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Abstract In this paper we present a product quadrature rule for Volterra integral
equations with weakly singular kernels based on the Generalized Adams Methods.
The formulas represent numerical solvers for Fractional Differential Equations,
which inherit the linear stability properties already known for the integer order
case. The numerical experiments confirm the valuable properties of this approach.
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1 Introduction

In this paper we are interested in the numerical solution of Fractional Differential
Equations (FDEs) of the type

Dα
t0y(t) = f(t, y(t)), t0 < t ≤ T, 0 < α < 1, (1)

where Dα
t0y(t) denotes the Caputo fractional derivatives defined by [7]

Dα
t0y(t) =

1

Γ (1− α)

∫ t

t0

y′(u)

(t− u)α
du. (2)
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As is well known, the use of Caputo’s definition allows one to treat the initial
conditions at t0 for FDEs in the same manner as for integer order differential
equations, whereas this is not possible using the Riemann-Liouville approach (see
e.g. [19] and [20] for a wide background). Setting y(t0) = y0 the solution of (1)
exists and is unique under the hypothesis that f is continuous and fulfils a Lipschitz
condition with respect to the second variable (see e.g. [10] for a proof).

As for the integer order case α = 1, a classical approach for solving (1) is
based on the discretization of the fractional derivative (2), which generalizes the
well known Grunwald-Letnikov discretization (see [20]), leading to the so-called
Fractional Backward Differentiation Formulas (FBDFs, [13,15]). Besides, since the
solution of (1) can be written as

y(t) = y(t0) +
1

Γ (α)

∫ t

t0

(t− u)α−1f(u, y(u))du, (3)

which represents a Volterra integral equation of the second kind with weakly sin-
gular kernel and constant forcing function, each quadrature scheme for the above
integral leads to a numerical solver for (2). In this setting, the most studied ap-
proaches are the Fractional Linear Multistep Methods (FLMMs, [17]) and the so
called Adams product quadrature rules ([9], [16]), in which the Adams formulas
for ordinary differential equations (ODEs) are extended to (3). For a wide back-
ground about the most established techniques for solving Volterra equations we
may refer to [8].

The aim of this paper is to extend the Generalized Adams Methods for ODEs
(see [6]) in order to define product quadrature rules for the solution of (3). We call
the resulting schemes Fractional Generalized Adams Methods (FGAMs). When
used over an assigned uniform partition of the interval of integration I = [0, T ]
(we have set t0 = 0 for simplicity) given by

tn = nh, n = 0, 1, . . . , N, h = T/N, (4)

these methods discretize (3) as follows

yn = y0+hα
M∑

j=0

wn,jfj+hα
n+k2∑

j=0

ωn−jfj , n = M+1, . . . , N−k2, k2 ≥ 0, (5)

where yn ≈ y(tn), fn = f(tn, yn), the weights wn,j and ωn are independent of h,
and M depends on the order of the method and on α. The discrete problem (5) is
completed by assigning the values of the numerical solution over the first M + 1
and the last k2 meshpoints. As usual for these type of methods, we call

Sn = y0 + hα
M∑

j=0

wn,jfj , Ωn = hα
n+k2∑

j=0

ωn−jfj ,

the starting and the convolution terms, respectively. For k2 = 0 we recover the
Adams product formulas studied in [16]. In this situation the resulting schemes
suffer from the usual order barrier for A-stable methods. In particular, in [16] it
is proved that the order of an A-stable convolution quadrature cannot exceed 2.
Clearly, this result represents an extension of the famous second Dahlquist barrier
for linear multistep methods (LMMs) for ordinary differential equations. As for
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ODEs (see [1–3]), this barrier can be overtaken by considering “super-future”
points that in our case consists in taking k2 > 0.

We remark that with respect to FLMMs, in which the coefficients of the con-
volution term are given by the Taylor expansion of the α-power of the generating
function of the underlying formula for ODEs (see [12,15]), an Adams type ap-
proach is local in principle, and hence a variable stepsize implementation can be
considered.

The paper is organized as follows. In Section 2 we introduce the FGAMs, ex-
tending the definition of the Generalized Adams Methods to the fractional order
case. In Section 3 we discuss the starting quadrature in order to ensure the con-
sistency of the method with a given order. In Section 4 we study the convergence
of the methods. In Section 5 we examine the linear stability properties, giving a
characterization of the stability region which can be used to draw the boundary
loci. Finally, a numerical experiment is reported in Section 6 and some conclusions
are contained in Section 7.

