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Abstract 

 
The calculation of the energy gap between the magnetic states of organic poly-radicals still represents a 

challenging playground for quantum chemistry, and high-level techniques are required to obtain accurate 

estimates. On these grounds, the aim of the present study is twofold. From the one side, it shows that, thanks 

to recent algorithmic and technical improvements, we are able to compute reliable quantum mechanical results 

for the systems of current fundamental and technological interest. From the other side, proper parameterization 

of a simple Hubbard Hamiltonian allows for a sound rationalization of magnetic gaps in terms of basic 

physical effects, unraveling the role played by electron delocalization, Coulomb repulsion and effective 

exchange in tuning the magnetic character of the ground state. As case studies, we have chosen three 

prototypical organic tri-radicals, namely 1,3,5-trimethylenbenzene, 1,3,5-tridehydrobenzene and 1,2,3-

tridehydrobenzene, which differ either for geometric or electronic structure. After discussing the differences 

among the three species and their consequences on the magnetic properties in terms of the simple model 

mentioned above, accurate and reliable values for the energy gap between the lowest quartet and doublet states 

are computed by means of the so-called difference dedicated configuration interaction (DDCI) technique, and 

the final results are discussed and compared to both available experimental and computational estimates. 
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Introduction 

The magnetic properties of matter are at the heart of several devices of routine use in our life, like, for 

instance, electric motors, magnetic tapes, diagnostic devices, computer memories and data storages.  Pushed 

by the need of device miniaturization, there has been recently a strong impulse to the research in the field, 

following the idea of exploiting molecules or molecular aggregates, rather than bulk materials[1-9]. The 

discovery of the giant magneto-resistive effect by Peter Grunberg and Albert Fert is paving the route toward 

the construction of a new generation of hard disks and spintronic devices (see for instance References [[10-

19]], just to cite few recent examples), and this has, in turn, stimulated new experimental and theoretical 

investigations of magnetic molecular species.  

As is well known, magnetism is the consequence of the presence of unpaired electrons, which are common in 

transition metals (the conventional route to magnetic materials), but quite unusual in stable organic systems 

(the so-called mono and poly-radicals). In particular, poly-radicals have attracted great attention,[2, 20-33] in 

view of technological applications that require spin-dependent transport and durable data storage[13, 34] or for 

application in batteries.[35] The ability to unravel and control the quantities at the origin of the spin-spin 

interactions in such systems is one of the key points for governing the magnetic properties of matter at the 

molecular scale. In this perspective, besides the considerable experimental effort that is often required to 

synthesize and stabilize poly-radical species [31, 36, 37], the contribution of theory and computation can be 

significant. 

Much work has been devoted to the simplest members of the class, namely di-radicals, both from an 

experimental and a theoretical point of view. In fact, these compounds have been often employed as 

benchmarks to develop and test methods or models that might be possibly extended to more complex systems. 

Experimentally, these species, mostly based on nitroxide, nitronyl nitroxide and verdazyl units, can be 

managed without an excessive burden, whereas their relatively small dimensions allow for accurate and 

reliable computational investigations (besides the already cited work and references therein, some further 

references can be found in [38-48]).  

In a di-radical, two unpaired electrons are localized in different parts of the molecule. The simplest model to 

describe a di-radical is the Heisenberg-Dirac-Van Vleck Hamiltonian, where the two electrons, interacting by 

a spin-spin coupling term J, give rise to a singlet and a triplet state, J corresponding to their energy gap (J=

ST T SE E E   ).[1, 29] A positive value of J is associated with an antiferromagnetic ground state, a negative 

one with a ferromagnetic, triplet, ground state. J is a quantity measurable by different techniques,[27] 

nonetheless, its computation is not trivial, since the singlet eigenstate has an intrinsic multi-reference 

character. The computational methods developed to deal with this situation have been extensively reviewed in 

Ref. [[29]] and belong to two main classes, rooted into the Density Functional Theory (DFT) and into the 

wavefunction (WF) description, respectively. Among DFT methods, the broken symmetry approach pioneered 

by Noodleman is still the most widely applied [49-52], although the quite recent Spin Flip-Time Dependent 

DFT[53-56] appears more reliable and theoretically sound. Within the WF approach, magnetic interaction in 

poly-radicals have been studied by several different multi-reference perturbative methods (such as CASPT2 
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and NEVPT2 [57, 58], state specific MRPT [59] or by RAS-SF [60-63] and Coupled Cluster methods, such as 

the spin-flip EOM [48, 64]). In our opinion the Difference Dedicated Configuration Interaction (DDCI) 

method, originally proposed by Miralles et al in Ref. [[65, 66]], represents an excellent compromise between 

accuracy and computational feasibility, especially for large systems (see [29] and references therein), where an 

accurate choice of the active magnetic orbitals can improve the quality of the results [67].  

