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Abstract

We introduce the motif trie data structure, which has applications in pattern
matching and discovery in genomic analysis, plagiarism detection, data mining,
intrusion detection, spam fighting and time series analysis, to name a few. Here
the extraction of recurring patterns in sequential and textual data is one of the
main computational bottlenecks. For this, we address the problem of extracting
maximal patterns with at most k don’t care symbols and at least q occurrences,
according to a maximality notion we define. We apply the motif trie to this
problem, also showing how to build it efficiently. As a result, we give the first
algorithm that attains a stronger notion of output-sensitivity, where the cost
for an input sequence of n symbols is proportional to the actual number of
occurrences of each pattern, which is at most n (much smaller in practice). This
avoids the best-known cost of O(nc) per pattern, for constant c > 1, which is
otherwise impractical for massive sequences with large n.
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1. Introduction

In pattern discovery, the task is to extract the “most important” and fre-
quently occurring patterns from sequences of “objects” such as log files, time
series, text documents, datasets or DNA sequences. Each individual object can
be as simple as a character from {A, C, G, T} or as complex as a json record from
a log file. What is of interest to us is the potentially very large set of all possible
different objects, which we call the alphabet Σ, and sequence S built with n
objects drawn from Σ.

We define the occurrence of a pattern in S as in pattern matching but its
importance depends on its statistical relevance, namely, if the number of oc-
currences is above a certain threshold. However, pattern discovery is not to be
confused with pattern matching. The problems may be considered inverse of
each other: the former gets an input sequence S from the user, and extracts
patterns P and their occurrences from S, where both are unknown to the user;
the latter gets S and a given pattern P from the user, and searches for P ’s
occurrences in S, and thus only the pattern occurrences are unknown to the
user.

Many notions of patterns exist, reflecting the diverse applications of the
problem [11, 4, 19, 21]. We study a natural variation allowing the special don’t
care character ? in a pattern to mean that the position inside the pattern oc-
currences in S can be ignored (so ? matches any single character in S). For
example, TA ? C ? ACA ? GTG is a pattern for DNA sequences.

A motif is a pattern of any length with at most k don’t cares occurring at
least q times in S. In this paper, we consider the problem of determining the
maximal motifs, where any attempt to extend them or replace their ?’s with
symbols from Σ causes a loss of significant information (where the number of
occurrences in S changes). We denote the family of all motifs by Mqk, the set
of maximal motifs M ⊆ Mqk (dropping the subscripts in M) and let occ(m)
denote the number of occurrences of a motif m inside S. It is well known that
Mqk can be exponentially larger thanM [15].

1.1. Our results
We show how to efficiently build an index that we call a motif trie which

is a trie that contains all prefixes, suffixes and occurrences ofM, and we show
how to extract M from it. The motif trie is built level-wise, using an oracle
Generate(u) that reveals the children of a node u efficiently using properties
of the motif alphabet and a bijection between new children of u and intervals
in the ordered sequence of occurrences of u. We are able to bound the resulting
running time with a strong notion of output-sensitive cost, borrowed from the
analysis of data structures, where the cost is proportional to the actual number
occ(m) of occurrences of each maximal motif m.
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Theorem 1. Given a sequence S of n objects over an alphabet Σ, and two
integers q > 1 and k ≥ 0, there is an algorithm for extracting the maximal motifs
M⊆Mqk and their occurrences from S in O

(
n(k+log Σ)+k3×

∑
m∈M occ(m)

)
time.

Our result may be interesting for several reasons. First, observe that this is
an optimal listing bound when the maximal number of don’t cares is k = O(1),
which is true in many practical applications. The resulting bound is O(n log Σ+∑

m∈M occ(m)) time, where the first additive term accounts for building the
motif trie and the second term for discovering and reporting all the occurrences
of each maximal motif.

Second, our bound provides a strong notion of output-sensitivity since it
depends on how many times each maximal motif occurs in S. In the literature
for enumeration, an output-sensitive cost traditionally means that there is poly-
nomial cost of O(nc) per pattern, for a constant c > 1. This is infeasible in the
context of big data, as n can be very large, whereas our cost of occ(m) ≤ n
compares favorably with O(nc) per motif m, and occ(m) can be actually much
smaller than n in practice. This has also implications in what we call “the CTRL-C
argument,” which ensures that we can safely stop the computation for a specific
sequence S if it is taking too much time1. Indeed, if much time is spent with our
solution, too many results to be really useful may have been produced. Thus,
one may stop the computation and refine the query (change q and k) to get
better results. On the contrary, a non-output-sensitive algorithm may use long
time without producing any output: It does not indicate if it may be beneficial
to interrupt and modify the query.

Third, our analysis improves significantly over the brute-force bound: Mqk

contains pattern candidates of lengths p from 1 to n with up to min{k, p} don’t
cares, and so has size

∑
p |Σ|p × (

∑min{k,p}
i=1

(
p
i

)
) = O(|Σ|nnk). Each candidate

can be checked in O(nk) time (e.g. string matching with k mismatches), or
O(k) time if using a data structure such as the suffix tree [19]. In our analysis
we are able to remove both of the nasty exponential dependencies on |Σ| and n
in O(|Σ|nnk). In the current scenario where implementations are fast in practice
but skip worst-case analysis, or state the latter in pessimistic fashion equivalent
to the brute-force bound, our analysis could explain why several previous algo-
rithms are fast in practice. (We have implemented a variation of our algorithm
that is very fast in practice.)

1.2. Applications
Although the motifs discovery problem has found immediate applications in

stringology and computational biology, it is highly multidisciplinary and spans a
vast number of applications in different areas. This situation is similar to the one
for the edit distance problem and dynamic programming. We here give a short

1Such an algorithm is also called an anytime algorithm in the literature.
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survey of some significant applications, but others are no doubt left out due
to the difference in terminology used (see [1] for further references). Computer
security researches use patterns in log files to perform intrusion detection and
find attack signatures based on their frequencies [9], while commercial anti-
spam filtering systems use pattern discovery to detect and block SPAM [18]. In
the data mining community pattern discovery is used extensively [13] as a core
method in web page content extraction [7]. A core building block of time series
analysis is to use pattern discovery on events that occur over time [17, 20].
In plagiarism detection finding recurring patterns across a (large) number of
documents is a core primitive to detect if significant parts of documents are
plagiarized [6] or duplicated [5, 8]. And finally, in data compression extraction of
the common patterns enables a compression scheme that competes in efficiency
with well-established compression schemes [3]. In computational biology, motif
discovery in biological sequences identifies areas of interest [19, 21, 11, 1]. Being
the analysis of biological sequences our target application, in Section 1.3 we will
give an overview of methods and problem variants for motifs discovery in this
field.

As the motif trie is an index, we believe that it may be of independent interest
for storing similar patterns across similar strings. Our result easily extends to
real-life applications requiring a solution with two thresholds for motifs, namely,
on the number of occurrences in a sequence and across a minimum number of
sequences.