2 Fractional Generalized Adams Methods

Following the notation used in [8], for each t ∈ [0, T ] let

J [φ] (t) =
1

Γ (α)

∫ t

0

(t− u)α−1φ(u)du, φ(u) = f(u, y(u)). (6)

In addition, for the assigned uniform partition (4), let

J (m) [φ] (t) =
1

Γ (α)

∫ tm

tm−1

(t− u)α−1φ(u)du, m = 1, . . . , N, (7)

so that

J [φ] (tn) =
∑n

m=1
J (m) [φ] (tn), n = 1, . . . , N. (8)

For a given k > 0, let (k1, k2) be a couple of nonnegative integers such that
k1 + k2 = k. Denoting by Πk the set of polynomials of degree ≤ k, for m =
k1, . . . , N − k2, with N ≥ k, let pm ∈ Πk be the polynomial which interpolates
the function φ at tm−k1

, . . . , tm+k2
, that is,

pm(tm+k2−j) = φ(tm+k2−j) =: φm+k2−j , j = 0, 1, . . . , k.

In this way, as for the standard Adams methods, we consider the local approxi-
mation

J (m) [φ] (tn) ≈ J (m) [pm] (tn) =: Ω(m)
n [φ] , n ≥ m, (9)

as the basis formula for the numerical approximation of J [φ] (t) and hence of (3).
Using the Newton representation of the interpolating polynomial pm we can

write

pm(t) =
∑k

j=0

∇jφm+k2

j!hj
pm,j(t),

pm,j(t) =
∏j−1

l=0
(t− tm+k2−l) , j = 0, 1, . . . , k.
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In order to have an explicit expression for the coefficients of the approximation

Ω
(m)
n [φ], by (7) and (9) we need to evaluate

1

j!hjΓ (α)

∫ tm

tm−1

(tn − u)α−1pm,j(u)du, j = 0, 1, . . . , k, n ≥ m.

Setting u = tm + τh, the previous integral can be rewritten as

hαI
(j)
n−m := hα 1

Γ (α)

∫ 0

−1

(n−m− τ)α−1

(
τ − k2 + j − 1

j

)
dτ

where I
(j)
n−m is independent of h.

By construction, the approximation (9) leads to a numerical method which is
consistent of order p = k + 1, that is, if φ ∈ Cp([0, T ]) then

J (m) [φ] (tn)−Ω(m)
n [φ] = hp+αθn−mφ(p)(ξn,m), ξn,m ∈ [tm−1, tm], (10)

where, recalling that k = k1 + k2,

θn−m =
1

Γ (α)

∫ 0

−1

(n−m− τ)α−1

(
k1 + τ

p

)
dτ, n ≥ m.

Applying the mean value theorem to the above expression one easily verifies that
asymptotically

θn−m ∼ (n−m+ 1)α − (n−m)α ∼ α(n−m+ 1)α−1. (11)

Taking the sum over all allowed subintervals, after some computations we obtain

∑n

m=k1

Ω(m)
n [φ] = hα

∑k−1

j=0
wn,jφj + hα

∑n+k2

j=0
ωn−jφj , (12)

where

Ωn [φ] := hα
n+k2∑

j=0

ωn−jφj (13)

is the convolution term, in which, by setting I
(j)
l = 0 for l < 0,

ωr =
∑k

j=0
∇jI

(j)
r+k2

, r ≥ −k2. (14)

It is important to remark that the coefficients wn,j in (12) appear as consequence
of the definition (14). Indeed the corresponding sum plays the role of a correction
term during the transitory phase.

In the sequel, for each s ≥ 1 , we make use of the following notation

ℓs =

{
{ar}r∈N

:

∞∑

r=1

|ar|
s < ∞

}
. (15)

The following result shows the asymptotic behavior of the coefficients ωr and, by
standard arguments in convolution quadrature (see [8, §6], [15]), it states that
the method is stable. The proof can be obtained with a slight modification of [16,
Lemma 4.1].
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Proposition 1 For r ≥ 1,

ωr =
rα−1

Γ (α)
+ vr , {vr}r∈N

∈ ℓ1. (16)

Remark 1 The coefficients wn,j are suitable combinations of the terms ∇jI
(j)
n+k2

for certain values of j and hence their asymptotic behavior is the same of the ωn

(see again [16, Lemma 4.1]).

In order to study the convergence properties, let us consider the quantity

∆n [φ] := J [φ] (tn)− Ωn [φ] . (17)

Based on the definition given in [8, §6], the following result states that the convo-
lution quadrature Ωn [φ] is convergent of order p. As in [15], we assume that if a
function φ(t) is undefined for t = 0, we set φ(0) = 0.

Proposition 2 Let φ(t) = tλ, λ > −1. Then

∆n [φ] = O
(
hλ+1

)
+O(hp),

for each n such that tn = nh ∈ [a, T ], a > 0 fixed.

Proof Using the definitions of J [φ] (tn) and Ωn [φ] given in (6) and (13), respec-
tively, and taking into account (7)-(8) and (12), we can write

∆n

[
tλ
]
=

1

Γ (α)

∫ tk1−1

0

(tn − u)α−1uλdu

+hα
∑k−1

j=0
wn,jt

λ
j

+
n∑

m=k1

(
J (m)

[
tλ
]
(tn)−Ω(m)

n

[
tλ
])

.

