
 

On the Preliminary Design and Performance Predic-
tion of Centrifugal Turbopumps – Part 1 

Luca d’Agostino,1 a Dario Valentini,1  Angelo Pasini,1  Lucio Torre,2  Giovanni 
Pace1  and Angelo Cervone3  

1 Università di Pisa, Pisa, Italy 
2 Alta S.p.A., Ospedaletto (Pisa), Italy 

3 T.U. Delft, Delft, The Netherlands 

Abstract 

A reduced order model for the preliminary design and performance predic-
tion of radial turbopumps is illustrated. The model expresses the 3D, 
incompressible, inviscid, irrotational flow through helical blades with slow 
axial variations of their pitch and backsweep angles by superposing a 2D ax-
ial vorticity correction to a fully-guided forced-vortex flow with 
axisymmetric stagnation velocity in the meridional plane. Application of the 
relevant governing equations allows for the closed form definition of the 
impeller geometry and flowfield in terms of a reduced number of controlling 
parameters. Mass and momentum conservation are used for coupling the 
flow leaving the impeller with the 2D reduced order models of the flow in 
the diffuser and/or the volute, as well as for the evaluation of the mixing 
losses in the transfer between successive components of the machine. This 
information completes the geometric definition of the turbopump and deter-
mines its ideal noncavitating performance in accordance with the resulting 
flowfield. As a consequence of the neglect of viscous effects, the slip factor 
predicted by the present model exceeds those obtained from theoreti-
cal/semi-empirical formulas reported in literature for centrifugal pumps, but 
correctly captures their trend. 

1. Introduction   
The range of applications of turbomachines is so wide that even relatively minor 
gains in their efficiency and performance translate into major economic impacts 
worldwide (Laskshminarayana, 1985). More specifically, in space transportation 
systems turbopumps represent one of the most crucial components of all primary 
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propulsion concepts powered by liquid propellant rocket engines, where stringent 
limitations are associated with the design of high power density, dynamically sta-
ble machines capable of meeting the extremely demanding pumping, suction and 
reliability requirements of the propellant feed systems (Stripling and Acosta, 
1962). In these applications turbopumps often employ an inducer upstream of the 
centrifugal stage in order to pressurize the flow sufficiently for the main pump, 
usually one or more centrifugal stages, to avoid unacceptable cavitation, improve 
its suction performance and reduce the pressure and weight of the propellant stor-
age system.  

Significant analogies exist between the impeller geometry of centrifugal tur-
bopumps and compressors, as they rely on similar physical phenomena for raising 
the pressure of the working fluid. In both cases the structural resistance of the 
blades under the loads imposed by centrifugal and fluid dynamic forces represents 
the main limiting factor affecting the structural design of these components. How-
ever, in centrifugal turbopumps and compressors the relative importance of these 
forces is reversed because of the widely different densities of their working fluids. 
Centrifugal forces prevail in radial compressors, allowing for the adoption of a 
larger number of slender blades. On the other hand, fewer and thicker blades are 
used in radial turbopumps in order to sustain the higher bending loads generated by 
liquids (Brennen, 1994).  

Because of their relative simplicity, inviscid methods have been the first to be 
developed for describing the flow in turbopumps. They can be broadly classified in 
streamline curvature, potential and Euler methods.  

Streamline curvature methods essentially derive from the original idea of Wu, 
1952, of projecting the equations for the steady, ideal flow relative to the impeller 
on two pseudo-orthogonal meridional and circumferential surfaces. The 3D flow 
problem is thus split into two coupled two-dimensional flow problems in the hub-
to-shroud and blade-to-blade planes, which are then solved by a number of meth-
ods, including finite differences, finite elements and (again) streamline curvature 
methods (Senoo and Nakase, 1971; Bosman and El-Shaarawi, 1976; Adler and 
Krimerman, 1978; Hirsch and Warzee, 1979).  
 Potential methods generate the solution of the irrotational ideal fluid equations 
for the velocity potential, in most cases by means of finite differences, finite ele-
ments, or finite volume algorithms in two or three dimensions. They are relatively 
fast, intrinsically accurate, and can treat unsteady flow problems precisely both in 
two and three dimensions. However, the hypotheses of irrotationality severely their 
applicability to turbomachinery since the relative flow in impellers is necessarily 
rotational, and even for stationary elements inlet flow prerotation is a common 
occurrence.  