1.3. Related work
Finding motifs in biological sequences has many possible problem formu-

lations and applications. These all share the requirement that the motif oc-
currences should do not have to be identical, but rather just similar: because
of sequencing errors that may have taken place, and because of mutations that
can be observed in homologous sequences. This is what makes the problem chal-
lenging from the algorithmic point of view. The problem formulation varies in
crucial parameters such as (i) the frequency required for the motif; (ii) the type
of differences that can be observed in different occurrences: bases substitutions
only, insertions or deletions of single nucleotides or of short fragments, or possi-
bly of long ones; (iii) the conservation of the motif, that is, the amount of such
differences that are allowed. Applications range from the detection of transcrip-
tion factor binding sites (typically identified as short and well conserved motifs
without insertion or deletions), to the search for mobile elements or whole genes
(long repetitions with larger amount of insertion and deletions and repeated but
not necessarily frequently), passing through objects of medium frequency and
size with a limited amount of short inserted or deleted fragments, representing
for example individual genomic variants within species (polymorphisms).

The literature of algorithmic approaches and software tools for finding mo-
tifs and repetitions is vaste, as the variability of the problem formulations leads
to a variability of algorithmic strategiess, and often to combinations of them.
For finding long repetitions [40], for example, a preprocessing with an efficient
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and effective filtering [24, 23, 28] turns out to be the only possible combina-
torial approach. For short motifs there are several enumerative pattern-driven
algorithms [19, 30, 31, 35]. In order to deal with the possible explosion and
redundancy of the output, several notion of maximality have been designed as
well as algorithms for selecting maximal motifs only [11, 10, 35]. Pushing fur-
ther the notion of maximality, there are approaches that suggest a notion of
bases for the motifs, that is a limited size set of motifs that can generate all
the others [27, 25, 15, 35]. Other methods resort to indexing techniques [19, 30].
Furthermore, there are algorithms that are designed to detect specific type of
motifs such as satellites or tandem repeats [28, 35], palindromes and mirrors [33],
gapped or structured motifs [29, 26, 37, 30] and their flexible variants [34, 39]
where don’t care symbols may represent any number of bases, circular patterns
or texts [36, 38], etc.

This paper addresses the problem variant motifs with don’t cares, and com-
bines the ideas of indexing, using a maximality notion that we exploit in a
twofold manner by bounding the output as well as the intermediate explosion
of candidates during the inference phase.

Although the literature on pattern discovery is vast and spans many dif-
ferent fields of applications with various notation, terminology and variations,
we could not find time bounds explicitly stated obeying our stronger notion of
output-sensitivity, even for pattern classes different from ours. Output-sensitive
solutions with a polynomial cost per pattern have been previously devised for
slightly different notions of patterns. For example, Parida et al. [16] describe
an enumeration algorithm with O(n2) time per maximal motif plus a bootstrap
cost of O(n5 log n) time. 2 Arimura and Uno obtain a solution with O(n3) delay
per maximal motif where there is no limitations on the number of don’t cares
[4]. Similarly, the MadMX algorithm [11] reports dense motifs, where the ratio
of don’t cares and normal characters must exceed some threshold, in time O(n3)
per maximal dense motif. Our stronger notion of output-sensitivity is borrowed
from the design and analysis of data structures, where it is widely employed.
For example, searching a pattern P in S using the suffix tree [14] has cost pro-
portional to P ’s length and its number of occurrences. A one-dimensional query
in a sorted array reports all the wanted keys belonging to a range in time pro-
portional to their number plus a logarithmic cost. Therefore it seemed natural
to us to extend this notion to enumeration algorithms also.

1.4. Reading guide
Our solution has two natural parts, after the preliminaries in Section 2. In

Section 3 we define the motif trie, which is an index storing all maximal mo-
tifs and their prefixes, suffixes and occurrences. We show how to report only
the maximal motifs in time linear in the size of the trie. That is, it is easy

2The set intersection problem (SIP) in appendix A of [16] requires polynomial time O(n2):
The recursion tree of depth ≤ n can have unary nodes, and each recursive call requires O(n)
to check if the current subset has been already generated.
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String TACTGACACTGCCGA

Quorum q = 2
Don’t cares k = 1

(a) Input and parameters for running exam-
ple.

Maximal Motif Occurrence List
A 2, 6, 8, 15
AC 2, 6, 8

ACTG?C 2, 8
C 3, 7, 9, 12, 13
G 5, 11, 14
GA 5, 14
G?C 5, 11
T 1, 4, 10
T?C 1, 10

(b) Output: Maximal motifs found (and their occurrence
list) for the given input.

Figure 1: Example 1: Maximal Motifs found in string

to extract the maximal motifs from the motif trie—the difficulty is to build
the motif trie without knowing the motifs in advance. In Section 4 we begin
to describe an efficient algorithm for constructing the motif trie and bound its
construction time by the number of occurrences of the maximal motifs, thereby
obtaining an output-sensitive algorithm. We build the motif trie topdown, start-
ing from the root and expanding each level of nodes u using a suitable procedure
Generate(u), described in Sections 5–6, which is at the heart of the computa-
tion. Its correctness, along with the total complexity, is discussed in Section 7.

2. Preliminaries

2.1. Strings
We let Σ be the alphabet of the input string S ∈ Σ∗ and n = |S| be its

length. For 1 ≤ i ≤ j ≤ n, S[i, j] is the substring of S between index i and
j, both included. S[i, j] is the empty string ε if i > j, and S[i] = S[i, i] is a
single character. Letting 1 ≤ i ≤ n, a prefix or suffix of S is S[1, i] or S[i, n],
respectively. The longest common prefix lcp(x, y) is the longest string such that
x[1, | lcp(x, y)|] = y[1, | lcp(x, y)|] for any two strings x, y ∈ Σ∗.

2.2. Tries
A trie T over an alphabet Π is a rooted, labeled tree, where each edge (u, v)

is labeled with a symbol from Π. All edges to children of node u ∈ T must be
labeled with distinct symbols from Π. We may consider node u ∈ T as a string
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generated over Π by spelling out characters from the root on the path towards
u. We will use u to refer to both the node and the string it encodes, and |u| to
denote its string length. A property of the trie T is that for any string u ∈ T , it
also stores all prefixes of u. A compacted trie is obtained by compacting chains
of unary nodes in a trie, so the edges are labeled with substrings: the suffix tree
for a string is special compacted trie that is built on all suffixes of the string
[14].

2.3. Motifs
A motif m ∈ Σ (Σ ∪ {?})∗Σ consist of symbols from Σ and don’t care char-

acters ? 6∈ Σ. We let the length |m| denote the number of symbols from Σ∪{?}
in m, and let dc(m) denote the number of ? characters in m. Motif m occurs
at position p in S iff m[i] = S[p + i − 1] or m[i] = ? for all 1 ≤ i ≤ |m|. The
number of occurrences of m in S is denoted occ(m). Note that appending ? to
either end of a motif m does not change occ(m), so we assume that motifs starts
and ends with symbols from Σ. A solid block is a maximal (possibly empty ε)
substring from Σ∗ inside m.

We say that a motif m can be extended by adding don’t cares and characters
from Σ to either end of m. Similarly, a motif m can be specialized by replacing
a don’t care ? in m with a symbol c ∈ Σ. An example is shown in Figure 1.

