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This paper presents a framework to activate and deactivatemicronodes in a heterogeneousmulticell LTEnetwork, based on load and
energy efficiency consideration.The framework exploits historical data (i.e., per-macro-cell load curves) to select a set of candidate
switch-on/switch-off instants of microcells, assuming a limited number of state changes is allowed in a day. The switching instants
are instead determined online, by taking into account the actual traffic as well as the load curves. Moreover, intercell interference is
fully accounted for. Our simulations show that this framework allows amulticell network to sustain peak-hour load when necessary
and to reconfigure to a minimum coverage baseline whenever feasible, thus saving power (up to 25% in our scenarios). Moreover,
the framework is robust, meaning that deviations of the actual traffic with respect to the prediction offered by the load curves can
easily be handled.

1. Introduction

Computer networks have become a major contributor to
electricity consumption all over the world [1], which has
fostered a large amount of research on how to make them
more energy-efficient. This problem can be targeted from
several, concurrent points of view: on the one hand, working
at the hardware level to make network equipment more
energy efficient; on the other hand, designing algorithms that
exploit the inherent redundancy of computer networks and
temporarily switch off unused or unnecessary portions of
the networks during off-peak hours. This allows networks
to be designed for peak, while operating at lower-than-peak
power most of the time. As far as cellular networks are
concerned, energy efficiency in LTE networks has been the
subject of several studies. Leaving aside those that investigate
battery saving at the user side (e.g., [2–4]), many works
concentrate on the infrastructure side, which is where energy
consumption meets OPEX (see, e.g., [5–9] and the references
therein and again [10–18]).

LTE power saving schemes exploit the fact that cellular
coverage is overlapping, due to both reliability and (mostly)

performance design issues and that traffic load is highly vari-
able. Coverage is designed to carry peak-hour loads, which
normally occur duringworking hours in business areas, while
nodes use very few resources during (long) off-peak periods,
for example, at night. Therefore, some nodes can switch
off during off-peak hours, and nearby nodes will increase
their transmission power accordingly to guarantee coverage.
When the load is high, the first node will be reactivated and
the second onewill revert to normal radius. A similar concept
can be applied to heterogeneous cellular network deploy-
ments, where a macro node presides over a relatively large
area and micro nodes provide additional localized capacity
to cover hotspots within the former. Micronodes can be
switched on to offload the macro node (which is supposed to
remain always on, lest coverage holes appear) when necessary
or profitable from an energy efficiency point of view.

Switch-off schemes—for both macro nodes, in homoge-
neous settings, and micronodes in heterogeneous settings—
can be either offline or online [5]. Offline schemes rely on
knowing the evolutions of load in time (the so-called load
curves, e.g., [19]) and decide the optimal switch-on/switch-off
intervals based on the shape of these curves. They are often
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used for resource provisioning purposes and, being based
on load predictions, which may always prove wrong, need an
online counterpart to react to unforeseen circumstances (flash
crowds, accidents, etc.).

Online algorithms look at the current load and decide
when and where it is high enough to warrant a switch-on (or
low enough for a switch-off) of some nodes. Online schemes
normally work at coarse timescales, for example, 15-minute
slots, because switching operations are not instantaneous
(in fact, they may take up to minutes [10]). Moreover, the
ensuing topology alterations may trigger avalanche effects,
such as massive handovers, or cause interference ripples in
neighboring cells, which are difficult to predict and manage.
For instance, switching off a micro node at location x may
indeed increase the load in nearby areas, because the macro
node at location x takes over its load and hence generates
more interference around itself.

Most works in the existing literature usually make some
assumptions which render their scheme impractical: the first
one is that the number of per-node switch operations is
unlimited. While we can expect future base stations to be
able to tolerate frequent power transitions, most of the ones
that are currently operational have not been designed with
this characteristic [6]. This means that frequent switches
will decrease their energy efficiency and possibly decrease
their mean time between failures (MTBF), something that
has a significant impact on OPEX. This calls for algorithms
that can maximize the power saved by the network while
limiting the number of power transitions for the node to
a predefined maximum. Another frequent assumption is
to rely on a particular shape of the load curves (e.g., one
with a clearly distinguishable peak-hour and off-peak valley).
While this allows one to build an optimal algorithm, the
same algorithm would make suboptimal decisions when
the shape of the load curve is different. Several algorithms
assume clairvoyance: for instance, they assume that they
know the exact amount of resources that a micro, currently
switched off, will use to serve a given input traffic. This
cannot be known in advance in practice and depends on the
user positions and their perceived interference. Finally, they
often make local decisions neglecting their global effects: as
anticipated, switching off a micro (based on local knowledge,
e.g., few users connected to it) will save the network owner
the power to operate it; however, the extra resources required
to serve the same users at the macro will foster a higher
interinterference in the surrounding area, whose net effect
may well be to increase the power consumption. Therefore,
the global effects of switching decisions should be considered.

In this paper, we design and evaluate an offline-online
framework for heterogeneous cellular networks, whose job is
to satisfy a given load demand with the minimum possible
energy cost. Our framework exploits offline information, that
is, load curves, to select which configurations are feasible (i.e.,
able to carry the nominal load) at a given point in time.
An optimization algorithm is then run on the set of feasible
configurations, to decide the optimal switch-on points for the
micro nodes, constrained to a maximum number of switch-
ons in a day. To the best of our knowledge, ours is the only
work that takes the latter aspect into account. The only work

we know of that considers the number of switch-ons, that
is, [20], seeking to minimize the latter rather than taking it
as a constraint. The online part of the framework, instead,
measures the current load and enforces switch-on/off ofmicro
nodes so as to satisfy the demand in an energy-efficient way.
More specifically, it may bring forward or postpone switching
instants with respect to the optimal ones computed offline,
when it is more energetically efficient to do so. The scheme
described in this paper is designed so as to require few
hypotheses: it can work with load curves of arbitrary shape, it
does not assume clairvoyance, and it takes into account global
effects of switching decisions through an accurate estimation
of intercell interference. We evaluate our scheme using both
synthetic and real-life load curves taken from operator data.
Our results show that power savings up to 25% are achievable
over a whole day and that neglecting intercell interference
leads to overoptimistic results. Moreover, we show that our
scheme is robust against variation in the expected load.

The rest of the paper is organized as follows: in Section 2
we describe our assumptions and state our problem formally.
The related work is discussed in detail in Section 3. Section 4
describes the proposed framework, which is evaluated in
Section 5. Finally, Section 6 concludes the paper.

2. System Model and Problem Statement

In LTE, cell transmissions are arranged in time slots called
Transmission Time Intervals, (TTIs), whose duration is 1ms.
In a TTI, the node allocates frames, that is, vectors of (Virtual)
Resource Blocks (RBs) to its associated user equipment (UE)
[21]. UE is associated with one node at a time. Each RB
carries a fixed number of symbols, which translate to different
amounts of bits depending on the modulation and coding
scheme (MCS) used by the antenna on that RB. In general,
more information-densemodulations (e.g., 64QAM, yielding
6 bits per symbol) are favoredwhen a better channel to theUE
is perceived (i.e., onewith less interference).Thequality of the
wireless channel varies over both time and frequency. For this
reason, UE reports their perceived downlink channel state to
the eNodeB as a Channel Quality Indicator (CQI), computed
according to the measured Signal to Interference and Noise
Ratio (SINR).

