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Abstract: Neurodegenerative disorders (NDs) are characterized by abnormal
accumulation/misfolding of specific proteins, primarily α-synuclein (α-syn), β-amyloid1-
42 (Aβ) and tau, in both brain and peripheral tissue. In addition to homo-oligomers, the
role of α-syn interactions with Ab or tau has gradually emerged. The altered protein
accumulation has been related to both oxidative stress and physical activity;
nevertheless, no correlation among the presence of peripheral a-syn hetero-
aggregates, antioxidant capacity and physical exercise has been discovered as of yet.
Herein, the content of α-syn, Aβ, tau and of their heterocomplexes was determined in
red blood cells (RBCs) of healthy subjects (sedentary and athletes). Such parameters
were related to the extent of the antioxidant capability (AOC), a key marker of oxidative
stress in aging-related pathologies, and to physical exercise, which is known to play an
important preventive role in NDs and to modulate oxidative stress.
Tau content and plasma AOC toward hydroxyl radicals were both reduced in older or
sedentary subjects; in contrast, α-syn and Aβ accumulated in elderly subjects and
showed an inverse correlation with both hydroxyl AOC and the level of physical activity.
For the first time, α-syn heterocomplexes with Aβ or tau were quantified and
demonstrated to be inversely related to hydroxyl AOC. Furthermore, α-syn/Aβ
aggregates were significantly reduced in athletes and inversely correlated with physical
activity level, independent of age.
The positive correlation between antioxidant capability/physical activity and reduced
protein accumulation was confirmed by these data, and suggest that peripheral α-syn
heterocomplexes may represent new indicators of ND-related protein misfolding.
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Herewith enclosed please find the revised version of our manuscript entitled “-synuclein 

aggregates with -amyloid or tau in human red blood cells: correlation with antioxidant capability 

and physical exercise in human subjects" by Daniele S. et al.  
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Manuscript #MOLN-D-17-00041. 

Title:  

Major Points 

1. Some of the parameter is difficult to be understood. Firstly, why the tau protein in young 

SED is higher than all other group including young ATHL and old SED which seemed to 

be in opposite population. This data suggested that ATHL has no effect with physical 

exercise.  

As reported in Table 2, the RBC tau concentrations were 10,51±8,34 ng/mg protein and 6,67±3,28 

ng/mg protein in young and old SED, respectively, suggesting that tau does not accumulate with 

age, at least in the analysed population. Consistent with these data, RBC levels of total tau 

significantly decreased with age in the total population (Fig. 4d, young versus older, P=0.0434). 

Further studies will be needed to clarify the significance of tau decrease with age, also considering 

that literature data are not available for this parameter in RBCs. 

Moreover, tau levels in RBCs were demonstrated to be almost the same levels in ATHL (6,32±3,67 

ng/mg protein and 5,59±4,12 ng/mg protein in young and old ATHL, respectively). Based on these 

findings, it could be speculated that physical exercise can exert beneficial effects lowering tau 

concentration in particular in the young subgroup (see Figure 4d). 

To clarify the data obtained on tau levels in RBCs, results and discussion concerning tau levels 

were modified in the text (see Results section, page 14, and Discussion section, page 22).  

 

2. Correlation data showed in Fig 5 and Fig 6 lack some of the parameter/ Author should 

show all the correlation form each populations.  

As required by the referee, all the correlations were added in the revised version of the manuscript 

(see the new Figures 5 and 6, and the new Supplementary Figures 1, 2 and 3). The data were 

omitted in the first version of the manuscript due to the lack of significant change in the parameters. 

 

3. Authors detected misfolding proteins from RBC. Clarify whether excise could alter the 

RBC turnover that can effect on the expression of those proteins.  Authors should measure 

the turnover of red blood cells and compared that between ATHL and SED groups.  

 

Response to Reviewer Comments
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We thank the referee for his interesting comment. Intensive training could affect RBC turnover 

(Sports Med. 1995;19(1):9-31) and reduce RBC mass by intravascular hemolysis of senescent red 

blood cells. (Front Physiol. 2013; 4: 332). Actually, conflicting data have been emerging (Adv Clin 

Chem. 2013; 59:125-53; Int J Lab Hematol. 2011 Dec; 33(6):638-4; Acta 

Haematol. 2012;127(3):156-64), indicating that RBC production in athletes does not significantly 

differ from sedentary controls.  Besides the actual effects of physical training, measuring RBC 

turnover in our cohort would require an ex novo recruitment of subjects and blood collection. For 

this reason, the influence of exercise on RBC ageing will be take into consideration in a future 

study. In the meantime, such criticism was discussed in the revised version of the manuscript (see 

Discussion section, page 23). 

 

4.  The number of samples is too small to represent WB and immunoprecipitation figures. 

Authors should add samples more to make quantitative figures.  

Western blot analyses were conducted to qualitatively demonstrate that the analysed proteins (i.e. α-

syn, Aβ, α-syn/Aβ, tau and α-syn/tau) were expressed in RBCs (see Figure 1). Moreover, such 

assay was utilized to show the physical interaction in vitro of α-syn with Aβ or tau (see Figure 2). In 

contrast, no comparison between groups was conducted using western blot data. In order to avoid 

misunderstanding, this issue was clarified in the revised version of the manuscript (see Methods 

section, page 6). 

 

5. Have authors ever tried to detect the level of those misfolding proteins to see whether they 

have any correlation of those expression in red blood cells.  

We thank the referee for his suggestion. In this paper, the levels of the oligomeric form of -syn 

were measured in RBCs. Unfortunately, no significant differences between SED and ATHL were 

found (see Figure 4B). As concern the other proteins, new specific antibodies and techniques have 

been emerging to detect oligomeric forms of tau (FASEB J 2012; 26(5): 1946–1959; Front Neurol. 

2014; 5: 251) and Aβ (Cell Rep. 2014;7(1):261-8;J Neurosci. 2014 Feb 19;34(8):2884-97). We 

agree with the referee that measuring the misfolded forms of ND-related proteins will be an 

interesting point to assess the contribution of both oxidative stress and physical exercise, thus these 

points were added in the text as possible future goals (See Discussion section, page 23). 

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3824146/
https://www.ncbi.nlm.nih.gov/pubmed/22301865
https://www.ncbi.nlm.nih.gov/pubmed/22301865
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4252634/
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6. In figure 1b, there are bands which do not indicate Aβ (middle panel: more than 25kDa) or 

tau (lower panel: less than 50kDa). What do these bands mean?  

Bands with a higher molecular weight than 25kDa (Fig. 1b, middle panel) could indicate elevated 

oligomeric form of Aβ (JBC, 2015; 290: 17415–17438; PLoS One.2014;9:e114041). In contrast, 

bands lower than 50 kDa (Fig. 1b, lower panel) have been related to truncated or cleaved forms of 

tau (Neuroscience Letters 2006; 399:106–110). Such findings were reported in the revised version 

of the manuscript (Results section, page 11). 

 

7. In the result, the authors showed that hydroxyl TOSC values were inversely correlated with 

RBC total α-syn in the ATHL subgroup. Is there any correlation between hydroxyl TOSC and 

total α-syn concentration in SED group?  

At P16 line3, authors concluded that α-syn accumulation in RBCs is strongly related to 

hydroxyl AOC. There is no significant correlation between α-syn concentration and hydroxyl 

AOC in young subgroup. Authors should try to discuss the discrepancy.  

 

Any significant correlation between hydroxyl TOSC and total α-syn concentration was found in 

SED group (P=0.223, R2=0.0097, new Suppl. Fig. 1a), although a trend toward an inverse 

correlation was evidenced. These findings were added in the revised version of the manuscript 

(Results section, page 16). 

Since the correlation between hydroxyl TOSC and total α-syn concentration was not found in the 

young subgroup, as well as in the SED cohort, the sentence reported at page 16 was modified. In 

particular, based on our results, a higher contribute of hydroxyl AOC on α-syn accumulation can be 

speculated with advanced age or physical exercise (see Results section, page 16). 

 

8. In figure 7, the authors should add the scatter plot of SED group. The scatter plot of 

hydroxyl TOSC vs α-syn/A levels of the SED group was added in the manuscript (see new Figure 

7e). 

In figure 8, the authors should add the scatter plot of all groups (Older, Young, ATHL, SED 

group). The scatter plots of hydroxyl TOSC vs α-syn/tau levels of the missing groups were added 

in the manuscript (see new Figure 8d and e, and new Suppl. Fig. 4). 

 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Disruption+of+Amyloid+Plaques+Integrity+Affects+the+Soluble+Oligomers+Content+from+Alzheimer+Disease+Brains
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In figure 9, the authors should add the plot of all groups (Older, Young group) about all 

proteins. The scatter plot of all the groups were added in the new version of the manuscript (see 

new Supplementary Figures 5-7). 

 

Minor Points 

1. Authors mistake numerical display in Table 1 and 2. For example,  37,50. Numerical 

display in Table 1 and 2 were corrected. Thank you. 

2.  "e4 allele" in figure legend (P25-Line27) should be "ε4 allele." The figure legend was 

corrected. Thank you. 

3. "e4 allele" in figure legend(P26-Line2) should be "ε4 allele." The figure legend was 

corrected. Thank you. 

4. Authors mentioned they used Aβ antibody in section "Co-immunoprecipitation-

western blotting". However, they showed Aβ1-42 in Fig1. Which is correct? Aβ 

antibody in section "Co-immunoprecipitation-western blotting" was corrected in Aβ1-42. 
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Abstract 

 

Neurodegenerative disorders (NDs) are characterized by abnormal accumulation/misfolding of 

specific proteins, primarily -synuclein (-syn), -amyloid1-42 (A) and tau, in both brain and 

peripheral tissue. In addition to homo-oligomers, the role of α-syn interactions with A or tau has 

gradually emerged. The altered protein accumulation has been related to both oxidative stress and 

physical activity; nevertheless, no correlation among the presence of peripheral -syn hetero-

aggregates, antioxidant capacity and physical exercise has been discovered as of yet. 

Herein, the content of α-syn, Aβ, tau and of their heterocomplexes was determined in red blood 

cells (RBCs) of healthy subjects (sedentary and athletes). Such parameters were related to the extent 

of the antioxidant capability (AOC), a key marker of oxidative stress in aging-related pathologies, 

and to physical exercise, which is known to play an important preventive role in NDs and to 

modulate oxidative stress. 

Tau content and plasma AOC toward hydroxyl radicals were both reduced in older or sedentary 

subjects; in contrast, α-syn and Aβ accumulated in elderly subjects and showed an inverse 

correlation with both hydroxyl AOC and the level of physical activity. For the first time, α-syn 

heterocomplexes with Aβ or tau were quantified and demonstrated to be inversely related to 

hydroxyl AOC. Furthermore, α-syn/Aβ aggregates were significantly reduced in athletes and 

inversely correlated with physical activity level, independent of age.  

The positive correlation between antioxidant capability/physical activity and reduced protein 

accumulation was confirmed by these data, and suggest that peripheral α-syn heterocomplexes may 

represent new indicators of ND-related protein misfolding. 

 

Key words: protein misfolding; neurodegenerative diseases; -synuclein; -amyloid; tau; -

synuclein heterocomplexes; antioxidant capability; physical exercise. 
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Introduction 

Neurodegenerative disorders (NDs), such as Alzheimer's disease (AD), Parkinson's disease (PD) 

and amyotrophic lateral sclerosis, are characterized by the pathological evidence of progressive 

neuronal loss in specific vulnerable areas [1-3] and reactive gliosis [4, 5], in which self-aggregating 

misfolded proteins form high-ordered insoluble fibrils in neurons and/or glial cells [4-6]. For 

example, abnormal accumulation of -synuclein (-syn) has been established to form Lewy bodies 

and neurites in PD and dementia with Lewy bodies (DLB), as well as glial cytoplasmic inclusions 

in multiple system atrophy [7]. In contrast, the neuropathological hallmarks of AD are represented 

by senile plaques containing extracellular deposits of -amyloid1-42 (A) and by intra-neuronal 

neurofibrillary tangles composed of hyperphosphorylated tau protein [8, 9]. However, postmortem 

evaluation often discloses a mixed pattern of proteinopathies, commonly accompanied by signs of 

chronic cerebrovascular disease pathology. In this regard, the potential contribution of -syn to AD 

pathogenesis is emerging as well [10, 11], with 30–40 % of AD cases presenting Lewy bodies and 

Lewy neurites [12]. 

Data from the literature suggest that Aβ, tau and -syn might promote the accumulation or 

aggregation of one another [13]. Furthermore, in addition to homo-oligomers, the role of 

heterocomplexes has been emerging; Aβ and -syn have been shown to co-immunoprecipitate and 

form complexes in patient brains and transgenic models, providing clear evidence for their direct 

interaction [14, 15]. Additionally, in different cellular systems, -syn has been demonstrated to 

bind to tau directly and promote the polymerization of the latter [13, 16-18], even in the axonal 

compartment [19]. Of note, the alterations in protein misfolding related to NDs are not restricted 

within the brain, but appear in peripheral tissue as well. For this reason, great efforts have been 

devoted to exploiting substantial biological changes and putative biomarkers in tissue other than the 

brain or cerebrospinal fluid (CSF) [20-24]. In this respect, the use of blood has gradually emerged 

due to its availability, low cost and time effectiveness [25].  

