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ABSTRACT

The dataflow programming model has been extensively used as an effective solution to

implement efficient parallel programming frameworks. However, the amount of resources

allocated to the runtime support is usually fixed once by the programmer or the runtime,
and kept static during the entire execution. While there are cases where such a static

choice may be appropriate, other scenarios may require to dynamically change the par-
allelism degree during the application execution. In this paper we propose an algorithm

for multicore shared memory platforms, that dynamically selects the optimal number of

cores to be used as well as their clock frequency according to either the workload pressure
or to explicit user requirements. We implement the algorithm for both structured and
unstructured parallel applications and we validate our proposal over three real applica-

tions, showing that it is able to save a significant amount of power, while not impairing
the performance and not requiring additional effort from the application programmer.

Keywords: Power-aware computing, Self-adaptive computing, Dataflow, Structured Par-
allel Programming
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1. Introduction

In the recent years, researchers pay increasing attention on finding mechanisms

and techniques for implementing energy-efficient applications. This interest is mo-

tivated both by environmental and economical reasons. Estimations report that,

during 2010, data centers in the US produced more CO2 than an entire country

like Argentina or Netherlands [21], with an energy demand equal to the 3% of the

overall energy production. Nevertheless, according to [24], the average utilisation

of many systems is usually in the range 10%− 50%. This opens many possibilities

for energy saving by increasing the average utilisation of these systems. This solu-

tion is also supported by manufacturers, which provide architectural mechanisms

to control and adapt the amount of used physical resources to the real application

needs, for example by scaling the frequency of the CPUs or by turning off cores,

cache or RAM modules when they are not used. However, the management of such

mechanisms should be completely transparent to both the application programmer

and to the end user. Indeed, the programmer should only deal with the functional

correctness of his application, while this additional complexity should be hidden

inside an appropriate runtime system.

In this paper we focus on streaming applications, usually characterised by signif-

icant workload fluctuations during their execution. We propose a runtime system for

multicore shared memory architectures, based on a dataflow programming model

[18, 9] that, by constantly monitoring the application throughout its execution, is

able to automatically use at any time the least power consuming amount of re-

sources sufficient for processing all the input elements or to satisfy explicit user

requirements. We will consider as resources both the number of cores used by the

application and their clock frequency. As opposed to some existing solutions [27, 15],

which are limited to a specific class of applications (e.g. data-parallel or data stream

processing), we will manage any streamable application where data dependencies

can be expressed as a direct acyclic graph (DAG). These include data-parallel and

stream-parallel applications but also “unstructured” computations.

The main contributions of this paper are:

• A methodological solution for implementing power-aware, workload-

sensitive dataflow runtime supports. By using such programming model, it

will be possible to define both structured (e.g. based on algorithmic skele-

tons or parallel design patterns) and unstructured parallel applications. The

autonomic management of the resources will be completely transparent to

both the application programmer and to the end user, and will not require

any additional programming effort.

• The implementation of a prototype runtime system that uses the proposed

solution.

• The validation of our solution over three different streaming applications,

showing that it is able to maintain an high resources utilisation, indepen-

dently from the workload pressure. This leads to a significant reduction in



March 13, 2017 8:41 WSPC/INSTRUCTION FILE output

A Power-Aware, Self-Adaptive Macro Data Flow Framework 3

the power consumption of the applications, while not impairing their per-

formance. Moreover, we show that our algorithm is also able to satisfy user

requirements on maximum execution time.

This paper is structured as follows. In Sec. 2 we describe the Macro Data Flow

model, then, in Sec. 3 we outline the strategy we use to monitor the application

and to choose the most appropriate amount of resources to be used. Sec. 4 describes

a simple example. In Sec. 5 the experimental validation is described and the main

achieved results are shown. Eventually, we describe the related work in Sec. 6 and

in Sec. 7 we draw some conclusions, proposing also some possible future directions.

2. Macro Data Flow

Macro Data Flow (MDF) [9] is a parallel programming model that allows the user

to specify parallel computations by expressing them as direct acyclic graphs (DAG).

In such graphs, each node represents a sequential code fragment, while the edges

represent the flow of the data computed inside the graph. The nodes are also called

“Macro Data Flow instructions” (MDFi) (also known as operations in other similar

programming models), with the Macro term underlining the fact that each instruc-

tion actually represents a consistent part of the computation. Such structure is

depicted in Figure 1, where A, B, C, D and E represent sequential code fragments,

the arrows represent the data dependencies between such code blocks, and i* and

o* represent the inputs and the outputs of each instruction.

...
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E i1 i2 o1
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Fig. 1. Relationship between stream elements and Macro Data Flow graph instances.