In the past few years we have contributed to the field, proposing a computational route based on DDCI that 

takes advantage from orbital localization, virtual orbital reorganization and Möller-Plesset perturbation theory, 

which has been successfully applied to some nitroxide and nitronyl nitroxide diradicals [47, 68-71]. This 

computational procedure has been gathered in a comprehensive user-friendly software, named BALOO [47]. As 

a step forward, here we extend our approach to organic tri-radicals, focusing in particular on three prototypical 

species, 1,3,5-trimethylen benzene (TMB), 1,3,5-tridehydrobenzene (MM-TDB) and 1,2,3-tridehydrobenzene 

(OO-TDB), displayed in Figure 1. The first compound is a  tri-radical, where all the unpaired electrons 

occupy  orbitals, whereas both MM-TDB and OO-TDB are  tri-radicals, whose  orbitals bear all the 

unpaired electrons.  
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Figure 1 - Structures of the three investigated tri-radicals: 1,3,5-trimethylen benzene (TMB), 1,3,5-

tridehydrobenzene (MM-TDB) and 1,2,3-tridehydrobenzene (OO-TDB).  
 

TMB has been recently synthesized and characterized as having a quartet ground state.[36] Previously, only a 

perchlorinated derivative of TMB with quartet ground state was prepared and studied.[72] This was followed 

by an accurate post Hartree-Fock computational study by Kemintz, Squires and Borden,[73] showing that the 

tri-radical has indeed a fully-symmetric quartet ground state and that the first two doublet excited states are 

subject to Jahn-Teller distortion. Computational studies on related compounds can also be found in Refs. [[74, 

75]]. MM-TDB is very reactive and, contrarily to its trifluoro homologue,[28] cannot be isolated in matrix, but 

its heat of formation in the gas phase has been determined experimentally.[76] The species has been 

investigated theoretically by both DFT and WF methods[74, 77] demonstrating that MM-TDB has a doublet 

ground state, which has a two-fold degeneracy in the D3h symmetry representation, but, as for TMB, 

undergoes Jahn-Teller distorsion to C2v. Finally, OO-TDB has been isolated in matrix and spectroscopically 

characterized. [78] Investigations by several post-Hartree–Fock methods[79, 80] have shown that, as found for 

MM-TDB, the ground state is a doublet with a pseudo-bicyclic character. Another doublet, monocyclic, is 

found slightly above in energy, whereas the quartet is found 2 eV higher. For both doublets, structural 

parameters have also recently been determined by IVO-CASCI calculations.[81] 
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Besides representing a challenging benchmark for our computational route, these three tri-radical species were 

chosen as they allow for a comparative study, which may help to reach a deeper understanding of the delicate 

relationship between their structure and the overall magnetic properties. Indeed, while TMB and MM-TDB are 

geometrically equivalent but with different electronic nature ( vs , MM-TDB and OO-TDB have 

equivalent spin ground states but are geometrically different.  

 

Computational Details and Geometry Optimizations 

Geometry optimization of all species has been performed using Gaussian09[82] at the unrestricted DFT level 

using the hybrid B3LYP functional, in conjunction with the Dunning’s correlation consistent basis set, cc-

pvTz, for the  species and the triple-ζ polarized 6-311G* basis set for the  TMB system.  

Optimization in C2v symmetry for the two TDB species in a doublet spin state has been performed through a 

relaxed scan of the C1-C2 distance, to obtain both A1 and B2 states in their energy minimum and the energy 

profile along that coordinate. 

 

Table 1 – Geometrical parameters for TMB, MM-TDB and OO-TDB in D3h and C2v. Distances are in Å.  
 

r13=r12= r23=4.914 

rab=rac= rbc=2.438 

r=r=r=2.490 

ra=rb=ra=rb=rc=rc=1.423 

  

r13=r12= r23=2.328 

rab=rac= rbc=2.446 

ra= rb3=ra= rc=rc= rb1=1.380 

r12=4.915; r13= r23=4.938 
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r12=5.034; r13= r23=4.862 

rab=2.395; rac= rbc=2.427 

r=2.474 

r=r=2.499 

ra=rb=1.414 

ra=rb=1.419 

rc=rc=1.417 

r12=1.919; r13= r23=2.274 

rab=2.393; rac= rbc=2.587 

ra= rb3=1.396 

ra= rb1=1.363 

rc= rc1=1.351 
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r12=2.343; r13= r23=1.287 

rab=2.471; rac= rbc=1.406 

ra= rb1=1.394 

 

The geometrical structures optimized in the present work (see Table 1 for the geometrical parameters most 

significant for the discussion which will follow) are in basic agreement with those of refs. [73, 77, 79]. A 
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complete set of bond lengths and angles, along with the mean value of the spin operator S
2
, can be found in 

Table S1 of the Supporting Information. In Table S1 one can notice that in few cases there can be some spin 

contamination for the doublet states and there are attempts to overcome that problem in geometry optimization 

[39]. In all cases the planarity of the skeleton is preserved so that the point group symmetry is D3h (or C2v for 

the states subjected to Jahn-Teller distortion). From the values of rab and r (for TMB) or r12 (for TDB), it is 

apparent that geometrical changes accompanying the distortion in TMB are smaller than in TDB. For the 

former systems only slight deformations from a perfect hexagon are found and in particular the longest and 

shortest sides differ by about 0.02 Å. Furthermore the distance between the magnetic centers changes by no 

more than 0.05 Å. Conversely, for TDB significant changes in the molecular geometry are observed with 

respect to a regular hexagon. Moreover the distance between the magnetic centers is different for the several 

states of the MM-TDB system with relevant consequences on the stability of the A1 and B2 states. With 

reference to the D3h geometry of the MM-TDB system, r12 slightly increases for the B2 doublet state and 

decreases significantly for the A1 state, whereas r13=r23 decreases in the B2 state and only slightly in A1 state.  