2.4. Maximal motifs
Given an integer quorum q > 1 and a maximum number of don’t cares

k ≥ 0, we define a family of motifs Mqk containing motifs m that have a limited
number of don’t cares dc(m) ≤ k, and occurs frequently occ(m) ≥ q. A maximal
motif m ∈Mqk cannot be extended or specialized into another motif m′ ∈Mqk

such that occ(m′) = occ(m). Note that extending a maximal motif m into motif
m′′ 6∈ Mqk may maintain the occurrences (but have more than k don’t cares).
We letM⊆Mqk denote the set of maximal motifs.

Motifs m ∈ Mqk that are left-maximal or right-maximal cannot be special-
ized or extended on the left or right without decreasing the number of occur-
rences, respectively. They may, however, be prefix or suffix of another (possibly
maximal) m′ ∈Mqk, respectively.

(Running) Example 2. As a running example, consider a frequency quorum
q = 2, the simple text TACTGACACTGCCGA, and k = 1 as maximum number
of allowed don’t cares symbols (Figure 1(a)). The set of maximal motif M is
shown in Figure 1(b) with their occurrences, while the set of all the motifs is
Mqk = M21 = M∪ {CT, TG, ACT, CTG, ACTG, A?T, CTG?C, TG?C, C?GA, AC?G, A?TG}.
All motifs inM are by definition both right-maximal and left-maximal. Among
the other motifs in M21, we have that {ACT, A?T, ACTG, C?GA, AC?G, A?TG} are left
maximal, and {CTG?C, TG?C, C?GA, AC?G, A?TG} are right maximal.

Fact 3. If motif m ∈ Mqk is right-maximal (resp. left-maximal), then it is a
suffix (resp. a prefix) of a maximal motif.
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3. Motif Tries and Pattern Discovery

This section introduces the motif trie. This trie is not used for searching but
its properties are exploited to orchestrate the search for maximal motifs inM
and obtain a strong output-sensitive cost.

3.1. Efficient representation of motifs
We first give a few simple observations that are key to our algorithms.

Consider a suffix tree built on S over the alphabet Σ, which can be done in
O(n log |Σ|) time. It is shown in [21, 10] that when a motifm is maximal, its solid
blocks correspond to nodes in the suffix tree for S, matching their substrings
from the root3. For this reason, we introduce a new alphabet, the maximal solid
block alphabet Π of size at most 2n, consisting of the strings stored in all the
suffix tree nodes.

We can write a maximal motifm ∈Mqk as an alternating sequence of ≤ k+1
elements of Π and ≤ k don’t cares, starting and ending with solid blocks. The
possibility of having the empty string rather than a solid block stands for the
case of possible consecutive don’t cares.

Thus we represent m as a sequence of ≤ k+ 1 strings from Π since the don’t
cares are implicit. By traversing the suffix tree nodes in preorder we assign
integers to the strings in Π, allowing us to assume that Π ⊆ [0, . . . , 2n] where
ε is represented by 0. Hence each motif m ∈ Mqk is actually represented as a
sequence of ≤ k + 1 integers from 0 to 2n.

(Running) Example 4. For our running example of Figure 1, the array A of
sorted solid blocks is [A, AC, ACTG, C, G, GA, T], with blocks numbered from 1 to 7
in this order. Hence |Π| = 8 because we are including also ε, which is always
encoded as 0. In this way, m = ACTG ? C is compactly represented by the integer
sequence 3, 4.

Note that the order on the integers in Π shares the following grouping prop-
erty with the strings over Σ.

Lemma 5. Let A be an array storing the sorted alphabet Π. For any string
x ∈ Σ∗, the solid blocks represented in Π and sharing x as a common prefix, if
any, are grouped together in A in a contiguous segment A[i, j] for some 1 ≤ i ≤
j ≤ |Π|.

When it is clear from its context, we will use the shorthand x ∈ Π to mean
equivalently a string x represented in Π or the integer x in Π that represents a
string stored in a suffix tree node. We observe that the set of strings represented
in Π is closed under the longest common prefix operation: for any x, y ∈ Π,
lcp(x, y) ∈ Π and it may be computed in constant time after augmenting the
suffix tree for S with a lowest common ancestor data structure [12].

Summing up, the above relabeling from Σ to Π only requires the string
S ∈ Σ∗ and its suffix tree augmented with lowest common ancestor information.

3The proofs in [21, 10] can be easily extended to our notion of maximality.
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A AC AC
TG

C G GA T

C C C

Figure 2: Motif trie for the running example, where ε-arcs are not shown.
.

3.2. Motif tries
We now give a sense to the machinery on alphabets described in Section 3.1.

For the input sequence S, consider the family Mqk defined in Section 2, where
eachm is seen as a stringm = m[1, `] of ` ≤ k+1 integers from 0 to 2n. Although
each m can contain O(n) symbols from Σ, we get a benefit from treating m as a
short string over Π: unless specified otherwise, the prefixes and suffixes of m are
respectively m[1, i] and m[i, `] for 1 ≤ i ≤ `, where ` = dc(m) + 1 ≤ k+ 1. This
helps with the following definition as it does not depend on the O(n) symbols
from Σ in a maximal motif m but it solely depends on its ≤ k+1 length over Π.

Definition 6 (Motif Trie). A motif trie T is a trie over alphabet Π which
stores all maximal motifsM⊆Mqk and their suffixes.

As a consequence of being a trie, T implicitly stores all prefixes of all the
maximal motifs and edges in T are labeled using characters from Π. Hence,
all sub-motifs of the maximal motifs are stored in T , and the motif trie can
be essentially seen as a generalized suffix trie4 storingM over the alphabet Π.
From the definition, T has O((k+ 1) · |M|) leaves, the total number of nodes is
|T | = O((k + 1)2 · |M|), and the height is at most k + 1.

We may consider a node u in T as a string generated over Π by spelling
out the ≤ k + 1 integers from the root on the path towards u. To decode the
motif stored in u, we retrieve these integers in Π and, using the suffix tree of S,
we obtain the corresponding solid blocks over Σ and insert a don’t care symbol
between every pair of consecutive solid blocks. When it is clear from the context,
we will use u to refer to (1) the node u or (2) the string of integers from Π stored
in u, or (3) the corresponding motif from (Σ ∪ {?})∗. We reserve the notation
|u| to denote the length of motif u as the number of characters from Σ ∪ {?}.
For each node u ∈ T , we denote by Lu the list of occurrences of motif u in S,
i.e. u occurs at p in S for every position p ∈ Lu.

4As it will be clear later, a compacted motif trie does not give any advantage in terms of
the output-sensitive bound compared to the motif trie.

9



Since child edges for u ∈ T are labeled with solid blocks, the child edge labels
may be prefixes of each other, and one of the labels may be the empty string ε
(which corresponds to having two neighboring don’t cares in the decoded motif).