ND-protein oligomerization has been linked not only to genetic factors but also to environmental 

factors [26, 27], primarily including oxidative stress [26, 28], which arises from an imbalance 

between an excessive generation of reactive oxygen species (ROS) and the biological system's 

capability to eliminate the reactive intermediates [29]. Oxidative stress leads to a progressive 

decline in cell physiology [30] by damaging cellular macromolecular components such as DNA, 

lipids and proteins [31, 32]. As oxidative stress strongly contributes to abnormal protein misfolding 

and the propagation of oligomers, antioxidant therapies are emerging as a preventive therapeutic 

option for age-related NDs [33, 34]. 
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Epidemiological studies have extensively demonstrated that regular exercise is an important 

preventive and therapeutic tool in AD, PD and cerebrovascular diseases [35]. The adaptive response 

to regular exercise involves the up-regulation of the enzymatic antioxidant system and modulation 

of oxidative damage, which culminates in a recovered redox state of brain cells [36, 37]. In addition 

to a reduction in oxidative damage, the effects of exercise seem to be quite intricate, including an 

increase in neurogenesis and capillarization and an enhanced proteolytic degradation of toxic 

oligomers by proteasomes and neprilysin [38-40]. In a recent paper, voluntary running has been 

shown to counteract amyloid deposition, tau phosphorylation, inflammatory reaction, and memory 

loss in a mouse model of AD [41]. Moreover, lower A plasma concentrations and brain 

depositions have been observed in humans performing higher levels of physical activity [42], 

consistent with the hypothesis that exercise may be involved in the modulation of pathogenic 

changes associated with NDs [43].  

All together, these data highlight the link between neurodegeneration, oxidative stress and physical 

exercise. However, the correlation among antioxidant capability, physical exercise and the 

accumulation of -syn heterocomplexes with tau and A at a peripheral level has never been 

investigated. The aim of the current study was to examine how the levels of protein aggregates, 

associated with ND development, could be influenced by the intrinsic plasma antioxidant capacity 

and by physical activity. More specifically, plasma antioxidant capability (AOC), the primary 

marker of oxidative stress in aging-related pathologies [44], was measured in a cohort of young and 

older athletes and sedentary subjects, and related to the grade of physical exercise. Moreover, the 

content of total and oligomeric -syn, tau and Aβ was revealed in red blood cells (RBCs) of the 

same subjects. Indeed, these cells represent a good model to study the aging-related biochemical 

alterations, including protein misfolding [42, 45, 46]. Furthermore, -syn heterocomplexes with Aβ 

or tau were detected and quantitatively measured to unveil their presence and putative role as novel 

indicator of oxidative stress-related neurodegeneration in peripheral fluids. 
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Materials and Methods 

Ascorbic acid, 2,20-azo-bisamidinopropane (ABAP), Iron (III) chloride hexa-hydrate, KMBA (a-

cheto-g-(methylthiol)butyric acid) and recombinant human α-syn, tau and Aβ were purchased from 

Sigma Chemical Co. (St. Louis,MO, USA). Antibodies to α-syn, tau and Aβ were from Santa Cruz 

Biotechnology.  

 

Study population and setting of the study 

Forty-eight sex-matched endurance athletes (ATHL, mean age 44.6±13.4 years, range 22-74 years) 

recruited from the Sport Medicine Unit of the Department of Clinical and Experimental Medicine 

of the University of Pisa, and 58 healthy age-sex-matched sedentary volunteers (SED, mean age 

46.7±14.5 years, range 20-75 years) were studied (Table 1). Athletes performed endurance exercise 

more than three times/week and were active in national road-running races. 

All subjects were free of cardiovascular disease or other major medical disorders, as assessed by 

clinical history, physical examination, basal and stress electrocardiography, blood chemistry, 

hematology and urine analysis. Major criteria for inclusion of subjects in the trial were as followed: 

total plasma cholesterol ranging from 3.1 to 5.8 mmol/L, HDL cholesterol from 0.67 to 1.9 mmol/L, 

plasma triglycerides from 0.34 to 1.7 mmol/L, body mass index lower than 30 kg/m2, diastolic 

arterial blood pressure lower than 90 mmHg and systolic arterial blood pressure lower than 140 

mmHg. Subjects were excluded if they had smoking habits or received any drug treatment within 

the previous two months. 

Aerobic fitness was evaluated with a maximal graded cycle ergometry test performed by a 

cardiologist blinded to the other data. Participants started at 25 Watts. Increments of 25 watts per 2 

min were made until exhaustion or until reaching one of the American College of Sports Medicine 

established criteria for maximal oxygen uptake [47]. Heart rate was continuously measured by 

ECG. Blood pressure and the rate of perceived exertion (RPE) were assessed at the end of each 

step. Recovery was monitored until heart rate was <100 bpm. The maximum achieved resistance 

(Watts) was retained for all calculations. The 15-point Borg RPE scale [48, 49] was used to 

evaluate the level of intensity for each participant. The scale ranges from 6 to 20, with 6 

corresponding to no exertion at all, 7.5 to extremely light, 9 to very light, 11 to light, 13 to 

somewhat hard, 15 to hard, 17 to very hard, 19 to extremely hard, and 20 to maximal exertion. 

Each group was divided into a younger (<50 years) and an older (>50 years) subgroup (Table 1). 

The time period between the last exercise bout and blood sampling was at least 48 hours. 

This study was approved by the Ethics Committee of the Great North West Area of Tuscany 

(271/2014 to F.F.) and it was carried out in accordance with the Declaration of Helsinki. All 
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subjects gave informed consent to participate in the study. Fully informed consent was obtained 

from each subject entering the study.  

AOC was measured in plasma samples from the aforementioned cohort. RBCs were collected to 

quantify the content of total and oligomeric -syn, tau, Aβ and -syn heterocomplexes with Aβ or 

tau. 

 

Plasma and RBC collection.  

Whole blood was collected from healthy volunteers (N=106, Table 1) into a tube containing EDTA 

as an anticoagulant. RBCs were separated from plasma by a centrifugation at 200 × g at 4 °C for 10 

minutes. The plasma was then stored at -80°C in different aliquots. The RBC pellet was centrifuged 

at 1000 x g for 10 min and washed three times with PBS. RBC pellet was frozen at -20 °C until use.  

 

Co-immunoprecipitation–western blotting 

In order to verify α-syn, tau and A expression in human blood, RBCs (50 mg) were lysed with 

RIPA buffer [50] and then resolved by SDS-PAGE (8.5%). Samples were probed overnight at 4°C 

with primary antibodies to α-syn (α/β-synuclein N-19, SC-7012, Santa Cruz Biotechnology), tau 

(H-150 SC-5587, Santa Cruz Biotechnology) or Aβ1-42 (β-amyloid H-43 SC-9129, Santa Cruz 

Biotechnology). The primary antibodies were detected using peroxidase- conjugated secondary 

antibodies and a chemioluminescent substrate (ECL, Perkin Elmer).  

To confirm the presence of α-syn heterocomplexes with tau or Aβ, a co-immunoprecipitation assay 

was employed [50]. Briefly, 1 mg of lysates obtained from RBCs was resuspended in RIPA buffer 

and was probed overnight under constant rotation with an anti-α-syn antibody (5 g/sample), and 

then immunoprecipitated with protein A-Sepharose. After extensive washing, the 

immunocomplexes were resuspended in Laemmli solution, resolved by SDS-PAGE and probed 

overnight with primary antibodies to α-syn (input), tau or A1-42 as described above.  

Of note, western blot analyses were used as qualitative data on ND-related protein expression in 

RBCs. 

 

Immunoassay methods for total α-synuclein 

Total α-synuclein was detected in RBCs following literature’s protocols [51]. Briefly, wells were 

pre-coated overnight at 4°C with a full length polyclonal antibody to α-syn (sc-10717, Santa Cruz 

Biotechnology), and non-specific sites were blocked using bovine serum albumine (BSA) for 1 h at 

37°C. RBCs (0,150 mg/100 µl) were captured on wells for 2h at 25°C. Purified recombinant protein 

standards of α-syn were assayed in parallel with human samples to generate a standard curve. After 
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extensive washing, samples were probed with a mouse monoclonal antibody to α-syn (Santa Cruz, 

sc-12767), and subsequently with an anti-mouse-HRP antibody. The wells were then washed 4 

times with PBS-T (phosphate buffered saline containing 0.01% Tween 20), before adding the 

enzyme substrate TMB (3,3’,5,5’-tetramethylbenzidine, Thermo Scientific) and leaving the colour 

to develop for 30 min at room temperature. Absorbance values at 450 nm. 

 

Preparation of aged solutions of α-syn and of the α-syn biotinylated antibody 

Recombinant α-syn were incubated in parafilm-sealed tubes at 37°C for 4 days in an Eppendorf 

Thermomixer with continuous mixing (1000 rpm), as reported previously [52]. 

To prepare the α-syn biotinylated antibody, Sulfo-NHS-LC-Biotin (Pierce, Rockford, IL, USA) 

(200 mg) was reacted with the 211 mouse monoclonal antibody (mAb) (Santa Cruz Biotechnology, 

Santa Cruz, CA, USA) [53]. The mixture was desalted on Bio-Spin-6 columns (BIO-RAD, UK) to 

remove excess uncoupled biotin.  

 

Detection of oligomeric α-syn 

Oligomeric α-syn levels in RBCs were measured using an immunoenzymatic assay, as previously 

described [51, 52]. The plate was pre-coated overnight at room temperature with the mouse 

monoclonal α-syn 211 antibody (Santa Cruz, sc-12767). After extensive washing with PBS-T, non-

specific sites were blocked with 1% BSA. RBCs (0,04 mg/100 µl) were added to each well and 

incubated at 25°C for 2 h. α-syn oligomers were detected using the α-syn biotinylated antibody, 

which recognizes amino acid residues 121-125 of human α-syn. Whereas for antigen detection, 

streptavidin-horseradish peroxidase conjugate antibody (1:1000, GE Healthcare) was used. The 

wells were washed three times with PBS-T, before the addition of 100 µl/well of TMB, as reported 

above.  

 

Detection of total Aβ 

Aβ levels in blood samples were measured using an immuno-enzymatic assay, as described 

previously [53]. The plate was pre-coated overnight at 4°C with a specific antibody to Aβ (Santa 

Cruz, sc-9129). After extensive washing with PBS-T, non-specific sites were blocked with 1% 

BSA. RBCs (0,2 mg/100 µl) were added to each well and incubated at 25°C for one hour. After 

extensive washing with PBS-T, samples were detected using the polyclonal antibody to Aβ (sc-

5399, Santa Cruz Biotechnology). The standard curve was constructed using recombinant human 

Aβ solutions at eight different concentrations. 
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Detection of total tau 

Tau levels in blood samples were measured using an immuno-enzymatic assay, as described 

previously [53]. The plate was pre-coated overnight at 4°C with a specific antibody to tau (Santa 

Cruz, sc-32274). After extensive washing with PBS-T, non-specific sites were blocked with 1% 

BSA. RBCs (0,5 mg/100 µl) were added to each well and incubated at 25°C for one hour. After 

extensive washing with PBS-T, samples were detected using the polyclonal antibody to tau (sc-

5587, Santa Cruz Biotechnology). The standard curve was constructed using recombinant human 

tau solutions at eight different concentrations. 

 

Immunoassay detection of α-syn/Aβ heterocomplexes 

For the quantification of α-syn/Aβ interactions, a ‘home-made’ method was developed employing a 

“sandwich” immunoenzymatic assay [54, 55], as follows. Standard α-syn/Aβ were prepared by 

incubating 1 mg of each protein, diluited in 2 mM sodium dodecyl sulfate (SDS) in parafilm-sealed 

tubes at 37°C for 36 h in an “Eppendorf Thermomixer” with continuous mixing (500 rpm) [14]. 

Eight different dilutions of α-syn/Aβ were prepared; following capturing on wells pre-coated with a 

specific antibody to Aβ (see below), the samples were collected, and α-syn levels (i.e., the quotes of 

recombinant α-syn not bound to Aβ) were quantified by a validated immunoenzymatic assay 

described above. 

The microplate was pre-coated overnight at room temperature with β-amyloid H-43 antibody 

(1:100, sc-9129, Santa Cruz Biotechnology) in poli-L-ornithine/NaHCO3, pH 9.6. After two washes 

with PBS-T, RBCs (40 mg/sample in 2 mM SDS) were added to each well and incubated at 25°C 

for 2h. The wells were washed, and non-specific sites were blocked with 1% BSA for 30 min at 

37°C. To detect α-syn bound to Aβ, samples were probed for 2 h 37°C with a specific antibody to 

α-syn (sc-12767, Santa Cruz Biotechnology), and subsequently with the appropriate HRP-

conjugated antibody. After 1.5 h, the wells were washed twice with PBS-T, before the addition of 

100 µl/well of TMB. Absorbance was measured at 450 nm. Relative concentration of α-syn/Aβ 

complexes were calculated according to the standard curve obtained in each microplate. The assays 

of blood plasma were all carried out in duplicate. Blood samples from athletes and sedentary 

subjects were analysed together in batch runs. For some subjects, multiple assays were performed 

on diluted RBCs from a single subject to confirm that low or high concentrations were in the linear 

range of the assay. All measurements were repeated twice and the average value was determined. 

