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Abstract—The characterization of the global maximum of
energy efficiency (EE) problems in wireless networks is a chal-
lenging problem due to the non-convex nature of investigated
problems in interference channels. The aim of this work is
to develop a new and general framework to achieve globally
optimal solutions. First, the hidden monotonic structure of the
most common EE maximization problems is exploited jointly
with fractional programming theory to obtain globally optimal
solutions with exponential complexity in the number of network
links. To overcome this issue, we also propose a framework to
compute suboptimal power control strategies characterized by
affordable complexity. This is achieved by merging fractional pro-
gramming and sequential optimization. The proposed monotonic
framework is used to shed light on the ultimate performance
of wireless networks in terms of EE and also to benchmark
the performance of the lower-complexity framework based on
sequential programming. Numerical evidence is provided to show
that the sequential fractional programming framework achieves
global optimality in several practical communication scenarios.

I. INTRODUCTION

The percentage of the global footprint (in terms of CO2-
equivalent emissions) due to the information and communica-
tions technology (ICT) was recently estimated to be 5% [1].
Although this is a small percentage, it is rapidly increasing,
and the situation will escalate in the near future with the
advent of 5G networks. Credited sources foresee the number
of connected devices to reach 50 billions by 2020 [2] and
that the data traffic will increase by 1000× over the next
10 years [3]. If no countermeasures are taken, the energy
demand to operate and provide such massive data rates to so
many devices will become unmanageable, and the resulting
greenhouse gas emissions and electromagnetic pollution will
exceed safety thresholds. While restricting the global ICT
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usage is unrealistic, a promising answer to this issue lies
in optimizing the energy efficiency (EE) of ICT systems;
that is, in maximizing the amount of information reliably
transmitted per Joule of consumed energy. Moreover, the EE
is of paramount importance for operators (e.g., to save on
electricity bills) and for end-users (e.g., to prolong the lifetime
of batteries). This has created a great interest in the design of
new network architectures, as well as new beamforming and
power control strategies taking into account the cost of energy
so as to push the EE in communication systems towards new
limits.

A. State-of-the-art
The EE of a wireless communication link is commonly

defined as a benefit-cost ratio, where the data rate is compared
with the associated energy consumption:

EE [bit/Joule] =
Data rate [bit/s]

Power Consumption [W]
.

Given the fractional nature of the EE, the main mathe-
matical tool for the optimization of EE-related metrics is
fractional programming [4]—a branch of optimization the-
ory that provides algorithms with polynomial complexity to
globally maximize fractional functions with a concave nu-
merator and a convex denominator [5]. However, even this
powerful tool fails when interference-limited networks must
be optimized. This is due to the fact that the presence of
multi-user interference makes the numerator of the EE a
non-concave function of the transmit power. A common way
to circumvent this problem is to only consider suboptimal
orthogonal or semi-orthogonal transmission schemes as well
as interference cancellation techniques, to fall back into the
noise-limited case. Contributions in this direction are given
in [6]–[8]. In [6], [7], multi-carrier networks are considered
and the global energy efficiency (GEE) of the system (defined
as the ratio between the achievable sum rate and the total
power consumption) is optimized using orthogonal or semi-
orthogonal subcarrier allocation schemes. In [8], the authors
consider a multi-antenna system and aim at maximizing the
GEE when non-linear interference cancellation techniques
are used. In [9], the presence of a large number of base
station antennas is also exploited to average out multi-user
interference, whereas in [10] energy efficiency optimization
for systems using wireless information and power transfer is
performed, always considering the regime of large deployed
antennas. In [11] zero-forcing is considered in the context
of wireless power transfer. However, interference suppression
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techniques as well as orthogonal transmissions inevitably re-
quire a large amount of radio resources to be implemented, and
thus are not practical in large networks. Besides, unavoidable
channel estimation errors also prevent from achieving perfect
interference suppression.

Alternative available approaches typically try to handle the
interference by embedding alternating optimization techniques
into fractional programming methods. Examples in this context
can be found in [12] wherein the minimum of the individual
EEs is maximized, in [13] where the maximization of GEE
is considered, and in [14] which considers the maximiza-
tion of the sum of the GEE of the different base stations
of the network. While these approaches can be applied to
interference-limited networks (and are also able to tackle
beamforming problems in the case of [13], [14]), they can not
ensure the convergence to resource allocation points enjoying
strong optimality properties. Moreover, they are tailored to
specific problem formulations, considering specific instances
of communication systems.