Each instruction may receive/send data from/to one or more instructions, except

for the first and last instruction of the graph. Indeed, the first instruction can only

have one input, corresponding to the input data. Similarly, the last instruction has

only one output, i.e. the result of the computation. By adding this constraint, we

provide the possibility to seamlessly compose the graphs between each other, i.e.

to use a graph in place of an instruction. As we will show later this can be used to

implement the composability of skeleton-based applications.

When an instruction is executed, it produces one or more results, called tokens.

These tokens will be used as inputs for the instructions that depend on the current
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one. For example, in Figure 1, when instruction A terminates its execution, it will

produce two output tokens, one used as input for instruction B and one used as input

for instruction C. An instruction become fireable (i.e. it is ready to be executed),

when it receives all input tokens. For example, instruction E can be executed only

after it has received the results from instructions C and D. The execution progress

is orchestrated by an instruction scheduler, that works as follows:

(1) A fireable instruction is located in the graph and sent to one of the interpreters

in a pool of interpreters (also known as workers in other similar programming

models). The interpreters can execute different instructions in parallel, thus

allowing to exploit the parallel execution between instructions that do not have

data dependencies. Each of the interpreters in the pool is capable of executing

any fireable instruction. This is possible because the instruction code is stored

inside the instruction itself.

(2) The results of instruction executions are received from the interpreters, and used

by the scheduler as input tokens for the corresponding destination instructions.

As soon as one of these instructions become fireable, it is sent to the interpreters.

These two steps are iterated until there are no more fireable instructions available

(i.e. up to program termination).

In general, there may be a stream of data input tokens to be computed. We

call each element on the input stream a task. In this case, for each received task,

a new instance of the graph is created and stored into a graph pool. When the last

instruction of a graph is executed, the final result is sent over an output stream

and the corresponding graph instance is destroyed. Accordingly, there is a 1-to-1

association between stream elements and graphs instances.

The scheduler has to be able to receive data from the input stream as well as to

receive the results from the interpreters in order to update the graphs corresponding

to the already received stream elements. A tradeoff in the priority given to these two

steps must be found. Indeed, if the priority is always given to the input stream, then

the computations of the graphs already present in the system will never advance

in their execution. On the other hand, if we read from the input stream only when

there are no more fireable instructions, then we are not fully exploiting the available

parallelism. In our implementation, we face this problem by putting a limit to the

maximum number of graphs (i.e. stream elements) that can be present inside the

graph pool at any moment. The higher the limit, the more we shift towards a

solution where we always prefer to read from the input stream. Moreover, to avoid

starvation, the scheduler will not block on any of the two inputs if no elements are

present on such inputs. This will be better clarified in Section 2.1.

Algorithm 1 shows the full scheduler pseudocode.
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ALGORITHM 1: Reconfiguration algorithm - General case

1 Function Scheduler()
2 numGraphs ← 0;
3 while true do
4 if numGraphs < maxNumGraphs then
5 if t ← receiveFromStream() then
6 numGraphs ← numGraphs + 1;
7 g ← pool.createGraph(t);
8 sendToInterpreters(g.getFirst());

9 end

10 end
11 if r ← receiveResult() then
12 if isOutputResult(r) then
13 numGraphs ← numGraphs - 1;
14 sendToOutputStream(r);

15 else
16 instructions ← pool.updateTokens(r);
17 for i in instructions do
18 if isFireable(i) then sendToInterpreters(i) ;
19 end

20 end

21 end

22 end

In addition to arbitrary graphs, we also provide the possibility to specify skele-

ton applications. Currently, we support pipeline, farm, map and reduce skeletons

[8]. These skeletons will then be actually compiled into suitable Macro Data Flow

graphs.

2.1. Implementation

As common in many dataflow environments [3, 25], we implemented the runtime

support through a master-worker pattern, with the master running the scheduler

of the instructions and the workers running the interpreters. The master and the

workers run in separate threads, as depicted in Figure 2. In principle having a

single master could be a bottleneck, thus limiting the scalability of the system.

However, it enables the possibility to define custom scheduling policies, improving

the flexibility of the approach. Moreover, the scheduler implementation we used has

been proven efficient and feasible in similar contexts for state-of-the-art multicore

architectures up to 32/64 cores using a variety of different applications [12]. This

is also confirmed by this work (Section 5.2, application characterised by very fine-

grained computation).

For the implementation of our dataflow interpreter, we used FastFlow, a

parallel programming framework for multicore platforms based on non-blocking

lock-free/fence-free synchronisation mechanisms [13]. The FastFlow framework is

composed of a stack of layers that progressively abstracts out the programming of
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shared-memory parallel applications. The goal of the stack is twofold: to ease the

development of applications and to make them very fast and scalable. FastFlow

is particularly targeted to the development of streaming applications and we have

chosen it for two main reasons: i) it already provides the possibility to dynamically

change the number of workers used by a master-worker pattern, ii) it provides full

flexibility for scheduling stream elements to workers.