 

Immunoassay detection of α-syn/tau heterocomplexes  
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For the quantification of α-syn/tau interactions, a similar ‘home-made’ method was developed (see 

the precedent paragraph). Standard α-syn/tau were prepared by incubating 1 mg of each protein, 

diluted in 2 mM SDS in parafilm-sealed tubes at 37°C for 1 h in an Eppendorf Thermomixer with 

continuous mixing (500 rpm). Following capturing on wells pre-coated with a specific antibody to 

α-syn (see below), the samples were collected, and tau levels (i.e., the quotes of recombinant α-syn 

not bound to Aβ) were quantified by a validated immunoenzymatic assay described above. 

The microplate was pre-coated overnight at room temperature with anti-α-syn antibody (1:100, sc-

7012, Santa Cruz Biotechnology) in poli-L-ornithine/NaHCO3, pH 9.6. After two washes with PBS-

T, RBCs (80 mg/sample in 2 mM SDS) were added to each well and incubated at 25°C for 2h. The 

wells were washed, and non-specific sites were blocked with 1% BSA for 30 min at 37°C. To 

detect α-syn bound to tau, samples were probed for 2 h 37°C with a specific antibody to tau (sc-

5587, Santa Cruz Biotechnology), and subsequently with the appropriate HRP-conjugated antibody. 

After 1.5 h, the wells were washed twice with PBS-T, before the addition of 100 µl/well of TMB. 

Absorbance was measured at 450 nm. Relative concentration of α-syn/tau complexes were 

calculated according to the standard curve obtained in each microplate.  

 

Total Oxyradical Scavenging Capacity (TOSC) Assay 

The plasma antioxidant capability (AOC) was assessed by the TOSC assay, a gas chromatographic 

assay for determining oxyradical scavenging capacity of biological fluids [56, 57]. Peroxyl radicals 

were generated by thermal homolysis of 20 mM ABAP at 35°C in 100 mM potassium phosphate 

buffer, pH 7.4. Hydroxyl radicals were generated at 35°C by the iron plus ascorbate-driven Fenton 

reaction (1.8 mM Fe3+, 3.6 mM EDTA, and 180 mM ascorbic acid in 100 mM potassium 

phosphate buffer, pH 7.4). Reactions with 0.2 mM KMBA were carried out in 10 ml vials sealed 

with gas-tight Mininert1 valves (Supelco, Bellefonte, PA) in a final volume of 1 ml. 

Ethylene production was measured by gas-chromatographic analysis of 200 µl aliquots taken from 

the headspace of vials at timed intervals during the course of the reaction. Analyses were performed 

with a Hewlett-Packard gas chromatograph (HP 7820A Series, Andoven, MA) equipped with a 

Supelco DB-1 (30 x 0.32 x 0.25 mm) capillary column and a flame ionization detector (FID). The 

oven, injection and FID temperatures were respectively 35,160 and 220°C. Hydrogen was the 

carrier gas (flow rate of 1 ml/min) and a split ratio of 20:1 was used. Total ethylene formation was 

quantified from the area under the kinetic curves that best define the experimental points obtained 

for control reactions and after addition of plasma during the reaction [56-58]. TOSC values were 

quantified from the equation TOSC = 100 - (SA/CA x 100), where SA and CA are respectively the 

area under the curve (AUC) for sample and control reaction. A TOSC value of 0 corresponds to a 
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sample with no scavenging capacity. A TOSC value of 100 is attributed to a compound that entirely 

suppresses the ethylene formation whereas a pro-oxidant compound shows a negative TOSC value 

[59]. Consequently, antioxidants and pro-oxidants molecules can be distinguished by the obtained 

results. The linearity of dose–response curve between plasma (ml) and the antioxidant response 

(TOSC value) was tested and good correlation coefficients (generally greater than 0.9) were 

obtained at the different doses used to test the validity of our experiments. Each experiment was 

performed in duplicate to account for the intrinsic variability of the method. The results obtained 

with plasma were expressed in TOSC units. In our hands, the coefficient of variation (CV) of the 

method ranged between 2% and 5% [57, 60]. 

 

Genotyping 

Apolipoprotein E (Apo E) genotypes were identified by restriction fragment length polymorphism 

(RFLP), using genomic DNA extracted from blood of heatlhy subjects (N=87, Table 1). PCR was 

performed using 1.5 pmol of each primer (forward: 5 ′ -TCG-GCCGCA-GGG-CGC-TGA-TGG-3 ′ 

and reverse: 5 ′ -CTCGCG-GGC-CCC-GGC-CTG-GTA-3 ′), 250 μmol/l dNTPs, Buffer 10X, 25 

mM MgCl2, GC-Rich (10% of the final volume), 2 Units of Taq DNA polymerase (Applied 

Biosystems Inc., Branchburg, NJ), and 10 ng/l of genomic DNA. Reactions were performed in a 

Perkin Elmer thermal cycler for one cycle at 94 °C for 6 min, 30 cycles at 94 °C for 40 s, 67 °C for 

30 s, 72 °C for 45 s, and a final extension at 72 °C for 5 min. The amplified fragments, after 

digestion with 3 U of HhaI restriction enzyme, were separated using 5% agarose gel 

electrophoresis, and the restriction patterns were visualized by ethidium bromide staining and UV 

light. The genotypes of a group of patients were confirmed by ABI PRISM 310 Automated 

Sequencer (Applied Biosystems, Forster City, CA, USA). 

 

Statistical analysis 

Data are presented as mean value ± SD. The population included in this study presented a normal 

distribution for age. Differences between groups were evaluated by one-way analysis of variance 

(ANOVA). When only two groups were present, unpaired t test was used. Correlation between 

variables was determined by linear regression analysis, while interactions between variables were 

calculated by correlation and multiple regression analyses. Covariate analysis was performed by z-

test. All statistical procedures were performed using the StatView program (Abacus Concepts, Inc., 

SAS Institute, Cary, NC) [58].  
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Results 

 

Descriptive analysis 

 

The clinical characteristics of the total cohort and of the four subgroups (young SED, young ATHL, 

older SED and older ATHL) are reported in Table 1. The young and older cohort presented a mean 

age of 35.5±9.6 and 60.4±6.9, respectively. The ATHL and SED groups did not present significant 

differences in body mass index (BMI) and age. As expected, the ATHL group presented a lower 

resting heart rate than the SED group (P<0.001). The level of physical activity was significantly 

higher in the ATHL group than the SED group in the total cohort as well as in young and older 

subjects.  

When the cohort was stratified based on APOE e4 allele carriage (see below), there were 14 carriers 

of the allele (8 SED and 4 ATHL). 

 

Expression of α-syn, tau, Aβ and of α-syn heterocomplexes with tau or Aβ in red blood cells: 

immunoblotting analysis 

 

First, the presence of α-syn, tau and Aβ in RBCs was assessed by western blotting analysis. As 

depicted in Figure 1a, in RBCs, the anti-α-syn antibody recognized 15 kDa and 30 kDa proteins, 

corresponding to α-syn [61], whereas the anti-Aβ antibody labelled 5 and 15 kDa proteins (Fig. 1a), 

corresponding to Aβ monomeric and oligomer forms, respectively [62, 63]. Bands with a higher 

molecular weight than 25kDa (Fig. 1b, middle panel) could indicate elevated oligomeric form of Aβ 

[64, 65]. These data confirm that RBCs expressed detectable levels of α-syn and Aβ, consistent 

with data from the literature [45, 66]. Finally, the anti-tau antibody produced the characteristic 

triplet bands ranging between 55 and 74 kDa [67], together with an additional band, demonstrating 

that RBCs express the tau protein as well (Fig. 1a). Of note, bands lower than 50 kDa (Fig. 1b, 

lower panel have been related to truncated or cleaved forms of tau containing the C-terminal region 

[68]. 

Then, the presence of α-syn heterocomplexes in blood cells was verified using a co-

immunoprecipitation-western blotting assay (Fig. 1b). To this purpose, cell lysates were 

immunoprecipitated using an anti-α-syn antibody and then immunoblotted with an anti-tau or anti-

Aβ antibody. In parallel, lysates were also immunoprecipitated using an anti-α-syn antibody and 

immunoblotted with the same antibody. In α-syn immunoprecipitates obtained from RBCs (Fig. 1b, 

upper panel), the anti-α-syn antibody recognized 15 kDa and 30 kDa proteins that corresponded to 
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α-syn protein [61]. The Aβ immunoblotting performed on α-syn immunoprecipitates from RBCs 

(Fig. 1b, middle panel) showed several immunoreactive bands that corresponded to the monomeric 

and oligomeric Aβ forms (Fig. 1b) [62]. Similar results were obtained probing α-syn 

immunoprecipitates with an anti-tau antibody (Fig. 1b, bottom panel). Globally, the results 

demonstrated that α-syn forms heterocomplexes with Aβ and tau at a peripheral level.  

 

Establishment of an immunoenzymatic assay to detect α-syn/Aβ heterocomplexes 

 

To confirm the qualitative results obtained in the co-immunoprecipitation-western blotting analysis 

and to quantitatively detect the levels of heterocomplexes in RBCs, an immunoenzymatic assay was 

developed and validated, as follows. Standard α-syn/Aβ heterocomplexes were prepared by 

incubating 1 mg of each protein, prepared in 2 mM SDS, in parafilm-sealed tubes at 37°C for 36 h 

with continuous mixing [14]. As depicted in Figure 2a (left panel), in α-syn immunoprecipitates, the 

anti-α-syn antibody recognized a 15 kDa protein corresponding to α-syn. In parallel, no significant 

labelling was detected in Aβ alone (Fig. 2a, left panel), confirming the specificity of the antibody 

immunoreactivity. The Aβ immunoblotting performed on α-syn immunoprecipitates revealed four 

immunoreactive bands (Fig. 2a, right panel) [62], demonstrating the induction of α-syn/Aβ 

heterocomplexes in vitro in our experimental conditions.  

To set up the immunoenzymatic assay, eight different dilutions of α-syn/Aβ were prepared and 

captured on wells pre-coated with an antibody specific to Aβ; the subsequent use of an antibody 

specific to α-syn and the appropriate HRP-conjugated antibody allowed for quantification of α-

syn/Aβ (see Methods section for experimental details). The results (Fig. 2b) showed a 

concentration-dependent increase in the specific absorbance at 450 nm, thus demonstrating the 

specificity and validity of the assay. The absorbance at 450 nm of blank wells obtained in the 

absence of the α-syn primary antibody consistently remained under 20 % of the total values (data 

not shown).  

To determine the amount of recombinant α-syn not bound to Aβ, different dilutions of recombinant 

α-syn/Aβ proteins were captured on wells pre-coated with an antibody specific to Aβ, as described 

above. Following incubation, the samples were collected, and α-syn levels (i.e., recombinant α-syn 

not bound to Aβ) were quantified by a validated immunoenzymatic assay. Such analyses revealed 

that in our experimental conditions (i.e., 2 mM SDS for 36 h), 85 ± 2 % of recombinant proteins 

formed α-syn/Aβ heterocomplexes (Fig. 2c). The corrected standard curve was then obtained by 

subtracting the amount of free α-syn from the theoretical α-syn/Aβ concentrations (Fig. 2c) and 

further used to quantify such heterocomplexes in blood cells. 
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Establishment of an immunoenzymatic assay to detect α-syn/tau heterocomplexes 

 

Standard α-syn/tau complexes were prepared by incubating 1 mg of each protein, prepared in 2 mM 

SDS, in parafilm-sealed tubes at 37°C for 1 h. The tau immunoblotting performed on α-syn-

immunoprecipitates revealed specific immunoreactive bands (Fig. 3a, right panel, first line) that 

were not shown for recombinant tau alone (Fig. 3a, right panel, second line). These data 

demonstrate the induction of α-syn/tau heterocomplexes in vitro in our experimental conditions.  

Different dilutions of α-syn/tau were prepared and captured on wells pre-coated with a specific 

antibody to α-syn; the subsequent use of an antibody specific to tau and the appropriate HRP-

conjugated antibody allowed for quantification of α-syn/tau. The results (Fig. 3b) showed a 

concentration-dependent increase in specific absorbance at 450 nm, thus demonstrating the 

specificity and validity of the assay.  

To determine the amount of recombinant α-syn not bound to tau, different dilutions of recombinant 

α-syn/tau proteins were captured on wells pre-coated with a specific antibody to α-syn, as described 

above. Following incubation, the samples were collected, and tau levels (i.e., recombinant α-syn not 

bound to α-syn) were quantified by a validated immunoenzymatic assay. Such analyses revealed 

that in our experimental conditions (i.e., 2 mM SDS for 1 h), 78 ± 7 % of the recombinant proteins 

formed α-syn/tau heterocomplexes (Fig. 3c). The corrected standard curve was then obtained by 

subtracting the theoretical α-syn/tau concentrations from the amount of free α-syn (Fig. 3c) and 

further used to quantify such heterocomplexes in blood cells. 