A first attempt to provide a unified framework to tackle the
optimization of general EE metrics in a centralized way is
based on the integration of traditional fractional programming
methods with the tool of sequential optimization [15]–[19].
The basic idea of sequential optimization is to tackle a
difficult problem by solving a sequence of easier approximate
problems, which can be solved by standard methods. Provided
that suitable approximations can be found, sequential opti-
mization is able to obtain a solution, which fulfills first-order
optimality conditions for the original problem, while at the
same time requiring only the solution of convex problems.
Sequential optimization was first used for rate and signal-
to-interference-plus-noise ratio (SINR) optimization in [15],
[16], and it was more recently successfully integrated into
fractional programming to tackle EE maximization problems.
Contributions in this sense are [17]–[20], which consider
both multi-antenna and multi-carrier systems, also addressing
two-hop communications and full-duplex systems. However,
sequential optimization can not guarantee to achieve global
optimality, and indeed the above works do not provide any in-
sight into the gap between sequential optimization algorithms
and the globally optimal solution. In general, no previous
work provides efficient and provably convergent algorithms to
obtain the global maximum of the EE in interference-limited
networks.

A possible answer to close this gap is represented by
monotonic optimization. This optimization framework can
solve optimization problems where the utility and constraints
are monotonically increasing/decreasing functions of the vari-
ables, even if no convexity assumption is fulfilled. The poly-
block algorithm [21] and the branch-reduce-and-bound (BRB)
algorithm [22] are two key algorithms for globally solving
these problems. These algorithms have recently been used to
solve different non-convex problems in communication and
networking systems; for example, joint power control and
scheduling [23] and sum rate maximization with multi-antenna
transmitters [24]. The weighted sum-rate maximization prob-
lem is studied by using monotonic optimization and the rate
profile technique in [25] for Gaussian interference channels. In

[26], monotonic optimization is used to characterize the Pareto
boundary of rate optimization problems in multi-cell networks.
A good overview of monotonic optimization techniques in
communication and networking is provided by [27] and [28].
However, to-date monotonic optimization has never been used
for EE optimization, the main difficulty being that the EE is
not a monotone function of the transmit powers, which is the
case with more traditional performance metrics like rate or
SINR.

B. Major contributions

In contrast to previous related literature, this work aims
at shedding some light on the ultimate EE performance of
interference-limited networks. This overall goal is accom-
plished by making the following major contributions:
• Two novel optimization frameworks for interference-

limited networks are developed: the former obtains global op-
timality, whereas the latter fulfills first-order optimality condi-
tions, with a reduced complexity. Both frameworks encompass
a wide class of energy-efficient maximization problems. More
specifically:

1) Both frameworks are able to work with multiple energy-
efficient performance metrics, such as the GEE, the
minimum of the individual energy efficiencies, and the
product of the individual energy efficiencies. Addition-
ally, the globally optimal framework is also able to
handle the sum of the individual energy efficiencies of
network nodes.

2) Both frameworks are able to handle multiple types
of constraints, such as maximum power constraints,
minimum rate constraints, and interference temperature
constraints. Both frameworks are able to perform both
transmit power allocation, and joint transmit power and
receiver design optimization. Moreover, the extension to
beamforming optimization problems is also possible and
briefly discussed.

3) Both frameworks encompass multiple expressions of
the links’ SINRs, which generalize the typical SINR
expression commonly encountered in previous related
literature. Considering multiple SINR models makes
the proposed frameworks broad enough to be applied
to many relevant instances of contemporary and fu-
ture wireless communication networks, such as mas-
sive MIMO networks, heterogeneous networks, LTE
networks, device-to-device communications, full-duplex
networks.