Finally, Euler methods use similar numerical approaches to the solution of the 
ideal fluid equations, without necessarily requiring the flow to be irrotational.  
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 Clearly, all inviscid methods are inherently uncapable to account for real fluid 
effects and dissipative phenomena such as turbulence, boundary layers, separation, 
flow reversal, secondary flows. In order to address these aspects of turbomachinery 
flows, viscous methods must be used, which can be generally divided in distribut-
ed-loss, boundary layer and Navier-Stokes methods.  
 Distributed-loss methods are based on the idea of correcting the inviscid flow 
models by accounting for dissipative effects in complex turbomachinery flows on 
an averaged basis, without detailed consideration of the specific mechanisms and 
locations where energy dissipation actually occurs (Ainley and Mathieson, 1951; 
Dunham and Came, 1970; Horlock and Marsh, 1971; Bosman and Marsh, 1974; 
Kacker and Okapuu, 1982). The appropriate intensity of dissipative effects strong-
ly depends on the operational conditions and must be either deduced from 
experimental observations or, in more sophisticated models, estimated from the 
analysis of the various sources of dissipation. Clearly, a sizable amount of infor-
mation is missed in this intrinsically phenomenological approach. Therefore 
distributed loss methods are of little or no use when accurate results are required 
as, for instance, in direct optimization of turbopump design where the sensitivity of 
the loss model to minor changes of the controlling parameters is indispensible. 
However, when supported by adequate experimental data, these models represent 
an economic and rapid way to include in first approximation the global effects of 
energy dissipation in turbomachinery analyses. 
 Boundary layer methods are based on Prandtl’s original intuition that viscous 
effects in unseparated flows at high Reynolds numbers are confined to relatively 
thin layers of the fluid adjacent to the solid surfaces, while the rest of the flow is 
virtually inviscid. Therefore the flow in the two regions can be studied with sepa-
rate approaches and the solutions matched together in order to obtain an 
approximate description of the entire flow field. Boundary layers have been studied 
extensively and a number of reliable boundary-integral methods exist for their 
efficient evaluation in the steady 2D case (White, 2006; White and Christoph, 
1972). The effects of surface roughness, free stream turbulence and, with some 
uncertainty, turbulent transition can also be included. The problem of steady vis-
cous/inviscid coupling between the two flow regions can either be neglected in the 
case of weak interaction, or otherwise treated iteratively in order to satisfactorily 
match the inner and outer flow solutions (Carter, 1979; Le Balleur, 1981; Whitfield 
et al., 1981). Boundary layer methods in two dimensions are relatively simple and, 
in the absence of flow separation, accurate and computationally efficient. On the 
other hand, extensions to three-dimensional and/or unsteady cases are more diffi-
cult and uncertain because of the lack of reliable experimental correlations for 
solving the integral boundary layer equations and because of the complexity of the 
computations.  
 Navier-Stokes methods solve the viscous flow equations, and therefore represent 
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the most general and comprehensive approach to the analysis of turbopump flows. 
Current methods typically employ either the Reynolds-Averaged Navier-Stokes 
(RANS) equations or the Large Eddy Simulation (LES) equations with a suitable 
turbulence model, in order to reduce the computational requirements to within 
affordable levels. A very wide variety of algorithms have been proposed in order to 
better circumvent computational stability problems of Navier-Stokes solvers and 
improve their overall efficiency. Nowadays they are extensively used in the simu-
lation of turbopump flows, being the most realistic and promising alternative to 
direct experimentation in the analysis of complex viscous flow phenomena.  
 The above methods make use of the machine geometry as an input to evaluate its 
performance (direct methods), and therefore they do not explicitly provide any 
guidance for its most efficient design. Their use to this purpose in direct optimiza-
tion loops is very severely limited by the prohibitive cost of exhaustive nonlinear 
searches over the large number of free parameters that should conceivably be used 
to define the geometry of the machine in a sufficiently general way. This is espe-
cially the case when the complexity and time requirements of each computation are 
increased for improving the accuracy of the results. Inverse (or indirect) methods, 
on the other hand, yield the optimum geometry of the machine under given re-
quirements but, in spite of their theoretical appeal, the difficulties associated with 
their application to the generation of realistic turbopump geometries still make 
them rather impractical. 
 The use of the above methods for the fluid dynamic design of the blading and 
flow path in centrifugal turbopumps satisfying assigned requirements and specifi-
cations typically starts by sizing the main components and evaluating their 
performance by means of simplified 2D or quasi-1D flow models, possibly with 
empirical corrections for major sources of flow losses (Laskshminarayana 1985). A 
first approximation of the machine geometry is then generated and a relatively 
elaborate optimization process is carried out, usually with the objective of attaining 
maximum efficiency within the assigned specifications, requirements and opera-
tional constraints. At increasing levels of complexity, this process may involve the 
use of blade-to-blade and/or hub-to-tip flow models, boundary layer calculations, 
and three-dimensional inviscid/viscous, steady/unsteady numerical simulations. 
The real-fluid performance of the machine is evaluated from the flow velocity field 
by accounting for energy losses either explicitly, using empirical correlations of 
specific databases, or indirectly from boundary layer computations or viscous flow 
simulations. Finally, the geometry of the blade channels and of the other compo-
nents are iteratively modified in order to attain the desired velocity/pressure 
distribution along the flow path, reduce residual spurious and/or detrimental ef-
fects, and optimize the overall performance of the machine.  
 Generally desirable features of practical methods for preliminary design of 
mixed-flow centrifugal turbopumps are: 
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•  the capability of defining the geometry of the machine consistently with the 
principles of its operation and of predicting its performance in terms of a 
relatively small number of significant parameters; 