Now, defining u = tnx, and using the mean value theorem we obtain

1

Γ (α)

∫ tk1−1

0

(tn − u)α−1uλdu =
tα+λ
n

Γ (α)

∫ k1−1

n

0

(1− x)α−1xλdx ∼ hλ+1tα−1
n . (18)

Moreover, by Remark 1 we easily find that

hα
∑k−1

j=0
wn,jt

λ
j ∼ hλ+1tα−1

n . (19)

Finally, from (10)-(11), by denoting with λ(p) = λ(λ− 1) · · · (λ− p+ 1) we get

n∑

m=k1

(
J (m)

[
tλ
]
(tn)−Ω(m)

n

[
tλ
])

= λ(p) hp+α
∑n

m=k1

ξλ−p
n,m θn−m

∼ αλ(p) hα+λ
∑n

m=k1

mλ−p(n−m+ 1)α−1

= αλ(p) tα−1
n hλ+1

∑n

m=k1

mλ−p

(
1−

m+ 1

n

)α−1

∼ αλ(p) tα−1
n hλ+1

(
nλ+1−p + 1

)
= αλ(p)

(
hptα+λ−p

n + hλ+1tα−1
n

)
. (20)

Collecting (18), (19) and (20), we obtain the result. ⊓⊔
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3 Starting quadrature

As stated in the Introduction we are interested in an approximation of J [φ](tn) of
the type

J [φ] (tn) ≈ Sn [φ] +Ωn [φ] =: Jn[φ], (21)

where Ωn [φ] is defined by (13), and Sn [φ] is the so-called starting quadrature
defined by

Sn [φ] = hα
∑M

j=0
wn,jφj ,

for a certain M and suitable coefficients wn,j . We denote by En[φ] the overall
truncation (or quadrature) error associated to (21), given by

En[φ] := J [φ](tn)− Jn[φ] = ∆n[φ]− Sn [φ] , (22)

see (17). It is known that if y(t) is the exact solution of (3) with f(t, y) smooth
enough, then φ(t) = f(t, y(t)) might be generated by functions of the form φµ,ℓ(t) =
tµ+ℓα where µ and ℓ are nonnegative integers, [8, §6]. This means that φ(t) might
contain non-smooth components in proximity of the origin. It follows that the
starting quadrature must be chosen appropriately, in order to get a convolution
quadrature for which En[φ] = O(hp) uniformly for all nh ≥ a > 0. This objective
is gained by imposing

En[φµ,ℓ] = 0, for all (µ, ℓ) ∈ Mp(α) (23)

where
Mp(α) = {(µ, ℓ) ∈ N0 × N0 : ℓ ≤ ℓp(α), µ ≤ µp(α, ℓ)} (24)

with µp(α, ℓ) = p− 1− ℓα and

ℓp(α) =

{
(p− 1)/α if α is irrational;
min(q − 1, (p− 1)/α) if α = m/q with m and q coprime.

After some computation, one verifies that the conditions in (23) are fulfilled if the
starting weights solve the Vandermonde type system

M∑

j=0

wn,jj
µ+ℓα =

Γ (µ+ ℓα+ 1)nµ+(ℓ+1)α

Γ (µ+ (ℓ+ 1)α+ 1)
−

n+k2∑

j=0

ωn−jj
µ+ℓα. (25)

In particular, if we set
M = #Mp(α)− 1, (26)

where the symbol # denotes the cardinality, then the system (25) has a unique
solution for each n ≥ M + 1. The resulting starting weights are independent of h
and it can be proved that (see e.g. [8, §6])

wn,j = O(nα−1). (27)

The following theorem summarizes the basic properties of a FGAM which extend
the ones of a standard Adams product quadrature formula and are in perfect
agreement with those obtained for FLMMs in [17].
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Theorem 1 If the starting weights of a FGAM constructed on p = k + 1 points
are generated by (25)-(26), then for any function φ(t) = Φ(t, tα), with Φ(x1, x2)
sufficiently differentiable, the truncation error is

En[φ] = O
(
hptα+β̄−p

n

)
, (28)

where (see (24)),

β̄ = min{µ+ ℓα s.t. (µ, ℓ) ∈ (N0 × N0) \Mp(α)} > p− 1. (29)

4 Convergence analysis

If we denote by en = y(tn)− yn the global error at t = tn and by L the Lipschitz
constant of f(t, y), then it is not difficult to verify that, see (5),

‖en‖ ≤ hαL




min(n+k2,N−k2)∑

j=M+1

|ωn−j | ‖ej‖


+gn+‖En‖ , n = M+1, . . . , N−k2,

(30)
where En is the n-th truncation error of the convolution quadrature as defined by
(22), and

gn = hαL




M∑

j=0

|wn,j − ωn−j | ‖ej‖


+ hαL




n+k2∑

j=N−k2+1

|ωn−j | ‖ej‖


 ,

collects the error contributes of the initial and final conditions. In particular, if
we assume to know an approximation of the first M + 1 and the last k2 values of
the numerical solution with accuracy O(hβ̄) and O(hp−α), respectively, then, by
virtue of (16) and (27),

gn = O(hβ̄+1tα−1
n ) +O(hp) = O(hptα+β̄−p

n ), (31)

where the last equality follows from (29).