 

Total and oligomeric α-syn concentrations in RBCs of healthy subjects 

Total and oligomeric α-syn levels were quantitatively measured in RBCs isolated from 106 healthy 

subjects (Table 2). In the total cohort of healthy subjects (young versus older), no correlations were 

found between age and total or oligomeric α-syn RBC concentrations (Fig. 4a and b, total α-syn: 

P=0,4123; oligomeric α-syn: P=0,8993). In contrast, total α-syn significantly decreased with age in 

the ATHL group (young ATHL versus older ATHL, Fig. 4a, P=0.0011), whereas an opposite trend 

was found in the SED group (young SED versus older SED, Fig. 4a, P=0.1376).  

As depicted in Figure 4 (panel a and b), total and oligomeric α-syn in RBCs showed comparable 

values in the ATHL and SED groups, either in the total (total α-syn: P=0.6284, oligomeric α-syn: 

P=0.5012) or in the young population (young ATHL versus young SED, total α-syn: P=0.1683, 

oligomeric α-syn: P=0.9181). Moreover, in the older cohort, oligomeric α-syn was not significantly 

different between the ATHL and SED groups (Fig. 4b, P=0.1236). In contrast, total α-syn levels in 
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RBCs were significantly lower in the elderly ATHL group compared to that in the elderly SED 

group (Fig. 4a, P=0.0007), suggesting that physical activity may play a major role in modulating 

total α-syn levels in RBCs with increasing age. 

 

Aβ concentrations in RBCs of healthy subjects 

 

Aβ levels in RBCs (Table 2) were found to progressively accumulate with age in the SED 

population (young SED versus older SED, P=0.0369, Fig. 4c), whereas comparable values were 

found in the total (total young versus total older, P=0.5622) and ATHL population (young ATHL 

versus older ATHL, P=0.2502). Conversely, the analyzed parameter did not significantly differ 

between the ATHL and SED populations in the whole cohort (Fig. 4c, P=0.9407), as well as in the 

young subjects (young ATHL versus young SED, Fig. 4c, P=0.2987). Interestingly, as shown for 

total α-syn, the ATHL group presented significantly lower levels of Aβ in the older subgroup (older 

ATHL versus older SED, Fig. 4c, P=0.0360).  

 

Tau concentrations in RBCs of healthy subjects 

 

RBC levels of total tau significantly decreased with age in the total population (Fig. 4d, young 

versus older, P=0.0434); consistently, tau levels were significantly higher in the young SED 

population than in the older SED population (Fig. 4d, P=0.0202), while they did not change with 

age in the ATHL group (young ATHL versus older ATHL, P=0.5382).  

Surprisingly, tau concentrations were significantly lower in the ATHL group than in the SED group 

in the total population (total ATHL versus total SED, Fig. 4d, P=0.0182) and in the young cohort 

(young ATHL versus young SED, P=0.0343) but not in the older one (older ATHL versus older 

SED, P=0.2893). These data suggest that RBC tau can exert beneficial effects especially in the 

young subgroup. 

 

α-syn heterocomplexes with Aβ or tau in RBCs of healthy subjects 

 

Finally, α-syn/Aβ and α-syn/tau heterocomplexes were measured in RBCs using the “home-made” 

immunoenzymatic assay. The results (Fig. 4e and f) showed that α-syn/Aβ or α-syn/tau levels in 

RBCs did not differ between young and elderly subjects (P=0.3529 and P=0.7145, respectively). 

Consistently, such parameters were comparable between the young and older SED groups and 

between the young and older ATHL groups (Fig. 4e and f). 
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Significantly lower concentrations of α-syn/Aβ were found in ATHL subjects than in SED subjects 

in the whole cohort (P=0.0001). This difference was also observed in the older subpopulation (older 

ATHL versus older SED, Fig. 4e, P=0.0055) and in the young one (young ATHL versus young 

SED, P=0.0038). These data suggest that α-syn/Aβ levels in RBCs are modulated by physical 

activity. 

α-syn/tau levels did not differ in young versus older subgroups (Fig. 4f and Table 2). Moreover, 

contrary to α-syn/Aβ, no significance difference in α-syn/tau concentrations (Fig. 4f) was found 

between the SED and ATHL groups (whole cohort: P=0.8659; older cohort: P=0.6021; young 

cohort: P=0.8993). These results suggest that the interaction of α-syn with tau is not modulated by 

physical exercise. 

 

Plasma antioxidant capacity (AOC) in healthy subjects 

 

The antioxidant capacity was measured in plasma from healthy subjects using the TOSC assay 

(Table 2); higher mean levels from this assay are related to a better antioxidant capability. 

The results showed that AOC toward hydroxyl radicals was significantly higher in young subjects 

than in the elderly in the SED cohort (young SED vs older SED, P=0.0366, Fig. 5a), thus 

confirming that AOC progressively decreases with age [69].  

No differences in TOSC values toward hydroxyl or peroxyl radicals were obtained when comparing 

young versus older subjects of the total population (Total young vs Total older, hydroxyl: 

P=0.2511; peroxyl: P=0.1640, Fig. 5a and b), and the young ATHL group showed significantly 

lower TOSC values toward hydroxyl than the older ATHL group (Fig. 5a, P=0.0019). These results 

suggest that additional factors other than age may influence AOC (see discussion section).  

As expected, AOC toward hydroxyl (Fig. 5a) and peroxyl (Fig. 5b) radicals was significantly higher 

in the ATHL group than in the SED group in the whole cohort (Total ATHL vs Total SED, 

hydroxyl: P<0.0001; peroxyl: P=0.0442) and in the young subpopulation (Young ATHL versus 

young SED, hydroxyl: P=0.0362; peroxyl: P=0.0434, Fig. 5a and b). In the older subgroup (older 

ATHL versus older SED), a statistical significance was reached only for hydroxyl radicals (Fig. 5a 

and b, hydroxyl: P<0.0001; peroxyl: P=0.5360). These results confirm that physical activity is able 

to enhance antioxidant capacity in human subjects. 

Consistent with these findings, hydroxyl TOSC values directly correlated with the level of physical 

activity in the whole subpopulation (Fig. 5c, P=0.0172, R2=0.131) and in older subjects (Fig. 5d, 

P=0.0055, R2=0.373) but not in young subjects (Fig. 5e, P=0.2352). These data indicate that 

physical activity level can influence AOC, in particular against hydroxyl radicals.  
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Interestingly, peroxyl TOSC values directly correlated with the physical activity level in the SED 

group (P=0.0188, R2=0.274, Fig. 5f), suggesting that a low grade of physical activity can play a role 

in the antioxidant capability against peroxyl radicals. 

 

Correlation of ND-related proteins with plasma antioxidant capability 

 

Correlations between plasma AOC and α-syn, Aβ, tau and α-syn heterocomplexes were determined 

by linear regression analysis. 

1) α-syn: The total α-syn concentration in RBCs was inversely correlated with hydroxyl AOC in the 

whole cohort (Fig. 6a, P=0.0006, R2=0.251), as well as in the older subjects (Fig. 6b, P=0.0021, 

R2=0.435) but not in young subjects (Suppl. Fig. 1a, P=0.2656). Furthermore, hydroxyl TOSC 

values were inversely correlated with RBC total α-syn in the ATHL subgroup (Fig. 6c, P=0.0004, 

R2=0.409). Any significant correlation between hydroxyl TOSC and total α-syn concentration was 

found in SED group (P=0.223, R2=0.0097, Suppl. Fig. 1b). Based on these findings, a higher 

contribute of hydroxyl AOC on α-syn accumulation can be speculated with advanced age or in pre 

presence of physical exercise. 

In contrast, no correlation was found between the concentration of oligomeric α-syn of RBCs and 

hydroxyl AOC in the whole cohort (Suppl. Fig. 1c, P=0.3874), the older subpopulation (Suppl. Fig. 

1d, P=0.2961), or in the young one (Suppl. Fig. 1e, P=0.9458). These findings suggest that 

oligomeric α-syn is poorly related to hydroxyl AOC. 

In contrast to hydroxyl AOC, peroxyl radicals did not show any correlation with total α-syn in the 

whole cohort (Suppl. Fig. 1f, P=0.4675), older subjects (Suppl. Fig. 1g, P=0.7630) or in the young 

ones (Suppl. Fig. 1h, P=0.5187).  

2) Aβ: Peroxyl and hydroxyl TOSC values did not show any significant correlation with RBC Aβ 

levels in the total cohort (Suppl. Fig. 2a and b, peroxyl: P=0.2550; hydroxyl: P=0.197) or in young 

subjects (Suppl. Fig. 2c and d, peroxyl: P=0.2550; hydroxyl: P=0.197). Similar results were 

obtained in the SED and ATHL populations (Suppl. Fig. 2e-h, peroxyl SED: P=0.3837; hydroxyl 

SED: P=0.3435; peroxyl ATHL: P=0.7064; hydroxyl ATHL: P=0.7635). Interestingly, Aβ levels 

were inversely correlated with AOC toward hydroxyl radicals in the elderly cohort only (Fig. 6d, 

P=0.0342, R2=0.266), thus suggesting that Aβ levels are related to hydroxyl AOC with increasing 

age. 

3) Tau: Peroxyl and hydroxyl TOSC values did not show any significant correlation with RBC tau 

levels, regardless of age (Suppl. Fig. 3a-f, total cohort, peroxyl: P=0.1563; hydroxyl: P=0.1563; 

young cohort: hydroxyl: P=0.5840; peroxyl: P=0.5528; older cohort, peroxyl: P=0.5943; hydroxyl: 
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P=0.1806), although a trend toward an inverse correlation was evidenced. Interestingly, tau levels 

in RBCs were inversely related to hydroxyl but not peroxyl TOSC values in the ATHL group 

(hydroxyl: P=0.0497, R2=0.151, Fig. 6e; peroxyl: P=0.5122, Suppl. Fig. 3g). 

4) α-syn/Aβ: Hydroxyl TOSC values were inversely correlated with α-syn/Aβ levels in the whole 

population (Fig. 7a, P=0.0002, R2=0.287), older subjects (Fig. 7b, P=0.0239, R2=0.266), and the 

young subpopulation (Fig. 7c, P=0.0041, R2=0.318), indicating that a higher plasma AOC toward 

hydroxyl radicals is associated with a lower concentration of α-syn/Aβ heterocomplexes. Similar 

data were found in the ATHL subgroup (Fig. 7d, P=0.0003, R2=0.428), but not in SED (Fig. 7e, P= 

1499). These data suggest that α-syn/Aβ accumulation is strongly associated with hydroxyl-related 

oxidative stress in RBCs. 

No significant correlation between peroxyl TOSCA values and α-syn/Aβ levels was found, 

regardless of age (total population: P=0.5817; young: P=0.8817; older: P=0.4378) or physical 

activity (ATHL: P=0.0951; SED: P=0.1490). 

5) α-syn/tau: An inverse correlation between α-syn/tau concentration and hydroxyl TOSC values 

was demonstrated in the whole population (Fig. 8a, P=0.0325, R2=0.107), the older subpopulation 

(Fig. 8b, P=0.0478, R2=0.196), and in the ATHL group (Fig. 8c, P=0.0478, R2=0.196). No 

relationship was detected in the SED group (Fig. 8d, P=0.1338) or in the young cohort (Fig. 8e, 

P=0.5548). These findings suggest that the interaction of α-syn with tau is modulated by hydroxyl 

AOC, particularly with increasing age and with a higher rate of physical exercise.  

No correlation with TOSC against peroxyl radicals was detected, regardless of age (whole 

population: P=0.5968; older cohort: P=0.8385; young cohort: P=0.3640, Suppl. Fig. 4a-c), or 

physical activity (ATHL: P=0.9618; SED: P=0.3458, Suppl. Fig. 4d-e).  

 

Correlation of ND-related proteins with the level of physical activity 

Correlations between the level of physical activity and α-syn, Aβ, tau and α-syn heterocomplexes 

were determined by linear regression analysis. 

1) α-syn: In RBCs of elderly subjects, both total and oligomeric α-syn were inversely correlated 

with physical activity level, although a statistical significance was only observed for total α-syn 

(Fig. 9a, total α-syn: P=0.0463, R2=0.103; Suppl. Fig. 5a, oligomeric α-syn: P=0.1256). In contrast, 

there was no significant correlation with the physical activity level in the total cohort (Suppl. Fig. 

5b and c, total α-syn: P=0.6950; oligomeric α-syn: P=0.4842) or the young one (Suppl. Fig. 5d and 

e, total: P=0.5289; oligomeric: P=0.9529). Moreover, any significant correlation was found in the 

ATHL group (Suppl. Fig. 5f and g, total α-syn: P=0.8662; oligomeric α-syn: P=0.8217). 