•  rapid execution times and adequate accuracy and sensitivity to geometrical 
changes, for more effective iterative optimization of the machine.  

The observation that none of the above methods satisfactorily matches these re-
quirements justifies the search for more efficient alternatives. In this context, the 
development of accurate 3D, closed-form, reduced-order models capable of jointly 
predicting the geometry and performance of radial impellers and turbopumps is of 
particular interest to rocket engineers in their search for effective, rapid and possi-
bly accurate tools for the preliminary design of these machines. However, no such 
model has been proposed so far, mainly due to the difficulty of adequately describ-
ing the 3D flowfield through the impeller. Hence, even today turbopump designers 
still refer to simple “rules of thumb” or the general indications of specific manuals 
(Douglass, 1973) for the preliminary definition of their machines.  
 In rocket engine turbopumps the attainment of high power/weight ratios is invar-
iably obtained by running the impeller at the maximum allowable speed and lowest 
shaft torque. Operation under limited cavitation conditions with lighter – but also 
more flexible – shafts is therefore tolerated, exposing rocket propellant feed tur-
bopumps to the onset of dangerous fluid dynamic and rotordynamic instabilities 
(d’Agostino, 2013a; d’Agostino, 2013b). However, the development of cavitation 
inside the blade channels should possibly be avoided, because the highly com-
pressible and reverberating nature of the flow would greatly promote the onset of 
potentially lethal self-sustained flow instabilities at frequencies susceptible to be-
come resonant with the flutter oscillations of the impeller blades. The occurrence 
of this phenomenon in the inducer of the LE-7 engine has actually been identified 
as the likely cause of the catastrophic failure of the Japanese H-II launcher in No-
vember, 1999 (NASDA, 2000a; NASDA, 2000b). It is therefore advisable to 
design the impellers, both axial and radial, for cavitation to concentrate on the 
initial part of the blades at all operational conditions. This can be realized if, for 
any positive value of the inlet flow incidence, the fully-wetted flow pressure on the 
suction sides of the blades is minimum at the leading edges, and monotonically 
increasing further downstream. Hence, in particular, the local value of the blade lift 
vanishes identically at zero incidence, when the stagnation point is located at the 
leading edge.  

These considerations provided the fundamental basis for the selection and justi-
fication of the flowfield assumptions adopted by d’Agostino and his collaborators 
in the development of their closed form methods for jointly defining the geometry 
and performance of high-head radial inducers (d’Agostino et al., 2008a; 
d’Agostino et al., 2008b) and mixed-flow impellers (d’Agostino, Pasini and Valen-
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tini, 2011) optimized for operation under limited cavitation conditions. Specifical-
ly, they first showed that in helical inducers the condition of minimum flow 
pressure at the leading edges, when associated with the preservation of radially 
uniform axial flow velocity through the rotor (as commonly required in axial tur-
bomachines), results in a functional relation between the local values of the blade 
angle and hub radius. Later, with a similar approach d’Agostino, Pasini and Valen-
tini (2011) demonstrated that, when applied to mixed-flow centrifugal impellers, 
the same condition links together the axial variations of the blade pitch and back-
sweep angle.  
 The present formulation of the preliminary design of mixed-flow turbopumps 
represents therefore the natural extension of the earlier model developed by some 
of the authors for the simultaneous geometry definition and noncavitating perfor-
mance prediction of high-head axial inducers for liquid propellant rocket engine 
feed systems. This model has been used for designing several tapered-hub, varia-
ble-pitch inducers with different hydrodynamic features, and successfully validated 
in a series of dedicated characterization experiments (d’Agostino et al., 2008a; 
Torre et al., 2011; Cervone et al., 2012; Pace et al., 2013; Torre et al. 2009).  