For k2 = 0 the error analysis can be accomplished using Gronwall type in-
equalities (see [18]), such as the one given in [8, Theorem 1.5.6]. The convergence
properties of the corresponding method then follow directly from the stability and
consistency properties. For k2 > 0 the situation is rather different and we consider
the following approach.

Let us collect into the vector e the norms of the global errors at the interior
meshpoints, i.e.,

e = (‖eM+1‖ , . . . , ‖eN−k2
‖)T

and define g = (gM+1, . . . , gN−k2
)T and E = (‖EM+1‖ , . . . , ‖EN−k2

‖)T . The
system of inequalities in (30) can be rewritten in matrix form as

e ≤ hαL |Ω| e+ g +E, (32)
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(here and below, for matrix arguments the inequalities and the absolute value have
to be intended component by component), where

(Ω)ij =

{
ωi−j for i− j ≥ −k2,
0 otherwise.

Let moreover

A ≡ AN :=




1
−1 1

. . .
. . .

−1 1


 ∈ R

N×N , (33)

with

N = N − k2 −M. (34)

In order to determine an upper bound for the global errors at the interior points,
we need the following preliminary results.

Lemma 1 If α ∈ (0, 1] then the matrix Ω can be written as

Ω = A−α + U

where U is a Toeplitz matrix with ‖U‖∞ uniformly bounded with respect to N .

Proof It is known that if α ∈ (0, 1] then for each r ≥ 1

rα−1

Γ (α)
= (−1)r

(
−α
r

)
+ v̂r, {v̂r}r∈N

∈ ℓ1, (35)

(see e.g. [11, p. 47]). Therefore, by Proposition 1 one gets

ωi−j =
(i− j)α−1

Γ (α)
+ vi−j = (−1)i−j

(
−α
i− j

)
+ v̂i−j + vi−j

:= (−1)i−j

(
−α
i− j

)
+ ui−j

=
(
A−α

)

ij
+ ui−j , i > j,

where {ur}r∈N
∈ ℓ1. ⊓⊔

Since A−α ≥ O, from the previous lemma one immediately deduces that |Ω| ≤
A−α + |U |. Therefore, by (32), setting

Z := I − hαL(A−α + |U |), (36)

one obtains

Ze ≤ g +E. (37)

Lemma 2 If h is sufficiently small then the matrix Z defined in (36) is nonsin-
gular, Z−1 ≥ O and

∥∥Z−1
∥∥
∞

is uniformly bounded with respect to N .
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Proof If h is sufficiently small, the matrix Z can be factorized as

Z = Z1Z2, Z1 = I − hαLA−α, Z2 = I − hαLZ−1
1 |U | . (38)

Now, in order to demonstrate the results of the lemma, we will prove that Z1 and
Z2 are both M -matrices and the infinity matrix norm of their inverses are both
uniformly bounded with respect to N . Let us begin with the matrix Z1. First of
all, it is not difficult to verify that if hαL < 1 then Z1 is an M -matrix. Secondly,
since A−α − I is nilpotent of degree N , we can write

Z−1
1 =

1

1− hαL

(
I −

hαL

1− hαL

(
A−α − I

))−1

=
1

1− hαL

∑N−1

j=0

(
hαL

1− hαL

)j (
A−α − I

)j
.

It follows that, for each µ > L and h such that

0 <
L

1− hαL
≤ µ,

we have

∥∥∥Z−1
1

∥∥∥
∞

≤
µ

L

∑N−1

j=0
(µhα)j

∥∥∥∥
(
A−α − I

)j∥∥∥∥
∞

≤
µ

L

∑N−1

j=0
(µhα)j

∥∥∥A−jα
∥∥∥
∞

, (39)

where in the last inequality we have used the fact that, for each j ≥ 0,

O ≤
(
A−α − I

)j
≤ A−jα.

Now

A−jα =

N−1∑

l=0

(
jα
l

)(
A−1 − I

)l
,

and A−1 − I ≥ O is a strictly lower triangular Toeplitz matrix. Then, by [6,
Lemma 4.4.2] and the Chu-Vandermonde identity (see, e.g., [5, p. 59-60]),

∥∥∥A−jα
∥∥∥
∞

=

N−1∑

l=0

(
jα
l

)∥∥∥∥
(
A−1 − I

)l∥∥∥∥
∞

=

N−1∑

l=0

(
jα
l

)(
N − 1

l

)

=

(
N − 1 + jα

N − 1

)
=

Γ (N + jα)

Γ (jα+ 1)Γ (N )
.