For each molecule, the doublet-quartet gap, DQ=E(S=1/2)–E(S=3/2), is evaluated according to the route described 

in details in Ref. [[47]] and based on DDCI scheme. Briefly, ROHF molecular orbitals (MOs) are obtained by 

a high spin SCF calculation carried out with GAMESS.[83] When required, magnetic MOs are localized onto 

the magnetic sites and virtual MOs can be modified and rearranged, exploiting the addition, through an ad hoc 

procedure, of supplementary point charges on the magnetic sites. The corresponding integrals are then 

transformed from atomic to molecular basis set. For saving computational time, the final variational CI 

calculation of DQ can be performed on a reduced active MO space, and the value obtained corrected by the 

Complementary Space Perturbative Approach (CSPA), which takes into account the remaining MO space.  

 

Theoretical Considerations  

The essential physics underlying the quartet-vs-doublet ground state can be interpreted through a simple 

model Hamiltonian applied, for the present case of tri-radicals, to the minimal 3 orbital - 3 electron full 

configurational space CAS(3,3), which is obtained considering 1 orbital per magnetic site, which can be either 

a  (OO-TDB and MM-TDB) or a  (TMB) orbital. In such a localized basis set, we can build a model 

Hubbard Hamiltonian including an explicit exchange term, whose general expression reads:  

 

 
, , ,

ij i j j i j j j ij i j i jj j
i j j j i j

H t a a a a n U n n k a a a a        
   

   

 
  

         (1) 

 

where , ,( )j ja a 


 is the creation (annihilation) operator of one electron with spin  in the orbital j, 

, , ,j j jn a a  

  is the number operator. The parameter t is the resonance, or hopping, integral,  is the site 

orbital energy, U the on-site Coulomb repulsion and k the effective exchange; t is always negative and its 

value measures the stabilization accompanying electron delocalization. At the same time, U destabilizes 
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orbital double occupancy and k introduces the intrinsic magnetic properties. For the species with three 

equivalent magnetic sites, such as TMB and MM-TDB in their D3h form, eq. (1) reduces to: 

 

 , 1, 1, , , , , , ,

, , ,

j j j j j i j i jj j
j j j i j

H t a a a a n U n n k a a a a        
   

   

   
 

         (2) 

 

where the first summation is cyclic with site 4 coincident with site 1. This does not hold for OO-TDB and for 

the C2v forms of MM-TDB arising from Jahn-Teller distortion. In such cases, site 1 and 2 are equivalent but 

site 3 is different (see Fig. 1), and the fact that the three orbitals may be on non-equivalent magnetic sites 

should be taken into account. Consequently, Eq. (1) can be written as: 

 

 

 

, 3, 3, , 1 , , ,

1,2; 1,2; ,

1 1, 2, 1, 2, 1, 3, 1, 3, 2, 3, 2 3,+    + + 

j j j k j j j j j
j j k j j

H t a a a a t a a n U n n

k a a a a ka a a a ka a a a

      
  

           
 

  

 
  

     



        


 (3) 

 

where t and k are the hopping and the exchange contribution, respectively when magnetic site 3 is involved; t1 

is the direct 1-2 hopping and k1 is the effective exchange involving sites 1 and 2.  

For the 3-electron-3-orbital case and considering the configurations with Sz=1/2, we can write, for both the D3h 

and C2v point groups, 9x9 matrix representations of the above Hubbard Hamiltonian (eqns. 2 and 3), which are 

reported in symbolic form in the Table S2 of Supporting Information. An analysis at a semi-quantitative level 

of these matrices may yield useful information on the tri-radical systems under study, and may help to 

rationalize the relevant physical features which push the system toward a low or high spin ground state. 

First of all, we can see that in the limit of very small hopping (t,t10), the two matrices can be transformed 

and factorized in two sub-matrices: one at high energy for the configurations with double occupancies of the 

orbital, the other, at low energy, for the three configurations with 1 electron per magnetic site (see central row 

of Table S2). For D3h we have then the quartet at energy -2k and the two degenerate doublets at energy k, 

while the lowest doublets with double occupancy are found at energy U-k, which is always expected to be 

higher than k. For C2v we are faced with a slightly more complex situation due to the differences between one 

site with respect to the other two (see central row Table S2). However, we can make the same considerations 

concerning the quartet vs doublet ground state.  

In addition, we can see that the degeneracy of the two lowest doublets is now removed. In summary, in the 

limit of small hopping, the three lowest states are those with single occupancy in the magnetic sites and the 

ground state is always the quartet, in accordance with the Hund’s rule. 

Increasing the hopping, i.e. the electron delocalization, we observe rather different situations. The matrix for 

D3h, transformed to separate the quartet from the doublets, is explicitly reported in the last row of Table S2 for 

the interested reader. On the contrary, the complete Hamiltonian matrix for C2v symmetry is far too complex 

to be straightforwardly displayed. It is clear that, while the quartet is still decoupled from the other eight 

eigenstates, the same does not hold any more for the doublet states with single occupancy. There, as a result of 
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the contamination of the configurations with double occupied magnetic sites, the energy of the doublets may 

go below that of the quartet.  