More specifically, the present approach is suitable for application to centrifugal 
pumps with uniform axial inlet flow, variable impeller tip/hub radii and helical 
blades with slow axial changes of the pitch and backsweep angles. Following the 
same approach used in the case of inducers, the 3D incompressible, inviscid, irrota-
tional flow field inside the blade channels is expressed by superposing a 2D cross-
sectional axial vorticity correction to a fully-guided flow with axisymmetric stag-
nation velocity in the meridional plane. This choice allows for a radially uniform 
axial velocity distribution on each plane orthogonal to the axis of the machine, with 
the additional advantage of providing hub and tip profiles potentially less prone to 
develop flow separation. Moreover, the assumed flowfield through the blade chan-
nels intrinsically accounts for the influence of slip-flow effects, which are known 
to be one of the major factors adversely affecting the pumping performance of 
centrifugal turbopumps.  

Due to space limitations, the inclusion of flow losses as first proposed 
d’Agostino et al., 2012, and the results of dedicated validation experiments on a 
turbopump designed in accordance with the present model are illustrated in a com-
panion paper of the present volume (d’Agostino et al., 2017). Here, for preliminary 
assessment of the proposed approach, the slip factors predicted by the present 
model are compared with those obtained from some of the most popular theoreti-
cal/semi-empirical formulas reported in the literature for centrifugal pumps 
(Stodola, 1927; Busemann, 1928; Wiesner, 1967). 
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2. Turbopump Flow and Geometry 
The present model jointly describes the flow and geometry of the three main com-
ponents of a radial machine: the impeller, the diffuser and the volute, as 
schematically indicated in Figure 1. 

 
The radial impeller transfers energy to the working fluid as a consequence of its 

rotational speed Ω  and the hydrodynamic forces developing on its blades. The 
geometry of its flow channels is defined by the intersection of N  blades, with 
variable helical and backsweep angles γ h  and χ , and the rotational surfaces gen-
erated by the axial profiles of the hub and tip radii, rH  and rT . The exit flow of the 
impeller is then collected by a vaneless diffuser with constant axial width bD , and 
finally guided into the discharge line by a single-spiral volute with elliptical cross-
sections, continuously varying in the azimuthal direction from a straight segment at 
the tongue to a circular cross-section with radius R4  at the exit. 
 As mentioned in the introduction, the flow through the machine is considered as 
incompressible, inviscid and irrotational. For relatively large values of the blade 
solidity the 3D velocity field inside the blade channels is approximated as the su-
perposition of a fully-guided axisymmetric flow and a 2D axial vorticity correction 
on each impeller cross-section orthogonal to the centerline. The meridional com-
ponent of the fully-guided axisymmetric flow is chosen as the velocity field of an 
incompressible axisymmetric stagnation flow with stagnation plane located at the 
station (st), as illustrated in Figure 1. Perfect mixing is assumed to take place at the 
exit of the impeller, so that the flow in the diffuser can be considered steady, ax-
isymmetric and axially uniform. Finally, steady axisymmetric flow is also assumed 
in the volute at design flow rate. Consistently with the ideal nature of the present 

 

Figure 1. Radial turbopump schematic and nomenclature. 
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model, mixing losses at the entrance of the diffuser and the volute are neglected, 
even if they could be evaluated without explicit consideration of real flow effects.  

2.1 Impeller Flow and Geometry 
In the stated assumptions, the ideal flow through the impeller is held by the conti-
nuity and irrotationality equations for the velocity  u = û+ !u , sum of the 
(rotational) fully-guided axisymmetric flow field û , which generates the volumet-
ric flux through the machine and most of its total head rise, and a 2D cross-
sectional slip velocity correction  !u  (Figure 2), which does not contribute to the 
flowrate but is necessary to satisfy the irrotationality condition and decreases the 
fully-guided head rise. 

Fully-Guided Flow and Geometry of the Impeller. With reference to Figure 3, 
the azimuthal velocity component of the fully-guided flow is expressed by: 

v̂ r,z( ) = Ωr − ŵ z( ) tanγ r,z( )− û r( ) tan χ z( )  

 

Figure 2. Schematic of the 2D cross-sectional slip flow in the impeller blade channels. 