We consider a large-scalemulticell LTE network as shown
in Figure 1. The network is logically divided into 𝑁 areas
(called hexagons henceforth for simplicity), each one under
the coverage of a macro node (M in the figure), that is, an
eNodeB with high radiation capabilities. Macro nodes are
anisotropic, as shown in Figure 1. A hexagon ℎ can also
accommodate 𝐿ℎ micro nodes (m), 1 ≤ ℎ ≤ 𝑁, 𝐿ℎ = 2, in the
figure. The latter, usually located in hotspots or at hexagon
edge, can be used to provide additional localized capacity
at a lower power cost. The term “micro” will henceforth be
used in a broad sense, to denote nodes with smaller power
and coverage, thus encompassing everything from a micro
to possibly femto, with the following provisos: micro nodes
alone cannot provide full coverage of a hexagon (not even
jointly), and all nodes are owned by the same entity (i.e.,
a telecommunication operator), which pays the electrical
bill. Either macro or micro nodes are used to serve UE
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Figure 1: System scenario. Macro and micro nodes are represented
withM andm, respectively.

within the network. UE associates with the node from which
they perceive the highest SINR, possibly using a Cell Range
Expansion (CRE) boost for the micros.

All the nodes share the same spectrum and hence
interfere with each other. We assume no coordination, either
among or within hexagons. A node that has to allocate RBs
to its users will pick them at random from a vector of
𝐵 RBs and schedule each UE on each RB with the same
probability. Cell coordination and Coordinated Multipoint
(CoMP) techniques are a promising avenue of research to
cope with interference and have been shown to increase the
power saving opportunities [2]. However, they work at a
significantly faster pace than algorithms for node switching
and are thus orthogonal to them.

We assume that the operator possesses the following
information: a per hexagon historical load curve, detailing
(at least) the overall bitrate requested in a hexagon over
time in a sample day. There may be several such curves,
of course, for a single hexagon, depending on the context.
For instance, working days and holidays have different load
curves (see, e.g., [19]), and other human activities do affect
the context: the typical example is an hexagon covering a
major sports venue, whose load curve on the game days (e.g.,
Sundays) depends on whether the local sports team plays
home or away. Moreover, the operator possesses a similar
curve (or set thereof) detailing the number of users per
cell over time, so that the average per-user bitrate can be
inferred (a possible method to obtain such information is
using monitoring systems that measure the values of specific
KPIs (e.g., number of types ofUE)with a fixed time resolution
[22]. These measurements are repeated in different days with
the same operating conditions (e.g., working days) in order
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Figure 2: Node power model.

to produce a daily profile of the average values for the given
KPI.). Note that these curves do not contain information
about the position of single users within a hexagon. The
latter may be known in a probabilistic sense, for example,
uniform within a hexagon. We make no assumption on the
shape of the load curves, and—in particular—we do not rely
on their having a single peak during business hours. The
time resolution at which these curves are plotted is that of a
sufficiently large interval (e.g., 15 minutes), called a snapshot
henceforth. We denote with𝐾 the number of such snapshots
in a day. Furthermore, we assume that we can retrieve the
current amount of allocated RBs at each macro/micro node,
averaged over a snapshot.

We only consider the downlink direction, which is the
most critical from the point of view of both carried load
and infrastructure power consumption. Figure 2 shows the
power consumed by an active node (taken from [23]). The
power is an affine function of the number of transmitted RBs
on each TTI, that is, 𝑝 = 𝑃base + 𝜌 ⋅ 𝑛, where 𝑃base is a
baseline power and 𝑛 ≤ 𝐵 is the number of allocated RBs.
The power/RB curve has the same shape for all the nodes,
whether macro or micro, whereas the values 𝑃off , 𝑃base, 𝑃max,
and𝜌dodependon the type of node.According to equipment
manufacturers and cellular operators, the value of the above
parameters has changed over the years thanks to the benefits
introduced by new technologies and will keep changing,
following the progressive shift towards the fifth generation
of mobile networks (5G). However, the affine shape of the
power/RB curve has remained unchanged, and such trend is
expected to persist [23].

A macro node cannot be powered off and hence, the
variable part of its consumed power is 𝑝 = 𝜌 ⋅ 𝑛. For a micro
node, the variable part is instead 𝑝 = (𝑃base − 𝑃off ) + 𝜌 ⋅ 𝑛.

Since load curves represent what happens in a snapshot,
whereas power is consumed by allocating RBs at each TTI,
a method to infer the latter from a snapshot’s load value is
required. RBs are computed as follows: first we infer a per-
user requested data rate from the load curves, then we show
how to compute the number of RBs needed to meet that data
rate given the UE’s SINR, and then we show how to compute
the SINR of a UE undergoing interference using a statistical
interference model.

Focus on a single snapshot and a single hexagon, and
call 𝐿 and 𝑈 the load and number of users for that hexagon
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Figure 3: Data rate versus SINR.

at that snapshot. The average demand per UE at a snapshot
is 𝐷 = 𝐿/𝑈. The data rate per RB achievable by UE 𝑢
associated with node 𝑒 is a function of its average SINR,
𝐹(SINR𝑒𝑢), an example of which is represented in Figure 3
(curves like the one in Figure 3 are obtained through link-
level simulations, see, e.g., [24]). 𝜂MAX is the maximum data
rate that can be achieved for values of SINR equal or above
SINRMAX. UE whose SINR is below SINRmin is considered
out of range. Thus, the average number of RBs required to
satisfy 𝑢’s demand can be computed as

RB𝑢 =
𝐷

𝐹 (SINR𝑒𝑢)
. (1)

Note that RB𝑢 may not be integer. This is not a problem,
since RB𝑢 is an average value, and the time span of a
snapshot is large enough as to allow a fluid approximation.
For instance, an allocation of RB𝑢 = 2.5RBs per TTI can be
enforced in practice by reserving two RBs on even TTIs and
three on odd ones and so on.