 

 

Figure 2 – 3D plot of the energy difference between the two-fold degenerate (in D3h) doublet and the 

quartet as a function of the effective exchange k and the hopping t. Both parameters are in unit of the on-

site Coulomb repulsion U. 
 

This concept should be clarified by Figure 2, where for D3h the energy difference between the lowest 

degenerate doublet and the quartet is reported as a function of the effective exchange (k) and the hopping (t) in 

units of the on-site Coulomb repulsion (U). For a given value of k/U, the ground state is the quartet for small 

values of t/U and becomes the doublet as the hopping increases. This indeed occurs since the doublet 

eigenstates increase their double occupation character on magnetic sites, as a consequence of the increased 

electronic delocalization. The eigenstates with strong double occupation character are always found at higher 

energies. 

The above discussion based on the Hubbard Hamiltonian may be exploited in order to compare the different 

behavior of the two D3h species TMB e MM-TDB. In fact, despite the topology of the two systems is the same, 

the  species is found to have a quartet ground state, while the  one a doublet ground state.[73, 77, 78] 

Although it is known that the doublet state shows a two-fold degeneracy in D3h and undergoes Jahn-Teller 

distortions, a useful comparison can be done in D3h point group using the corresponding matrix of Table S2. 

According to this approximate treatment, we expect that the Hubbard Hamiltonian for TMB has a larger 

exchange and a smaller hopping than MM-TDB. An effective estimate of the value of the parameters entering 

the Hubbard Hamiltonian can be done by exploiting a CI calculation in the same CASCI(3,3) space. This can 

be done by minimizing the discrete functional (corresponding to a least squares fitting): 

 

    
29

1

, ,i i i

i

I w E CASCI E t k U


     (4) 

 

where  iE CASCI  and  , ,iE t k U
 
are the eigenvalues of the CASCI calculation and those of the Hubbard 

Hamiltonian, respectively, and we have verified the correspondence of the eigenfunctions. The weights wi are 
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chosen inversely proportional to the excitation energy. In such a way the three parameters t, k, U are those that 

represent at best the true Hamiltonian matrix, although the latter includes also some minor contributions which 

are not present in the (simplified) Hubbard operator. The results of such a fitting are reported in Table 2.  

As expected, TMB has a smaller hopping and a larger exchange than MM-TDB and despite the U value 

computed for the  system is about twice the one found for  one, the differences of t and k are 

sufficient to obtain a doublet ground state. The doublet-quartet gap DQ, computed with this model is 

practically the same obtained with CASCI in the minimal space. Furthermore, the relative position of the other 

doublet states is also well reproduced by the simple model. Yet, these values are qualitative estimates, but only 

accurate calculations in a much larger configurational space may give quantitative values for the gap. 

It should also be noticed that the results of the fitting show that the on-site Coulomb repulsion U is much 

larger than the delocalization term t. This means that for the present case one might also exploits a perturbative 

treatment for the two lowest doublet states, which at the zero order are linear combinations of the three 

configurations with single occupation (eigenstates of the 3x3 matrix of Table S2), while the quartet is always 

decoupled. Indeed, the doublet-quartet gap for TMB and MM-TDB of Table 2, which is 3k for t=0, results 

0.027 instead of 0.033 for TMB and -0.019 instead of 0.006 for MM-TDB, respectively. 

 

Table 2 – Parameters of the Hamiltonian of Eq.1 (D3h point group) obtained by a fitting of the 

eigenvalues of the CASCI(3,3) calculation, eq. (4). (i)=Ei–E0 are the energy differences between the i-th 

state and the ground state, in Hartree. The ground state is the quartet for TMB and the degenerate doublet 

for MM-TDB. The exited states are all doublets except the first excited state for MM-TDB 

(corresponding to (2)) that is the quartet. 
 

Parameter TMB D3h MM-TDB D3h 

t -0.017 -0.042 

U 0.244 0.416 

k 0.011 0.002 

(1) CI/Model 0.027/0.027 0/0 

(2) CI/Model 0.027/0.027 0.019/0.019 

(3) CI/Model 0.236/0.237 0.379/0.379 

(4) CI/Model 0.236/0.237 0.379/0.379 

(5) CI/Model 0.244/0.255 0.430/0.436 

(6) CI/Model 0.295/0.303 0.448/0.440 

(7) CI/Model 0.295/0.303 0.522/0.523 

(8) CI/Model 0.307/0.278 0.522/0.523 
 

The species in C2v point group do not allow for a confident fitting, because the number of parameters (8) 

equals the number of reference data (8 energy differences). Nonetheless, the value of the diagonal term U 

obtained with the D3h fitting can be bi-univocally mapped to the diagonal terms of the CASCI matrix, and 

further rescaled to set at 0 the lowest term (see Table S3 in the Supporting Information). A similar procedure 

could be thus adopted for C2v, using the diagonal terms of the matrixes of Table S3 and fitting the remaining 

parameters with the CASCI energy differences obtained at the optimized geometry. For OO-TDB, we 

performed the fitting of the parameters only for the B2 state, since at the equilibrium geometry of the A1 state 

the quartet, as it will be shown in the next section, is very high in energy with several different eigenstates in 

between. The values obtained are reported in Table 3.  
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Comparing Table 2 and Table 3, we can see that the hopping for the  species appears more sensitive to the 

geometrical distortions than for the  species. This is a consequence of the different deformation, which is 

larger for TDBs (see Table 1), as well as of the different impact of the geometrical changes in the two systems: 

in TMB the centroids of the magnetic orbitals are more distant than in TDB, and this is also reflected by the 

smaller value of t. Indeed, for TMB the ground state is the quartet even in C2v. U, as expected, is found larger 

in the  system TDB than in TMB. The value for the different site 3 (U3) increases for TMB and for MM-

TDB A1 but decreases for MM-TDB B2. The exchange k decreases in TMB and does not change in TDB, k1 

behaves like k for TMB but in MM-TDB becomes negligible and this indicates that the configuration with 

antiparallel spins in the sites 1 and 2 is favored. The different values of the hopping find an explanation in the 

geometrical changes occurring in the two species when going from D3h to C2v. 