 

Figure 3. Helical angle in the meridional plane (left), backsweep angle in the axial 
cross-sectional plane (center) and velocity triangle in the blade-to-blade plane (right). 
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in terms of the radial and axial velocities û  and ŵ , where the angle γ , measured 
from the axial direction, includes the effects of the axial variations of the helical 
pitch Ph  and of the logarithmic backsweep angle χ  of the blades: 

tanγ = 2πr
Ph

+ r d
dz

ln r
rbs

⎛
⎝⎜

⎞
⎠⎟
tan χ

⎡

⎣
⎢

⎤

⎦
⎥ =

2πr
P

 

In this expression rbs z( )  is the radius where the azimuthal coordinate ′ϑbs   (associ-
ated to the axial variation of χ ) vanishes (Figure 3) and P  is an equivalent helical 
pitch of the blades accounting for the combined axial changes of Ph  and χ . 

The relatively narrow range of variation of the radial coordinate 
rH ≤ r ≤ rmax = min rT ,r2{ }  in the blade channels justifies the approximation 

 ln r ! ln rχ = ln rHrmax , so that P  is only function of the axial coordinate z . 
Hence, in particular, the equivalent pitch of the blades reduces to  P ! Ph z( )  when 
choosing  rbs ! rχ .  

The 2D slip velocity components on each axial cross-section of the impeller are 
most synthetically expressed and solved in terms of a scalar axisymmetric stream 
function  !ψ ′r , ′ϑ , ′z( )  in the rotating cylindrical coordinates ′r = r , ′ϑ =ϑ −Ωt , 
′z = z . Moreover, in the proposed approximation the axial variation of the slip 

flow is neglected, so that   ∂ !ψ ∂ z " 0 . Imposition to the assumed velocity field 
 u = û+ !u  of the irrotationality condition along the radial, azimuthal and axial 
coordinates yields: 

∂
∂ z

4π ŵ
P
− dŵ
dz
tan χ⎛

⎝⎜
⎞
⎠⎟ = 0  

d 2ŵ
dz2

= 0
 

 

1
r
∂
∂ r

r ∂
!ψ

∂ r
⎛
⎝⎜

⎞
⎠⎟ +

1
r2

∂ 2 !ψ
∂ ′ϑ 2 = 2Ω − 4π ŵ

P
+ dŵ
dz
tan χ  

Successive integration of the azimuthal vorticity and continuity equations, with 
the conditions ŵ z1( ) = ŵ1  at the inlet section (1), ŵ zst( ) = 0  at the stagnation 
plane (st) and û = 0  on the axis, determines the meridional components of the 
fully-guided flow through the impeller: 

ŵ z( ) = ŵ1
z − zst
z1 − zst

 

and: 
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û r( ) = − 1
2
r dŵ
dz

= − 1
2
r ŵ1
z1 − zst

 

which, in turn, define the profiles of the hub and tip radii rH z( )  and rT z( )  as the 
corresponding streamlines through rH1,z1  and rT1,z1 .  

The blade surfaces are defined by the azimuthal coordinate ′ϑB  resulting from 
the combined effects of the helical pitch and backsweep: 

′ϑB = ′ϑh + ′ϑbs = ′ϑB1 −
2π
Ph
dz

z1

z

∫ − ln r
rbs

⎛
⎝⎜

⎞
⎠⎟
tan χ  

where ′ϑB1  (possibly function of r ) is the azimuthal position of the blade at the 
inlet section z = z1 . The adoption of this blade shape yields a forced vortex flow 
design of the impeller with: 

 
′v̂ = v̂ −Ωr = − 2πr

P
ŵ + 1

2
r dŵ
dz
tan χ ∼ r  

It is worth noting that the radial component of the vorticity equation implies 
that the azimuthal components of the fully-guided flow velocities do not depend on 
the axial coordinate: 

∂
∂ z

4π ŵ
P
− dŵ
dz
tan χ⎛

⎝⎜
⎞
⎠⎟ = 0 ⇒ ∂ v̂

∂ z
= ∂ ˆ′v
∂ z

= 0  

Furthermore, integration of this equation in z  with the pertinent initial condition at 
the inlet station (1) determines the backsweep angle χ z( ) : 

tan χ = tan χ1 +
4π

dŵ dz
ŵ
P
− ŵ1
P1

⎛
⎝⎜

⎞
⎠⎟

 

as a function of the axial schedule of the blade pitch P z( )  (or viceversa). For 
simplicity, in the present analysis a cubic variation of 1 P  has been assumed, with: 

•  finite inlet pitch ( P1 ) and vanishing first and second axial derivatives of 
tan χ  at the blade leading edge ( z = z1 ); 

•  infinite pitch (1 Pst = 0 ) at the stagnation plane z = zst .  