In order to compute SINR𝑒𝑢, we need to quantify both the
signal received from node 𝑒 and the interference from nodes
𝑥 ̸= 𝑒. Call 𝑛𝑒 and 𝑛𝑥 the number of RBs allocated by nodes
𝑒 and 𝑥, respectively. Given that they do not coordinate, the
probability that the same 𝑗 RBs are allocated simultaneously
by both is [25]

𝜋𝑒,𝑥,𝑗 =
( 𝐵𝑗 ) ⋅ (

𝐵−𝑗
𝑛𝑒−𝑗
) ⋅ ( 𝐵−𝑛𝑒𝑛𝑥−𝑗 )

( 𝐵𝑛𝑒 ) ⋅ (
𝐵
𝑛𝑥
)

=
( 𝑛𝑒𝑗 ) ⋅ (

𝐵−𝑛𝑒
𝑛𝑥−𝑗
)

( 𝐵𝑛𝑥 )
, (2)

with max(0, 𝑛𝑒 + 𝑛𝑥 − 𝐵) ≤ 𝑗 ≤ min(𝑛𝑒, 𝑛𝑥). Therefore, the
expected value of the number of overlapping RBs between 𝑒
and 𝑥 is

Δ 𝑒,𝑥 =
min(𝑛𝑒,𝑛𝑥)

∑
𝑗=max(0,𝑛𝑒+𝑛𝑥−𝐵)

𝑗 ⋅ 𝜋𝑒,𝑥,𝑗. (3)

Thus, the percentage of RBs where 𝑥 will interfere is
Δ 𝑒,𝑥/𝑛𝑒, whereas the remaining 1 − Δ 𝑒,𝑥/𝑛𝑒 will be exempt
from interference from 𝑥. Call 𝑃𝑥,𝑢 the power received by
𝑢 from node 𝑥 (which depends on the distance and angle
between them, the propagation model and the transmitting
power of𝑥).Then, the average SINRofUE 𝑢 in the snapshot is

SINR𝑒𝑢 =
𝑃𝑒,𝑢

𝑁𝐺 + ∑𝑥 ̸=𝑒 𝑃𝑥,𝑢 ⋅ Δ 𝑒,𝑥/𝑛𝑒
, (4)

where𝑁𝐺 is the Gaussian noise.

As far as switching is concerned, as already specified,
macro nodes cannot be powered off, because this would
create holes in the coverage. Micro nodes, instead, can be
powered off, for example, during low-load periods. However,
switch-on/off operations should be few, for several reasons:
first, especially with older equipment, it takes a considerable
amount of time before a micro node is fully operational
(in the order of tens of seconds or minutes), due to the
operating system boot procedure, control and management
plane setup operations (e.g., path setup in the Evolved Packet
Core network), and so on, and it takes some time to shut
it down as well. Second, topology alterations often have
unpredictable ripples in amulticell network: a switch-offmay
cause massive handovers (even when cell wilting is used, [6]),
possibly overloading the corresponding macro and affecting
nearby macros through a change in the interference pattern.
Third, switching operations increase the wear and tear of
equipment, hence reducing its MTBF [6]. For this reason, we
assume that an upper bound of 2 ⋅ 𝑆max switching operations
must be enforced on all micro nodes. In other words, micro
nodes can be powered up in at most 𝑆max disjoint time
intervals within a day.

The aim of our framework is to plan and enforce switching
operations at each snapshot for each micro node, so that

(1) user requests are satisfied, if it is possible to do so.
In other words, no overload occurs that prevents UE
from obtaining the required rate;

(2) as little energy as possible is consumed by the net-
work, provided that UE requirement is met;

(3) micro nodes are switched on up to 𝑆max times per day.

Our framework plans switching operations in advance
(i.e., offline), based on historical load curves, so as to
keep the macro overload probability below a predetermined
threshold, and enforces switching operations online either to
avoid overload or when it is energetically efficient to do so,
by comparing the current load conditions to the expected
(historical) ones.

3. Related Work

As already outlined, several schemes have been proposed
in the past few years to deal with macro and micro node
deactivation. Surveys [5–9] provide a general overview and
taxonomy, besides the customary wealth of references.

In the context of homogeneous networks, many works
advocate cell breathing (e.g., [11]): the radius of some cells is
shrunkduring off-peak hours, andnearby cells increase theirs
accordingly to guarantee coverage. If the scenario allows
it, a node can be completely switched off, which increases
the saving. Cell wilting and blossoming are procedures for
graceful shut-down and power-up of nodes, whose aim is to
avoid massive handovers during topology changes [12].

It must be observed that operators often consider haz-
ardous to vary the cell radius, because it makes it difficult, at
best, to ensure the absence of coverage holes [6]. Moreover,
most of the current equipment can only be powered on or
off, lacking the capability to switch among a discrete number
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of power levels that is instead required in such schemes.
Paper [13] models the energy saving sleep problem assuming
a single macro and several small cells, with symmetric traffic,
no interference, and “1 : 1 convertible” resource allocation
between nodes. A larger-scale scenario (cluster of 7 macros,
with no micro) is considered in [10], where cell breathing
is advocated. Authors of [14] describe an offline algorithm
that does not allow multiple switching of the same node in a
day. In [15] a planning tool is described, which also takes cell
breathing into account. A similar problem is tackled in [26],
where authors focus on positioning of both macro and micro
stations to achieve more capacity at a small cost in power
consumption. Finally, [16] determines the optimal set of cells
to be switched at any time t, given the instantaneous load at
that time.

Among the above works, those advocating offline
schemes often make assumptions on the shape of load
curves, meaning that they only work when the load curves
match those envisaged. Our work does not make such an
assumption, and can work with any shape of load curves.
Moreover, these works seldom consider intercell interference,
which—as shown in the previous section—clearly influences
the switching decisions. None of the above works considers
(or may easily incorporate) constraining the number of
switching decisions at a node, something which—as we will
demonstrate—changes the picture completely.

Finally, we observe that the problem of energy-efficient
resource allocation in LTE base stations can be tackled at
different timescales. Besides the resource planning timescale
(i.e., hours or days), which is the one of all the above works,
we can also work at the frame timescale, that is, few tens of
ms, for example, by schedulingMBSFN subframes in a frame
[27]. During off-peak periods, even short ones, the eNB pools
the few RBs that it has to transmit into as few subframes as
possible, leaving the other ones blank, thus trading a modest
reduction of responsiveness for a remarkable power saving.
These solutions are complementary, rather than alternative,
to the ones dealt with in this paper.

4. Node-Switching Framework

We first explain some of the practical challenges for a
switching algorithm, which also sets the rationale behind our
framework. Then we describe the framework at a high level
and each of its components in detail.

Wewill use the shorthand𝑚 to indicate that all themicros
in a group of hexagons are switched on and − to indicate
that they are all off. We will often distinguish two groups of
hexagons: a tagged one, whose performance we monitor, and
the rest of the network. Accordingly, 𝑚 | − will indicate that
micros are switched on in the tagged hexagon and off in the
other ones.

4.1. Justification and Practical Challenges. As already
explained, we consider two performance metrics: overload
and energy consumption. We first assess the impact of a
micro switch-on/switch-off decision on both metrics.