(Running) Example 7. The motif tree for our running example is shown in
Figure 2. The black nodes are maximal motifs (with their occurrence lists shown
in the right column of Figure 1(b))

3.3. Reporting maximal motifs using motif tries
We now describe how motif tries facilitate the discovery of maximal motifs

with don’t cares. Suppose we are given a motif trie T but we do not know
which nodes of T store the maximal motifs in S. We can identify and report
the maximal motifs in T in O(|T |) = O((k+ 1)2 · |M|) = O(k2 ·

∑
m∈M occ(m))

time as follows.
We first identify the set R of nodes u ∈ T that are right-maximal motifs. A

characterization of right-maximal motifs in T is relatively simple: we choose a
node u ∈ T if (i) its parent edge label is not ε, and (ii) u has no descendant
v with a non-empty parent edge label such that |Lu| = |Lv|. In other words,
u cannot be extened with a solid block to its right while keeping the same
set of occurrences as Lu. By performing a bottom-up traversal of nodes in T ,
computing for each node the length of the longest list of occurrences for a node
in its subtree with a non-empty edge label, it is easy to find R in time O(|T |)
and by Fact 3, |R| = O((k + 1) · |M|).

Next we perform radix sort on the set of pairs 〈|Lu|, reverse(u)〉, where u ∈ R
and reverse(u) denotes the reverse of the string u, to select the motifs that are
also left-maximal (and thus are maximal). In this way, the suffixes of the maxi-
mal motifs become prefixes of the reversed maximal motifs. By Lemma 5, those
motifs sharing common prefixes are grouped together consecutively. However,
there is a caveat, as one maximal motif m′ could be a suffix of another maximal
motif m and we do not want to drop m′ when reversed: fortunately, in that case,
we have that |Lm| 6= |Lm′ | by the definition of maximality. Hence, after sort-
ing, we consider consecutive pairs 〈|Lu1 |, reverse(u1)〉 and 〈|Lu2 |, reverse(u2)〉 in
the order, and eliminate u1 iff |Lu1 | = |Lu2 | and u1 is a suffix of u2 in time
O(k+ 1) per pair (i.e. prefix under reverse). The remaining motifs are maximal
(Figure 2).

4. Building Motif Tries

The rest of the paper is devoted to efficiently build the motif trie T discussed
in Section 3.2. Suppose without loss of generality that enough new terminator
symbols are prepended and appended to the sequence S to avoid border cases.

We proceed in top-down and level-wise fashion by employing an oracle that
is invoked on each node u on the last level of the partially built trie, and which
reveals the future children of u. The oracle is executed many times to generate T
level-wise starting from its root u with Lu = {1, . . . , n}, and stopping at level
k + 1 or earlier for each root-to-node path. Interestingly, this sounds like the
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wrong way to do anything efficiently, e.g. it is usually a slow way to build a
suffix tree, however the oracle allows us to amortize the total cost to construct
the trie.

The oracle is implemented by the Generate(u) procedure that generates
the children u1, . . . , ud of u. We ensure that (i) Generate(u) operates on the
≤ k + 1 length motifs from Π, and (ii) Generate(u) avoids generating the
motifs in Mqk \M that are not suffixes or prefixes of maximal motifs. This is
crucial, as otherwise we cannot guarantee output-sensitive bounds because Mqk

can be exponentially larger thanM. Algorithm 1 implements the construction.

Algorithm 1: Breadth-First Construction of the Motif-Trie
Input : Text of length n.
Output : Motif trie for the input text.

1 u← create the root
2 Lu ← {1, 2, . . . , n}
3 Q← create an empty queue
4 Enqueue(Q, u)
5 while Q 6= ∅ do
6 u = Dequeue(Q)
7 if |Lu| > 1 and Generate(u) 6= null then
8 〈u1, b1〉, . . . , 〈ud, bd〉 = Generate(u) // cumulative for same-level u’s
9 for i = 1, 2, . . . , d do

10 Enqueue(Q, ui)
11 (u, ui)← new arc labeled with solid block bi

In Sections 5–6 we will show how to implement Generate(u) and prove:

Lemma 8. Algorithm Generate(u) correctly produces the children of u and
can be implemented in time O(sort(Lu) + (k + 1) · |Lu|+

∑d
i=1 |Lui |).

By summing the cost to execute Generate(u) for all nodes u ∈ T , we
now bound the construction time of T . Observe that when summing over T the
formula stated in Lemma 8, each node exists as u once in the first two terms
and as ui once in the third term, so the latter can be ignored when summing
over T (as it is dominated by the other terms)

∑
u∈T

(sort(Lu)+(k+1) · |Lu|+
d∑

i=1

|Lui |) = O

(∑
u∈T

(sort(Lu) + (k + 1) · |Lu|)

)
.

(1)
We bound ∑

u∈T
sort(Lu) = O

(
n(k + 1) +

∑
u∈T
|Lu|

)
(2)

by running a single cumulative radix sort for all the instances over the several
nodes u at the same level, allowing us to amortize the additive cost O(n) of the
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radix sorting among nodes at the same level (and there are at most k + 1 such
levels).

To bound
∑

u∈T |Lu|, we observe
∑

i |Lui
| ≥ |Lu| (as trivially the ε extension

always maintains the number of occurrences of its parent). Consequently we can
charge each leaf u by the cost of its ≤ k ancestors, so

∑
u∈T
|Lu| = O

(
(k + 1)×

∑
leaf u∈T

|Lu|

)
. (3)

Finally, from Section 3.2 there cannot be more leaves than maximal motifs
in M and their suffixes, and the occurrence lists of maximal motifs dominate
the size of the non-maximal ones in T , which allows us to bound:

∑
leaf u∈T

|Lu| = O

(
(k + 1)×

∑
m∈M

occ(m)

)
. (4)

By replacing the terms in the total cost of (1) with the upper bounds in (2)–(4),
and adding the O(n log Σ) cost for the suffix tree and the LCA ancestor data
structure of Section 3.1, we can obtain our main result.

Theorem 9. Given a sequence S of n objects over an alphabet Σ and two in-
tegers q > 1 and k ≥ 0, a motif trie containing the maximal motifs M ⊆ Mqk

and their occurrences occ(m) in S for m ∈ M can be built by Algorithm 1 in
time and space O

(
n(k + log Σ) + (k + 1)3 ×

∑
m∈M occ(m)

)
.

5. Generate(u): Motif Trie Nodes as Maximal Intervals

We now discuss the central part of our construction, showing how to im-
plement Generate(u) in the time bounds stated by Lemma 8. The idea is
summarized in Algorithm 2.