• Global optimality is obtained by merging fractional pro-
gramming and monotonic optimization, developing a new
monotonic fractional programming framework. Due to the use
of monotonic optimization, the complexity of the proposed
framework turns out to be exponential in the number of links,
but still lower than standard global optimization algorithms.
Moreover, convergence to the global optimum is theoretically
ensured, whereas this is not always true for general global
optimization methods.
• The monotonic fractional programming framework is used

to get insights on the ultimate EE performance of wireless
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networks. The energy-efficient Pareto boundary of the network
is characterized. Moreover, monotonic fractional programming
provides an effective benchmark for any low complexity, yet
suboptimal, resource allocation algorithm.
• Fractional programming is used together with sequential

optimization to develop a novel sequential fractional program-
ming framework able to obtain candidate solutions fulfilling
the Karush-Kuhn-Tucker (KKT) optimality conditions of EE
maximization problems. The framework has limited complex-
ity, requiring only to solve convex optimization problems. The
effectiveness of such low-complexity solutions is validated
by a numerical analysis which employs the monotonic frac-
tional solution as a benchmark. The results indicate that the
proposed sequential fractional solution achieves near-optimal
performance.

C. Outline and notation
The remainder of this paper is organized as follows.

Section II defines the signal model and formulates the EE
maximization problems. Section III introduces some useful
mathematical definitions and results on fractional program-
ming, monotonic optimization, and sequential programming.
Sections IV and V develop the monotonic and sequential
fractional programming frameworks, respectively. Numerical
results for two notable case-studies of communication systems
are illustrated in Section VI, whereas concluding remarks are
made in Section VII.

The following notation is used throughout the paper. Scalars
are denoted by lower case letters whereas boldface lower
case letters are used for vectors. The superscripts T and H

denote transpose and conjugate transpose, respectively. 1N
and 0N are the N -dimensional all-one and all-zero vectors,
respectively. R denotes the real number space and C is the
complex number space. RN stands for the N × 1 real vector
space and RN+ denotes its non-negative orthant. R++ denotes
the set of strictly positive real numbers. ∇xf denotes the
gradient vector of function f(x) with respect to x and |A|
stands for the determinant of a matrix A. For x ∈ RN and
y ∈ RN , we use x � y to indicate that x is greater than or
equal to y in a component-wise manner.

II. SIGNAL MODEL AND PROBLEM FORMULATION

Consider a wireless network wherein K mutually interfering
links are active over a communication bandwidth B [in Hz].
Each link includes a single-antenna transmitter node and a
receiver node (possibly equipped with multiple antennas). Call
pk the transmit power level [in W] of link k (from the transmit-
ter to its intended receiver) and assume that 0 ≤ pk ≤ Pmax,k

where Pmax,k is the maximal transmit power.
Denote by γk(p) the SINR of link k as a function of p =

[p1, . . . , pK ] ∈ RK+ . At this stage, no particular expression for
the function γk(p) will be specified while only the following
general assumption is made:

Assumption 1. The function γk(p) : RK+ → R+ is, for all k,
such that the achievable rate Rk(p) of link k can be expressed
as the difference of two non-negative functions:

Rk(p) = B log2(1 + γk(p)) = q+k (p)− q−k (p) (1)

with q+k (p), q−k (p) : RK+ → R+.

Additional specific assumptions on q+k and q−k will be intro-
duced in Sections IV and V, when discussing the monotonic
fractional programming and the sequential fractional program-
ming frameworks, respectively. For now, it should be stressed
that Assumption 1 is very general, and holds at least in the
following three notable cases.

(i) The typical SINR expression in interference networks
takes the general form

γk(p) =
pkαk

σ2 +
K∑

i=1,i6=k
piβi,k

(2)

where σ2 is the power [in W] of the receiver noise (over the
bandwidth B), αk is the channel gain over link k, whereas
{βi,k} account for the multi-user interference and depend
on the other links’ channel coefficients as well as on global
system parameters. The particular expression of coefficients
{αk, {βi,k}} is determined by the specific system under con-
sideration. From (2), it follows that q+k and q−k take the form:

q+k (p) = log2


σ2 + pkαk +

K∑

i=1,i6=k
piβi,k


 (3)

q−k (p) = log2


σ2 +

K∑

i=1,i6=k
piβi,k


 . (4)

(ii) A considerable extension of (2) is obtained by con-
sidering also a self-interference term in the denominator,
proportional to the useful power:

