (7.55) 4.93 (3.57) 6.75 (1.92) 6.47 (1.02)
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