The interference of a micro is, by and large, negligible
outside its own hexagon. This means that, if switching on a

micro succeeds in offloading the macro of some RBs, then
the effects on overload at large, that is, in the whole network,
can only be beneficial, since the intercell interference which
is mainly due to the macro will be reduced through (4).
Unless micros are misplaced, it is usually true that switching
on a micro offloads the macro of some RBs and that the
overload probability in a hexagon decreases when the micros
are switched on. This means that switching micros on when
a hexagon is in overload are the right thing to do. In order
to demonstrate these two phenomena let us consider the
following example: suppose we are monitoring the channel
quality perceived by the UE in hexagon ℎ0 placed at the
center of a scenario composed of other nine hexagons, each
of themwith onemacro and twomicro nodes.We define four
configurations: a first one (− | −) with all the micros turned
off, a second one (𝑚 | 𝑚) with all the micros turned on, a
third one (− | 𝑚) with all the micros turned on except within
ℎ0, and a fourth one (𝑚 | −) with the micro nodes turned
on only in ℎ0. In Figure 4 we show the perceived channel
quality in ℎ0: the color of each point represents the best SINR
computed among the active nodes of the considered hexagon.
As we can see if we compare − | − and − | 𝑚, the SINR
in ℎ0 slightly increases even if we just turn on micros in the
other hexagons, thus confirming that interference from the
latter has decreased. On the other hand, turning on micros
improves the SINR of ℎ0 in both 𝑚 | 𝑚 and 𝑚 | − scenarios,
a benefit that comes along with the added capacity in terms
of RBs that are made available by each active micro. An
additional analysis of the large-scale effects of interference
will be given in Section 5.

From an energy point of view, switching on a micro
incurs a baseline penalty given to the difference 𝑃𝑚base − 𝑃

𝑚
off .

However, RBs allocated at the micro are normally cheaper
than those at themacro, since 𝜌𝑚 < 𝜌𝑀, where subscripts and
superscripts are self-explanatory. When a micro is switched
on, and some UE switches from the macro to the micro,
there is a global decrease of intercell interference through
(4), which is also beneficial energy-wise. From the above, we
obtain that keeping a micro on for very few allocated RBs is
inefficient. However, it is impossible to estimate theminimum
number Th𝑚 of RBs that the micro should allocate to pay
for its switch-on cost from online information only. In fact,
that number can only be inferred by solving the following
equation:

(𝑃𝑚base − 𝑃
𝑚
off) + 𝜌

𝑚 ⋅ 𝑛𝑚 = 𝜌𝑀 ⋅ 𝑛𝑀, (5)

where the left-hand side is the increase of powerwhen amicro
is switched on and allocates 𝑛𝑚 RBs, and the right-hand side is
the reduction of power because the macro allocates 𝑛𝑀 fewer
RBs. However, 𝑛𝑚 and 𝑛𝑀 depend on which kinds of UE will
switch to the micro and what their SINR would be if they
were associated with the micro. This is of course unknown,
both because you do not know where this UE is located and
because the micro is switched off, which creates a chicken-
and-egg problem.

Similarly, it is unrealistic to assume thatwe can inferwhen
it is energetically efficient to switch a micro off based on
online data only. In fact, this would require knowing the SINR
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Figure 4: Channel quality perceived by UE in ℎ0when all micros are turned off (− | −), all micros are turned on (𝑚 | 𝑚), micros are turned
on only in ℎ0 (𝑚 | −), and micros are all turned on except in ℎ0 (− | 𝑚).

of eachUE to themacro after themicro has been switched off.
The latter is not equal to the one measured before the switch-
off, due to the mutated intra- and interhexagon interference.

Nevertheless, we can figure out an approximate threshold
Th𝑚 by simulating the network offline using load curves and
space distributions. Thus, the insight gathered using offline
simulations can surrogate the lack of SINR-omniscience
required in an online-only approached.

Another challenge stems by the constraint on the number
of switch-ons in a day. This implies that making the decision
to switch off a micro based on the current traffic conditions
only (in a purely online approach) is the wrong thing to do.
This can be explained through an example.

Example 1. In Figure 5 we show an example of average
per-snapshot RBs allocation over time in a scenario with

one macro (𝑀) and one micro node (𝑚), constrained by a
maximum number of switch-on operations 𝑆max = 2. Call 𝑛𝑀
and 𝑛𝑚 the number of RBs allocated by𝑀 and 𝑚, and Thsat
the macro saturation threshold. We start with 𝑚 off. The
macro saturates at 𝑡1, triggering the activation of𝑚. At 𝑡2 node
𝑀 is no longer in saturation, and the number of allocated RBs
starts to decrease on both nodes, reaching value Th𝑚 on the
microside: judging by the allocated RBs only, we switch𝑚 off.
The same occurs in [𝑡4, 𝑡6]: m is activated when M saturates
(𝑡4), so the second and last micro switch-ons are spent.
This means that when the load decreases again later on, we
cannot switch𝑚 off, even though 𝑛𝑚 drops below Th𝑚, since
doing so would prevent us from reacting to possible future
saturation conditions. Micro𝑚must therefore be kept active
until 𝑡7, where the value of 𝑛𝑚 rises again above Th𝑚. Thus,
we are able to cope with the saturation that occurs between
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Figure 5: Resource block utilization Example 1.

𝑡8 and 𝑡9. Note that, in the absence of switch-on constraints,
the micro would be switched off at 𝑡6 and on again at 𝑡8.

Using the solution described above, we can react to
overload conditions at the macro node and to inefficient
utilization of micro ones, by just looking at the instantaneous
allocation of RBs. Two considerations are in order.

If more energy was consumed in [𝑡6, 𝑡8] than is saved in
[𝑡3, 𝑡4], it would be more efficient to switch the micro off in
the former and keep it active in the latter.

In [𝑡7, 𝑡8], 𝑛𝑚 grows above Thm before 𝑛𝑀 reaches Thsat.
In this case, we can exploit 𝑚 efficiently, energy-wise, even
though the macro node is not in saturation yet.

The above two observations can only be made with hind-
sight, hence are precluded to an online algorithm. However,
we can again exploit historical knowledge, harvested from
the daily load curves, to endow an online algorithm with
prediction capabilities and increase its efficiency.

4.2. Description of the Framework. Our framework obtains
historical information from the network, processes it offline,
and makes switching decisions online, based on the current
load and the historical knowledge. The framework and its
information exchange with the network nodes are shown in
Figure 6. The offline part of the framework is composed of
a trainer and an Offline Analyzer. The trainer takes as input
the historical load curves (detailing the requested bitrate and
number of users per hexagon) and simulates what happens
at each snapshot when micros are switched on and off,
respectively. The outputs of this simulation are, for each
snapshot, an overload probability, that is, the probability that
a given hexagon is unable to carry the requested load when
the micros are switched off, and a resource consumption, that
is, the number of RBs allocated within a hexagon when the
micros are turned on and off, respectively (note that the
trainer could also be realized in different way, which may not
involve simulation at all, e.g., as a machine learning system
trained with a large set of measurements from the network
in various configurations. As long as the trainer is able to
compute overload probabilities and resource consumption,
the rest of our framework will be able to work with it).

The Offline Analyzer takes as input the above informa-
tion, plus the power models of the macros and micros and
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Figure 6: High-level view of the switching framework.

the constraint on the number of switch-ons, and finds the
energy-optimal activation pattern for each hexagon, that is,
the intervals where switching micros off allows the highest
power saving, given that the requested load is satisfied.

The above information, plus the current load at the
hexagons, is used by the Online Decider to enforce switching
decisions. Hereafter, we present the three blocks separately.