Algorithm 2: Generate(u)

1 if dc(u) ≥ k then return null
2 Eu ← permutation of Lu for the corresponding suffixes in lexicographic order
3 Iu ←MaximalIntervals(Eu) // see Section 6
4 d← |Iu| // let Iu = {I1, . . . , Id}
5 for i = 1, 2, . . . , d do
6 ui ← create new node
7 bi ← LCP(Ii) // longest common prefix of the suffixes in Ii

8 return 〈u1, b1〉, . . . , 〈ud, bd〉

We first obtain Eu, which is an array storing the occurrences in Lu, sorted
lexicographically according to the suffix associated with each occurrence. We can
then show that there is a bijection between the children u1, . . . , ud of u (labeled
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by solid blocks b1, . . . , bd) and the set of maximal intervals in Eu: informally
speaking, these intervals are maximal under inclusion, as long as the longest
common prefix of the suffixes represented by the occurrences is preserved. (As
we will see, each solid block bi is one such longest common prefix.) By exploiting
the properties of these intervals, we are able to find them efficiently through O(1)
scans of Eu. The bijection implies that we thus efficiently obtain the new children
of u. The key point in the efficient implementation of the oracle Generate(u)
is to relate each node u and its future children to some suitable intervals that
represent their occurrence lists Lu, Lu1

, . . . , Lud
.

Though the idea of using intervals for representing trie nodes is not new
(e.g. in [2]), we use intervals to expand the trie rather than merely representing
its nodes. Not all intervals generate children as not all solid blocks that extend
u necessarily generate a child. Also, some of the solid blocks b1, . . . , bd can be
prefixes of each other and one of the intervals can correspond to the empty
string ε. To select them carefully, we need some definitions and properties.

5.1. Extensions and intervals
Consider a motif u and its list Lu of occurrences: these occurrences match

the solid blocks in u, while the characters in S corresponding to the don’t cares
in u, and the character preceding and succeding u, specialize each occurrence as
a substring of S (border cases are easily handled). In our example of Figure 1,
motif u = ACGT?C has two occurrences Lu = {2, 8} in S, with one don’t care and,
clearly, one preceding and one succeeding character for each occurrence p ∈ Lu:
for p = 8, the preceding character is C, then the don’t care matches C, and the
succeeding character is G. This motivates the definition of skipped characters
skip(p) at position p ∈ Lu, which are the closest d = dc(u) + 2 characters in
S that specialize u: formally, skip(p) = 〈c0, c1, . . . , cd−1〉 where c0 = S[p − 1],
cd−1 = S[p + |u|], and ci = S[p + ji − 1], for 1 ≤ i ≤ d − 2, where u[ji] = ? is
the ith don’t care in u. In our example, skip(p) = 〈C, C, G〉.

Now, the children of u must extend u in the characters following u plus a
don’t care. Hence these characters should be taken from S after an occurrence of
u and its next character, motivating the following definition. For an occurrence
p ∈ Lu, we define its extension as the suffix ext(p, u) = S[p+|u|+1, n] that starts
at the position after p with an offset equivalent to skipping the prefix matching
u plus one character (for the don’t care). In our example, ext(p, u) = GA for
p = 8. We may write ext(p), omitting the motif u if it is clear from the context.

Recalling that each suffix ext(p) can be seen as an integer in Π (see Sec-
tion 3.1), we denote by Eu the list Lu sorted using as keys ext(p) where p ∈ Lu.
By Lemma 5 consecutive positions in Eu share common prefixes of their exten-
sions. Lemma 10 below states that these prefixes are the candidates for being
correct edge labels for expanding u in the trie.

Lemma 10. Let ui be a child of node u, bi be the label of edge (u, ui), and
p ∈ Lu be an occurrence position. If position p ∈ Lui then bi is a prefix of
ext(p, u).
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Proof Assume otherwise, so p ∈ Lu ∩ Lui but bi is not a prefix of ext(p, u).
Then there is a mismatch of solid block bi in ext(p, u), since at least one of
the characters in bi is not in ext(p, u). But this means that ui cannot occur at
position p, and consequently p 6∈ Lui

, which is a contradiction.

Lemma 10 states a necessary condition, so we have to filter the candidate
prefixes of the extensions. We use the following notion of intervals to facilitate
this task. We call I ⊆ Eu an interval of Eu if I contains consecutive entries of Eu.
With an abuse of notation, we write I ≡ [i, j] to actually mean I = Eu[i], Eu[i+
1], . . . , Eu[j]. The longest common prefix of an interval is defined as LCP(I) =
minp1,p2∈I lcp(ext(p1), ext(p2)), which is a solid block in Π as discussed at the
end of Section 3.1. By Lemma 5, LCP(I) = lcp(ext(Eu[i]), ext(Eu[j])) can be
computed in O(1) time, where Eu[i] is the first and Eu[j] the last element in I.

5.2. Maximal and quasi-maximal intervals
Central to our algorithms is the following notion of maximality. An interval

I ⊆ Eu is maximal if

(1) there are at least q positions in I (i.e. |I| ≥ q),
(2) motif u cannot be specialized with the same skipped character in skip(p)

simultaneously for all p ∈ I,
(3) any interval I ′ ⊆ Eu such that I ′ ⊃ I, has a shorter common prefix (i.e.
|LCP(I ′)| < |LCP(I)|).

We denote by Iu the set of all maximal intervals of Eu. While conditions (1)
and (3) are intuitive, as we want the largest intervals with ≥ q positions that
cannot be extended, condition (2) is less intuitive but has a dramatic effect on
the complexity: it is needed to avoid the enumeration of either motifs fromMqk\
M or duplicates from M, recalling that the size of Mqk can be exponentially
larger than that ofM. Condition (2) can be equivalently stated by defining CI as
the minimum number of different characters covered by any skipped character
in skip(p) for all p ∈ I, and observing that CI ≥ 2 (as otherwise a skipped
character in u could be specialized to as single symbol, thus extending a block).

The next lemma establishes a useful bijection between maximal intervals Iu
and children of u, motivating why we use intervals to expand the motif trie.

Lemma 11. Let ui be a child of a node u. Then the occurrence list Lui
is a

permutation of a maximal interval I ∈ Iu, and vice versa. The label on edge
(u, ui) is the solid block bi = LCP(I). No other children or maximal intervals
have this property with ui or I.

Proof We prove the statement by assuming that the motif trie T has been
built, and that the maximal intervals have been computed for nodes u ∈ T .

We first show that given a maximal interval I ∈ Iu, there is a single corre-
sponding child ui ∈ T of u. Let bi = LCP(I) denote the longest common prefix
of occurrences in I, and note that bi is distinct among the maximal intervals in
Iu. Also, since bi is a common prefix for all occurrence extensions in I, the motif
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u ? bi occurs at all locations in I (as we know that u occurs at those locations).
Since |I| ≥ q and u ? bi is an occurrence at all p ∈ I, there must be a child ui of
u, where the edge (u, ui) is labeled bi and where I ⊆ Lui

. From the definition
of tries, there is at most one such node. There can be no p′ ∈ Lui

− I, since
that would mean that an occurrence of u ? bi was not stored in I, contradicting
the maximality assumption of I. Finally, because CI ≥ 2 and bi is the longest
common prefix of all occurrences in I, not all occurrences of ui can be extended
to its left using one symbol from Σ. Thus, ui is a prefix or suffix of a maximal
motif.