Substituting the last expression in (39) we obtain

∥∥∥Z−1
1

∥∥∥
∞

≤
µ

L

∑N−1

j=0

µj

Γ (jα+ 1)

Γ (N + jα)

Γ (N )
hjα,
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and by Stirling’s formula we have

Γ (N + jα)

Γ (N )
hjα ≤ C (1 + α)jα T jα,

where C is a constant depending on α. Therefore

∥∥∥Z−1
1

∥∥∥
∞

≤ C
µ

L
Eα (µ(1 + α)αTα) , (40)

where Eα denotes the one-parameter Mittag-Leffler function (see e.g. [20, §1.2])
so that

∥∥Z−1
1

∥∥
∞

is uniformly bounded.
Let us now consider the matrix Z2 in (38) and its inverse. By Lemma 1 and

(40), for each θ < 1 we can define h0 such that for h ≤ h0

hαL
∥∥∥Z−1

1 |U |
∥∥∥
∞

≤ θ < 1,

so that Z2 is an M-matrix and

∥∥∥Z−1
2

∥∥∥
∞

≤
∑∞

j=0

(
hαL

∥∥∥Z−1
1 |U |

∥∥∥
∞

)j
≤ (1− θ)−1,

namely,
∥∥Z−1

2

∥∥
∞

is uniformly bounded. ⊓⊔

Theorem 2 There exists h0 > 0 such that for h ≤ h0 the global error of the
FGAM with starting weights generated by (25)-(26) fulfils the inequality

‖e‖∞ ≤ K (‖g‖∞ + ‖E‖∞) = O
(
hmin(β̄+α,p)

)

where K is a suitable constant independent of h, and β̄ is given in (29).

Proof The statement is a consequence of (28), (31), (37) and Lemma 2. ⊓⊔

5 Linear stability

The linear stability properties of the Generalized Adams Methods when applied
to ODEs are well known in the literature (see e.g. [6]). Dealing with FDEs, in
this section we provide and justify a definition of the stability region of a FGAM
showing also the boundary loci for some values of k and α.

Let us consider the usual scalar test problem

Dα
0 y(t) = λy(t), λ ∈ C, y(0) = y0, (41)

whose exact solution is given by

y(t) = Eα(λt
α)y0.

It is known that y(t) → 0 as t → +∞ whenever λ ∈ Sα where

Sα = {µ ∈ C : |π − arg(µ)| < (1− α/2)π} . (42)
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Applying the method (5) to (41) we obtain

yn = Sn + q

n+k2∑

j=0

ωn−jyj , (43)

where q = hαλ and

Sn = y0 + q
M∑

j=0

wn,jyj .

For a classical implicit convolution quadrature, that is k2 = 0, the stability region
of a method is defined as

D ≡ {q ∈ C : yn = yn(q) → 0 as n → +∞},

and the method is said to be A-stable if Sα ⊆ D. A characterization of this region
is given in the following result, which is a reformulation of Theorem 2.1 in [16].

Theorem 3 Let k2 = 0. If wn,j ∼ nα−1 and ωn = nα−1

Γ (α) +un, with {un}n∈N ∈ ℓ1,
then

D = {q ∈ C : q 6= 1/ω(z), ∀ |z| ≤ 1} ,

where ω(z) =
∑∞

n=0 ωnz
n is the generating function of the convolution term.

From the hypothesis on the convolution weights and (35) one deduces that

ω(z) = (1− z)−α + ω̂(z), where |ω̂(z)| is bounded for |z| ≤ 1.

This implies that g(z) = (1− z)αω(z) is bounded for each |z| ≤ 1 too. Therefore
we can express the stability region in the following equivalent form

D = {q ∈ C : χ(z, q) := (1− z)α − qg(z) 6= 0, ∀ |z| ≤ 1} . (44)

More generally, namely when k2 ≥ 0, the generating function of the convolution
weights of a FGAM is the power series ω(z) =

∑∞
n=0 ωn−k2

zn. However, by virtue
of Proposition 1, the corresponding g(z) = (1− z)αω(z) is also bounded for |z| ≤ 1.

Definition 1 A function χ(z) is said to be of type (m1,m2) if χ(z) is bounded
for |z| ≤ 1 and has exactly m1 and m2 zeros inside and on the boundary of the
unit circle, respectively.