4.2.1. Trainer. The trainer considers one snapshot at a time.
In a snapshot, it simulates the network with the given number
of users per hexagon, their spatial distribution, and requested
bitrate, in a scenario. A scenario is defined by the number of
nodes that is switched on: for instance, amicro-off scenario is
onewhere allmicros are switched off, and amicro-on scenario
is the one where all micros are switched on.

The simulation is done as follows: users are dropped in the
hexagon according to the spatial distribution. Figure 7 shows
a uniform (a) and hotspot-based (b) spatial distribution. In
the latter, UE is dropped in the portion of hexagon that
intersects a circle of center c and radius r. Note that spatial
distributions are used only by the trainer, while the Online
Decider totally does without them. At a snapshot boundary,
UE is created or deleted to match the required number, and
the position of the remaining ones is randomly changed
within a configured area. This allows us to simulate random
mobility within the cell or parts thereof.

UE is associated sequentially, that is, one by one, to the
active node with the highest SINR, with a CRE boost for the
micros.
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(1) iteration = 0

(2) While (interfChanges or iteration > Itmax)

(3) resetAllocation()

(4) for each hexagon i

(5) for each UE u in i

(6) if(itearation < It) // Assoc. Ph.

(7) k = chooseEnb(u)

(8) else // Conv. Ph.

(9) k = getServingEnb(u)

(10) allocateBlocks(u,k)

(11) end for

(12) end for

(13) interfChanges = updateInterference()

(14) iteration++;

(15) end while

Algorithm 1: Pseudocode for the node association and RB allocation procedure.

The average SINR of each UE is computed through (4).
Note that there is a circular dependence between the SINR
and the RBs allocated to a UE. When a UE is allocated some
RBs (say, in hexagon e), in fact,Δ 𝑒,𝑥 grows, thus increasing the
interference suffered by UE attached to x and reducing their
SINR.This in turn increases their RB demand and so on.This
means that the average SINR must be computed iteratively,
until convergence is reached. The algorithm that does this is
shown in Algorithm 1.

The procedure is a cycle repeated for up to Itmax iterations
or until convergence is reached. Each iteration cycles through
every UE. We distinguish two phases.

(i) Association Phase. For the first 𝐼𝑡 iterations (lines 6-7) UE
is allowed to select the serving node, according to a best SINR
policy (line 7). While doing so, the procedure also allocates
RBs according to (1) (line 10).

(ii) Convergence Phase. For all the remaining iterations, UE
does not change their serving node, and the allocated RBs are
updated (line 10).

In both cases, at the end of an iteration the interference is
updated (line 13) through (3). If anyΔ 𝑒,𝑥 changes significantly
from one iteration to the next, the interfChanges flag is set, to

signal that the convergence has not been reached yet. Both
Prx𝑒𝑢 and 𝑃𝑥,𝑢 from (4) are computed using the ITU pathloss
and angular attenuation models [28].

Note that, at the first iteration of the Association Phase,
no RBs have yet been allocated at any node, hence the
interference is null and the association is distance-based
rather than SINR-based. After the first iteration the inter-
ference is updated, hence the nearest node may not be the
one with the best SINR anymore. This is the reason why
the Association Phase is repeated 𝐼𝑡 times. However, 𝐼𝑡 has
to be limited; otherwise some UE will end up oscillating
indefinitely between two or more nodes. Figure 8 shows how
the SINR decreases with the iterations, quickly converging to
a stable value.

We say that a hexagon, during snapshot 𝑘, is overloaded
in a scenario if it cannot serve its requested traffic. This
means that all the resources of the macro (and possibly of
the micros, if they are switched on) are depleted. Our first
concern is to ensure that the network is able to satisfy the
requested load.Therefore, we need to take note of overloaded
hexagons. Moreover, we need to assess whether a scenario
is more energy-efficient than another, hence to compute the
number of allocated RBs at all active nodes, which contribute
to the variable part of the power.
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Figure 8: Evolution of the average user SINR during iterative
interference evaluation of three hexagons in a snapshot.

Obviously, both the above depend on the way UE has
been dropped. We recall that UE dropping is random,
according to a preestablished distribution. Therefore, the
trainer repeats the simulation of the same scenario for 𝑟 times,
dropping UE independently at every replica. This way, we
obtain an overload probability 𝐷ℎ for each hexagon ℎ in the
considered scenario, given by

𝐷ℎ =
1
𝑟
⋅
𝑟

∑
𝑖=1

1{ℎ overloaded in replica 𝑖}. (6)

Moreover, we obtain a vector of average allocated RBs,
whose elements are the RBs allocated at each node in the
hexagon, averaged over the n replicas:

𝑅ℎ,𝑒 =
1
𝑟
⋅
𝑟

∑
𝑖=1

𝑅𝑖ℎ,𝑒, (7)

where 𝑒 is the identifier of the node within hexagon ℎ.
The above two quantities can be used to compare scenar-

ios, specifically to identify the minimum-power one having
the overload probabilities below a given threshold. Unfortu-
nately, an exhaustive comparison of scenarios is impossible.
This would in fact require simulating as many scenarios as
the powerset of the set of micros. In a network with few tens
hexagons, micros are easily in the hundreds, which makes
the task impossible. We therefore settle for a simple trade-
off, which proves to be effective nonetheless. We simulate
only the two limit scenarios with all micros switched on and
switched off. We denote these two scenarios using subscripts
↑ and ↓. The rationale beyond this choice is that the two
configurations are expected to achieve, respectively,

(i) the minimum overload probability (which should be
null, unless the network is underprovisioned), but a
high power consumption;

(ii) a larger overload probability, with a considerably
smaller power consumption.

All the quantities defined above are computed for each
snapshot, thus values at snapshot 𝑘 will be represented as
𝐷ℎ(𝑘) and 𝑅ℎ,𝑒(𝑘).

4.2.2. Offline Analyzer. Values 𝐷ℎ, RB𝑒,ℎ↑ , and RB𝑒,ℎ
↓
, and the

node powermodels are then passed to amodule calledOffline
Analyzer (OA), whose purpose is to process this information
and to generate guidelines for online decisions. The OA
makes independent decisions for each hexagon. It compares
𝐷ℎ(𝑘) to a predefined overload probability threshold (which
may also depend on the snapshot and hexagon) and computes
a binary value 𝑂ℎ(𝑘) that marks whether the overload
probability is above or below the threshold. First it computes
the expected power consumption of each of hexagons 𝐸ℎ↑(𝑘)
and 𝐸ℎ↓(𝑘) in the two configurations as

𝐸ℎ↓ (𝑘) = 𝑃
𝑀,ℎ
base + RB

𝑀,ℎ
↓ (𝑘) ⋅ 𝑃

𝑀,ℎ
in +

𝐿ℎ

∑
𝑚=0

𝑃𝑚,ℎoff ,

𝐸ℎ↑ (𝑘) = 𝑃
𝑀,ℎ
base + RB

𝑀,ℎ
↑ (𝑘) ⋅ 𝜌

𝑀,ℎ

+
𝐿ℎ

∑
𝑚=0

𝑃𝑚,ℎbase + RB
𝑚,ℎ
↑ (𝑘) ⋅ 𝜌

𝑚,ℎ,

(8)

where 𝐿ℎ is the number of micros in hexagon ℎ.
Note that each node may have its own power model

parameters, thus accounting, for example, for different ver-
sions of the apparatus and different cost of energy. The same
applies to the switching-off thresholds. However, for the sake
of readability, we will assume that all the power models are
the same and drop the superscript whenever this does not
generate ambiguity. For instance, we will use Th𝑚 to denote
the switch-off threshold.