For the OO-TDB system in the B2 state, we can make a comparison with its MM analog. We can see that r12 is 

about the same in the two species and this is reflected by the value of t1 which is about the same. The r13=r23 

distances are smaller in OO-TDB than in MM-TDB and t is then found larger in the first case. The U term is 

about the same in both systems, while U3 is smaller in the OO species. This should indicate that double 

occupation in the magnetic orbital of site 3 is less disfavored than in the MM analog, this conclusion being 

confirmed by the composition of the CASCI eigenstates. Again, the exchange involving the site 1 and 2 

vanishes.  

 

Table 3 – Parameters of the Hamiltonian of eq. 3 (C2v point group) obtained by a fitting of the 

eigenvalues of the CASCI(3,3) calculation, eq. (4). (i)=Ei–E0 are the energy differences between the i-th 

state and the ground state, in Hartree. , 3, U and U3 are obtained analytically from the diagonal terms of 

Table S2. The ground state is the quartet for TMB and the lowest doublet for the other species. The exited 

states are all doublets except the second excited state for MM-TDB and OOTDB (corresponding to (3)) 

that is the quartet. 
 

Parameter TMB A2 TMB B1 MM-TDB A1 MM-TDB B2 OO-TDB B2 

t -0.015 -0.020 -0.042 -0.054 -0.071 

t1 -0.017 -0.006 -0.084 -0.034 -0.030 

k 0.008 0.010 0.003 0.003 0.006 

k1 0.007 0.006 0.000 0.000 0.000 

 -0.123 -0.124 -0.187 -0.184 -0.153 

3 -0.137 -0.127 -0.300 -0.128 0.004 

U 0.264 0.265 0.348 0.414 0.434 

U3 0.293 0.270 0.440 0.307 0.192 

(1) CI/Model 0.017/0.018 0.022/0.022 0.056/0.056 0.014/0.014 0.039/0.039 

(2) CI/Model 0.020/0.020 0.022/0.022 0.074/0.074 0.035/0.035 0.067/0.067 

(3) CI/Model 0.255/0.261 0.248/0.253 0.323/0.327 0.357/0.359 0.329/0.328 

(4) CI/Model 0.261/0.265 0.251/0.260 0.392/0.394 0.367/0.367 0.344/0.344 

(5) CI/Model 0.264/0.283 0.262/9.275 0.477/466 0.437/0.440 0.425/0.426 

(6) CI/Model 0.303/0.297 0.304/0.299 0.477/0.478 0.451/0.448 0,430/0.434 

(7) CI/Model 0.314/0.322 0.305/0.311 0.536/0.534 0.525/0.524 0.572/0.572 

(8) CI/Model 0.321/0.325 0.319/0.321 0.640/0.643 0.556/0.559 0.597/0.595 

 

In general terms the energy position of the nine states is well reproduced by the model. The agreement for the 

double-quartet energy gap, which corresponds in the two tables to (1) for TMB and (2) for MM-TDB and 

OO-TDB, is always satisfactory, but we underline again that a quantitative evaluation of the gap requires 
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much more extensive calculations, although the simple model and the CASCI in the minimal space, already 

give an indication of whether or not the ground state is the quartet. 

 

DDCI Calculations 

Although the theoretical considerations discussed above give an interpretative overview of the basic physics 

underlying the  and  tri-radical species here considered, a quantitative evaluation of the energy gaps 

between their lowest eigenstates requires more accurate calculations.  Since these species are quite small, as 

mentioned in the Introduction many WF state-of-the-art methods can be considered with confidence. Here we 

have chosen DDCI, in the recent implementation of ref. [47]. 

Once a basis set of Molecular Orbitals (MOs) has been obtained, DDCI philosophy consists in adding single 

and double excitations, involving at least one of the magnetic orbitals to the minimal CASCI(3,3). The whole 

space can be divided into 8 classes, summarized in Table 4 and characterized by different level of excitation 

between the three partitions of the MOs (double occupied, magnetic and empty or virtual MOs).  

Table 4 – Classes of excitation in DDCI for 3-electrons in 3 magnetic sites systems arising from 

CAS(3,3). In our notation n,m,l indicates the class with n electrons in the double occupied (inactive) MOs, 

m electrons in the 3 magnetic orbitals and l electrons in the empty (external) MOs. N is the number of 

core electrons filling the inactive orbitals of the CASCI(3,3). In the last column we report the notation of 

ref.[84] but we keep using the A, B, etc. notation in the text for simplicity. 
 