I1

I2

I3

S

FROM INPUT 
STREAM

TO OUTPUT 
STREAM

GRAPHS POOL

A

C

D

Fig. 2. The runtime architecture. Node ’S’ is the scheduler. Nodes ’I’ are the interpreters.

When one of the interpreters in the pool finishes the execution of an instruc-

tion, it inserts the results into a lock-free single-producer, single-consumer FIFO

queue [2]a. The results will then be read by the scheduler and used to update the

corresponding dataflow instructions stored in the graph pool. If no elements are

present on the input stream, the scheduler must not wait for new elements to ar-

rive. Indeed, meanwhile new results could arrive on the feedback channels from the

interpreters and those results need to be managed. Similarly, the scheduler must not

wait on the feedback queues if they are empty. To implement a non-deterministic

read from these channels, the interactions with both channels has been implemented

through non-blocking mechanisms. Accordingly, if no elements are present on the

input stream the receive call will immediately return and the scheduler will check

the feedback channels (and vice versa). This execution model is inspired to Kahn

Process Networks [18].

In general, the scheduler sends fireable instructions to the interpreters (workers)

by using an on-demand strategy (i.e. the instruction is sent to an interpreter if that

interpreter has no other instructions to process). However, in some cases different

scheduling strategies may be more appropriate. For example, consider the case de-

picted in Figure 3 where we have 3 interpreters, a graph composed by two pipelined

instructions (A and B) and an element arrives on the input stream. The scheduler

will generate a new graph instance. Since the first instruction (A1) becomes fireable,

aTo simplify the exposition, from a logical point of view, we often refer to these queues as if

they where a single multi-producer, single-consumer queue.
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it will send it to the first available interpreter (I1). Meanwhile, a new element arrives

on the input stream, the corresponding graph is generated and its first instruction

A2 is sent to interpreter I2. When A2 terminates its execution, B2 became fireable

and it is sent to I3. Note that, since execution of A1 takes too long to terminate,

B2 is executed before B1.

Fig. 3. Reordering of the instructions.

Albeit this can be acceptable in some applications, there are situations where

the application programmer needs instructions belonging to different stream ele-

ments to be processed in the same order they are received. Note that this cannot be

enforced by data dependencies alone. Indeed, dataflow dependencies ensure the cor-

rectness of the execution for a specific input but they do not constrain instructions

associated with different stream elements. To solve this problem, we can schedule

the instructions with the same identifier to the same interpreter. Since the enqueued

instructions are processed by the interpreter in FIFO order, we guarantee that in-

structions with the same identifier and associated to different stream elements are

processed in the same order they are received. Moreover, since the feedback chan-

nels are FIFO as well, even the next instruction in the graph will be processed

in the correct order. However, this type of scheduling may lead to workload im-

balance between the interpreters, since some of them may receive more (or more

costly) instructions. To clarify this, let’s consider the case where we have 3 inter-

preters, a graph composed by 7 instructions with the same average latency and a

scheduling function that assigns the instructions with identifier x to the interpreter

Ix%7. This scheduling function assigns all the instructions with the same identifier

to the same interpreter. However, for each element received from the input stream,

the interpreter I1 will process 3 instructions while interpreters I2 and I3 will pro-

cess 2 instructions each. This workload imbalance could be present even if different

scheduling function are used and even if the instructions have a different latency.

Indeed, since a given instruction can only be executed by a specific worker, an op-

timal scheduling could not always be found and, as we will show in Section 5, this
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could lead to inefficiencies. Moreover, note that the FIFO constraint on the queues

between the scheduler and the interpreters is only needed in this case and that it

could be relaxed in scenarios where the input stream elements do not need to be

processed in the same order they are received.

Another problem concerns the order in which the results are sent on the output

stream. When instructions associated to different stream elements can be executed

in any order, the last instruction of the graphs (which will produce the output

stream elements), could be executed in any order as well. Therefore, the elements

could appear on the output stream in the wrong order. Since an increasing identifier

is assigned to the graphs when they are created, we can keep track of the last output

sent over the stream. When a new result to be sent appears, if the identifier of his

graph is the next to be sent on the output stream, then it is sent, otherwise the

result is stored into a priority queue, where the priority is the identifier of the result

(lower identifiers represent higher priority). The head of the queue is periodically

checked and sent on the output stream only if it is the next element to be sent.