We now prove the other direction, that given a child ui ∈ T of u, we can
find a single maximal interval I ∈ Iu. First, denote by bi the label on the (u, ui)
edge. From Lemma 10, bi is a common prefix of all extensions of the occurrences
in Eui . Since not all occurrences of ui can be extended to its left using a single
symbol from Σ, bi is the longest common prefix satisfying this, and there are at
least two different skipped characters of the occurrences in Lui

. Now, we know
that ui = u ? bi occurs at all locations p ∈ Lui

. Observe that Lui
is a (jumbled)

interval of Eu (since otherwise, there would be an element p′ ∈ Eu which did
not match ui but had occurrences from Lui , contradicting the grouping of Eu).
All occurrences of ui are in Lui

so Lui
is a (jumbled) maximal interval of Eu.

We just described a maximal interval with a distinct set of occurrences, at least
two different skipped characters and a common prefix, so there must surely be
a corresponding interval I ∈ Iu such that LCP(I) = bi, CI ≥ 2 and Lui

⊆ I.
There can be no p′ ∈ I − Lui , as p′ ∈ Lu and bi is a prefix of ext(p′, u) means
that p′ ∈ Lui .

An interval that satisfies only conditions (2) and (3) is called a quasi-
maximal interval. We do not require that |I| ≥ q for any such interval I, as
we need it when building larger maximal intervals (see Section 6.3). Since a
maximal interval is quasi-maximal, we will refer most of the properties to the
latter unless explicitly mentioned. In particular, we show that the set of quasi-
maximal intervals, and thus its subset Iu, form a tree covering of Eu. A similar
lemma for intervals over the LCP array of a suffix tree was given in [2].

Lemma 12. Let I1, I2 be two quasi-maximal intervals, where I1 6= I2 and |I1| ≤
|I2|. Then either I1 is contained in I2 with a longer common prefix (i.e. I1 ⊂ I2
and |LCP(I1)| > |LCP(I2)|) or the intervals are disjoint (i.e. I1 ∩ I2 = ∅).

Proof Let I1 ≡ [i, j] and I2 ≡ [i′, j′]. Assume partial overlaps are possible,
i′ ≤ i ≤ j′ < j, to obtain a contradiction. Since |LCP(I1)| ≥ |LCP(I2)|, the
interval I3 ≡ [j′, j] has a longest common prefix |LCP(I3)| ≥ |LCP(I2)|, and so
I2 could have been extended and was not quasi-maximal, giving a contradiction.
The remaining cases are symmetric.

6. MaximalIntervals(Eu): Finding all maximal intervals Iu in Eu

We now give the technical details to find all maximal intervals Iu in Eu,
where each interval I ∈ Iu corresponds exactly to a distinct child ui of u. The
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interval I = Eu corresponding to the solid block ε is trivial to find, so we focus
on the rest. We assume |Eu| > 1 and dc(u) < k, as otherwise we are already
done with u. We describe the steps summarized in Algorithm 3 to achieve our
goal. The first three steps guarantee conditions (2) and(3), thus they find the
quasi-maximal intervals; the fourth step enforces condition (1), thus obtaining
the maximal intervals.

Algorithm 3: MaximalIntervals(Eu)

1 Ru ← {[i, R(i)] : R(i) exists}, where R(i) > i is the smallest with C[i,R(i)] ≥ 2
2 Hu ← {quasi-maximal intervals with handles}, obtained from Ru’s intervals
3 Hu ← Hu∪ {composite quasi-maximal intervals}, obtained from Hu’s intervals
4 Iu ← {I ∈ Hu : |I| ≥ q}
5 return Iu // it always contains Eu

Let R(i) > i the smallest index in Eu such that C[i,R(i)] ≥ 2. That is,
there are at least two different characters from Σ hidden by each of the skipped
characters in the interval. Note that R(1) is always defined while R(i) does
not necessarily exists for i > 1. We denote the set of these intervals by Ru =
{[i, R(i)] : 1 ≤ i < |Eu| and R(i) exists}, which are the starting point of our
computation.

Lemma 13. For each quasi-maximal interval I ≡ [i, j], there exists R(i) ≤ j,
and thus [i, R(i)] is an initial portion of I.

Starting from Ru, we want to find all the quasi-maximal intervals in Eu. To
this end, we introduce handles. For each p ∈ Eu, its interval domain D(p) is
the set of intervals I ′ ⊆ Eu such that p ∈ I ′ and CI′ ≥ 2. We let `p be the
length of the solid block that is the longest shared prefix bi over D(p), namely,
`p = maxI′∈D(p) |LCP(I ′)|. For a quasi-maximal interval I, if |LCP(I)| = `p for
some p ∈ I we call p a handle on I.

Lemma 14. A position p ∈ Eu can be the handle for at most one quasi-maximal
interval.

Proof If p is not a handle, the claim is true. If it is so, let I and I ′ be two
distinct quasi-maximal intervals for which p is a handle. Observe that p ∈ I∩I ′.
This implies by transitivity that |LCP(I)| = |LCP(I ′)| = |LCP(I ∪ I ′)|, and
thus I and I ′ cannot be quasi-maximal as the interval obtained from I∪I ′ cause
them to violate condition (3).

Handles are relevant for the following reason, which motivates the definition
of quasi-maximal intervals.

Lemma 15. For each maximal interval I ∈ Iu, either there is a handle p ∈ Eu

on I, or I is fully covered by ≥ 2 adjacent quasi-maximal intervals with handles.
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Proof From Lemma 12, any maximal interval I ∈ Iu is either fully contained
in some other maximal interval, or completely disjoint from other maximal in-
tervals. Partial overlaps of maximal intervals are impossible.

Now, assume there is no handle p ∈ Lu on I. If so, all p′ ∈ I have `p′ 6=
|LCP(I)| (since otherwise p′ ∈ I and `p′ = |LCP(I)| and thus p′ was a handle on
I). Clearly for all p′ ∈ I, |LCP(I)| is a lower bound for `p′ . Thus, it must be the
case that `p′ > |LCP(I)| for all p′ ∈ I. This can only happen if I is completely
covered by ≥ 2 quasi-maximal intervals, each with a longest common prefix that
is larger than |LCP(I)|. From Lemma 12, a single quasi-maximal interval I ′ is
not enough because I ′ is properly contained (or completely disjoint) in I.

Lemma 15 gives a clear indication on how to proceed. Let Hu denote the
set of quasi-maximal intervals that have an handle. We first compute Hu. From
the definition, a handle on a quasi-maximal interval I ′ requires CI′ ≥ 2, which
is exactly what the intervals in Ru satisfy. As the LCP value can only drop
when extending an interval, these are the only candidates for Hu. Note that
from Lemma 13, Ru contains a prefix for all of the quasi-maximal intervals.
Furthermore, |Ru| = O(|Eu|), since only one R(i) is calculated for each starting
position. Among the intervals [i, R(i)] ∈ Ru, we have to find those with maxi-
mum LCP for all p (i.e. where the LCP value equals `p) that can be expanded.
After having computed Hu, we compute the composite intervals, namely, those
fully covered by ≥ 2 adjacent intervals from Hu as suggested by Lemma 15. We
detail the steps.