γk(p) =
pkαk

σ2 + pkφk +
K∑

i=1,i6=k
piβi,k

(5)

with the coefficients {φk} also depending on propagation
channels and system parameters. A non-zero coefficient φk
arises in several relevant instances of communication systems,
such as hardware-impaired networks, receivers with imperfect
channel state information (CSI), relay-assisted communica-
tions, and systems affected by inter-symbol interference. A
detailed discussion on the communication scenarios in which
the SINR may take the form in (5) can be found in [19]. Given
(5), the functions q+k and q−k are easily found to be:

q+k (p) = log2


σ2 + pk(αk + φk) +

K∑

i=1,i6=k
piβi,k


 (6)

q−k (p) = log2


σ2 + pkφk +

K∑

i=1,i6=k
piβi,k


 . (7)

(iii) A third notable SINR expression is that obtained in
vector channels, when linear minimum mean square error
(LMMSE) reception is used at the receiver:

γk(p)=pkv
H
kk


σ2Ir+ pkuku

H
k +

K∑

i=1,i6=k
pivkiv

H
ki



−1

vkk (8)
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where r denotes the dimension of the received signal, vki is
the r× 1 channel vector between transmitter i and receiver k,
and the r × 1 vector uk accounts for self-interference terms
(due to the same reasons as for the SINR expression in (5)). It
should be stressed that since LMMSE is the SINR-maximizing
linear receive structure [29], and since the receiver choice is
clearly decoupled among the different links, LMMSE turns
out to be the optimal linear receive structure from an energy-
efficient perspective, too. Thus, optimizing the transmit powers
assuming the SINR expression (8), means finding the optimal
transmit powers after linear receiver design has been already
performed and the corresponding optimal SINR has been
plugged into the energy efficiency functions. In other words,
considering the SINR (8) allows performing joint power and
receiver design.

Given (8), the functions q+k and q−k are expressed as

q+k (p) = log2

∣∣∣∣∣σ
2Ir+pk(vkkv

H
kk+uku

H
k )+

K∑

i=1,i6=k
pivkiv

H
ki

∣∣∣∣∣
(9)

q−k (p) = log2

∣∣∣∣∣∣
σ2Ir + pkuku

H
k +

K∑

i=1,i6=k
pivkiv

H
ki

∣∣∣∣∣∣
. (10)

In the considered interference network scenario, the EE (mea-
sured in bit/Joule) of link k is defined as the ratio of the
achievable rate and the total power consumption

EEk(p) =
B log2(1 + γk(p))

µkpk + Ψk
(11)

wherein µk ≥ 1 is the inverse of the power amplifier efficiency
of transmitter node k and Ψk is the circuit power required
to operate link k, accounting for the dissipation in analog
hardware, digital signal processing, backhaul signaling, and
other overhead costs (such as cooling and power supply losses)
[5], [30], [31]. Clearly, (11) is a link-centric (or user-centric)
performance metric. A network-centric definition of EE must
combine the individual energy efficiencies of the different
links. Although different approaches have been proposed in the
literature, a single definition that unarguably best represents
the EE of the whole network is not available, since the different
EEs are typically conflicting objectives [5], [32]. Two of the
most well-established metrics to measure the network EE are
the GEE defined as

GEE(p) =

K∑
k=1

B log2(1 + γk(p))

K∑
k=1

µkpk + Ψk

(12)

and the weighted minimum energy efficiency (WMEE) given
by

WMEE(p) = min
k=1,...,K

wk
B log2(1 + γk(p))

µkpk + Ψk
(13)

where the coefficients wk ∈ R+ are used to weigh the EEs
of the individual links. Two other possible metrics are the

weighted sum energy efficiency (WSEE), defined as

WSEE(p) =
K∑

k=1

wk
B log2(1 + γk(p))

µkpk + Ψk
(14)

and the weighted product energy efficiency (WPEE), defined
as

WPEE(p) =
K∏

k=1

[
B log2(1 + γk(p))

µkpk + Ψk

]wk

. (15)