Definition 2 The region Dk2
of the complex plane defined by

Dk2
=
{
q ∈ C : χ(z, q) := zk2(1− z)α − qg(z) is of type (k2, 0)

}
(45)

is called the stability region of a FGAM used with k2 final conditions.
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Clearly, for k2 = 0, Dk2
reduces to D, the region of stability of a classical Adams

method, see (44).
In what follows we demonstrate that if q ∈ Dk2

then the numerical solution of
the FGAM simulates the behavior of the exact solution. Setting

(1− z)α =
∑∞

n=0
γnz

n, γn = (−1)n
(
α
n

)
, (46)

g(z) =

∞∑

n=0

gn−k2
zn,

there exist {ηn,j}n≥M+1, j = 0, . . . ,M + k2, such that (43) can be rewritten as

n∑

j=0

γn−jyj − q

n+k2∑

j=0

gn−jyj = γ0ny0 + q

M+k2∑

j=0

ηn,jyj (47)

with

γ0n =
n∑

j=0

γj , n = M + 1, . . . , N − k2. (48)

Remark 2 For later reference we observe that {gn} ∈ ℓ1; moreover, by (46)-(48)
and (35), used with −α replaced by α, we get

γn ∼ n−α−1, γ0n ∼ n−α, (49)

and it is possible to prove that {ηn,j} ∈ ℓ1 for each j = 0, 1, . . . ,M + k2.

Formula (47) is equivalent to

n∑

j=M+1

γn−jyj − q

min(n+k2,N−k2)∑

j=M+1

gn−jyj − q

M+k2∑

j=M+1

ηn,jyj = bn + b̃n, (50)

where

bn = γ0ny0 −
M∑

j=0

[γn−j − q (gn−j + ηn,j)] yj , (51)

b̃n = q

n+k2∑

j=N−k2+1

gn−jyj .

We can rewrite formula (50) in matrix form as (see (33)-(34))

(Aα
N − q (GN +RN ))yN = bN + b̃N , (52)

where yN = (yM+1, . . . , yN−k2
)T ,

(Aα
N )ij =

{
γi−j for i ≥ j
0 otherwise

, (GN )ij =

{
gi−j for i ≥ j − k2
0 otherwise

,

(RN )ij =

{
ηi+M,j+M for j ≤ k2

0 otherwise
, (53)

bN = (bM+1, . . . , bN−k2
)T , b̃N = (b̃M+1, . . . , b̃N−k2

)T .



Fractional convolution quadrature based on Generalized Adams Methods 13

It is important to underline the fact that bN depends only on the initial values
{y0, . . . , yM} while b̃N depends only on the final values {yN−k2+1, . . . , yN}. In
addition, b̃N has (at most) only the last k2 entries different from zero. We observe
that rank(RN ) = k2 independently of N . Therefore, −qRN can be considered as
a perturbation of

TN (q) := Aα
N − q GN , (54)

when N is sufficiently large. As for the ODEs, the stability properties of the
numerical solution are determined by the properties of the operator (see (15))

T∞(q) := Aα
∞ − q G∞ : ℓs → ℓs.

Proposition 3 If q ∈ Dk2
then T∞(q) is invertible with bounded inverse (contin-

uously invertible).

Proof The result follows from the Wiener-Hopf factorization of T∞(q). Indeed,
denoting by ζ1, . . . , ζk2

the roots inside the unit circle of the function χ(z, q) defined
in (45), we have

T∞(q) = UL, (55)

where

U =
∏k2

j=1
Uj , Uj =




1 −ζj
1 −ζj

. . .
. . .

. . .




= I − ζjH, (56)

H being the shift matrix. In this way

U−1
j =

∑∞

n=0
ζnj H

n (57)

is bounded. For the matrix

L =




l0
l1 l0
l2 l1 l0
...
. . .

. . .
. . .


 , (58)

setting l(z) =
∑∞

n=0 lnz
n, the generating function associated to L, we know that

l(z) 6= 0 for |z| ≤ 1 and {ln} ∈ ℓ1, so that, for the Wiener inversion theorem, L is
invertible with bounded inverse. ⊓⊔

From this result one deduces that if q ∈ Dk2
and N is sufficiently large then

the matrix TN (q) in (54) is nonsingular. Hereafter, for simplicity, we restrict the
analysis to the case k2 = 1 (the more general case can be treated following the
approach proposed in [4]). Before proceeding we need the following two preliminary
results.

Lemma 3 If k2 = 1, q ∈ Dk2
and N is sufficiently large then

T−1
N (q) eN ∼ (ζN−1

1 , . . . , ζ1, 1)
T ,

where eN is the last vector of the canonical basis in R
N .
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Proof For reader’s convenience, it is postponed to subsection 5.1.

Lemma 4 Let k2 = 1, q ∈ Dk2
and c∞ ∈ ℓs. Then there exists u∞ ∈ ℓs such

that, for N sufficiently large, and denoting by cN and uN the vectors of the first
N components of c∞ and u∞, respectively,

TN (q)−1cN − uN ∼ (ζN−1
1 , . . . , ζ1, 1)

T .

Proof Let u∞ ∈ ℓs be the unique solution of T∞(q)u∞ = c∞. The first N equa-
tions of the previous system can be written as TN (q)uN = cN + δcN , where δcN
has (at most) only the last entry different from zero (recall that k2 = 1). The
statement is then an immediate consequence of Lemma 3. ⊓⊔

We can now discuss the qualitative behavior of the numerical solution provided
by a FGAM.