6.1. Details of step 1
For each skipped character position, we find all indices where a maximal run

of equal characters ends: R(i) is the maximum index for the given i. This helps
us because for any index i inside such a block of equal characters, R(i) must be
on the right of where the block ends (otherwise [i, R(i)] would cover only one
character in that block). Using this to calculate R(i) for all indices i ∈ Eu from
left to right, we find each answer in time O(k + 1), and O((k + 1) · |Eu|) total
time.

Lemma 16. Step 1 takes O(sort(Lu) + (k + 1) · |Lu|) time.

6.2. Details of step 2
We show how to find the set Hu among the intervals of Eu. Observe that

for each occurrence p ∈ Eu, we must find the interval I ′ with the largest
LCP(I ′) value among all intervals containing p. This is unique by Lemma 14
and, moreover, |Hu| ≤ |Eu|. We use an idea similar to that used in Section 3.3
to filter maximal motifs from the right-maximal motifs. We sort the intervals
I ′ ≡ [i, R(i)] ∈ Ru in decreasing lexicographic order according to the pairs
〈|LCP(I ′)|,−i〉 (i.e. decreasing LCP values but increasing indices i), to obtain
the sequence Du. Thus, if considering the intervals left to right in Du, we con-
sider intervals with larger LCP values, from left to right in S for the same value,
before moving to smaller LCP values.
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Thus we scan Du in its order, and consider the generic interval I ≡ [i, R(i)] ∈
Du. We define the following intuitive procedure for I, to expand it maximally to
the left and right. Consider a border of I, let a ∈ I be a border occurrence and
b 6∈ I be its neighboring occurrence in Eu (if any, otherwise it is trivial). For
example, initially we have a = i and b = i − 1 (if any) for the left border of I,
and a = R(i) and b = R(i) + 1 for the right border. We use pairwise lcp queries
on the border of the interval: if | lcp(a, b)| < |LCP(I)|, the interval cannot be
expanded to span b; otherwise, we include b in the interval, so that b becomes
the new border, and repeat the task. When the above expansion is completed,
the resulting I is a quasi-maximal interval in Hu.

During the expansion by the above procedure, we also maintain an array Pu

of |Eu| positions, initialized to null before scanning Du. When the expansion is
completed, all elements in the resulting I are marked by writing Pu[p] = I for
each ccurrence p ∈ I.

However, before running the above machinery, we have to determine if the
resulting I has already been added to Hu by some previously processed quasi-
maximal interval. This avoids duplication as it might be expensive. Since quasi-
maximal intervals must be fully contained in each other (from Lemma 12),
we determine if I ≡ [i, R(i)] is already fully covered by previously expanded
intervals (with larger LCP values), and thus avoid the cost of its expansion, as
follows.

• If either i or R(i) is not included in any previous expansions (i.e. Pu[i] or
Pu[R(i)] is null), we must expand I.

• If both i and R(i) are part of a single previous expansion Iq (i.e. Pu[i] =
Pu[R(i)] = Iq), I should be discarded.

• If i and R(i) are part of two different expansions Iq and Ir (i.e. Pu[i] =
Iq 6= Ir = Pu[R(i)]), I is discarded (even if it could give a new interval).

A comment is in order for the third item, as it is non obvious. It could be that
there exists i′ ∈ I with i < i′ < R(i), such that Pu[i′] is null, thus potentially
missing the interval I ′ ∈ Hu with handle i′. However, due to the ordering in
Du, we eventually get [i′, R(i′)] that is expanded to I ′ because it satisfies the
condition in the first item above. Thus at the end of the scan of Du, the set Hu

is correctly built.

Lemma 17. Step 2 takes O(sort(Lu) +
∑d

i=1 |Lui |) time.

6.3. Details of step 3
A composite maximal interval must be the union of a sequence of two or

more adjacent intervals from Hu.
For the sake of discussion, suppose first that the intervals in Hu are disjoint

and their union gives Eu, thus Hu is an ordered partition of Eu where the
interval order is the natural one given by their endpoints. Since the intervals
induce a tree by Lemma 12 and 14, we can pictorially visualize this situation as
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7 4 6 6 1 1 3 4 2 1

Figure 3: A possible scheme for step 3.

shown in Figure 3. The leaves in the first row are the intervals of Hu: for any
two adjacent intervals I and I ′ we store |LCP(I ∪ I ′)|, which can be computed
in constant time by Lemma 5.

The composite quasi-maximal intervals are the internal nodes in the next
rows, observing that each node has at least two children. The generation is by
a simple greedy method: initialize X = Hu and, while X contains two or more
adjacent intervals, take adjacent I1, I2, . . . , Ir from X for the largest r such their
value |LCP(Ii∪Ii+1)| is maximum and equal for 1 ≤ i < r: replace I1, I2, . . . , Ir
in X by their union I1 ∪ I2 ∪ · · · ∪ Ir.

In the scheme of Figure 3, we can represent each interval in X by a dash
(-) and see X as sequence of dashes intermixed with the corresponding values
|LCP(I ∪ I ′)|. The entries of X change as follows, -7- 4-6-6-1-1-3-4-2-1-,
-4 -6-6- 1-1-3-4-2-1-, -4- 1-1-3-4-2-1-, -1-1-3 -4- 2-1-, -1-1 -3- 2-1-,
-1-1 -2- 1-, -1-1-1- , -, where each box represents the union of two or more
intervals.

In the general case for the intervals in Hu, we have a nested situation in
place of the first row in Figure 3. But the mechanism is the same: each time
we choose adjacent intervals with the maximum LCP value, and replace them
by their union. In this way we are exploiting the implicit tree structure of the
quasi-maximal intervals.

We implement efficiently our mechanism by an idea similar to that used
in Section 6.2. For each interval I ∈ Hu that is not the rightmost, check if its
adjacent interval I ′ exists on its right: I and I ′ must be consecutive in Eu, and if
more candidate intervals exist starting at the same position for I ′ (one prefix of
another), choose the longest one by Lemma 12. Associate the value |LCP(I∪I ′)|
with I. We sort these intervals I in decreasing lexicographic order according to
the pairs 〈|LCP(I∪I ′)|,−i〉: the intervals with the largest LCP value come first
and it is easy to find those consecutive with the same LCP value. Consequently,
scanning this order gives the order for which we make the union of intervals as
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in Figure 3, namely, starting from the leaves of the implicit tree of the quasi-
maximal intervals towards the root. We maintain X as an ordered list of the
above intervals.

Lemma 18. After sorting X in decreasing lexicographic order, the cost of iden-
tifying intervals I1, I2, . . . , Ir in X and updating X with their union is O(r)
time.

Proof First we identify adjacent intervals I1, I2, . . . , Ir with the maximum LCP
value as the first r − 1 ones, I1, I2, . . . , Ir−1, occurring at the beginning of X.
We remove these r − 1 intervals from the beginning of X. Also, it is easy to
locate Ir in X as it was associated with Ir−1 during the sorting: in general we
can have some bookkeeping, so that given Ir−1 we find its associated Ir and
vice versa. Let I denote the union I1 ∪ I2 ∪ · · · ∪ Ir.