The GEE is the metric with the strongest physical interpre-
tation, as it represents the benefit-cost ratio of the entire
network, in terms of global amount of reliably transmitted
data and global amount of consumed energy. However, it
does not depend on the individual EEs, and therefore does
not allow tuning the EE of the individual links according to
specific needs. Instead, the WMEE, WSEE, and WPEE are
more connected to a multi-objective approach, in which the
objectives are the individual EEs [5], [32], which turns out
to be quite useful in heterogeneous networks. By suitably
choosing the weights, it is possible to prioritize the links that
require higher EE, choosing different operating points in the
system energy-efficient Pareto region, defined as the region E
containing all feasible K × 1 vectors of the users’ EEs:

E =
{

[EE1(p), . . . ,EEK(p)]T : p ∈ P
}
. (16)

A known result from multi-objective optimization theory en-
sures that, by globally maximizing the WMEE for different
choices of the weights, it is possible to describe the complete
Pareto boundary of the Pareto region (16). In general, this
is not possible by maximizing the WSEE or WPEE; for
example, the WSEE maximization allows only to describe the
convex hull of the Pareto region, and therefore the boundary
of (16) can not be completely characterized unless the region
is convex. In light of these considerations, the main focus
of this article is on the maximization of GEE and WMEE.
Nevertheless, it will be shown that most of the techniques
developed in the sequel are general enough to apply also to
the maximization of WSEE and WPEE.

Given this background, the problem to be solved can be
mathematically stated as:

maximize
p

u(p) s.t. p ∈ P (17)

wherein the objective u(p) is chosen as either the GEE or
WMEE (given by (12) or (13)), whereas P represents the
feasible set of the problem given by

P =
{
p ∈ RK+ ; pk ≤ Pmax,k, ck(p) ≥ 0 ∀k ∈ {1, . . . ,K}

}

(18)

where ck(p) : RK+ → R+ accounts possible additional
constraint functions. Similarly to what has been done for
SINRs, no particular expression is assumed here for ck(p),
and only the following assumption is made:

Assumption 2. The function ck(p) can be expressed ∀k as
the difference of two non-negative functions, namely:

ck(p) = c+k (p)− c−k (p) (19)
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with c+k (p), c−k (p) : RK+ → R+.

Additional specific assumptions on c+k and c−k will be intro-
duced in Sections IV and V, when discussing the monotonic
fractional programming and the sequential fractional program-
ming frameworks, respectively. Also, observe that the per-user
power constraint in (18) well models uplink transmissions.
However, the constraint functions ck(p) can be defined to also
enforce a total power constraint

∑K
k=1 pk ≤ Pmax, which

is particularly relevant in downlink channels. In addition,
the constraint functions ck(p) naturally model minimum rate
constraints and/or interference temperature constraints. These
cases are obtained by defining ck(p) to be the achievable
rate of user k, or the achievable rate of another network
node, whose performance must be protected from the in-
terference from user k. It should be observed that while a
single constraint function ck(p) is considered for each network
node in the definition of the feasible set of (18), this is
due only to notational convenience. The frameworks to be
developed immediately apply to scenarios in which multiple
constraint functions are enforced for each network node, so
that minimum rate constraint and interference temperature
constraints can be enforced at the same time on each network
node k, together with power constraints. Moreover, it is also
possible to include additional, network-wide constraint func-
tions, to require a minimum network sum-rate or to limit the
maximum interference that the network causes to neighboring
communication systems.

A further point to be made is about CSI assumptions. Again,
the problem formulation in (17) is very general and does not
require any particular CSI assumption. The SINRs {γk}Kk=1

can be either based on perfect CSI, or on statistical CSI, or
on imperfect CSI. When only statistical CSI is available it is
possible to either use the channel second-order statistics in
the SINRs expressions, or to replace the rate functions in the
numerators of the EE metrics with their ergodic counterparts,
which is a necessary approach in fast-fading scenarios. Instead,
when imperfect CSI is available due to channel estimation
errors or limited feedback, it is possible to consider worst-case
rate functions, or to consider the average of the numerators of
the EE with respect to the channel estimation error distribution.
The approaches to be developed in the sequel can work in these
scenarios, too, and only require very mild assumptions which
will be detailed later.