We can then obtain an activation pattern for micro nodes
in a hexagon during a day, as a vector of 𝐾 binary values
𝑎ℎ(𝑘), where 𝑎ℎ(𝑘) = 0 indicates that all micros in the
hexagon are switched off and 𝑎ℎ(𝑘) = 1 if they are all on.
We compute the energy-optimal pattern separately for each
hexagon as the optimum of the following problem, where
hexagon superscript ℎ is omitted for the sake of readability:

min ∑
𝑘

𝐸↓ (𝑘) ⋅ (1 − 𝑎 (𝑘)) + 𝐸↑ (𝑘) ⋅ 𝑎 (𝑘)

s.t. (i) 𝑎 (𝑘) ≥ 𝑂 (𝑘)
(ii) 𝑠 (𝑘) ≥ 𝑎 (𝑘) − 𝑎 (𝑘 − 1)
(iii) 𝑠 (0) ≥ 𝑎 (0) − 𝑎 (𝐾 − 1)

(iv) ∑
𝑘=0⋅⋅⋅𝐾

𝑠 (𝑘) ≤ 𝑆max

(v) 𝑠 (𝑘) , 𝑎 (𝑘) ∈ {0, 1} .

(9)

𝑠(𝑘) is a binary variable that counts switch-on operations.
The objective function to be minimized is the expected
overall power consumed by a cell throughout the whole day.
Constraint (i) states thatmicros should be onwhen saturation
may occur, (ii) forces 𝑠(𝑘) to one when the micro is switched
on at 𝑘, (iii) takes care of the wrap-around at the end of
the day, and finally (iv) constrains the number of switch-ons
to 𝑆max. The above is an Integer-Linear Problem (ILP) with
Θ(𝐾) constraints and variables and can be easily solved using
commercial solvers such as CPLEX [29].
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Figure 9: Example of energy-optimal pattern computation.

In Figure 9, we show an example of computation of
the energy-optimal activation pattern, based on the same
scenario of Figure 5. Each vector represents the values of
𝑂ℎ(𝑘), 𝐸ℎ↓(𝑘), and 𝐸

ℎ
↑(𝑘), respectively, throughout a day of

𝐾 = 12 snapshots within hexagon ℎ. Marked elements
in the second and third vectors identify the lowest-power
configuration (all off or all on) at that snapshot. Note that
the same time instants 𝑡𝑖 as the ones in Figure 5 are reported.
The dashed line indicates the pattern that will be chosen by
our optimization problem if 𝑆max = 2. As we can see we have
three snapshots where𝑂ℎ(𝑘) = 1, where keepingmicros on is
thusmandatory.Theoptimal solution is to keep themicros on
in [𝑡3, 𝑡4] and switch them off in [𝑡5, 𝑡7] as the power saved in
snapshot three is𝐸ℎ↑(3)−𝐸

ℎ
↓(3) = 10, whereas in snapshots 5 to

8 is∑8𝑘=5 𝐸
ℎ
↑(𝑘)−𝐸

ℎ
↓(𝑘) = 35. Moreover, note that, as observed

in Example 1, the optimization problem brings forward the
second switch-on event to 𝑡7.

4.2.3. Online Decider. The output of the OA is fed to the
Online Decider that monitors the system utilization and takes
decisions on a per-snapshot timescale. More specifically this
module decides which micro to switch on/off, based on
both current and historical information. It includes an acti-
vation and deactivation procedure, performed sequentially.
Figure 10 reports the flow diagrams for such procedures.
Each box represents a processing step, whereas each diamond
represents a decision. Deactivation takes as an input a list of
micro nodes, ordered by increasing load. Each of thosemicro
nodes m is switched off if all the following conditions hold
simultaneously at snapshot k:

(i) no node in the hexagon is overloaded,

(ii) 𝑎ℎ(𝑘) = 0 for the given hexagon,
(iii) 𝑚 is underloaded, that is, RB𝑚 ≤ Th𝑚.

Conversely, we activate all the micros of a hexagon if
either of or both the following conditions hold:

(i) at least one node in the hexagon is overloaded;

(ii) 𝑎ℎ(𝑘) = 1.

Example 2. Consider as an example the RB utilization shown
in Figure 11 where a hexagon with one macro and one micro
is considered and the energy-optimal pattern of Figure 9 is
applied. At 𝑡1 the activation procedure detects saturation and

switches the micro on. At 𝑡3, it is kept on since 𝑎ℎ(𝑘) = 1. The
first switch-off opportunity occurs at 𝑡5: in this case themicro
is kept on until RB𝑚 < Th𝑚, that is, at 𝑡6. The last switch on
is at 𝑡7, as in the energy-optimal pattern.

4.3. Implementation Issues. The software framework de-
scribed in this paper is meant to be run at a centralized
element, which performs resource planning. The location
and nature of this resource planner depend on the operator
choices for RAN deployment. In a Distributed RAN, it
should be a monitoring server in the operator’s network. In
a Centralized RAN (C-RAN), it would naturally be a process
running in the same data center that hosts the virtualized
Baseband Units (BBUs) of the nodes in an area. A software
system that supports a decision framework such as the one
described in this paper is being designed and deployed in a
testbed as part of the Flex5Gware EU 5G-PPP project [30].

Regarding the processing cost, our measurements show
that a single-day run (i.e., 96 snapshots) of the trainer
occupies approximately 1.5 minutes of a single core on a
desktop PC. Solving the optimization problem at optimality
takes less than one second and hence is negligible. The
number of runs should be calibrated based on the required
overload probability threshold: more runs allow one to
estimate small probabilities with greater accuracy. Now, the
planning normally occurs on a daily basis, and a single core
can run the trainer up to ∼950 times per day. This means
that our framework can be made to work with arbitrary
accuracy on off-the-shelf hardware in a day. More to the
point, this very fact can also be exploited to compensate for
unforeseen context mismatches. Suppose that an unforeseen
event occurs, such as a large traffic jam, which predictably
changes the context for the rest of the day (e.g., by postponing
by 1-2 snapshots the onset of the daily peak in all the cells
of a business district). One can then run the offline trainer
again, starting from the current time up to the end of the
day, discounting the switching operations that have already
occurred from 𝑆max, and come upwith an optimized planning
for the rest of the day in a reasonable time, still executing tens
of training runs on a multicore machine within a snapshot’s
worth of computation time.