Class Description  [84] 

N,3,0 the minimal CAS(3,3) space A  

N,2,1 magnetic-to-empty  B 1p 

N,1,2 double magnetic-to-empty C 2p 

N-1,4,0 occupied-to-magnetic D 1h 

N-1,3,1 occupied-to-empty  

occupied-to-magnetic+magnetic-to-empty  

E 1h1p 

N-1,2,2 occupied-to-empty+magnetic-to-empty F 1h2p 

N-2,5,0 double occupied-to-magnetic G 2h 

N-2,4,1 occupied-to-magnetic+occupied-to-empty H 2h1p 

 

a) 1,3,5-trimetylenbenzene (TMB) 

The relevant interatomic distances for the optimized quartet in D3h point group and doublets in C2v are reported 

in Table 1, in agreement with those of ref. [73]. Jahn-Teller distorsions do not cause large changes in the 

geometry. 

DDCI calculations have been performed at all geometries. Among the MOs obtained for the quartet at 

ROHF/6-31G* level using GAMESS,[83] singly occupied (magnetic) ones have been localized [47] in the 

magnetic sites (Figure 3) and the 1s orbitals of the carbon atoms are kept frozen in the excitations. In the 

quartet state, the MOs space is then made by 21 double occupied, 3 singly occupied and 120 virtual. The space 

can be partitioned to have a set where the Hamiltonian is diagonalized (variational), while the corrections due 

the remaining set are included by second order Möller-Plesset perturbation (Complementary Active 
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Perturbative Approach, CSPA).[47] The extent of convergence found with CSPA in the present case is 

reported in the Supplementary Information.  

 

   

   

 

Figure 3 – Canonical (upper row) and localized (lower row) singly occupied MOs for the quartet ground 

state of TMB in D3h. 
 

Table 5 reports the values obtained with a full variational calculation where all the empty MOs are considered 

virtually active, hence included in the variational space.  

 

Table 5 –DDCI energy differences between the two excited doublets and the quartet ground state for 

TMB computed using localized orbitals and with 120 virtually active MOs (full variational). The 

Adiabatic values are obtained as the difference between the C2v doublets and the D3h quartet each at its 

equilibrium geometry. 
 

 E1 (cm
-1

) E2 (cm
-1

) E1 (cm
-1

)
a
 E2 (cm

-1
)

 a


D3h  5085 5086 6394 6394 

C2v A2 3931 4441 - - 

C2v B1 4467 4598 - - 

Adiabatic  4493 6047 5486 (4822
 b
;5135

c
) 5556 (4787

 b
;5764

c
)
 
 

 a 
CASSCF results of Ref. [73]; 

b 
CASPT2N results of Ref. [73]; 

c 
CI results of Ref. [73] 

 

In D3h the two doublet states are degenerate and the ground state is a quartet, as also confirmed experimentally 

[36]. DDCI finds the doublet-quartet gap at the D3h geometry ~1300 cm
-1

 lower that the CASSCF value of 

Ref.[73]. 

At the C2v geometry, the ground state is still the quartet but the Jahn-Teller splitting breaks the degeneracy of 

the A2 and B1 doublets, lowering the gap by 1154 and 645 cm
-1 

at the
 
A2 geometry, and by 618 and 488 cm

-1
 at 

the B2 geometry, respectively. The lowest doublet has always A2 symmetry, in agreement with the CI results 

of ref.[73] but at variance with the CASSCF and CASPT2N results reported in the same reference. The energy 

difference between the quartet at the C2v and D3h geometries, separately computed at CI-MRPT2 level, is 666 

cm
-1

 at the A2 geometry and 1449 cm
-1

 at the B1 geometry, thus the adiabatic energy differences between the 

C2v doublets and the D3h quartet are 4493 (A2) and 6047 (B1) cm
-1

 (see Table 5), in line with previous 

computational [73] and experimental[36] results. 

The contributions of the different classes of excitations, described in Table 4, to the minimal CASCI(3,3) 

space can be evaluated by performing separate DDCI calculations. In Table 6 are shown the results obtained at 

the D3h geometry, while those obtained at the C2v-A2 geometry, which show an analogous trend, are reported 

in the Supplementary Material. 
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Table 6 – Contribution of the various classes of Table 4 to the minimal CASCI(3,3) (A) space. Energy 

differences between the two excited doublets and the quartet ground state for TMB at the D3h geometry, 

computed using localized orbitals and with 120 virtually active MOs (full variational). E0 is the 

difference between the ground state energies computed in the AX (X=B,H) and the minimal space A. 

ΔE=ΔE1=ΔE2 is the degenerate doublet-quartet energy gap. 
 