Regardless of the choice of the EE metric u(p) and of the
particular constraint functions to be enforced, the optimization
problem in (17) belongs to the class of fractional programming
problems [5]. Such problems can be solved with polynomial
complexity only if the numerator and denominator of the
fraction to maximize are respectively concave and convex,
and if the feasible set is also convex [5]. Unfortunately, this
requirement is not fulfilled in interference-limited networks as
it follows from the general SINR expressions given above. In
fact, the functions q−k are always non-zero whenever multi-user
interference is present, and this causes the links’ achievable
rates (i.e., the numerators of the individual EEs) to be non-
concave functions of p. As a result, fractional programs are
in general NP-hard in interference-limited scenarios [4], [5],

which calls for new tools to complement and extend the poten-
tialities of fractional programming theory. In Section IV, we
aim at solving (17) at the expense of computational complexity
by combining fractional programming with monotonic opti-
mization. Then, we look for local solutions of (17) that can be
obtained with affordable complexity. This is accomplished in
Section V by merging fractional programming with sequential
optimization. Before turning to the development of these new
optimization frameworks, the next section will provide the
necessary mathematical preliminaries and definitions.

III. MATHEMATICAL PRELIMINARIES

This section provides a background on the optimization
theories to be used in the remainder. Section III-A gives
a short review of fractional programming theory [33] and
also provides some background (see [34] for more details) to
understand the complexity arguments mentioned at the end of
Section II. Then, Section III-B gives an overview of monotonic
optimization [21], [22]. Finally, Section III-C briefly discusses
the framework of sequential optimization.

A. Fractional programming

For a more comprehensive overview of fractional program-
ming for EE maximation, the reader is referred to [5].

Definition 1 (Generalized fractional program). Let D ⊆ RN
and consider the functions fk : D → R and gk : D → R++,
with k = 1, . . . ,K. A generalized fractional program is the
optimization problem defined as

maximize
x

min
k=1,...,K

fk(x)

gk(x)
s.t. x ∈ D. (20)

If K = 1, then the above problem reduces to the so-called
single-ratio fractional program:

maximize
x

f1(x)

g1(x)
s.t. x ∈ D. (21)

Since the objective function in (20) is in general not
concave, standard convex optimization algorithms are not
guaranteed to solve (20) and specific algorithms are required.
Towards this end, we have the following main result.

Proposition 1. [35], [36]. A vector x? ∈ D solves (20) if
and only if

x? = arg max
x∈D

{
min

k=1,...,K

[
fk(x)− λ?gk(x)

]}
(22)

with λ? being the unique zero of the auxiliary function F (λ):

F (λ) = max
x∈D

min
k=1,...,K

{fk(x)− λgk(x)} . (23)

This result allows one to solve (20) by finding the unique
zero of F (λ). To this end, the most widely used algorithm
is the (Generalized, if K > 1) Dinkelbach’s algorithm [34],
[36], reported in Algorithm 1.
A critical point about Algorithm 1 is that it converges to
the global optimum of the corresponding instance of the
fractional problem only provided that (22) can be globally
solved at each iteration. If f is concave, g is convex, and all
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Algorithm 1 Generalized Dinkelbach’s algorithm
Initialize λ0 with F (λ0) ≥ 0, j = 0;
while F (λj) > ε do

Solve the problem:

x?j = arg max
x∈D

{
min

k=1,...,K

[
fk(x)− λjgk(x)

]}
;

λj+1 = min
k=1,...,K

fk(x
?
j )

gk(x?
j )

;

j = j + 1;
end while

constraints are also convex, then this can be accomplished with
polynomial-time complexity, since each subproblem is a con-
cave maximization subject to convex constraints.1 Moreover,
Algorithm 1 exhibits a super-linear convergence rate, since
the update rule for λ follows Newton’s method applied to the
function F (λ) [34].

Instead, if (22) is not a non-convex problem, the complexity
of Algorithm 1 becomes significantly higher, because globally
solving (22) can not be handled by the well-developed theory
of convex optimization, but the use of global optimization
algorithms is required. However, standard global optimization
methods operate by exploring the whole feasible set [39],
with a prohibitive computational complexity, even for small
problem instances, and with a convergence that is only guaran-
teed if the functions have a limited variability (e.g., Lipschitz
continuity [27]).