Macro Data Flow support could also be a part of a bigger application. For

example, we could have a 3-stage pipeline where the middle stage uses the dataflow

runtime. In this case, the input stream will correspond to the output channel of the

first pipeline stage, and the output stream will correspond to the input channel of

the last pipeline stage. This is possible because we can guarantee the order of the

stream elements flowing through the dataflow stage.

3. Power Aware Adaptivity

The main idea to implement power aware adaptivity consists in dynamically chang-

ing the number of computational resources used by the runtime support according to

the rate of instructions to be processed. This rate may change during the execution

due to external factors (for example because the arrival rate of the input elements

changes) or even because the application exhibits different behaviours during its ex-

ecution. In general, we would like to avoid under-utilisation or over-utilisation of the

computational resources. Indeed, under-utilisation implies that there are resources

that are kept active but are not fully utilised, thus leading to a power-inefficient

execution. On the other hand, over-utilisation implies the impossibility to manage

all the instructions produced by the dataflow scheduler. In this work we focus on

minimising power consumption rather than energy consumption. Indeed, energy is

obtained by multiplying the average power consumption by the execution time of the

application. However, since we are considering streaming applications and since they

are often characterised by an infinite input stream and thus an infinite execution

time, it would not be possible to optimise energy consumption but only instanta-

neous power consumption. To face this problem, we used the algorithm described in

[10]. This work differs from [10] for the following reasons: i) In [10] the algorithm was

only applied for a very specific, non dataflow, application. In this paper we exploit

the algorithm over the runtime of a programming model, analysing the problems of
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using such reconfiguration algorithm to manage general dataflow applications. ii)

We improved the algorithm to consider explicit performance requirements in terms

of bandwidth or execution time, while in [10] it was only used to express utilisation

requirements. iii) We studied the effectiveness of the algorithm in presence of an

external disturbance (Section 5.3). iv) The power consumption model is improved

to explicitly consider the voltage, while in [10] the voltage was approximated by

using a cubic function.

To check if the interpreter is under-utilised or over-utilised, at regular time

intervals, we compute the average utilisation factor of the application, defined as:

ρ = TS

TA
where TS is the mean time required by the set of interpreters to process an

instruction and TA is the average time between the issue of two fireable instructions.

The system will be able to compute all the instructions only if ρ < 1. If such

condition is not verified, the length of the input queues of the interpreters will

constantly increase until the system memory is completely exhausted. To optimise

system utilisation, we would like to keep the utilisation as close as possible to 1.

In general, we want to keep ρ between two thresholds ρmin and ρmax, with ρmax
very close to 1. For example, we may want to guarantee that 0.8 < ρ < 0.9. The

rationale is that, when the utilisation is lower than ρmin, the system is under-

utilised and we could decrease the used resources while still being able to manage the

same instructions rate. Similarly, when ρ is greater than ρmax, the system starts to

become over-utilised and we should increase the resources in order to manage all the

generated instructions. Changes in ρ may be caused by fluctuations of TA (Sections

5.1 and Section 5.2) as well as changes in TS (Section 5.3). TS may change due to

internal factors (e.g. a phase change of the application), or by external interferences

(e.g. other applications executed on the system).

In this paper, we consider as resources the number of physical cores used by the

interpreter and their clock frequency. As common in similar works [20], we assume

to have at most one thread running on each core. Accordingly, since each interpreter

runs in a different thread, we change the number of cores used by the runtime by

changing the number of interpreters it uses. The scheduler runs on a separate core

when its ρ is close to 1. When the scheduler utilisation is low, it may run on a

physical core shared with one of the interpreters (if there are no available cores).

In this case, since the utilisation is low, the scheduler will not interfere with the

interpreter execution. In fact, to further reduce the contention on this shared core,

the scheduler properly relax its loop execution to avoid continuous active wait on

empty input channels.

We call configuration a specific 〈Cores, Frequency〉 pair. When the monitored

utilisation is outside the specified range, we need to change the current configura-

tion. To decide how many cores to use and at which clock frequency they should run

we need to predict how the utilisation changes when the amount of used resources

changes. For simplicity, in this work we ignore the utilisation of the scheduler, by

only considering the utilisation of the interpreters. However, the model we used can
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be easily extended to consider that factor too. Consequently, we consider the utilisa-

tion of the runtime to be the average of the utilisations of its interpreters. We define

the current configuration as a pair < ω, π > where ω is the number of interpreters

and π is the frequency of the cores on which the interpreters are running. We then

define a reconfiguration as a change of the used resources from < ω, π > to a differ-

ent generic configuration < ω, π >. To select the destination configuration we need

to predict all the utilisations ρ(ω, π) for any ω and π and select one characterised

by a utilisation that falls inside the specified range. For this purpose, we used the

following equation, better described in [10]:

ρ(ω, π) = ρ(ω, π)× ω × π
ω × π

(1)

ρ(ω, π), ω and π are constants since they are obtained from the current config-

uration. This equation implies that the utilisation proportionally decreases when

the number of workers and/or the frequency of the cores they use is increased. This

is in general true for computations which spend most of their execution time on

CPUs. If this is not the case, the algorithm will move to a suboptimal configura-

tion. However, this will be detected and the model will be re-evaluated, selecting

a new configuration. At each step the algorithm will get closer to the optimal con-

figuration, eventually reaching it. However our approach is generic and, if needed,

more complex models could be used in order to let it converge faster.