Space Dimension E0 (cm
-1

) E (cm
-1

) 

A CAS(3,3) 9 - 5894 

AB CAS(3,3)+1p 1449 0 4467 

AC CAS(3,3)+2p 64629 -105 5313 

AD CAS(3,3)+1h 261 0 4258 

AE CAS(3,3)+1h1p 70569 -13893 8119 

AF CAS(3,3)+1h2p 5877909 -33264 6197 

AG CAS(3,3)+2h 1962 -69 5486 

AH CAS(3,3)+2h1p 1013049 -16377 6135 

 

The CASCI(3,3) energy gap of the two doublets (5894 cm
-1

) is overestimated with respect to the full DDCI 

values of Table 5 (5085 cm
-1

). The gap is significantly lowered by the contribution of the B and D classes (see 

Table 6), which account for single excitations involving explicitly the magnetic orbitals, while the E class, that 

also includes double excitations, has an opposite effect. Also the double excitations from the minimal 

CASCI(3,3) space, resulting from the subtraction or addition of two electrons in the magnetic orbitals (classes 

C and G, Table 6) cause a decrease of the gaps, but the final estimates are still above the full DDCI values. On 

the contrary, the double excitations considered in classes F and H produce small increases of both gaps. In 

summary, the main contributions to the increases of the gaps are provided by higher correlation and spin 

polarization of the quartet ground state with respect to that of the doublets, as witnessed by the E, F and H 

classes of excitations. Notice that in the analysis of Table 6, the effect of interference between the various 

classes, which is the reason because the final values of Table 5 are rather different from that of Table 6 and 

makes quantitatively unreliable the use of second order perturbation to the CAS(3,3), is missing. A full 

investigation of the combined effect of the classes of excitation would require a large number of extensive 

calculations and we have thus limited our analysis to the effect of the addition of each single class to the 

minimal CAS (3,3) space. 

 

b) 1,3,5-tridehydrobenzene (MM-TDB) 

Relevant interatomic distances for the optimized geometries in D3h and C2v are reported in Table 1 and are in 

agreement with those of refs.[74, 77, 79]. For this  system, Jahn-Teller distortions modify the molecular 

geometry of the two A1 and B2 doublet states, which show quite different equilibrium geometries. The most 

significant difference occurs for the two equivalent magnetic Carbons which are very close to each other in the 

A1 state. 

DDCI calculations have been performed along the profile of r12 for both the A1 and B2 states, at geometries 

obtained by relaxed scans. As in the previous case, MOs have been obtained from the HF calculation of the 

quartet state with a ROHF/6-311G* basis set. Singly occupied (magnetic) MOs have then been localized [47] 

on the magnetic sites (Figure 4). The shape of the MOs in the C2v geometries is only slightly changed in the 

distribution of the electronic density but is basically the same for D3h. As usual, the 1s orbitals of the carbon 
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atoms are kept frozen in the excitations. The one electron space is then made by 12 double occupied, 3 singly 

occupied and 112 virtual MOs. For the present case we have considered the full MO space without any 

partition, which would have required CSPA corrections. 

 

   

  
 

 

Figure 4 – Canonical (upper row) and localized (lower row) singly occupied MOs for the quartet ground 

state of MM-TDB in D3h. 
 

Since, on the one hand, DDCI is known to be appropriate for the calculation of energy differences but not for 

their absolute values and, on the other hand, we are interested in the energy profile along the r12 coordinate, we 

decided to sum the DDCI energy differences to the UB3LYP energy of the ground state, as displayed in Figure 

5. The full DDCI data can be found in the Supporting Information. 

 

 

 

Figure 5 – Energy of the quartet and of the two doublet states of MM-TDB along the r12 coordinate. 
 

The energy minima in the doublet ground state are found at 1.919 and 2.346 Å, respectively for A1 and B2 (see 

Table 1). The vertical line indicates the crossing of the two states and the apparent discontinuity of each curve 

in crossing this line is due to the fact that the left and right region of the curve are optimized for the different 

states with different symmetries. 
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The vertical quartet-doublet energy gap is 3.06 eV (24655 cm
-1

) at the A1 minimum and 1.77 eV (14275 cm
-1

) 

at the B2 minimum, while the vertical doublet-doublet (ground) gap is 2.10 eV (16975 cm
-1

) for the A1 ground 

state and 0.68 eV (5519 cm
-1

) for the B2 ground state. The vertical quartet-doublet A1 gap was found 68 

kcal/mol (23780 cm
-1

) by MRMP2. [74] At the minimum of the quartet in D3h, the gap with the two degenerate 

doublets, which are still the ground state, is found by DDCI at 1.04 eV (8408 cm
-1

) and it was found by 

Slipchenko and Krylov [77] at 0.726, 0719, 0726 eV, respectively by MCSCF/6-311G**, MCQPPT2/6-

311G** and SFCCSD/6-311G**. 

With respect to the  TMB system, we obtain then a reversed behavior with a very stable doublet ground 

state and strong Jahn-Teller splitting of the two doublets, which are instead much closer in energy in TMB. 

This is clearly due to the stronger interaction occurring between the magnetic MOs in the  species with 

respect to the  one, already underlined in the model calculations of the previous section.  

 

c) 1,2,3-tridehydrobenzene (OO-TDB) 

All the relevant interatomic distances for the OO-TDB optimized geometries in C2v are also reported in Table 

1 and are in agreement with those of refs.[78-80] As for the other  system, MM-DTB, Jahn-Teller 

distorsions are significant and the two A1 and B2 doublet states show rather different equilibrium geometries. 

For the A1 state the two equivalent magnetic carbon atoms are even closer than in MM-TDB (1.7 vs 1.9 Å) so 

that, as pointed out by Koziol et al [80], we observe a sort of incipient bond with a pseudo-double ring species 

for the A1 state, due to the 1-2 bonding nature of the half occupied a1 orbital. 

 

   

  
 

 

Figure 6 – Canonical (upper row) and localized (lower row) singly occupied MOs for the quartet ground 

state of OO-TDB at the optimized B2 geometry. 
 