The first condition assures a second order smooth transition of the blading into a 
helical surface of assigned pitch at the impeller eye, while the second has been 
imposed to control the angle of the blade root w.r.t. the hub surface at the rotor 
exit. Although these conditions seemed suitable for first validation of the proposed 
model, they have not been optimized and further refinements can possibly lead to 
better results in the generation of more efficient and realistic impeller bladings. 
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Impeller Slip Flow. The Poisson’s boundary value problem for the stream func-
tion  !ψ r, ′ϑ( )  of the slip flow on each axial cross-section of the blade channels (see 
Figure 4), together with the impermeability condition  !ψ = 0  on the boundaries, is 
transformed in a rectangular domain, where it can be solved in closed form by 
standard spectral methods (Hildebrand, 1976). 

In particular, using as comparison functions the (orthogonal) eigenfunctions of 
the corresponding homogeneous problem for the Laplace’s equation, the solution 
writes: 

 
!ψ = Cm,n sin nπ

ln r rH( )
ln rmax rH( )

⎡

⎣
⎢

⎤

⎦
⎥

n=1

+∞

∑ sin
2n −1( )N ′ϑ − ′ϑBk( )

2m=1

+∞

∑  

with: 

Cm,n = −
2Ω − 4πŵ1 P1 + dŵ dz( ) tan χ1⎡⎣ ⎤⎦rH

2m 1− −1( )m rmax2 rH
2⎡⎣ ⎤⎦

n − 1
2( ) 1+m2π 2 ln2 rmax

2 rH
2( )⎡⎣ ⎤⎦ m2π 2 n − 1

2( )2 N 2 ln2 rmax rH( ) cos2 χ⎡⎣ ⎤⎦  
From this solution for  !ψ ′r , ′ϑ( )  the radial and tangential slip velocity components   
and   are readily computed, thus completing the definition of the impeller flow. 

2.2 Diffuser Flow and Geometry 
In the stated assumptions, the steady, axisymmetric, axially uniform flow in the 
diffuser is held by the continuity and momentum equations. In order to satisfy the 
condition of axially uniform flow in the diffuser, perfect mixing of the impeller 
discharge flow is assumed to occur at the diffuser inlet, with flow velocity equal to 
the mass-averaged velocity at rotor discharge, station (2). The radial and azimuthal 
components of the velocity inside the diffuser can then be computed by radially 
integrating the continuity and azimuthal momentum equations in cylindrical coor-

 

Figure 4. Blade channel cross-section. 
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dinates. The resulting flow inside the diffuser is characterized by constant axial 
velocity and log-spiral streamlines with flow angle (ϕD ) with respect to the radial 
direction in a cross-sectional plane. Finally, the flow streamlines through the hub 
and tip surfaces of the impeller at its discharge station (2) define the lateral surfaces 
of the diffuser in the meridional plane. 

2.3 Volute Flow and Geometry 
With reference to Figure 5, the geometry of the spiral volute is designed for align-
ment of the tongue with the flow leaving the diffuser at nominal operational 
conditions and smooth transition to azimuthal flow discharge at the exit section, 
station (4). 

The meridional cross-sections of the volute are assumed to be segments of ellip-
ses of width b3 = bD  at the diffuser exit radius r3 , transitioning from a (degenerate) 
straight segment at the tongue (ϑ = 0 ) to a segment of a circle of radius R4  at the 
exit of the volute (station 4, ϑ = 2π ), as schematically illustrated in Figure 6. 

In the assumption of axisymmetric flow in the volute at design flow conditions, 
integration of the azimuthal momentum equation results in a free-vortex distribu-
tion of the azimuthal velocity component. The volumetric flux can then be 
computed on each meridional cross-section of the volute and equated to the radial 
inlet flow rate from the diffuser. If, in addition, the external radius rV  of the volute 
is assigned, the above condition fully defines the geometry of the volute as a func-
tion of the azimuthal angle ϑ . Here, in particular, the following expression for: 

rV = r3 exp
1

tanϕD

ϑ − ϑκ +1

2π( )κ 1+κ( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 

Vβ

 

Figure 5. Volute schematic and nomenclature. 



On the Preliminary Design and Performance Prediction of ...  – Part 1 13 

with: 

κ = 1− 2π
tanϕD ln rV 4 r3( )

⎡

⎣
⎢

⎤

⎦
⎥

−1

 

has been used, corresponding to a smooth variation of the spiral angle βV  of the 
volute from ϕD  at the tongue (ϑ = 0 ) to zero at the exhaust cross-section 
(ϑ = 2π ). 