Since in general there will be many configurations characterised by a good pre-

dicted utilisation, we would like to select the one with the lowest power consumption.

Accordingly, we also need to predict the power consumption in different configu-

rations. Note that we are not interested in knowing the exact power consumption

but only a proportional estimation such that we can compare two different con-

figurations in order to pick the one consuming less. According to [7, 4], the power

consumption can be estimated as: P (ω, π, γ) ∝ ω×π×γ2, where π is the operating

frequency and γ is the supply voltage. Since the voltage depends on the frequency

of the processor, we can rewrite it as P (ω, π) ∝ ω×π×V (π)2, where V is a function

that associates a voltage to a specific frequency. Consequently, from the restricted

set of configurations, we will pick the one such that ω × π × V (π)2 is minimum.

To simplify the exposition, we are assuming to run all the cores at the same fre-

quency/voltage. However, the model could be applied to each frequency/voltage

island separately. The algorithm would then consider as estimation the sum of the

individual estimations.

This reconfiguration strategy has been implemented by using Nornir [14]b, an

autonomic support for parallel applications. The reconfiguration decisions are taken

by an external manager thread, that interacts with the master-worker pattern, as

typical in autonomic applications [1]. The manager monitors the interpreters and,

when they become under- or over-utilised, predicts performance and power con-

bNornir website: http://danieledesensi.github.io/nornir/



March 13, 2017 8:41 WSPC/INSTRUCTION FILE output

A Power-Aware, Self-Adaptive Macro Data Flow Framework 11

sumption of all other possible configurations and then selects the best one. After

that, it sends a configuration change request to the scheduler. When such request is

received by the scheduler, it sends a pause command to all the interpreters. Even-

tually, the scheduler will (re-)start only the interpreters needed according to man-

ager’s prediction. Pause and restart commands are only necessary when a custom

scheduling function is used, in order to keep it consistent (e.g. when the program-

mer requires the tasks to be processed in the arrival order). Concerning the clock

frequency, it can be directly modified by the manager by using the tools available

on the target platform. Configuration changes are completely transparent both to

the application programmer and to the final user since, even if the number of inter-

preters is changed, the structure of the computation as specified by the programmer

is not modified, thus not requiring any state redistribution. The code of the dataflow

runtime and the provided applications have been integrated into Nornir framework

and can be downloaded from its websiteb.

Explicit performance requirements Beside being used to optimise utilisation

of the resources, the presented algorithm can also be used to require explicit perfor-

mance requirements in terms of minimum bandwidth or maximum execution time.

Indeed, denoting with B the bandwidth of the application, starting from Equation 1

we can predict the bandwidth in different configuration as: B(ω, π) = B(ω, π)×ω×π
ω×π .

This equation holds under the same assumptions and conditions described for Equa-

tion 1. In this case, if Breq is the minimum bandwidth required by the user, the

algorithm will find the lowest power consuming configuration < ω, π > such that

0 <
B(ω,π)−Breq

Breq
< 0.05, i.e. a configuration able to sustain a bandwidth that is at

most 5% higher from the target one. If no solutions fall in this range, the algorithm

will select the closest to the user requirement (preferring those with B(ω, π) > Breq).

If s is the number of elements in the input stream, the user may set a maximum

execution time requirement by using the equation T (ω, π) = s
B(ω,π) . An example of

this scenario will be presented in Section 5.3.

4. Programmability Aspects

In this Section we describe the steps to be performed by the programmer to trans-

form an existing sequential application into a parallel dataflow and to specify per-

formance constraints, taking as example the Strassen algorithm for multiplying

two matrices.