Localized and delocalized magnetic MOs, obtained at ROHF/6-311G* level, are shown in Figure 6. The MOs 

space is obviously identical to that of MM-TDB discussed above. 

Figure 7 shows the lowest 9 eigenstates obtained with the same procedure used for MM-TDB, namely by 

adding the energy differences obtained by a full variational DDCI calculation to the DFT/UB3LYP ground 

state energy. The full DDCI data can be found in the Supporting Information. In the figure the different colors 

identify the energy order of the DDCI results (Sn), since there are many crossings (and avoided crossings), 

well visible in Figure 7, above the two magnetic doublets. The doublets keep the same order found for MM-
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TDB and indeed in the left side of the figure S1 (A1) is the B2 state and in the right side S1 (B2) is the A1 state. 

S2 is the  quartet only for r12>1.95 Å. 

 

 

 

 

 

 

Figure 7 – Left: Energy of the lowest 9 states (Sn) of OO-TDB along the r12 coordinate. The ground state 

and S2 interchange for the two symmetries. Right: details of the crossing of the A1 and B2 eigenstates 

along r12, black along the A1 and red along the B2 section of the potential energy surface. 
 

Ground state minima are at r12 1.692 and 2.343 Å, respectively for the A1 and B2 symmetry (see Table 1). At 

the B2 minimum, the gap with the A1 state is 1.72 eV (13906 cm
-1

) and that with the quartet is 3.14 eV (25305 

cm
-1

). At the A1 minimum the gap with the B2 state is 4.21 eV (33942 cm
-1

) and that with the quartet 6.97 eV 

(56236 cm
-1

). In a wide series of EOM-SF calculations reported in ref. [80], at the B2 minimum the gap with 

the A1 doublet was found in the range 1.38-1.60 eV and at the A1 minimum the gap with the B2 in the range 

4.70-4.90 eV, in reasonable agreement with our data.  

The value of r12 at the minimum in the B2 state is about the same than for the MM-TDB species; on the 

contrary, in the A1 state we have a much smaller value. Indeed, the A1 geometry is characterized by a small 

value of r12 and by strong interactions between the unpaired electrons, which are found much closer to each 

other with respect to MM-TDB. Consequently, the quartet is found well above the doublets and it is the eighth 

state (DDCI 7) at the A1 absolute minimum. For the same reason, also the energy gaps between the two 

doublet states and between the doublets and the quartet are always larger than for the MM-DTB system. 

In the right panel of Figure 7 we focus on the region where the A1 and B2 doublets cross each other. In fact, 

while the vertical line identifies the threshold where the two states invert their relative energy position, 
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crossing between them along r12 occurs at different values of the remaining internal coordinates. This figure 

reports the energies obtained by geometry optimization for the A1 and B2 states even where they are no more 

the ground state. Thus, considering the B2 state (red lines) the crossing with the upper A1 state occurs at 

r122.0 Å, while for the A1 state (black lines) the crossing with B2 occurs at r122.3 Å. 

 

Conclusions 

The present paper reports and analyzes the main aspects of a comprehensive computational study of three 

prototypical tri-radicals, TMB, MM-TDB and OO-TDB, which differ both in the nature ( or ) and in the 

relative positions of the magnetic orbitals. More precisely, TMB is a  tri-radical with equally spaced 

magnetic sites, MM-TDB still bears equally spaced magnetic sites but is a  tri-radical, whereas in OO-

TDB, again a  tri-radical, the three unpaired electrons are on neighboring atoms. 

In spite of the close geometric similarity, the ground electronic states of MM-TDB and TMB are a doublet and 

a quartet, respectively: unpaired electrons are, in fact, much closer in the  than in the  species and this 

stabilizes the doublet states with respect to the quartet state.  

A simple Hubbard model Hamiltonian including an effective exchange confirms the above picture and permits 

a rationalization of the relative stability of different electronic states in terms of well-defined electronic 

interactions. The effective parameters of the model Hamiltonian are related to the geometrical differences 

between the various species, also for the two lowest doublet states, which undergo Jahn-Teller distortions that, 

for TMB and MM-TDB, breaks the D3h symmetry to C2v and removes the degeneration.  

However, the model Hamiltonian is unable to give accurate values of the energy separation between the 

different spin states. To this end we have employed the well-tested DDCI approach. For TMB we have thus 

investigated on the contribution of various classes of excitations added to the reference minimal CASCI(3,3) 

calculation. For MM-TDB and OO-TDB, DDCI calculations have been applied to the study of the lowest 

states as a function of the C-C distance, whose value determines the A1 or B2 character of the doublet ground 

state. This has evidenced the differences between MM-TDB and OO-TDB, with the largest energy separation 

for the second and the very large quartet doublet gap when the A1 state is the ground state.  

Together with the intrinsic interest of the studied systems, our work paves the route, in our opinion, toward the 

quantitative evaluation of the relative stability of different magnetic states in poly-radicals of current 

technological interest and to the interpretation of general trends in terms of well-defined electronic 

interactions. 

 

Supplementary Material 

See Supplementary Material for the Hubbard and the minimal basis CI matrices, for the CSPA convergence, 

for the contribution of the different classes of excitation for TMB C2v and for the figure of the full DDCI enrgy 

of the lowest nine states of MM-TDB and OO-TDB. 
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