The communication overhead is also small to negligible.
A vector of 96 binaries must be communicated daily (or on
demand, in the above cases) to the macros, and the macros
themselves can issue the switch-on/off commands to their
micros according to the daily plan. Communications among
macro and micro nodes belonging to the same hexagon
can be realized exploiting the X2 communication and in
particular the X2Application Protocol (X2AP) [31].The latter
defines a set of standard messages that eNBs can exchange.
For example, an overload condition can be signaled using the
Load Indication Information Element, and an eNB can be
switched on using the cell activation procedure.

5. Performance Evaluation

In this section we analyze the performance of the system
described in the previous section. We feed our simulator
with both synthetic and realistic load curves, specifying for
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Figure 11: Resource block utilization Example 2.

each snapshot and for each hexagon, the number of active
types of UE together with their traffic request in Mbps.
Realistic curves are taken from data collected by an operator
management system from real deployments. Data are from
three hexagons of two different sites, namely, Site-A and Site-
B, and include the average number of active UE and the
bandwidth due to data communications during a snapshot.
We also consider each UE as performing a VoIP call 1 minute
long at 20 kbps. To obtain the total data volume we sum
the bandwidth due to data and VoIP communication, and
we scale the result by a factor of 1.25 and 1.5 to obtain low,

medium, and high system loads. As an example, the resulting
average data rates for Site-A in the three cases are, respectively,
equal to 35, 44, and 53Mbps. The overall traffic request for
the medium load configuration for the whole set of snapshot
is represented in Figure 12 bymeans of curves. Note that their
shape is irregular and clearly different from the one assumed
in most of the related work.

We first analyze the effects of interference on the system,
using synthetic load curves with artificially unbalanced load
among the hexagons. Then we compare the performance of
our algorithm in various configurations against two baselines:
a first one − | − with all the micros always off and a second
one 𝑚 | 𝑚 with all the micros always on. The above analysis
is performed both in case of uniform and nonuniform spatial
user distributionwithin each hexagon. Finally, wewill test our
framework for robustness, verifying how it reacts to changes
in the expected load.

System performance will be evaluated in terms of the
power variation over 𝑚 | 𝑚. We will consider only the
variable part of the power consumption and assess the saving
of configuration𝑋 over baseline 𝐵 as 𝑆 = (𝑃𝑋var/𝑃

𝐵
var) − 1.

The main simulation parameters are summarized in
Table 1.

5.1. Synthetic Load. In this section, we demonstrate the
importance of keeping large-scale effects (such as intercell
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Table 1: Simulation parameters.

Macro Micro
Tx power 40 dBm 36 dBm
𝑃base 320W 16W
𝑃off 174W 7W
𝜌 2.51W 0.450W
Antenna gain 18 dBi 11 dBi
Intercell distance 500m
Path loss model Urban macro (ITU-R)
Bandwidth 10MHz (50 RBs)
#runs 5 (simulation) 20 (training)
#snapshots 96

interference) into account. For this purpose we define a set
of synthetic load curves, as depicted in Figure 13: hexagon
0 (ℎ0)—the one being observed— has a constant requested
load, while all the others (1 to 56) have a variable one.
Figure 14 shows the RB occupancy of ℎ0 in the configurations

previously defined (− | − and 𝑚 | 𝑚) plus a third one
(− | 𝑚) with all the micros on, except the ones in hexagon 0.
Two considerations are in order: first, the number of allocated
RBs in ℎ0, thus its power consumption, varies proportionally
with the load of neighboring hexagons, despite the requested
load in the former being constant (see curve 𝑚 | 𝑚). The
interference from the other hexagons increases in fact with
their load.

Second, using micros offloads the macro node, thus
avoiding saturation and using resources more efficiently at
high loads, as shown by curve 𝑚 | 𝑚. Note that the
interference suffered by ℎ0, thus its power consumption,
drops also when activating micro nodes in neighboring cells
only (− | 𝑚).

5.2. Realistic Load. We now analyze the behavior of the
systemwith realistic traffic curves with 57 hexagons, each one
composed of one macro and two micro nodes. Each set of
three load curves is applied to the central triplet of hexagons
and is then replied in the rest of the system using the same
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Figure 14: Power consumed in ℎ0 for the synthetic scenario. − | −:
all micros off; 𝑚 | 𝑚: all micros on; and − | 𝑚: all micros on except
in hexagon 0.

pattern, as represented in Figure 15. With reference to the
latter, all the hexagons of the same color will request the same
data rate. However, UE is dropped randomly within each
hexagon, thus hexagons will differ—possibly in a significant
manner—in terms of requested resources (which also depend
on the UE SINR). This approach allows us to have diverse
levels of request resources throughout the system, while still
using realistic values of requested data rates.

As a first step we analyze the performance of our system
with various values of the threshold Th𝑚, then we will
investigate the effects of 𝑆max. Figure 16 shows the power
variation in the central triple of hexagons. As we can see the
latter is not affected by the value of Th𝑚, regardless of the
number of switches 𝑆max.This happens because our algorithm
tries to follow the suggested energy-optimal pattern, thus
mitigating the effects of erroneous settings of Th𝑚.

Figure 17 instead shows the power variation in Site-A for
various configurations of 𝑆max. As we can see the highest
savings are achieved at low loads, when micros are switched
off most of the time. As the load increases, the impact
of 𝑆max increases as well, but not in a significant manner.
Similar things occur with Site-B, as shown in Figure 18, with
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Figure 15: Multihexagon network for the realistic load scenario.
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Figure 16: Power variation with respect to𝑚 | 𝑚, obtained in Site-A
with uniform user distribution, for various Th𝑚 and 𝑆max = ∞.

an impact of 𝑆max that is even lower. This effect is due to
the “smoothness” of the load curves and to the uniform
distribution of UE among the system. When comparing Site-
A and Site-B loads, higher saving is obtained with the former,
as it has lower load requests throughout the day, thus allowing
for longer periods with the micros turned off.

To better understand the effects of 𝑆max, in Figure 19 we
report the cell load of ℎ0 in Site-A with high load. Moreover
in the lower part of the figure we show three binary curves,
each one representing the optimal energy-activation pattern
for the micros, for three values of 𝑆max, in the shape of
three binary curves indicating the values of 𝑎ℎ𝑘 . There are two
saturation zones (circled peaks at the top of the figure). In
these cases every micro must be turned on so as to provide
additional capacity. There are two more zones (boxed areas)
where themacro is not saturated, but the amount of requested
resources is such that having the micros on is energetically
profitable. In the remaining snapshots the best solution is
having the micros off. The first two conditions (saturation)
are satisfied with every value of 𝑆max, while the last one is fully
achieved only for 𝑆max, when micros are switched only when
necessary, regardless of the number of switches.

In Figures 20 and 21 we show instead the total number of
overloaded RBs during the whole day, that is, the number of
RBs, beyond those available, whichwould be required to cope
with the traffic request of a day. This allows us to measure
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Figure 17: Power variation with respect to𝑚 | 𝑚, obtained in Site-A
with uniform user distribution.
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Figure 18: Power variation with respect to𝑚 | 𝑚, obtained in Site-B
with uniform user distribution.

the ability of the system to satisfy the traffic request itself. As
we can see, configuration 𝑚 | 𝑚 performs way better than
− | −; thus its performance has to be considered as the target
of our algorithm. The latter in fact obtains the same number
of overloaded RBs as 𝑚 | 𝑚, regardless of the choice of 𝑆max,
thus enforcing energy saving with no impact on the carried
load.