Consider an interval I∗ that precedes and is adjacent to I1 in Eu. Let `∗ =
|LCP(I∗ ∪ I1)| be its LCP value. We prove that `∗ = |LCP(I∗ ∪ I)|. Let ` =
|LCP(I1, I2)| = |LCP(I)| and observe that the extensions of any two positions
in I have at least the first ` characters equal. Also, ` ≥ `∗ as I1, I2, . . . , Ir are at
the beginning of X. By definition of `∗, the extensions of positions in I∗ share
the first ` characters equal with the extensions of positions in I1. Since ` ≥ `∗,
by transitivity the extensions of positions in I∗ share the first ` characters equal
with the extensions of positions in I, thus proving our claim. We can safely
replace I1 with I in the bookkeeping, as the interval associated with I∗ in the
decreasing lexicographic order, because its LCP value does not change.

We also replace Ir by I in X, observing that I inherits the LCP value from
Ir. Moreover, this replacement preserves the order inX. Letting i be the starting
position of I, and ir > i that of Ir, the intervals after Ir in X and with the same
LCP value also follow I in the decreasing lexicographic order. Consider now an
interval I0 before Ir in X and with the same LCP value, and let i0 < ir be its
starting position (with I0 different from I1, I2, . . . , Ir). We prove that i0 < i,
and thus I0 precedes also I in the decreasing lexicographic order. Suppose by
contradiction that i0 ≥ i. Then I0 ⊂ Ij for a value of j ∈ [1, r]; its companion
interval I′0 must be I′0 ⊂ I as I′0 cannot occur after Ir in Eu by Lemma 12. But
then |LCP(I0 ∪ I′0)| ≤ |LCP(I)| with I0 ∪ I′0 ⊂ I (properly contained by the
hypothesis), which is a contradiction to Lemma 12. In summary, replacing Ir
with I in X is correct.

The total cost of step 3 is dominated by the initial sorting cost O(sort(Lu))
plus the cost of making the union of intervals by Lemma 18. When taken over
all the unions, the latter cost is proportional to the number of nodes and leaves
in the implicit tree induced by all the quasi-maximal intervals. Since the number
of leaves is upper bounded by |Hu| ≤ |Eu|, and the number of internal nodes
cannot be larger than the number of leaves, as each node has at least two
children, we obtain a total of O(|Eu|) nodes and leaves, thus bounding the cost,
recalling that |Eu| = |Lu| = O(sort(Lu)).

Lemma 19. Step 3 takes O(sort(Lu)) time.
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6.4. Details of step 4
We can get all the maximal intervals by filtering the O(|Eu|) quasi-maximal

ones using condition (1) of Section 5.2. This takes additional O(|Eu|) time.

Lemma 20. Step 4 takes O(sort(Lu)) time.

7. Correctness and Complexity

By analyzing the algorithm described, one can prove the following two lem-
mas showing that the motif trie T is generated correctly. While Lemma 21 states
that ε-extensions may be generated (i.e. a sequence of ? symbols may be added
to suffixes of maximal motifs), a simple bottom-up cleanup traversal of T is
enough to remove these.

Lemma 21 (Soundness). Each motif stored in T is a prefix or an ε-extension
of some suffix of a maximal motif (encoded using alphabet Π and stored in T ).

Proof The property to be shown for motif m ∈ T is: (1) m is a prefix of some
suffix of a maximal motif m′ ∈M (encoded using alphabet Π), or (2) m is the
suffix of some maximal motif m′ ∈ M extended by at most k ε’s (and don’t
cares).

Note that we only need to show that Generate(u) can only create children
of u ∈ T with the desired property. We prove this by induction. In the basis, u
is the root and Generate(u) produce all motifs such that adding a character
from Σ to either end decreases the number of occurrences: this is ensured by
requiring that there must be more than two different skipped characters in the
occurrences considered, using the LCP of such intervals and only extending
intervals to span occurrences maintaining the same LCP length. Since there are
no don’t cares in these motifs they cannot be specialized and so each of them
must be a prefix or suffix of some maximal motif.

For the inductive step, we prove the property by construction, assuming
dc(u) < k. Consider a child ui generated by Generate(u) by extending with
solid block bi: it must not be the case that, without losing occurrences, (a) ui
can be specialized by converting one of its don’t cares into a solid character from
Σ, or (b) ui can be extended in either direction using only characters from Σ.
If either of these conditions is violated, ui can clearly not satisfy the property
(in the first case, the generalization ui is not a suffix or prefix of the specialized
maximal motif). However, these conditions are sufficient, as they ensure that ui
is encoded using Π and cannot be specialized or extended without using don’t
cares. Thus, if bi 6= ε, ui is either a prefix of some suffix of a maximal motif
(since ui ends with a solid block it may be maximal), or if bi = ε, ui may be
an ε-extension of u (or a prefix of some suffix if some descendant of ui has the
same number of occurrences and a non-ε parent edge).

By the induction hypothesis, u satisfies (1) or (2) and u is a prefix of ui.
Furthermore, the occurrences of u have more than one different character at
all locations covered by the don’t cares in u (otherwise one of those locations
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in u could be specialized to the common character). When generating children,
we ensure that (a) cannot occur by forcing the occurrence list of generated
children to be large enough that at least two different characters is covered by
each don’t care. That is, ui may only be created if it cannot be specialized in
any location. Condition (b) is avoided by ensuring that there are at least two
different skipped characters for the occurrences of ui and forcing the extending
block bi to be maximal under that condition.

Lemma 22 (Completeness). If m ∈M then T stores m and its suffixes.

Proof We summarize the proof that Generate(u) is correct and the correct
motif trie is produced. From Lemma 15, we create all intervals in Generate(u)
by expanding those with handles, and expanding all composite intervals from
these. By Lemma 11 the intervals found correspond exactly to the children of
u in the motif trie. Thus, as Generate(u) is executed for all u ∈ T when
dc(u) ≤ k − 1, all nodes in T is created correctly until depth k + 1.

Now clearly T containsM and all the suffixes: for a maximal motif m ∈M,
any suffix m′ is generated and stored in T as (1) occ(m′) ≥ occ(m) and (2)
dc(m′) ≤ dc(m).

As for the complexity, the whole process of pattern discovery goes as follows.
First, we build the motif trie using steps 1–3 of Generate(u): Lemma 16, 17, 19
and 20 prove the claimed bound of Lemma 8. Using Generate(u) to expand
the nodes of the motif trie from the root to the leaves, we obtain the cost of
Theorem 9 proved in Section 4 by adding the O(n log Σ) cost for the suffix
tree and the LCA ancestor data structure of Section 3.1. Finally, we report the
maximal motifs as described in Section 3.3, yielding the final cost of O(n(k +
log Σ) + (k + 1)3 ×

∑
m∈M occ(m)) stated in Theorem 1.
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8. Conclusions

In this paper we introduced the motif trie to address the problem of extract-
ing the maximal motifs with don’t cares in a sequence. The motif trie is a data
structure of independent interest that might find other applications in pattern
matching and discovery. It would be interesting to find an efficient algorithm to
build the motif tries for flexbile motifs, where the don’t care symbol is replace by
a Kleene star symbol that matches any sequence, rather than a single character.
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