Interestingly, the grade of physical exercise was inversely related to oligomeric α-syn in the SED 
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group (Fig. 9b, P=0.0137, R2=0.099). These findings suggest that the rate of physical activity can 

partially modulate total α-syn accumulation, in particular with increasing age. 

2) Aβ: Aβ concentrations in RBCs were directly related to the physical activity level in the young 

subgroup (Fig. 9c, P=0.0207, R2=0.083) and in ATHL (P=0.0473, R2=0.097, Fig. 9d). Any 

significant correlation was found in the whole population (P=0.4605, Suppl. Fig. 6a), in the elderly 

(P=0.1010, Suppl. Fig. 6b), or in SED (P=0.9268, Suppl. Fig. 6c). These data are consistent with the 

trend toward lower Aβ levels observed in the young ATHL group than in the young SED group (see 

Fig. 4c).  

3) Tau: RBC tau concentrations were found to be inversely related to physical activity level in the 

total cohort (Fig. 9e, P=0.0284, R2=0.046). No other significant correlation was found in the other 

subgroups (Suppl. Fig. 6d-g, older: P=0.2397; young: P=0.9908; ATHL: P=0.9908; SED: 

P=0.5029). 

4) α-syn/Aβ: The grade of physical exercise was inversely correlated with α-syn/Aβ concentrations 

of RBCs in the total population (Fig. 9f, P=0.0001, R2=0.134), as well as in young subjects (Fig. 9g, 

P=0.0006, R2=0.170) and in elderly (Fig. 9h, P=0.047, R2=0.108). These results suggest that the 

interaction of α-syn with Aβ is strongly modulated by the level of physical activity, independent of 

age. In contrast, no correlation was found in the ATHL (Suppl. Fig. 7a, P=0.3748) or SED 

populations (Suppl. Fig. 7b, P=0.8695). 

5) α-syn/tau: No significant correlation between the physical activity level and α-syn/tau was 

detected (whole population: P=0.6326; older: P=0.8851; young: P=0.3915; ATHL: P=0.3915; SED: 

P=0.3574, Suppl. Fig. 7c-g), suggesting that the interaction of α-syn with tau is poorly modulated 

by the level of physical activity. 

 

Covariate analysis 

In a covariate analysis, as expected, total α-syn predicted the content of its oligomeric form 

(Z=2.969, P=0.0030). Interestingly, α-syn/Aβ complexes were shown to be a significant predictor 

for RBC concentrations of both total (Z=3.392, P=0.0007) and oligomeric (Z=3.136, P=0.0017) α-

syn.  

AOC toward hydroxyl radicals was demonstrated to be a significant predictor for total α-syn (Z=-

3.485, P=0.0005) and α-syn/Aβ complexes (Z=-3.786, P=0.0002). Moreover, the physical activity 

level was shown to be a significant predictor for AOC toward hydroxyl radical (P=0.0166), tau 

(P=0.0282), and, especially, α-syn/Aβ complexes (P=0.0001).  

 

Influence of the Apo E genotypes  
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Apo E, a plasma protein involved in lipoprotein metabolism [70], presents three major human 

isoforms, designated APO2, APO3, and APO4. Among these, the APO4 allele, leading to 

enhanced levels of brain Aβ, has been strongly associated with age-related diseases, including AD 

[71]. Furthermore, oxidative stress [70] and physical activity [42, 72] have been shown to 

differently act on the 4 population. On this basis, the present total population was stratified into 4- 

and non-4 carriers (Table 1). 

As depicted in Figure 10 (panel a and b), in the non 4-carriers, total α-syn (P=0.8544), oligomeric 

α-syn (P=0.2663), Aβ (P=0.4015), and α-syn/tau (P=0.1443) levels did not significantly differ 

between the ATHL and SED population, which is consistent with the data obtained in the whole 

population. Conversely, tau (Fig. 10b, P=0.0333) and α-syn/Aβ concentrations (Fig. 10b, P=0.0346) 

were confirmed to be lower in the ATHL than in the SED population. Moreover, the interaction of 

α-syn with Aβ was found to be inversely correlated with plasma AOC against hydroxyl radicals 

(Fig. 10c, P=0.0113, R2=0.195) and with the level of physical exercise (Fig. 10d, P=0.0292, 

R2=0.067). Similar to the results seen in the whole population (see Fig. 4), no significance 

differences between the SED and ATHL groups were found in RBC levels of total and oligomeric 

α-syn, Aβ, or α-syn/tau in 4 carriers (Fig. 11a and b). Interestingly, the concentration of α-syn/Aβ 

heterocomplexes (P=0.0421, Fig. 11b) were significantly lower in the 4-ATHL group than in the 

4-SED group. Of note, α-syn/Aβ levels were inversely correlated with peroxyl TOSC values (Fig. 

11c, P=0.0090, R2=0.982).  

Unfortunately, the number of subjects carrying the 4 allele was too low to further divide into 

young and older cohorts. 
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Discussion 

In the present study, the accumulation of misfolded proteins linked to NDs were related to the 

antioxidant capability (AOC) and physical activity in a cohort of 106 healthy subjects. The main 

conclusions of this work are as follows: i) the levels of tau and Aβ were differently modulated with 

increasing age; ii) total α-syn and Aβ accumulation in elderly subjects showed an inverse 

correlation with AOC toward hydroxyl radicals and the level of physical activity; iii) for the first 

time, α-syn was demonstrated to interact with Aβ and tau at a peripheral level; iv) α-syn 

heterocomplexes were strongly related to hydroxyl AOC; and v) α-syn/Aβ concentrations were 

inversely correlated with the level of physical activity.  

These results suggested that α-syn heterocomplexes could be novel putative indicators to monitor 

antioxidant capacity and ND-related protein misfolding. 

Oxidative stress has been suggested to be one of the potential common etiologies in various NDs 

because of its capability to trigger mitochondrial dysfunction, cellular damage, and an impairment 

of the DNA repair system, all of which have been known to be key factors in accelerating the aging 

process and ND development [1, 3, 28]. Particular attention has been paid to the relationship 

between oxidative stress and the accumulation of misfolded proteins, such as α-syn, Aβ and tau, 

which constitute the neuropathological hallmarks of AD, PD and other neurodegenerative 

proteinopathies [6]. For example, oxidative stress has been shown to exacerbate Aβ production and 

aggregation, as well as to promote tau phosphorylation, potentially inducing a vicious cycle of 

pathogenesis in AD [1, 73]. Similarly, mitochondrial dysfunction related to oxidative stress has 

been strongly associated with α-syn accumulation and apoptosis of dopaminergic neurons in PD 

[74].  

Misfolded proteins related to NDs are hypothesized to accumulate in the brain even decades before 

the appearance of symptoms [75-77]; furthermore, recent studies have demonstrated a cell-to-cell 

transmission of pathologic α-syn and Aβ in anatomically interconnected areas [78, 79]. Brain, CSF 

and blood concentrations of such protein aggregates seem to be in a dynamic equilibrium [80, 81], 

suggesting that increased production in the brain could be associated with increased concentrations 

in the blood as the result of oligomer transfer across the blood brain barrier [82-84]. Among blood 

cells, RBCs have been suggested to be particularly sensitive to oxidative stress and misfolded 

proteins [45, 46, 85], exhibiting damage to cell membranes and decreased cell deformability, which 

is necessary for effective oxygen transport and delivery [85]. Based on these findings, recent efforts 

to study RBC concentrations of misfolded proteins and their relationship with oxidative stress or 

NDs have emerged [45, 46]. In this context, preliminary data have shown a correlation between A 

concentrations in the brain and RBCs [42, 45], suggesting that these blood cells are a good model to 
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study alterations in the brain. Herein, RBCs, isolated from a cohort of 106 healthy volunteers, were 

used to measure the accumulation of -syn, A tauand of their heterocomplexes, depending on 

the extent of the antioxidant capability or of physical exercise, which has become an important 

preventive and therapeutic tool in AD and PD [35, 86]. 

In our cohort, the antioxidant capability toward hydroxyl radicals decreased significantly with age 

in the total population and in the SED cohort, consistent with literature data reporting an inverse 

correlation between oxidative damage/antioxidant capacity and age [69, 87]. Surprisingly, AOC did 

not significantly differ between the young and elderly in the total cohort, and the young ATHL 

group showed significantly lower TOSC values toward hydroxyl than the older ATHL. We 

speculate that among the ATHL subgroup, additional factors, such as type and strength of exercise 

or the time since the last training, may interfere with such results. Consistent with this hypothesis, 

several factors, including diet, have been suggested to influence the extent of plasma AOC [44]. 

As expected, AOC toward hydroxyl and peroxyl radicals was significantly higher in the ATHL 

group than in the SED group, and the first directly correlated with the level of physical activity in 

the whole subpopulation and in older subjects. In this respect, regular exercise has been 

demonstrated to induce an adaptive response that involves the up-regulation of the enzymatic 

antioxidant system, culminating in a regulation of cellular redox state in brain cells [36, 37].  

In contrast to plasma AOC, total and oligomeric α-syn did not significantly change with age in the 

whole population. Consistent with these data, no correlation between RBC α-syn oligomer levels 

and age has been found in PD patients [44]. Conversely, a recent paper has reported that plasma α-

syn levels correlated strongly with age, revealing much lower concentrations in older than younger 

individuals [85]. This discrepancy may be explained by considering the different peripheral fluids 

under examination or the sensitivity of the antibodies in the home-made immuno-enzymatic assays. 

Interestingly, total α-syn significantly decreased with age in the ATHL population, whereas an 

opposite trend was found in the SED group, suggesting that physical activity could differently 

modulate α-syn accumulation depending on age. Consistent with this hypothesis, total α-syn levels 

in RBCs were significantly lower in the ATHL group than in the SED group in the elderly (but not 

in the young or total) population and were inversely correlated with physical exercise level and 

hydroxyl AOC. Overall, these findings suggest that plasma AOC and the rate of physical activity 

can partially modulate total α-syn accumulation, in particular with increasing age. Consistent with 

our data, treadmill physical exercise has been shown to reduce α-syn and oxidative stress in a rat 

model of PD [88].  

Aβ levels in RBCs were found to progressively accumulate with age in the SED population, 

consistent with previous data from the literature obtained in the same blood cells [46]. Nevertheless, 
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as shown for total α-syn, the influence of oxidative stress and physical activity on Aβ accumulation 

was relevant in the elderly subgroup only, in which Aβ levels were inversely correlated with AOC 

toward hydroxyl radicals and were significantly lower in the ATHL group than in the SED group. 

Consistent with our findings, RBC Aβ concentration positively correlates with an oxidative stress 

marker [46], and plasma Aβ concentrations decreased with physical exercise in elderly subjects 

(mean age 70) [42]. Moreover, a relationship between physical activity and brain amyloid load, 

quantified by PET, has been reported in a few studies [72, 89].  

RBC levels of total tau significantly decreased with age in the total and SED populations; in 

contrast, Sparks and co-workers have reported a slight but significant age-related increase in 

circulating tau among individuals maintaining a cognitive control status [90]. This discrepancy can 

be explained considering that the authors analyzed tau plasma levels. Further studies will be needed 

to clarify the significance of tau in RBCs decrease with age. 

The tau concentration was lower in the ATHL population than in the SED population and was 

inversely related to physical activity level in the total cohort, thus suggesting that this parameter is 

modulated by physical exercise. Consistent with this hypothesis, long-term physical exercise has 

been shown to reduce both total and hyperphosphorylated tau in transgenic mice [91].  

Then, α-syn heteromeric association with Aβ or tau was analyzed in RBCs. α-syn and tau have been 

shown to co-localize in neurons [13, 17, 18] and within the axon compartment [19]; similarly, 

membrane-associated -syn has been demonstrated to interact with Aβ [14, 15, 92, 93]. However, 

the presence of α-syn complexes with Aβ or tau in peripheral cells has not been investigated. 

Herein, by co-immunoprecipitation and immune-enzymatic assays, α-syn was shown to form 

heterocomplexes with tau and Aβ. The interaction of α-syn with tau or Aβ in RBCs did not change 

with age; conversely, both α-syn/Aβ and α-syn/tau concentrations were inversely correlated with 

hydroxyl AOC in the whole population and in older subjects. These data suggest that a higher 

plasma AOC toward hydroxyl radicals paralleled with lower concentrations of α-syn 

heterocomplexes. 

The levels of α-syn/tau did not change with physical activity; conversely, significantly lower 

concentrations of α-syn/Aβ were found in the ATHL group versus the SED group in the whole 

cohort, as well as in the older and young subpopulation. In the three subgroups, the level of physical 

exercise inversely correlated with α-syn/Aβ concentrations of RBCs, suggesting that α-syn/Aβ 

levels in RBCs are modulated by physical activity, independent of age. 