Finally, it should be observed that other approaches exist
to tackle a fractional problem, but, similarly to Dinkelbach’s
method, all of them require the concavity of f , the convexity
of g, plus the convexity of the feasible set, in order to
require only the solution of convex problems. In particular,
we mention the Charnes-Cooper transform method, which
is able to convert a fractional problem into an equivalent
convex problem, provided f is concave, g is convex, and
the feasible set is also convex [40]. Unlike Dinkelbach’s
algorithm, this approach is not iterative, since a single convex
problem must be solved, but this equivalent problem has one
additional variable and constraint compared to Problem (22).
Moreover, the Charnes-Cooper transform involves the use of
the perspective function of the numerator f , which is not suited
to the global optimization algorithm to be developed in Section
IV.

B. Monotonic optimization

Monotonic optimization is a relatively recent global opti-
mization framework, which exploits monotonicity or hidden
monotonicity structures in the objective and constraints to
reduce computational complexity and provide a guaranteed
convergence [21], [22]. The basic idea is that if the objective
to be maximized is increasing in all optimization variables,
then it is not necessary to explore the complete feasible set
of the problem, but only its outer boundary. This concept is
made formal in the rest of this section.

1Such a class of problems can be solved with polynomial-time complexity
[37], [38]

Definition 2 (Monotonicity in RN ). A function f : RN → R
is monotonically increasing if f(y) ≥ f(x) when y � x.

Definition 3 (Hyper-rectangle in RN ). Let a, b ∈ RN with
a � b. Then, the set of all x ∈ RN such that a � x � b is a
hyper-rectangle in RN and is denoted by [a,b].

Definition 4 (Normal and Co-normal sets). A set S ⊂ RN
is normal if ∀x ∈ S , the hyper-rectangle [0,x] belongs to
S. A set Sc ⊂ RN is co-normal in [0,b] if ∀x ∈ Sc, then
[x,b] ⊂ Sc.

A given function h : RN → R defines a normal or a co-
normal set if the following results hold true:

Proposition 2. [21] The set S = {x ∈ RN : h(x) ≤ 0}
is normal and closed if h is lower semi-continuous and
increasing. The set Sc = {x ∈ RN : h(x) ≥ 0} is co-normal
and closed if h is upper semi-continuous and increasing.

Definition 5 (Monotonic optimization). A monotonic opti-
mization problem in canonical form is defined as

maximize
x

f(x) s.t. x ∈ S ∩ Sc (24)

where f : RN → R is an increasing function, S ⊂ [0,b] is
a compact, normal set with nonempty interior, and Sc is a
closed co-normal set in [0,b].

The main result of monotonic optimization theory states
that the solution to (24) lies on the upper boundary of S ∩Sc
[21, Proposition 7]. Therefore, methods like the polyblock
algorithm [21] and the BRB algorithm [22] can be used to
globally solve (24) by searching only on the upper boundary
of the feasible set, thus drastically simplifying the problem.
Nevertheless, we remark that the complexity of monotonic
optimization methods is still exponential in the number of
variables. However, as already observed, it is much lower than
general global optimization methods, which do not exploit any
monotonicity structure [21]. This makes monotonic optimiza-
tion attractive for the development of an off-line framework
to benchmark any suboptimal method for solving (24).

More in detail, the complexity of monotonic optimization
methods depends on the number of iterations required to
search the boundary of the feasible set, and on the complexity
to evaluate the objective function on each given point on
the boundary of the feasible set. The former in general
grows exponentially with the number of variables, whereas
the latter is difficult to evaluate in general, since it depends
on the particular functional form of the objective function.
Nevertheless, it must be emphasized again that using standard
global optimization algorithms would be significantly more
complex, since not just the frontier, but the whole feasible set
should be searched.