Theorem 4 If k2 = 1, q ∈ Dk2
and N is sufficiently large, then there exists

x∞ ∈ ℓs, with s > 1/α, such that, denoting by xN the vector of its first N
components, the solution yN of the linear system (52) verifies

yN − xN ∼




ζN−1
1
...
ζ1
1


 .

Proof Under the considered hypotheses, the system (52) can be reformulated as

(
IN − q T−1

N (q)RN

)
yN = T−1

N (q)
(
bN + b̃N

)
=: vN . (59)

We observe that if k2 = 1 the entries of RN and, consequently, of −q T−1
N (q)RN

are all equal to zero except for the ones in the first column (see (53)). If we set

rN := −q T−1
N (q)RNe1,

then the solution of (59) is given by

yN = vN −
eT1 vN

1 + eT1 rN
rN .

Therefore, in order to determine the behavior of yN , we need to study the behavior
of vN and rN . Let us start by considering vN defined in (59). From (51) and
Remark 2 we deduce that bN is the vector of the first N components of b∞ ∈ ℓs
for each s > 1/α. On the other hand, if k2 = 1, b̃N has (at most) only the last
entry different from zero. By applying Lemma 4 and Lemma 3 it follows that

vN − uN ∼ (ζN−1
1 , . . . , ζ1, 1)

T ,

where uN is the vector of the first N components of u∞ ∈ ℓs. Concerning the
behavior of rN , from Lemma 4 and Remark 2 one gets

rN − aN ∼ (ζN−1
1 , . . . , ζ1, 1)

T ,
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Fig. 1 Boundary loci of the FGAMs with k = 1, 3, 5.

where aN is the vector of the first N components of a∞ ∈ ℓ1 ⊆ ℓs. Finally,

eT1 vN

1 + eT1 rN
=

eT1 uN

1 + eT1 aN

(
1 +O

(
ζN−1
1

))
.

Setting

xN := uN −
eT1 uN

1 + eT1 aN
aN ,

one deduces that x∞ ∈ ℓs and then the statement follows. ⊓⊔

The boundary loci of the FGAM for different values of α, k = 1, . . . , 6 and

k2 =

⌊
k

2

⌋

are reported in Figure 1 and 2, where the dotted lines mark the boundary of Sα

defined by (42). We remark that the chosen value of k2 coincides with the one
considered for the Generalized Adams Methods for ODEs (see [6]). As one can
see, the presented methods appear to be always A-stable independently of k and
α.

5.1 Proof of Lemma 3

If k2 = 1, after some computations, from (55) one deduces that

TN (q) = LNUN +wNeT1 ,
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Fig. 2 Boundary loci of the FGAMs with k = 2, 4, 6.

where LN and UN are the principal submatrices of size N of L and U defined in
(58) and (56), respectively, e1 is the first vector of the canonical basis in R

N , and

wN = −ζ1(l1, l2, . . . , lN )T .

We observe that ‖wN ‖1 is uniformly bounded with respect to N since, as stated
in the sentence below (58), {ln} ∈ ℓ1.
By using the Sherman-Morrison formula, we obtain

T−1
N (q) = (LNUN )−1 −

(LNUN )−1 wN eT1 (LNUN )−1

1 + eT1 (LNUN )−1 wN

.

Therefore, by observing that, see (58), L−1
N eN = (1/l0)eN , one has

T−1
N (q)eN ∼ (LNUN )−1 eN −

eT1 (LNUN )−1 eN

1 + eT1 (LNUN )−1 wN

(LNUN )−1 wN

=
1

l0

(
U−1
N eN −

eT1 U
−1
N eN

1 + eT1 (LNUN )−1 wN

(LNUN )−1 wN

)
.

The statement then follows from the facts that, see (56)-(57),

U−1
N eN = (ζN−1

1 , . . . , ζ1, 1)
T ,

and, recalling that ‖wN ‖1 is uniformly bounded with respect to N , there exists
θ > 0 independent of N such that

∥∥(LNUN )−1 wN

∥∥
1∣∣1 + eT1 (LNUN )−1 wN

∣∣
(
eT1 U

−1
N eN

)
< θ ζN−1

1 . ⊓⊔
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6 Boundary values and numerical illustrations

The effective use of the FGAMs in (5) requires the definition of suitable strategies
for recovering the boundary values. To this aim, in order to achieve an approxi-
mation of the starting values y(tn), n = 1, 2, . . . ,M, with a certain accuracy we
have considered a collocation approach. It is known that in a neighborhood of the
origin the true solution may have the expansion

y(t) =
∑

(µ,ℓ)∈N0×N0

cµℓ t
µ+ℓα.

Let us define the set, see (24),

B := {β ∈ R : β = µ+ ℓα for (µ, ℓ) ∈ Mp(α)}.