Finally, because only non 4-carriers have been shown to receive the benefits of antioxidants [69] 

or physical activity [42], the influence of the Apo E genotype on the content of protein aggregates 

was analyzed Tau levels remained significantly higher in the ATHL group than in the SED group, 
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suggesting that this parameter is not modulated by the Apo E isoform. As discussed above, the 

reduction in Aβ was only significant in older subjects; unfortunately, the low number of 4-carriers 

did not allow us to further divide the group into young and older subjects, which would have 

allowed for the evaluation of the influence of the Apo E genotype on Aβ accumulation. Conversely, 

despite the low number of subjects, α-syn/Aβ concentrations were inversely correlated with AOC 

against peroxyl radicals in the 4-population and were lower in the 4-ATHL subjects than in the 

4-SED subjects. These data suggest that the interaction of α-syn with Aβ is not related to Apo E 

genotype, but rather, it can be influenced by the AOC toward peroxyl radicals in 4-carriers.  

In conclusion, the negative role of oxidative stress and sedentary style in abnormal accumulation of 

ND-related proteins was shown in the present paper. Most importantly, for the first time, our data 

demonstrated the following: i) -syn heterocomplexes with Aβ and tau were expressed in RBCs; ii) 

the interaction of -syn with Aβ and tau was influenced by plasma AOC towards hydroxyl radicals; 

and iii) -syn/Aβ content inversely correlated with the physical activity level. Together, all of the 

data suggest that -syn heterocomplexes may represent potential new indicators to monitor 

antioxidant capacity and ND-related protein misfolding.  

Future works will investigate the contribution of both oxidative stress and physical exercise on the 

accumulation of misfolded/hyperphosphorylated forms of ND-related proteins. 

In interpreting such findings, it is important to note that our data were derived from a cohort of 

healthy subjects in peripheral fluids. Therefore, our results on -syn heterocomplexes should be 

considered as preliminary data. Further research will be needed to establish a correlation between 

peripheral and central content of -syn/Aβ and -syn/tau, as well as to establish their role in 

pathological conditions of neurodegeneration. Finally, among the limitation of our study, the 

unfeasibility of measuring RBC turnover should be mentioned. Even if conflicting data on exercise-

mediated modulation of RBC production have been reported [94-98], the influence of exercise on 

RBC ageing/turnover will be take into consideration in a future study. 

 

Abbreviations:  

AOC antioxidant capacity  

Apo E Apolipoprotein E 

Aβ β-amyloid1-42 

-syn-synuclein 

AD Alzheimer's disease 

DLB Dementia with Lewy Bodies 

NDs Neurodegenerative diseases 
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PD Parkinson's disease 

RBCs Red blood cells 

ROS Reactive oxygen species.  

TOSC Total Oxyradical Scavenging Capacity.  
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Figure Legends 

Fig. 1 Presence of α-syn, Aβ, tau and their heterocomplexes in blood cells. a Cell lysates obtained 

from RBCs were subjected to Western blot analysis using antibody to α-syn, Aβ or tau. GAPDH 

was the loading control. b Cell lysates obtained from RBCs were immunoprecipitated with an anti-

α-syn antibody, and then immunoblotted with antibody to α-syn, Aβ or tau. One representative 

Western blot is presented for each condition.  

Fig. 2 In vitro determination of α-syn/Aβ heterocomplexes. a Human recombinant α-syn/Aβ (first 

line) was immunoprecipitated with an anti-α-syn antibody, and then immunoblotted with antibody 

to α-syn or Aβ. Recombinant Aβ alone (second line) was used as a positive control. One 

representative Western blot is presented for each condition. b, c Different concentrations of human 

recombinant α-syn/Aβ were captured on wells pre-coated with an anti-Aβ antibody. After extensive 

washes, levels of the α-syn/Aβ complex were quantified using an antibody specific for α-syn, and 

subsequently an HRP-conjugated antibody and a TMB substrate kit. Blank wells were obtained in 

the absence of α-syn antibody. c The theoretical α-syn/Aβ concentrations were subtracted of the 

quote of free syn, not bound to Aβ. Data are expressed as absorbance at 450 nm minus blank 

values, and are the mean ± SEM of at least three independent experiments.  

Fig. 3 In vitro determination of α-syn/tau heterocomplexes. a Human recombinant α-syn/tau (first 

line) was immunoprecipitated with an anti-α-syn antibody, and then immunoblotted with antibody 

to α-syn or tau. Recombinant tau alone (second line) was used as a positive control. One 

representative Western blot is presented for each condition. b, c Different concentrations of human 

recombinant α-syn/tau were captured on wells pre-coated with an anti-tau antibody. After extensive 

washes, levels of the α-syn/tau complex were quantified using an antibody specific for α-syn, and 

subsequently an HRP-conjugated antibody and a TMB substrate kit. Blank wells were obtained in 

the absence of α-syn antibody. c The theoretical α-syn/tau concentrations were subtracted of the 

quote of free syn, not bound to tau. Data are expressed as absorbance at 450 nm minus blank values, 

and are the mean ± SEM of at least three independent experiments. 

Fig. 4 Determination of ND-related proteins in RBCs. a-f RBC levels of total α-syn (a), oligomeric 

α-syn (b), Aβ (c), tau (d), α-syn/Aβ (e) and α-syn/tau (f) in the total cohort, in young and older 

subgroups of ATHL and SED subjects (mean ± SD). Lysates obtained from RBCs were subjected 

to specific immunoassay, as described in the Methods section. *P<0.05, ***P<0.001 versus other 

subgroups.  
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Fig. 5 Determination of plasma AOC in human subjects. a, b Plasma total oxyradical scavenging 

capacity (TOSC) against hydroxyl (a) and peroxyl (b) radicals in the total cohort, in young and 

older subgroups of ATHL and SED subjects (mean ± SD). *P<0.05, **P<0.01, ***P<0.001 versus 

other subgroups. c-f Correlation analysis between TOSC values against hydroxyl or peroxyl 

radicals and level of physical activity, expressed as Physical Activity level. 

Fig. 6 Correlation between ND-related proteins and plasma AOC. a-c Correlation analysis between 

total α-syn concentrations in RBCs (a-c) and TOSC values against hydroxyl radicals in the total 

cohort (a), older cohort (b), young cohort (c) or in ATHL (d). e Correlation analysis between Aβ 

concentrations in RBCs and TOSC values against hydroxyl radicals in the older cohort. f 

Correlation analysis between tau concentrations in RBCs and TOSC values against hydroxyl 

radicals in ATHL.  

Fig. 7 Correlation between α-syn/Aβ content in RBCs and plasma AOC. a-d Correlation analysis 

between α-syn/Aβ concentrations in RBCs and TOSC values against hydroxyl radicals in the total 

cohort (a), older cohort (b), young cohort (c), in ATHL (d) or in SED (e).  

Fig. 8 Correlation between α-syn/tau content in RBCs and plasma AOC. a-c Correlation analysis 

between α-syn/tau concentrations in RBCs and TOSC values against hydroxyl radicals in the total 

cohort (a), older cohort (b), in ATHL (c), in SED (d) or in the young cohort (e).  

Fig. 9 Correlation between ND-related proteins and physical exercise. a-d Correlation analysis 

between level of physical activity and RBC concentrations of total α-syn (a), oligomeric α-syn (b), 

Aβ (c), tau (d) and α-syn/Aβ (e, f, g) in the indicated subgroups. 

Fig. 10 ND-related proteins in non 4-carriers. a, b RBC levels of total α-syn, oligomeric α-syn, 

Aβ, α-syn/Aβ, tau and α-syn/tau in subjects not carrying the 4 allele (total cohort, ATHL and SED 

subjects). Lysates obtained from RBCs were subjected to specific immunoassay, as described in the 

Methods section. The data are the mean ± SD. *P<0.05 ATHL versus SED. c, d Correlation 

analysis between RBC concentrations of α-syn/Aβ and TOSC values against hydroxyl radicals (c) 

or level of physical activity (d) in subjects not carrying the 4 allele.  

Fig. 11 ND-related proteins in 4-carriers. a, b RBC levels of total α-syn, oligomeric α-syn, Aβ, α-

syn/Aβ, tau and α-syn/tau in subjects carrying the e4 allele (total cohort, ATHL and SED subjects). 

Lysates obtained from RBCs were subjected to specific immunoassay, as described in the Methods 

section. The data are the mean ± SD. **P<0.01 ATHL versus SED. c Correlation analysis between 
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RBC concentrations of α-syn/Aβ and TOSC values against peroxyl radicals in subjects carrying the 

4 allele.  



 28 

References 

 

1. Kim GH, Kim JE, Rhie SJ, Yoon S (2015) The Role of Oxidative Stress in 

Neurodegenerative Diseases. Exp Neurobiol 24:325-340 

2. Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in 

neurodegenerative diseases. Nature 443:787-795 

3. Gandhi S, Abramov AY (2012) Mechanism of oxidative stress in neurodegeneration. Oxid 

Med Cell Longev. doi:10.1155/2012/428010 

4. Dalle-Donne I, Aldini G, Carini M, Colombo R, Rossi R, Milzani A (2006) Protein 

carbonylation, cellular dysfunction, and disease progression. J Cell Mol Med 10:389-406 

5. Klein WL, Stine WB, Teplow DB (2004) Small assemblies of unmodified amyloid beta-

protein are the proximate neurotoxin in Alzheimer's disease. Neurobiol Aging 25:569-580 

6. Ugalde CL, Finkelstein DI, Lawson VA, Hill AF (2016) Pathogenic mechanisms of prion 

protein, amyloid-β and α-synuclein misfolding: the prion concept and neurotoxicity of protein 

oligomers. J Neurochem 139:162-180 

7. Goedert M, Spillantini MG, Del Tredici K, Braak H (2013) 100 years of Lewy pathology. 

Nat Rev Neurol 9:13-24 

8. Maurer K, Volk S, Gerbaldo H (1997) Auguste D and Alzheimer's disease. Lancet 

349:1546-1549 

9. Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT (2011) Neuropathological alterations in 

Alzheimer disease. Cold Spring Harb Perspect Med. doi:10.1101/cshperspect.a006189 

10. Larson ME, Sherman MA, Greimel S, Kuskowski M, Schneider JA, Bennett DA, Lesné SE 

(2012) Soluble α-synuclein is a novel modulator of Alzheimer's disease pathophysiology. J 

Neurosci 32:10253-10266 

11. Marsh SE, Blurton-Jones M (2012) Examining the mechanisms that link β-amyloid and α-

synuclein pathologies. Alzheimers Res Ther 4:11 

12. Trojanowski JQ (2002) “Emerging Alzheimer's disease therapies: focusing on the future”. 

Neurobiol Aging 23:985-990 

13. Lee VM, Giasson BI, Trojanowski JQ (2004) More than just two peas in a pod: common 

amyloidogenic properties of tau and alpha-synuclein in neurodegenerative diseases. Trends 

Neurosci 27:129-134 

14. Mandal PK, Pettegrew JW, Masliah E, Hamilton RL, Mandal R (2006) Interaction between 

Abeta peptide and alpha synuclein: molecular mechanisms in overlapping pathology of Alzheimer's 

and Parkinson's in dementia with Lewy body disease. Neurochem Res 31:1153-1162 

15. Tsigelny IF, Crews L, Desplats P, Shaked GM, Sharikov Y, Mizuno H, Spencer B, 

Rockenstein E, Trejo M, Platoshyn O, Yuan JX, Masliah E (2008) Mechanisms of hybrid oligomer 

formation in the pathogenesis of combined Alzheimer's and Parkinson's diseases. PLoS One. 

doi:10.1371/journal.pone.0003135 

16. Benussi L, Ghidoni R, Paterlini A, Nicosia F, Alberici AC, Signorini S, Barbiero L, Binetti 

G (2005) Interaction between tau and alpha-synuclein proteins is impaired in the presence of P301L 

tau mutation. Exp Cell Res 308:78-84 

17. Badiola N, de Oliveira RM, Herrera F, Guardia-Laguarta C, Gonçalves SA, Pera M, Suárez-

Calvet M, Clarimon J, Outeiro TF, Lleó A (2011) Tau enhances α-synuclein aggregation and 

toxicity in cellular models of synucleinopathy. PLoS One. doi:10.1371/journal.pone.0026609 

18. Giasson BI, Forman MS, Higuchi M, Golbe LI, Graves CL, Kotzbauer PT, Trojanowski JQ, 

Lee VM (2003) Initiation and synergistic fibrillization of tau and alpha-synuclein. Science 300:636-

640 

19. Jensen PH, Hager H, Nielsen MS, Hojrup P, Gliemann J, Jakes R (1999) alpha-synuclein 

binds to Tau and stimulates the protein kinase A-catalyzed tau phosphorylation of serine residues 

262 and 356. J Biol Chem 274:25481-25489 

20. Growdon JH (1999) Biomarkers of Alzheimer disease. Arch Neurol 56:281-283 



 29 

21. Garlind A, Brauner A, Höjeberg B, Basun H, Schultzberg M (1999) Soluble interleukin-1 

receptor type II levels are elevated in cerebrospinal fluid in Alzheimer's disease patients. Brain Res 

826:112-116 

22. Hock C, Heese K, Müller-Spahn F, Huber P, Riesen W, Nitsch RM, Otten U (2000) 

Increased CSF levels of nerve growth factor in patients with Alzheimer's disease. Neurology 

54:2009-2011 

23. Hampel H, Buerger K, Kohnken R, Teipel SJ, Zinkowski R, Moeller HJ, Rapoport SI, 

Davies P (2001) Tracking of Alzheimer's disease progression with cerebrospinal fluid tau protein 

phosphorylated at threonine 231. Ann Neurol 49:545-546 

24. Andreasen N, Minthon L, Davidsson P, Vanmechelen E, Vanderstichele H, Winblad B, 

Blennow K (2001) Evaluation of CSF-tau and CSF-Abeta42 as diagnostic markers for Alzheimer 

disease in clinical practice. Arch Neurol 58:373-379 

25. Reiber H (2003) Proteins in cerebrospinal fluid and blood: barriers, CSF flow rate and 

source-related dynamics. Restor Neurol Neurosci 21:79-96 

26. Chen X, Guo C, Kong J (2012) Oxidative stress in neurodegenerative diseases. Neural 

Regen Res 7:376-85. 