The average flow velocities in the volute have been approximated as 

tanv = u3
A3
A4

rV 4
rV

      and      u = v tanβV  

Finally, in the assumption of a perfect mixing in the outlet duct, the flow at the 
discharge section (station 5) of the machine is taken uniform with velocity 

 
u5 = !V πR4

2( ) . 

3. Turbopump Performance 
In the present work the pumping performance of the machine has been evaluated 
neglecting all sources of energy dissipation, consistently with the ideal flow as-
sumption originally introduced to solve for the machine geometry and flowfield. 
Clearly, the major contributions to fluid dynamic losses (typically arising from 
viscous and secondary flow effects, turbulent mixing,  and flow incidence at the 
leading edges of wetted surfaces) play a crucial role for realistic performance pre-
diction and optimization of turbopumps. Their inclusion is illustrated in detail in a 
companion paper of the present volume (d’Agostino et al., 2017), where it is 
shown to lead to excellent predictions of the measured performance of the machine 
over a wide range of operation above and below design conditions. 

 

Figure 6. Elliptical meridional cross-sections of the volute. 
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Under the stated assumptions, the impeller is the only element affecting the total 
pressure of the flow through the machine. Hence, in the reference frame r, ′ϑ ,z  
rotating with the impeller the (steady) pressure of the (absolutely) irrotational flow 
in the blade channels is obtained from the Bernoulli’s equation: 

p + 1
2
ρ ′u ⋅ ′u − 1

2
ρr ⋅ r = pt0  

where ′u = u−Ω × r  is the relative velocity and pt0  the total pressure on the 
centerline ( r = 0 ) at the upstream station (0). 

In the absence of losses the total pressure of the flow downstream of the impeller 
is uniform. Therefore, using the Euler’s equation, the pressure in the diffuser and 
the volute is computed from the relevant flow velocity u  by means of: 

p + 1
2
ρu ⋅u = pt0 + ρΩr2v2 = pt5  

where v2   is the mass-averaged azimuthal velocity at the impeller discharge.  
Finally, with the above results the total head coefficient is expressed by: 

Ψ = pt5 − pt0
ρΩ 2r2

2  

In summary, under the stated assumptions and approximations the requirement 
for axisymmetric stagnation flow in the meridional plane at design conditions 
determines the profiles of the impeller tip and hub radii, while the irrotationality of 
the flow completes the geometric definition of the blades by specifying the de-
pendence between the axial schedules of their backsweep and helical pitch angles. 
The relevant conservation equations and assumptions also parametrically deter-
mine the shape of the remaining components (diffuser and volute) and the total 
head rise of the machine. Both the geometry and performance of the turbopump 
have therefore been defined in terms of a reduced number of controlling parame-
ters. 

4. Model Discussion 
In order to illustrate the versatility of the proposed design approach, three examples 
of pump geometries, indicated as A, B and C and representative of mixed-flow 
machines with different shape and number of blades, have been generated for suit-
able inputs of the free design parameters of the model. The 3D renderings of the 
three pump samples A, B and C and the meridional cross-sections of their impel-
lers are shown in Figures 7, 8 and 9, while Table 1 summarizes their main 
geometrical characteristics.  
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Figure 7. 3D rendering of the impeller of the first sample of centrifugal pump geome-
try (A, left) and meridional cross-section of the impeller (right). 
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Figure 8. 3D rendering of the second sample of of centrifugal pump geometry (B, left) 
and meridional cross-section of the impeller (right). 
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Figure 9. Cut-out rendering of the third sample of centrifugal pump geometry (C, left) 
and meridional cross-section of the impeller (right). 
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Figure 10 illustrates the ideal pumping performance of the sample machines. 
Since all sources of losses have been neglected, the predicted head characteristics 
exhibit the linear trend typical of the ideal performance of turbopumps as function 
of the flow rate. 

In the present inviscid flow approximation, the deviation of the flow leaving the 
impeller w.r.t. the exit angle of the blades is the major source of head degradation 
in centrifugal turbopumps. In particular, flow deviation at the impeller outlet is 
mainly due to the slip-flow effect generated by the irrotationality condition and the 
imperfect guidance of the flow in the blade channels, especially at higher loads 
(Peterson and Hill, 1992). Of these two effects, the former is actually predicted by 

Table 1. Main characteristics of the three sample geometries of radial turbopumps 
obtained by means of the present model. 