First, the programmer analyses the sequential code (Figure 4 (1)), extracting the

dataflow dependencies in the algorithm (Figure 4 (2)). After that, he can create the

corresponding dataflow graph, which instructions will be executed in parallel by the

runtime (Figure 4 (3)). The input stream is defined (lines 2-6). This class must pro-

vide two member functions. The function (next()) must return the stream element

if available, or NULL if no elements are currently present on the stream. The function

(hasNext()) returns true if there are still elements to receive from the stream and
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Fig. 4. Steps required to parallelise the sequential Strassen application.

false when there are no more elements on the stream. Then, the output stream

should be defined (lines 7-10), by implementing the function put() to manage the

computed results. To define the instructions, the application programmer needs to

wrap each business logic fragment (i.e. the actual code performing the computation)

into a class that extends the Computable class and implements the compute() func-

tion (lines 11-19). In the compute() function the application programmer can use

the data received from the linked instructions (line 16) and send the results to the

output linked instructions (line 19). After that, the instructions are created (lines

21-22) and linked together (lines 23-24). Eventually, optional parameters may be

specified (line 26) and the runtime can be created and started (line 27).

For skeleton-based computations, the graphs are already known and well defined.

Accordingly, it is possible to avoid to specify the individual instructions and their

linkage, by only defining the type of skeleton and the business code. The farm

skeleton is compiled into a graph composed by a single Macro Data Flow instruction.

Indeed, since a graph is created for each element on the input stream and since

the instructions are executed in parallel by a pool of interpreters, this leads to a

behaviour corresponding to the one of a farm skeleton. Moreover, skeletons (but

also unstructured graphs) can be composed. In the code fragment below we show a

pipeline where the first stage receives a double and produces an int and the second

stage receives an int and produces a float. Each stage is parallelised by using a

farm. The compiler will ensure that the output type of a stage is compatible with

the input type of the successive stage.

1 int* w1(double* t){/** Process t and return an int*. **/ }
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2 float* w2(int* t){/** Process t and return a float*. **/ }

3 Pipeline p(getFarm<double, int>(w1), getFarm<int, float>(w2));

5. Results

In this Section we describe the applications we used to validate our approach and

we analyse the obtained results. All experiments were conducted on an Intel work-

station with 2 Xeon E5-2695 @2.40GHz CPUs, each with 12 2-way hyperthreaded

cores, running with Linux x86 64. This machine has 13 possible frequency levels:

from 1.2GHz to 2.4GHz with 0.1GHz steps. Since we plan to have at most one

thread per physical core, we will perform our tests by using at most 24 threads (22

for the interpreters + 1 for the scheduler and 1 for the manager). On the consid-

ered platform, we used RAPL power management interface to measure the power

consumption of the CPUs. For all the experiments, we set 〈ρmin, ρmax〉 = 〈0.8, 0.9〉.
Different values could have a different impact on the performance of the algorithm.

A narrower range would cause the algorithm to be more sensitive to changes, while

at the same time being more unstable. Similarly, shifting the range closer to 1.0,

will lead to a lower power consumption. However, we could experience some per-

formance degradation due to temporary performance fluctuations characterised by

ρ > 1. We experimentally found the range 〈0.8, 0.9〉 to be a good tradeoff between

sensitivity, power efficiency and performance.

5.1. ffProbe

The first application we used is ffProbe [11], a parallel implementation of a Net-

Flow probe, i.e. an application responsible for network traffic monitoring. Network

packets are aggregated in flows, created when the first packet of the flow has been

received, and destroyed when some expiration conditions is verified. In ffProbe,

the application is logically structured as a pipeline, where each stage manages a

partition of the active flows. When a packet is received by the input stream, it

is inserted into a stream task and sent to the first worker of the pipeline. If the

packet belongs to a flow managed by the worker, the corresponding flow is updated.

After that, the worker checks if some of the flows it manages are expired and, if

this is the case, these expired flows are added to the task. Eventually, the task is

forwarded to the next pipeline stage. As shown in [11], this parallel implementation

significantly improves the performance in terms of processed network packets per

time unit, achieving performance comparable or better to those obtained with com-

mercial solutions. However, this is the first attempt to implement it over a power

aware dataflow runtime. By implementing ffProbe by using a dataflow model, we

obtained the same peak performance obtained by the original implementation.

For our experiments, we generated a synthetic traffic dataset, as common for such

applications [11]. Since we are interested in analysing the behaviour of the runtime

support when fluctuations in the input rate are present, we receive the data at a

variable rate. To preserve the characteristics of a real scenario, we used data rates
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of a real networkc, covering a 24 hours span. To model future network scenarios,

this rate has been linearly scaled up in order to increase the parallelism need.