27. Williams A (2002) Defining neurodegenerative diseases. BMJ 324:1465-1466 

28. Patten DA, Germain M, Kelly MA, Slack RS (2010) Reactive oxygen species: stuck in the 

middle of neurodegeneration. J Alzheimers Dis 20 Suppl 2:S357-367 

29. Ienco EC, LoGerfo A, Carlesi C, Orsucci D, Ricci G, Mancuso M, Siciliano G (2011) 

Oxidative stress treatment for clinical trials in neurodegenerative diseases. J Alzheimers Dis 24 

Suppl 2:111-126 

30. Navarro A, Boveris A (2010) Brain mitochondrial dysfunction in aging, neurodegeneration, 

and Parkinson's disease. Front Aging Neurosci. doi:10.3389/fnagi.2010.00034 

31. Fulda S, Gorman AM, Hori O, Samali A (2010) Cellular stress responses: cell survival and 

cell death. Int J Cell Biol. doi:10.1155/2010/214074 

32. Halliwell B (1994) Free radicals, antioxidants, and human disease: curiosity, cause, or 

consequence? Lancet 344:721-4 

33. Feng Y, Wang X (2012) Antioxidant therapies for Alzheimer's disease. Oxid Med Cell 

Longev.  doi:10.1155/2012/472932 

34. Singh S (2015) Antioxidants as a preventive therapeutic option for age related 

neurodegenerative diseases. Ther Targets Neurol Dis. doi:http://dx.doi.org/10.14800/ttnd.592 

35. Mattson MP, Magnus T (2006) Ageing and neuronal vulnerability. Nat Rev Neurosci 7:278-

294 

36. Radak Z, Suzuki K, Higuchi M, Balogh L, Boldogh I, Koltai E (2016) Physical exercise, 

reactive oxygen species and neuroprotection. Free Radic Biol Med 98:187-196 

37. Voss MW, Vivar C, Kramer AF, van Praag H (2013) Bridging animal and human models of 

exercise-induced brain plasticity. Trends Cogn Sci 17:525-544 

38. Power GA, Dalton BH, Rice CL (2013) Human neuromuscular structure and function in old 

age: A brief review. J Sport Health Sci 2:215-226 

39. Johnson RA, Mitchell GS (2003) Exercise-induced changes in hippocampal brain-derived 

neurotrophic factor and neurotrophin-3: effects of rat strain. Brain Res 983:108-114 

40. Lazarov O, Robinson J, Tang YP, Hairston IS, Korade-Mirnics Z, Lee VM, et al (2005) 

Environmental enrichment reduces Abeta levels and amyloid deposition in transgenic mice. Cell 

120:701-713 

41. Tapia-Rojas C, Aranguiz F, Varela-Nallar L, Inestrosa NC (2016) Voluntary Running 

Attenuates Memory Loss, Decreases Neuropathological Changes and Induces Neurogenesis in a 

Mouse Model of Alzheimer's Disease. Brain Pathol 26:62-74 

42. Brown BM, Peiffer JJ, Taddei K, Lui JK, Laws SM, Gupta VB, et al (2013) Physical 

activity and amyloid-β plasma and brain levels: results from the Australian Imaging, Biomarkers 

and Lifestyle Study of Ageing. Mol Psychiatry 18:875-881 

http://dx.doi.org/10.14800/ttnd.592


 30 

43. Ang ET, Tai YK, Lo SQ, Seet R, Soong TW (2010) Neurodegenerative diseases: exercising 

toward neurogenesis and neuroregeneration. Front Aging Neurosci. doi:10.3389/fnagi.2010.00025 

44. Pandey KB, Rizvi SI (2010) Markers of oxidative stress in erythrocytes and plasma during 

aging in humans. Oxid Med Cell Longev 3:2-12 

45. Wang X, Yu S, Li F, Feng T (2015) Detection of α-synuclein oligomers in red blood cells as 

a potential biomarker of Parkinson's disease. Neurosci Lett 599:115-119 

46. Kiko T, Nakagawa K, Satoh A, Tsuduki T, Furukawa K, Arai H, et al (2012) Amyloid β 

levels in human red blood cells. PLoS One. doi:10.1371/journal.pone.0049620 

47. Whaley MH, Brubaker PH, Otto RM, Armstrong LE (2006) Medicine ACoS Guidelines for 

exercise testing and prescription. 7th ed. Lippincott Williams & Wilkins, Philadelphia  
48. Borg GA (1982) Psychophysical bases of perceived exertion. Med Sci Sports Exerc 14:377-

381 

49. Hamer P, Slocombe B (1997) The psychophysical and heart rate relationship between 

treadmill and deep-water running. Aust J Physiother 43:265-271 

50. Costa B, Bendinelli S, Gabelloni P, Da Pozzo E, Daniele S, Scatena F, et al (2013) Human 

glioblastoma multiforme: p53 reactivation by a novel MDM2 inhibitor. PLoS One. 

doi:10.1371/journal.pone.0072281 

51. Foulds PG, Mitchell JD, Parker A, Turner R, Green G, Diggle P, et al (2011) 

Phosphorylated α-synuclein can be detected in blood plasma and is potentially a useful biomarker 

for Parkinson's disease. FASEB J 25:4127-4137 

52. El-Agnaf OM, Salem SA, Paleologou KE, Curran MD, Gibson MJ, Court JA, et al (2006) 

Detection of oligomeric forms of alpha-synuclein protein in human plasma as a potential biomarker 

for Parkinson's disease. FASEB J 20:419-425 

53. Pesini P, Pérez-Grijalba V, Monleón I, Boada M, Tárraga L, Martínez-Lage P, et al (2012) 

Reliable Measurements of the β-Amyloid Pool in Blood Could Help in the Early Diagnosis of AD. 

Int J Alzheimers Dis. doi:10.1155/2012/604141 

54. Zappelli E, Daniele S, Abbracchio MP, Martini C, Trincavelli ML (2014) A rapid and 

efficient immunoenzymatic assay to detect receptor protein interactions: G protein-coupled 

receptors. Int J Mol Sci 15:6252-6264 

55. Daniele S, Taliani S, Da Pozzo E, Giacomelli C, Costa B, Trincavelli ML, et al (2014) 

Apoptosis therapy in cancer: the first single-molecule co-activating p53 and the translocator protein 

in glioblastoma. Sci Rep 4:4749 

56. Winston GW, Regoli F, Dugas AJ, Fong JH, Blanchard KA (1998) A rapid gas 

chromatographic assay for determining oxyradical scavenging capacity of antioxidants and 

biological fluids. Free Radic Biol Med 24:480-493 

57. Regoli F, Winston GW (1999) Quantification of total oxidant scavenging capacity of 

antioxidants for peroxynitrite, peroxyl radicals, and hydroxyl radicals. Toxicol Appl Pharmacol 

156:96-105 

58. Franzoni F, Ghiadoni L, Galetta F, Plantinga Y, Lubrano V, Huang Y, et al (2005) Physical 

activity, plasma antioxidant capacity, and endothelium-dependent vasodilation in young and older 

men. Am J Hypertens 18:510-516 

59. Bianchi S, Fusi J, Franzoni F, Giovannini L, Galetta F, Mannari C, et al (2016) Effects of 

recombinant human erythropoietin high mimicking abuse doses on oxidative stress processes in 

rats. Biomed Pharmacother 82:355-363 

60. Franzoni F, Colognato R, Galetta F, Laurenza I, Barsotti M, Di Stefano R, et al (2006) An in 

vitro study on the free radical scavenging capacity of ergothioneine: comparison with reduced 

glutathione, uric acid and trolox. Biomed Pharmacother 60:453-457 

61. Bartels T, Choi J, Kim N, Selkoe D (2011) Non-denaturing purification of alpha-Synuclein 

from erythrocytes. Protoc Exch. doi:10.1038/protex.2011.254 

https://dx.doi.org/10.3389%2Ffnagi.2010.00025
https://dx.doi.org/10.1371%2Fjournal.pone.0049620


 31 

62. Nielsen H, Ek D, Avdic U, Orbjörn C, Hansson O, Veerhuis R, et al  (2013) NG2 cells, a 

new trail for Alzheimer's disease mechanisms? Acta Neuropathol Commun. doi:10.1186/2051-

5960-1-7 

63. Cerf E, Sarroukh R, Tamamizu-Kato S, Breydo L, Derclaye S, Dufrêne YF, et al (2009) 

Antiparallel beta-sheet: a signature structure of the oligomeric amyloid beta-peptide. Biochem J 

421:415-423 

64. Kostylev MA, Kaufman AC, Nygaard HB, Patel P, Haas LT, Gunther EC, et al (2015) 

Prion-Protein-interacting Amyloid-β Oligomers of High Molecular Weight Are Tightly Correlated 

with Memory Impairment in Multiple Alzheimer Mouse Models. J Biol Chem 290:17415-38 

65. Jimenez S, Navarro V, Moyano J, Sanchez-Mico M, Torres M, Davila JC, et al. Disruption 

of amyloid plaques integrity affects the soluble oligomers content from Alzheimer disease brains. 

PLoS One. 2014;9(12):e114041. 

66. Barbour R, Kling K, Anderson JP, Banducci K, Cole T, Diep L, et al (2008) Red blood cells 

are the major source of alpha-synuclein in blood. Neurodegener Dis 5:55-59 

67. Buée L, Bussière T, Buée-Scherrer V, Delacourte A, Hof PR (2000) Tau protein isoforms, 

phosphorylation and role in neurodegenerative disorders. Brain Res Brain Res Rev 33:95-130 

68. Santpere G, Puig B, Ferrer I (2006) Low molecular weight species of tau in Alzheimer's 

disease are dependent on tau phosphorylation sites but not on delayed post-mortem delay in tissue 

processing. Neurosci Lett 399:106-10 

69. Goraca A (2004) Assessment of total antioxidant capacity in human plasma. Folia Med 

(Plovdiv) 46:16-21 

70. Dose J, Huebbe P, Nebel A, Rimbach G (2016) APOE genotype and stress response - a mini 

review. Lipids Health Dis 15:121 

71. Rowe CC, Ellis KA, Rimajova M, Bourgeat P, Pike KE, Jones G, et al (2010) Amyloid 

imaging results from the Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging. 

Neurobiol Aging 31:1275-1283 

72. Head D, Bugg JM, Goate AM, Fagan AM, Mintun MA, Benzinger T, et al (2012) Exercise 

Engagement as a Moderator of the Effects of APOE Genotype on Amyloid Deposition. Arch 

Neurol 69:636-643 

73. Zhao Y, Zhao B (2013) Oxidative stress and the pathogenesis of Alzheimer's disease. Oxid 

Med Cell Longev. doi:10.1155/2013/316523 

74. Blesa J, Trigo-Damas I, Quiroga-Varela A, Jackson-Lewis VR (2015) Oxidative stress and 

Parkinson's disease. Front Neuroanat 9:91 

75. Danev SI, St Stoyanov D (2010) Early noninvasive diagnosis of neurodegenerative diseases. 

Folia Med (Plovdiv) 52:5-13 

76. Price JL, McKeel DW, Buckles VD, Roe CM, Xiong C, Grundman M, et al (2009) 

Neuropathology of nondemented aging: presumptive evidence for preclinical Alzheimer disease. 