We denote by βm,m = 1, . . . ,M + 1 the elements of B and we assume that βm <
βm+1,m = 1, . . . ,M (note that β1 = 0). Moreover, let us define the function

ϕ(t) =

M+1∑

m=1

am tβm .

Imposing the conditions, see (1),

ϕ(0) = y0, Dα
0 ϕ(nh) = f(nh,ϕ(nh)), 1 ≤ n ≤ M,

and then defining

yn = ϕ(nh), 1 ≤ n ≤ M,

we have that, by construction,

|yn − y(tn)| = O(hβ̄), 1 ≤ n ≤ M,

where β̄ is defined in (29).

Regarding the approximation of y(tn), n = N − k2 +1, . . . , N, these values are
computed implicitly through the application of a set of appropriate discretization
formulas. Such formulas are derived from the local approximations of

J (m)[φ](tn) ≈ J (m) [p̂] (tn) =: Ω(m)
n [φ] , m = N − k2 + 1, . . . , N,

p̂ ∈ Πk being such that

p̂(tN−j) = φ(tN−j), j = 0, 1, . . . , k,

and by using a procedure similar to the one described in Section 2.

As a numerical illustration of the schemes proposed, we have considered their
application for solving the initial value problem

Dα
0 y(t) =

(
1− 2µ 1− µ
2µ− 2 µ− 2

)
y(t), y(0) =

(
1

−2

)
, (60)
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Fig. 3 Absolute value of the first component of the numerical solution of (60) provided by
the FGAM (solid line) and the Adams product quadrature rule (dashed line) of order 4.

whose exact solution is

y(t) =

(
1

−2

)
Eα(−tα),

independently of µ > 0. When µ is large, the problem is stiff, since the eigenvalues
of the Jacobian matrix are −µ and −1. With the chosen initial value, however,
the stiff mode is not present in the continuous solution. As usual, the application
of methods with inappropriate stability properties, determines a severe restriction
on the choice of the stepsize. We have solved the problem with α = 0.75 and
α = 0.50. In both cases we have set µ = 2500. We have used the FGAM and
the classical Adams product quadrature rule [16] of orders 4 with h = 1/4. In
Figure 3, the approximations of the first component of the solution obtained by
applying the FGAM (solid line) and the Adams product quadrature rule (dashed
line) just mentioned have been reported. The graphics corresponding to the second
component are similar for both methods and hence not reported.

As one can see, the property of stability of the FGAM allows one to get good
approximations of solutions of initial value problems even when stiff modes are
present and the stepsize used is rather large.

7 Conclusions

The extension to the fractional order case of the Generalized Adams Methods
described in [6] has been investigated. As expected, the convergence properties
of the FGAMs are in perfect agreement with the ones of the standard Adams
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methods for FDEs. At the same time, as shown in Section 6, the linear stability
properties make the generalization attractive for stiff problems since the barrier
established in [16] is overtaken at the price of the computation of approximations
of the endpoint values of the solution. This approach can also be used for the
construction of reliable codes with automatic stepsize selection by using a block
implementation of the schemes, like the Generalized Adams Methods for ODEs
[14]. This topic will be the subject of future investigation.

References

1. Aceto, L., Pandolfi, R.: Theoretical analysis of the stability for extended trapezoidal rules,
Nonlinear Anal. 71, 2521-2534 (2009)

2. Aceto, L., Pandolfi, R., Trigiante, D.: Stability analysis of linear multistep methods via
polynomial type variation, J. Numer. Anal. Ind. Appl. Math. 2, 1-9 (2007)

3. Aceto, L., Trigiante, D.: The stability problem for linear multistep methods: old and new
results, J. Comput. Appl. Math. 210, 2-12 (2007)

4. Amodio, P., Brugnano, L.: The conditioning of Toeplitz band matrices, Math. Comput.
Modelling 23, 29-42 (1996)

5. Askey, R.: Orthogonal polynomials and special functions. Regional Conference Series in
Applied Mathematics, 21, Philadelpia, PA: SIAM (1975)

6. Brugnano, L., Trigiante, D.: Solving differential problems by multistep initial and boundary
value methods. Gordon and Breach Science Publishers, Amsterdam (1998)

7. Caputo, M.: Linear models of dissipation whose Q is almost frequency independent, II.
Geophys. J. Royal Astronom. Soc. 13, 529-539 (1967)

8. Brunner, H., van der Houwen, P.J.: The numerical solution of Volterra equations. CWI
Monographs 3, North-Holland, Amsterdam (1986)

9. Cameron, R.F., McKee, S.: Product integration methods for second-kind Abel integral
equations, J. Comput. Appl. Math. 11, 1-10 (1984)

10. Diethelm, K., Ford, N.J.: Analysis of fractional differential equations, J. Math. Anal. Appl.
265, 229-248 (2002)
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