5.3. Nonuniform User Distribution. In this section, we will
analyze the performance of our algorithm in case of nonuni-
form and time-varying distribution of UE within the system.
For each hexagon, users are randomly dropped inside one
hotspot of center c and radius r, as presented in Figure 7(a).
Value c is changed every five snapshots, alternating between
two positions, closer to the macro (ℎ𝑠1) and to the micro
(ℎ𝑠2), respectively. The value of r is instead picked randomly
in the interval [20𝑚, 30𝑚], every snapshot.

In Figures 22 and 23 we show the power variation
obtained with respect to 𝑚 | 𝑚, for both Site-A and Site-B.
The impact of 𝑆max is in this case greater than with a uniform
user distribution. Moreover, this effect increases with load,
as the energy-wise efficiency of micros is higher with larger
traffic demands. As in the previous scenario, the performance
of our algorithm from the carried load point of view, is equal
to those obtained with𝑚 | 𝑚 and is thus not shown.
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Figure 19: Switches for ℎ0, Site-Awith level = high, 𝑆max = {1, 3,∞},
and uniform user distribution.
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Figure 20: Per hexagon overloaded RBs over a day, reported as a
percentage of the number of available RBs, obtained in Site-A with
uniform user distribution.

The analysis in Figures 17–23 suggests that a larger 𝑆max
(which, as we remark, is an input datum and not a decision
variable) yields diminishing returns in terms of power sav-
ings. Most of the power, in fact, is saved with the first few
switch-offs—sometimes even a single one—beyond which
topology alterations get progressively less useful. However,
while there must be a point where increasing 𝑆max stops
yielding tangible benefits (unless load curves are collections
of IIDpoints, which is notwhat appears frommeasurements),
its location depends on several factors: the shape of the load
curves, the distribution of the position of UE, the power
profiles of the nodes, and so on. In fact, Figures 22 and 23
show that increasing 𝑆max from one to three in a hotspot
scenario yields considerable benefits, unlike with a uniform
distribution (see Figures 17 and 18).

5.4. Resilience Analysis. In this section, we will test how our
solution reacts to variation in the expected load. More in
detail, wewant to check if theOnlineDecider is able to recover
from wrong suggestions coming from the Offline Analyzer
or to react to unexpected changes in the actual load of the
system.

As a first step, given a load curve of an hexagon for a
certain site, for every snapshot we take the original bitrate
request, calling it 𝑏𝑟, and we compute the modified bitrate
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Figure 21: Total number of per hexagon overloaded RBs over a day,
reported as a percentage of the number of available RBs, obtained in
Site-B with uniform user distribution.
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Figure 22: Power variation with respect to𝑚 | 𝑚, obtained in Site-A
with hotspot user distribution.

request as 𝑏̃𝑟 = 𝑏𝑟 × 𝛾, where 𝛾 is a random value extracted
from a uniform distribution in the interval [𝛾𝐿, 𝛾𝑅].Note that
we are not varying the number of UE within a hexagon, but
only their load requests. Figure 24 shows a portion of the
original load curve in ℎ0 for Site-A load, compared against
three modified load curves obtained with a 𝛾 extracted in
[0.6, 1.4] with three different seeds.

Although the shape of the curve is roughly the same,
pointwise variations can be clearly observed.We repeated the
above procedure in order to obtain various modified load
curves. For each of them we first fed the trainer with the
original load curve, and then we perform simulations using
the modified ones. We used this method for both Site-A and
Site-B and for each load level. As we can see in Figures 25
and 26, the effects of the variations on the power saving are
negligible in all cases. This means that, as far as the shape of
the load curve is maintained, the Online Decider is able to
react to variation in the requested load.

6. Conclusions

This paper presented a framework for the activation/deac-
tivation of nodes in a heterogeneous network, where the
number of switch-ons in a day is constrained. We first
analyzed the limits of both online- and offline-only algo-
rithms, demonstrating how optimality requires unrealistic
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Figure 23: Power variation with respect to𝑚 | 𝑚, obtained in Site-B
with hotspot user distribution.
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Figure 24: Comparison of original load against threemodified loads,
computed with 𝛾 extracted from the interval [0.6, 1.4] with three
different seeds.

hypotheses. We then proposed and evaluated an online-
offline method consisting of three phases: training, offline
analysis, and online decision. The training phase is done
offline and allows one to evaluate the energy consumption
and saturation probabilities of alternative configurations,
taking into account intercell interference at large. The offline
analysis provides the optimal (constrained) switching pat-
tern, and the online decision algorithm evaluates the current
network load and makes switching decisions, erring on the
safe side as far as saturation probability is concerned. Our
framework works with arbitrary load curves and power fig-
ures, and it takes a predefined maximum number of switch-
offs as an input. Simulation results show performance savings
between 10 and 25% with both synthetic and real traffic loads
and with both uniform and nonuniform user distributions.
Future work includes developing and analyzing switching
algorithms that takes into account more detailed information
on the spatial distribution of UE, as well as the possible
benefits given by enhanced Intercell Interference Coordination
(eICIC) techniques at the eNBs. Both frequency-based (e.g.,
coordinated scheduling or partial frequency reuse) and time-
based (e.g., provisioning of Absolute Blank Subframes) can
easily be taken into account into our framework. All it takes is



16 Mobile Information Systems

Low

Original
[0.8, 1.2]
[0.6, 1.4]

Medium High

−30%

−25%

−20%

−15%

−10%

−5%

0%

Po
w

er
 v

ar
ia

tio
n 

(%
)

Figure 25: Power variation obtained using 𝑆max = 1 with respect to
𝑚 | 𝑚, with original Site-A load curves and modified ones with 𝛾
randomly extracted from two intervals.
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Figure 26: Power variation obtained using 𝑆max = 1 with respect
to 𝑚 | 𝑚, with original Site-B load curves and modified ones with 𝛾
randomly extracted from two intervals.

tomodify expression (4), by correctly accounting the number
of overlapping RBs between couples of eNBs depending on
the eICIC technique.

Finally, minimizing the number of topology alterations
(i.e., switch-ons and switch-offs) required to achieve a target
power saving in a network is a related problem that we plan
to investigate in the future.

LTE-Related Acronyms

CoMP: Coordinated Multipoint
CQI: Channel Quality Indicator
CRE: Cell Range Expansion
eNB: Evolved Node-B
LTE: Long-Term Evolution
LTE-A: Long-Term Evolution Advanced
MCS: Modulation Coding Scheme
MTBF: Mean Time between Failures
MBSFN: Multicast Broadcast Single Frequency Network
RB: Resource Block
SINR: Signal to Interference and Noise Ratio
TTI: Transmission Time Interval
UE: User Equipment.
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