In this application, the packets belonging to the same flow are always processed

by the same Macro Data Flow instruction and since they must be processed in

the same order they are received, this requirement is specified in the parameters

of the runtime. As we described in Section 2, this implies that the scheduling of

the instructions to the interpreters is done according to their identifier. Since the

instructions are characterised by a very similar execution time, the best scheduling

strategy is to partition the graph in equal parts among the interpreters in order

to keep the load perfectly balanced. However, this is only possible if the number

of graph instructions is a multiple of the number of active interpreters. Moreover,

since we instantiate a new graph for each element received from the input stream,

this unbalance would accumulate as more elements are received, thus leading to the

impossibility to process all the elements of the stream. In a static scenario, this could

be solved by forcing the number of interpreters to be a divisor of the number of

instructions in the graph, in order to have a perfectly balanced scheduling. However,

this solution is not feasible in our scenario since we are dynamically changing the

number of interpreters at runtime. To solve this problem, we forced the runtime to

only use a number of interpreters which is a divisor of the number of instructions

in the graph. Since we have a graph composed by 20 instructions, the runtime can

activate 1, 2, 4, 5, 10 or 20 interpreters. In this application, the instructions have

an average latency of 3 milliseconds.
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Fig. 5. Input bandwidth (Millions Packets Per Second) and used resources for ffProbe.

In Figure 5 we show the bandwidth of the data sent to the applicationd and the

amount of used resources. We plot the product between the number of used cores

and their frequency since, as anticipated in Section 3, we expect the performance to

be proportional to this quantity, as validated in the figure. The labels on the right

y-axis report the number of cores and the clock frequency used by the runtime.

chttp://bit.ly/1RY7fEt - The used rate is the one collected on 08 Jun 2005
dProcessed bandwidth is not shown since the application is always able to process all the data
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We would like to point out that around 18 hours from the application start, the

runtime starts to oscillate between 10 cores running at 2GHz and 20 cores running

at 1.2GHz. This happens since the optimal solution falls in an intermediate value

that cannot be used because we restricted the possible choices for the number of

interpreters (i.e. cores) that can be used by the runtime. The final effect of the

resources scaling is sketched in Figure 6, where we show both the input data rate

and the power consumption of the application. The power consumption ranges from

20 to 100 Watts according to the workload conditions. It is worth noting that, if a

self-adaptive solution were not used, the system would be underutilised for most of

the time, consuming around 100 Watts for its entire duration.
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Fig. 6. Input bandwidth (Millions Packets Per Second) and power consumption for ffProbe.

An alternative solution under Linux OSs, could be to let the runtime use always

the maximum number of cores, and to delegate the clock frequency scaling manage-

ment to the OS by using the ondemand frequency governor. This strategy however

consumes 12.74% more average power with respect to our solution (which uses the

userspace governor). This happens because we operate both on the number of

cores and their frequency, allowing a more fine grained control.

5.2. Blackscholes

This second application is provided by the well-known Parsec benchmark. It an-

alytically calculates the prices for a portfolio of stock options by using the Black-

Scholes partial differential equation. This application is structured as a farm, where

each stock option received from the input stream is scheduled to a different worker.

Differently from the previous case, this application does not require the tasks to

be processed according to any precise order. In this case, the instructions will be

scheduled according to an on-demand policy, avoiding the unbalancing problems

that characterise the ffProbe application. In our experiments we used the Parsec

native input and the input workload of a trading day of the NASDAQ markete.

ehttp://www.nyxdata.com - The used trading day is 30 Oct 2014
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In this application, the instructions have an average latency of 0.3 milliseconds.

Firstly, we evaluated the maximum performance achieved by our dataflow solution

with those obtained by using pthread, OpenMp and Intel TBB implementations

that are all distributed with Parsec. Both OpenMp and Intel TBB implemen-

tations use the parallel for construct, while the pthread implementation is an

hand-written map skeleton. In the following table we show the average normalised

value (between 0 and 1) obtained over 10 different executions of the experiment.

Dataflow Pthreads OpenMp Intel TBB

1 0.87 0.83 0.95

The dataflow implementation obtains a slightly better performance with respect

to the other solutions. This is mainly due to the fact that the dataflow runtime pins

each interpreter on a specific core. On the contrary, pthread, OpenMp and Intel

TBB implementations let the operating system manage the threads allocation.
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Fig. 7. Input bandwidth (Millions Opt. Per Second) and power consumption for blackscholes.

Concerning the dynamic behaviour, as we can see from Figure 7, the dataflow

interpreter scales its power consumption according to the rate of packets received

by the application. Furthermore, as shown in Figure 8, the solution always satisfies

the requirements by keeping ρ between the specified bounds (80% < ρ < 90%).

5.3. Strassen

The last application we used to validate our solution, consists in computing the

Strassen matrix multiplication algorithm [26] over a stream of matrices. This algo-

rithm divides both the input matrices in 4 parts and applies several sum, differences

and multiplications to these submatrices to get the final result. The application can

be expressed as a non-structured dataflow graph (Figure 4 (2)). In this application,

the instructions have an average latency of 60 milliseconds.