Neurobiol Aging 30:1026-1036 

77. Paoluzzi L, Singh AS, Price DK, Danesi R, Mathijssen RH, Verweij J, et al (2004) Influence 

of genetic variants in UGT1A1 and UGT1A9 on the in vivo glucuronidation of SN-38. J Clin 

Pharmacol 44:854-860 

78. Luk KC, Kehm V, Carroll J, Zhang B, O'Brien P, Trojanowski JQ, et al (2012) Pathological 

α-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science 

338:949-953 

79. Ridley RM, Baker HF, Windle CP, Cummings RM (2006) Very long term studies of the 

seeding of beta-amyloidosis in primates. J Neural Transm (Vienna) 113:1243-1251 

80. Kawarabayashi T, Younkin LH, Saido TC, Shoji M, Ashe KH, Younkin SG (2001) Age-

dependent changes in brain, CSF, and plasma amyloid (beta) protein in the Tg2576 transgenic 

mouse model of Alzheimer's disease. J Neurosci 21:372-381 

https://www.ncbi.nlm.nih.gov/pubmed/24252600


 32 

81. Ghersi-Egea JF, Gorevic PD, Ghiso J, Frangione B, Patlak CS, Fenstermacher JD (1996) 

Fate of cerebrospinal fluid-borne amyloid beta-peptide: rapid clearance into blood and appreciable 

accumulation by cerebral arteries. J Neurochem 67:880-883 

82. Zlokovic BV (2004) Clearing amyloid through the blood-brain barrier. J Neurochem 

89:807-11 

83. Eisele YS, Obermüller U, Heilbronner G, Baumann F, Kaeser SA, Wolburg H, et al (2010) 

Peripherally applied Abeta-containing inoculates induce cerebral beta-amyloidosis. Science 

330:980-982 

84. DeMattos RB, Bales KR, Cummins DJ, Dodart JC, Paul SM, Holtzman DM (2001) 

Peripheral anti-A beta antibody alters CNS and plasma A beta clearance and decreases brain A beta 

burden in a mouse model of Alzheimer's disease. Proc Natl Acad Sci U S A 98:8850-8855 

85. Mohanty JG, Nagababu E, Rifkind JM (2014) Red blood cell oxidative stress impairs 

oxygen delivery and induces red blood cell aging. Front Physiol 5:84 

86. Radak Z, Hart N, Sarga L, Koltai E, Atalay M, Ohno H, et al (2010) Exercise plays a 

preventive role against Alzheimer's disease. J Alzheimers Dis 20:777-783 

87. Inal ME, Kanbak G, Sunal E (2001) Antioxidant enzyme activities and malondialdehyde 

levels related to aging. Clin Chim Acta 305:75-80 

88. Tuon T, Valvassori SS, Lopes-Borges J, Luciano T, Trom CB, Silva LA, et al (2012) 

Physical training exerts neuroprotective effects in the regulation of neurochemical factors in an 

animal model of Parkinson's disease. Neuroscience 227:305-312 

89. Liang KY, Mintun MA, Fagan AM, Goate AM, Bugg JM, Holtzman DM, et al (2010) 

Exercise and Alzheimer's disease biomarkers in cognitively normal older adults. Ann Neurol 

68:311-318 

90. Sparks DL, Kryscio RJ, Sabbagh MN, Ziolkowski C, Lin Y, Sparks LM, et al (2012) Tau is 

reduced in AD plasma and validation of employed ELISA methods. Am J Neurodegener Dis 1:99-

106 

91. Ohia-Nwoko O, Montazari S, Lau YS, Eriksen JL (2014) Long-term treadmill exercise 

attenuates tau pathology in P301S tau transgenic mice. Mol Neurodegener 9:54 

92. Jensen PH, Nielsen MS, Jakes R, Dotti CG, Goedert M (1998) Binding of alpha-synuclein 

to brain vesicles is abolished by familial Parkinson's disease mutation. J Biol Chem 273:26292-

26294 

93. Masliah E, Rockenstein E, Veinbergs I, Sagara Y, Mallory M, Hashimoto M, et al (2001) 

beta-amyloid peptides enhance alpha-synuclein accumulation and neuronal deficits in a transgenic 

mouse model linking Alzheimer's disease and Parkinson's disease. Proc Natl Acad Sci U S A 

98:12245-12250 

94. Smith JA (1995) Exercise, training and red blood cell turnover. Sports Med 19:9-31 

95. Kaestner L, Bogdanova A (2014) Regulation of red cell life-span, erythropoiesis, 

senescence, and clearance. Front Physiol 5:269 

96. Lombardi G, Colombini A, Lanteri P, Banfi G (2013) Reticulocytes in sports medicine: an 

update. Adv Clin Chem 59:125-53 

97. Hu M, Lin W (2012) Effects of exercise training on red blood cell production: implications 

for anemia. Acta Haematol 127:156-64 

98. Díaz V, Lombardi G, Ricci C, Jacobs RA, Montalvo Z, Lundby C, et al (2011) Reticulocyte 

and haemoglobin profiles in elite triathletes over four consecutive seasons. Int J Lab Hematol 

33:638-44 

 

 



Figure 1 Click here to download Figure Fig.1.tif 

http://www.editorialmanager.com/moln/download.aspx?id=122746&guid=94ff7531-81e0-41b2-86b8-66361d39a057&scheme=1
http://www.editorialmanager.com/moln/download.aspx?id=122746&guid=94ff7531-81e0-41b2-86b8-66361d39a057&scheme=1


Figure 2 Click here to download Figure Fig. 2.tif 

http://www.editorialmanager.com/moln/download.aspx?id=122747&guid=172e7190-f564-4400-81d2-bfbec836ddc9&scheme=1
http://www.editorialmanager.com/moln/download.aspx?id=122747&guid=172e7190-f564-4400-81d2-bfbec836ddc9&scheme=1


Figure 3 Click here to download Figure Fig. 3.tif 

http://www.editorialmanager.com/moln/download.aspx?id=122748&guid=ca5f9801-1657-4df6-bf46-46ece3df837b&scheme=1
http://www.editorialmanager.com/moln/download.aspx?id=122748&guid=ca5f9801-1657-4df6-bf46-46ece3df837b&scheme=1


Figure 4 Click here to download Figure Fig. 4.tif 

http://www.editorialmanager.com/moln/download.aspx?id=122749&guid=89c16c3a-fa7b-4e29-b70f-52c42525e6b6&scheme=1
http://www.editorialmanager.com/moln/download.aspx?id=122749&guid=89c16c3a-fa7b-4e29-b70f-52c42525e6b6&scheme=1


Figure 5 Click here to download Figure Fig. 5.tif 

http://www.editorialmanager.com/moln/download.aspx?id=122811&guid=cde63851-e634-4f4a-bf2d-5633aebab390&scheme=1
http://www.editorialmanager.com/moln/download.aspx?id=122811&guid=cde63851-e634-4f4a-bf2d-5633aebab390&scheme=1


Figure 6 Click here to download Figure Fig. 6.tif 

http://www.editorialmanager.com/moln/download.aspx?id=122812&guid=3a7abbae-e2be-4921-a3c8-5d309ef4e86b&scheme=1
http://www.editorialmanager.com/moln/download.aspx?id=122812&guid=3a7abbae-e2be-4921-a3c8-5d309ef4e86b&scheme=1


Figure 7 Click here to download Figure Fig. 7.tif 

http://www.editorialmanager.com/moln/download.aspx?id=122813&guid=c6b08b93-4021-4e88-a53a-48aa9ad88961&scheme=1
http://www.editorialmanager.com/moln/download.aspx?id=122813&guid=c6b08b93-4021-4e88-a53a-48aa9ad88961&scheme=1


Figure 8 Click here to download Figure Fig. 8.tif 

http://www.editorialmanager.com/moln/download.aspx?id=122814&guid=eb1ca0f1-389c-4f07-9b78-5b5a7af1e8da&scheme=1
http://www.editorialmanager.com/moln/download.aspx?id=122814&guid=eb1ca0f1-389c-4f07-9b78-5b5a7af1e8da&scheme=1


Figure 9 Click here to download Figure Fig. 9.tif 

http://www.editorialmanager.com/moln/download.aspx?id=122815&guid=a14652ec-d837-4be2-8cd2-5118b273e65f&scheme=1
http://www.editorialmanager.com/moln/download.aspx?id=122815&guid=a14652ec-d837-4be2-8cd2-5118b273e65f&scheme=1


Figure 10 Click here to download Figure Fig. 10.tif 

http://www.editorialmanager.com/moln/download.aspx?id=122750&guid=3ef863cd-0639-4685-9cec-c4e0d4031684&scheme=1
http://www.editorialmanager.com/moln/download.aspx?id=122750&guid=3ef863cd-0639-4685-9cec-c4e0d4031684&scheme=1


Figure 11 Click here to download Figure Fig. 11.tif 

http://www.editorialmanager.com/moln/download.aspx?id=122751&guid=d2b1b563-2bcd-4e0f-bccd-8cf1b80e8bfe&scheme=1
http://www.editorialmanager.com/moln/download.aspx?id=122751&guid=d2b1b563-2bcd-4e0f-bccd-8cf1b80e8bfe&scheme=1


Table 1. Descriptive analysis of the total population and of the subgroups. The data are the mean±SD. 

 

 Number of 

subjects (N) 

Age (y) BMI Heart rate Physical 

activity level 

Young subjects 56 35.5±9.6 23.8±1.8 55.4±3.3 9.71±3.83 

Older subjects 50 60.4±6.9 24.6±2.1 60.30±5.65 8.79±3.15 

ATHL (Total 

cohort) 

48 44.6±13.5 23.8±1.8 52.6±3.6 13.2±2.2 

SED (Total cohort) 58 46.7±14.5 24.4±1.9 63.1±5.4 6.61±0.64 

Young ATHL 22 35.8 ± 8.0 23.4±1.6 50.2±3.9* 13.75±2.05 

Young SED 26 36.3 ± 9.2 24.2±1.20 60.5±2.6 6.70 ±0.59 

Older ATHL 22 57.4± 6.7 24.1±0.8 54.9± 3.2* 12.3±2.1 

Older SED 32 61.2±8.0 25.1±0.9 65.7± 8.1 6.50±0.68 

Non ε4 carrier 73 44.4±14.2 24.1±1.1 58.8±1.1 9.1±3.4 

ATHL non ε4 

carrier 

29 41.1±12.8 23.5±0.9 53.4±0.7 13.3±2.3 

SED non ε4 carrier 44 46.6±14.7 24.6±1.2 64.2±1.4 6.57±0.66 

ε4 carrier 14 39.3±14.3 24.0±1.1 56.1±1.4 9,.0±3,.1 

ATHL ε4 carrier 6 41.5±21.0 23,7±0.8 51.2±1.2 13.3±2.6 

SED ε4 carrier 8 38.3±11.3 24.3±1.3 60.9±1.5 6.87±064 

BMI, Body Mass Index; ATHL, Athletes, SED, sedentary. * P < .001 vs sedentary subgroups 
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Table 2, TOSC values against hydroxyl and peroxyl radicals; concentrations of total α-syn, oligemeric α-syn, Aβ, α-syn/Aβ, tau and α-syn/tau 

(expressed as ng/mg protein) in the indicate subgroups. The values are expressed as mean ± SD. 

 TOSC values 

(Peroxyl) 

TOSC values 

(Hydroxyl) 

Total α-syn 

 

Oligomeric α-syn 

 

Aβ α-syn/Aβ Tau α-syn/tau 

Young subjects 14.1±3.5 7.05±2.74 62.6±50.0 11.1±5.0 13.0±9.2 3.44±1.99 8.70±7.68 2.46±1.34 

Older subjects 15.2±4.3 7.79±3.82 54.9±45.9 11.0±4.7 14.1±10.2 3.07±2.09 6.21±4.11 2.35±1.74 

ATHL (Total 

cohort) 

15.3±3.9 8.70±2.65 57.4±43.8 10.7±4.3 13.3±9.7 2.45±1.79 6.05±4.20 2.39±1.79 

SED (Total cohort) 14.0±2.7 5.34±2.05 61.6±44.6 11.3±5.3 13.4±9.6 3.94±1.97 9.07±7.83 2.44±1.24 

Young ATHL 14.9±3.6 7.66±1.85 74.3±60.2 11.2±4.1 14.4±10.1 2.53±1.47 6.32±3.67 2.49±1.53 

Young SED 12.9±3.0 6.03±3.10 53.8±40.8 11.0±5.7 11.9±6.5 4.14±2.07 10.5±8.3 2.44±1.19 

Older ATHL 15.8±3.5 10.1±3.0 26.8±19.5 9.8±4.6 11.1±8.6 2.30±1.31 5.59±4.12 2.22±1.74 

Older SED 15.3±3.0 4.57±2.10 74.5±59.8 11.8±4.7 16.0±7.9 3.60±1.80 6.67±3.28 2.44±1.34 

Non ε4 carrier 15.4±4.3 7.06±3.24 68.6±53.3 11.1±5.3 11.3±8.4 3.69±2.03 8.26±7.55 2.27±1.43 

ATHL non ε4 

carrier 

16.8±3.1 8.28±2.97 70.6±66.0 10.2±4.4 10.3±7.8 3.07±1.83 6.45±3.92 1.96±1.60 

SED non ε4 

carrier 

13.7±4.9 5.69±3.06 67.3±64.7 11.6±5.9 12.0±8.8 4.09±2.07 9.45±6.72 2.47±1.30 

ε4 carrier 11.4±4.5 5.19±3.18 45.7±20.3 9.18±3.03 15.5±11.0 3.45±1.99 7.23±5.49 1.76±0.89 

ATHL ε4 carrier 13.5±5.9 7.63±1.91 59.0±30.4 9.4±3.96 12.1±6.1 2.03±1.55 5.02±4.47 1.27±0.99 

SED ε4 carrier 9.3±3.1 2.76±1.73 40.3±25.1 9.20±2.78 17.3±12.7 4.17±1.86 8.53±5.89 2.00±0.79 

BMI, Body Mass Index; ATHL, Athletes, SED, sedentary 
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