Pump Geometry A B C 

Number of Blades 6 8 10 
Inlet Tip Radius, (mm) 71.7 60 90 
Inlet Hub Radius, (mm) 46 24 54 
Stagnation Plane, (mm) 91.7 60 105 
Inlet Tip Blade Angle, (deg) 53.1 54 63 
Impeller Discharge Radius, (mm) 150 150 150 
Diffuser Width, (mm) 12.3 8.1 24.2 
Diffuser Discharge Radius, (mm) 180 195 165 
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Figure 10. Comparison between the predicted noncavitating performance of 

the sample turbopump geometries A, B and C. 
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the present model and can be assessed here, while the latter is rather small in high 
solidity bladings like those typical of centrifugal impellers with large backsweep 
angles, and in first approximation can be neglected. 

In order to preliminarily assess the performance of the ideal flow model before 
inclusion of fluid dynamic losses and final validation against experimental data 
from relevant turbopump geometries, the predicted slip factors have been com-
pared to the results of the theoretical/semi-empirical methods reported in literature 
for centrifugal pumps (Stodola, 1927; Busemann, 1928; Wiesner, 1967; Dixon, 
1978; Ferguson, 1963; Wislicenus, 1947). 

In particular, as shown in Figures 11 and 12, the comparison has been focused 
on the influence of the main parameters affecting the slip factor, such as the num-
ber of blades and the exit backsweep angle. The results indicate that the model 
usually slightly overestimates the slip factor at low number of blades and small 
exit backsweep angle. However, it is worth noticing that the geometry obtained by 
the model is more complex than the infinitely thin, logarithmic spiral blades used 
by Busemann to compute his theoretical slip factors. Moreover, the approximate 
formula proposed by Stodola provides a reasonable first approximation of the 
more exact results of Busemann, but underestimates the slip factor when applied 
to radial impellers with a small number of blades. Both of these methods do not 
account, even indirectly, for viscous effects. 

σ B =
AB + BBφ2 tan χ2
1−φ2 tan χ2

      Busemann 

45 50 55 60 65 70 75 80
0

0.2

0.4

0.6

0.8

1

χ2
 (deg)

sli
p 

fa
ct

or
 σ

 

 

Model
Busemann
Stodola
Wiesner

 

Figure 11. Comparison between the slip factor computed from the model and the 
available semi-empirical formulas for radial impellers based on the hub and tip profiles 
of sample geometry C with variable χ2 . 
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σ S = 1−
0.63π N
1−φ2 tan χ2

      Stodola 

σW = 1−
cosχ2 N 0.7

1−φ2 tan χ2
      Wiesner 

On the other hand, the approach proposed by Wiesner is based on empirical 
slip factor data. It provides better agreement with the experimental measurements 
and implicitly accounts for the additional contributions of viscous effects. Figures 
11 and 12 show that the predictions of the present model well reproduce the trend 
of Wiesner’s results but, not surprisingly, are systematically higher because of the 
neglect of viscous effects. The introduction of the fluid viscosity decreases the 
value of the slip factor as a consequence of the acceleration and the additional 
deviation of the relative flow at the rotor exit induced by blockage and asymmetric 
boundary layer displacement effects on the two sides of the impeller blades. Both 
of these effects produce in fact the systematic reduction of the azimuthal compo-
nent of the absolute flow velocity at the exit of the impeller, and therefore of the 
head developed by the machine, justifying the observed discrepancy between 
Wiesner’s semi-empirical data and the theoretical results of the present inviscid 
flow model. 
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Figure 12. Comparison between the slip factor computed from the model and the 
available semi-empirical formulas for radial impeller geometries based on geometry C 
with variable number of blades. 
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5. Conclusions 
The present theoretical model proved to be capable of rapidly and efficiently 
providing quantitative indications for the geometry definition, the 3D flowfield 
description, and the prediction of the ideal noncavitating pumping characteristics 
of radial turbopumps with complex and realistic geometries in terms of a relatively 
small number of controlling parameters. As illustrated in detail in the companion 
paper of the present volume (d’Agostino et al., 2017), because of these features the 
present inviscid flow model is especially suited for easy inclusion of the major 
forms of flow losses in centrifugal turbopumps and integration in a parametric 
optimization procedure, with the purpose of generating an effective tool for rapid 
identification of the machine geometry and performance best satisfying the given 
set of requirements, specifications and constraints. 

The limitations of the model are mostly related to the ideal flow assumption and 
simplifying approximations introduced in order to attain a practical closed form 
solution. The experimental validation presented in the companion paper of the 
present volume (d’Agostino et al., 2017) clearly demonstrates that these limitations 
can be effectively removed and that major improvements can be gained by intro-
ducing the main sources of flow losses in centrifugal turbopumps. Hence, the 
capability of the present ideal flow model of rapidly and rationally defining the 
shape of the machine confirms its effectiveness as a design tool of radial tur-
bopumps. 
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