In this experiment we have a stream of 4000 matrices and we required a maxi-

mum execution time of 200 seconds. Moreover, after 100 seconds from the beginning,
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an external application is started (parallel data compression with 24 threads).
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Fig. 9. Resources allocated to Strassen application with a required completion time of 200s.

As shown in Figure 9, around second 20, the runtime automatically selects a

configuration satisfying the user requirement. At second 100, the performance of

Strassen application decrease and the runtime the amount of resources used by the

application are increased, allowing it to terminate its execution within the target.

6. Related Work

Dataflow is a computing model that has been around since the earliest days of com-

puter science research activities [18]. Many programming environments currently use

dataflow concepts in the implementation of different parallel programming models.

StreamIT [28] is a programming language and a compilation infrastructure, specif-

ically engineered for modern streaming systems. However, power-awareness is still

not provided. OpenMP [6] and some recent extensions [23] provide the possibility

to use code annotations to define independent blocks of code, which are scheduled

for execution in a fairly similar manner to that used for our fireable Macro Data

Flow instructions. OpenMP 4.0 also introduces mechanisms for synchronising tasks
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by dataflow dependencies. StarPU [5] supports parallel activities graphs in essence

similar to Macro Data Flow graphs and executes these graphs on heterogeneous

architectures (multi-core + GPU) by using an homogeneous programming abstrac-

tion. More recently, Microsoft TPLf and Google’s TensorFlowg have been proposed

and extensively used in commercial solutions. However, many of these programming

environments do not provide any structured parallel programming abstraction.

S-Net [22] is a mature dataflow model, providing static soundness guarantees

and recursive graphs. Despite such features are not provided by our framework, our

work is orthogonal to S-Net for two main reasons. The first one is that in S-Net the

nodes of the graph must be stateless, while in our model each node can have its own

internal state. This is an important feature for a large class of applications where

the presence of a state is necessary. For example, for ffProbe state is needed to

correlate different packets to perform network analysis. The second reason is that,

albeit some self-adaptive techniques have been built over S-Net, they have some

limitations. For example, in [19], the authors propose an algorithm to avoid un-

derload and overload of physical resources. However, they only operate on voltage

and frequency, while keeping the amount of used physical cores fixed. On the con-

trary, our algorithm operates on both frequency and physical cores, extending the

range of possible configurations and allowing a more fine grained control, which

leads to a lower power consumption. Moreover, the algorithm they propose can

only increase/decrease frequency one step at a time, thus requiring a longer time

to reach the target. In highly dynamic scenarios the input rate may change again

before the algorithm reaches the desired frequency level, thus leading to an unstable

behaviour. This effect is mitigated in our algorithm since, by predicting the opti-

mal configuration, we can skip the intermediate steps. Similarly, in [16] the author

proposes an algorithm to allocate resources to applications according to their real

needs. Different from our approach, they can mediate resource demands between

different applications. However, the impact of frequency scaling is not modelled and

it is not possible to express explicit performance requirements.

Similar to our work, in [17] a solution to minimise power consumption under

a given performance constraint for dataflow applications is presented. However,

only explicit performance requirements (i.e. minimum bandwidth) can be specified

and there is no way to implicitly optimise utilisation of resources according to in-

put bandwidth fluctuations. Moreover, this solution requires information extracted

through a static analysis of the application structure, by annotating each phase

of the application with the maximum parallelism degree achievable. However, even

inside the same phase the maximum amount of parallelism that can be exploited

could significantly change due to fluctuations in the input data arrival or due to

interferences caused by other applications. Our approach consider these dynamic

scenarios (as shown in Section 5.3) and, since it is agnostic from the specific appli-

fhttps://msdn.microsoft.com/en-us/library/hh228603(v=vs.110).aspx
ghttps://www.tensorflow.org/
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cation structure, could potentially work on graphs with a structure that dynamically

changes through the execution.

7. Conclusions

In this work we proposed a general methodology for the implementation of power

aware dataflow runtime systems. By constantly monitoring the application and by

changing the amount of used resources according to the workload condition, we are

able to save a considerable amount of power. We described a concrete implementa-

tion of this approach, validating it over three real streaming applications, showing

the limitations and the advantages of the design.

As a future work, we would like to improve the expressiveness of our solution,

by simplifying the specification of the individual instructions, for example by using

C++ pragmas or attributes. Moreover, we will investigate the possibility to have

quantitative power consumption estimations, in order to express explicit power con-

sumption constraints. Lastly, we would like to analyse possible solutions for balanc-

ing the load, particularly when instructions are statically assigned to interpreters

and the number of interpreters changes during application execution.
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