C. Sequential optimization

Sequential optimization is a powerful tool that provides
the means to generate candidate solutions of non-convex
optimization problems with affordable complexity [41], while
at the same time satisfying theoretical optimality claims. This
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statement is made precise in the following result, which readily
follows from [41]:

Proposition 3. Let F be a maximization problem with dif-
ferentiable objective f0(x) and constraints fi(x) ≥ 0 ∀i ∈
{1, . . . , I}, and with a compact feasible set. Let Gj be a
maximization problem with differentiable objective g0,j(x)
and constraints gi,j(x) ≥ 0, ∀i ∈ {1, . . . , I}, with compact
feasible set, and optimal solution x?j . Assume that ∀j and
∀i ∈ {1, . . . , I} gi,j(·) satisfies the following two properties:

1) gi,j(x) ≤ fi(x) ∀x;
2) gi,j(x

?
j−1) = fi(x

?
j−1).

Then, the sequence {f0(x?j )} is monotonically increasing and
converges to a finite limit g. Next, assume the following third
property is also satisfied ∀j and ∀i ∈ {1, . . . , I}:

3) ∇gi,j(x?j−1) = ∇fi(x?j−1) .
Then, under suitable constraint qualifications, every limit point
of {x}j that achieves the objective value g fulfills the KKT
conditions of the original problem F .

Proposition 3 shows that by solving the sequence of ap-
proximate problems {Gj}, one can generate a sequence of
feasible points x?j that monotonically increases the value of
the original objective f0. Moreover, the limit value g is the
value that the original objective attains at a KKT point of
F . The critical issue for this tool to be of practical use,
is to find suitable approximate problems {Gj} fulfilling the
assumptions of Proposition 3, while at the same being easier
to solve than the original problem. Notable cases in which this
practical requirement holds are those in which the approximate
problem is a concave or pseudo-concave maximization subject
to convex constraints. Instead, as for the number of iterations
required for the sequential method to converge, no general
formulas are available, since this depends on the particular
structure of the problem.

It should also be mentioned that recent works provided
notable extensions of the seminal result from [41]. In [42] it is
shown that not only the sequence {f0(x?j )} converges, but also
that every limit point of the sequence {x}?j fulfills the KKT
conditions of the original problem, provided that the original
objective function f0 is strictly concave (assuming the case
of maximization problems) and under regularity conditions.
Instead, [43] shows that every limit point of the sequence
{xj}?j is a stationary point of the original problem also when
the original objective is not strictly concave, provided the
original problem has a convex feasible set, and only the
objective function is approximated.

IV. GLOBAL OPTIMALITY:
MONOTONIC FRACTIONAL PROGRAMMING

As mentioned above, among global optimization algorithms,
monotonic optimization provides attractive complexity and
convergence properties. However, it can not be directly em-
ployed to solve (17), because the EEs are not monotone
functions of p in the sense of Definition 2. This section
shows how this difficulty can be overcome by an interplay of
fractional programming and monotonic optimization, provided
that the following assumption holds:

Assumption 3. The functions q+k (p) and q−k (p) in (1), and the
functions c+k (p) and c−k (p) in (19) are monotonic functions
∀k ∈ {1, . . . ,K} as stated in Definition 2.

In other words, it is assumed that all achievable rates
and constraint functions can be written as the difference
of monotonic functions. Observe that no assumption on the
concavity or convexity of q+k (p), q−k (p), c+k (p), and c−k (p) is
made.

A. GEE maximization

GEE maximization belongs to the class of single-ratio
fractional problems. Thus, finding its solution by Dinkelbach’s
algorithm requires to solve the following auxiliary problem at
iteration j:

maximize
p

K∑

k=1

B log2(1 + γk)−λj(µkpk+Ψk) s.t. p∈P

(25)

for a given positive λj . Note that, at a first sight, the above
problem is not a monotonic optimization problem in canonical
form because:
• The objective function is not monotonic, since the achiev-

able rates log2(1 +γk) are not increasing functions of p,
and since the negative term is in fact decreasing in the
interfering powers.

• The constraint set is not guaranteed to be the intersection
of a normal and a co-normal set, since the difference of
two increasing functions is in general not increasing.

However, (25) exhibits a hidden monotonicity structure as
shown in the following proposition:

Proposition 4. If Assumption 3 holds true, then (25) can be
expressed as a monotonic optimization problem in canonical
form.

Proof: Observe that (25) can be equivalently written as

maximize
p

q+(p)− q−(p, λj) s.t. p ∈ P (26)

wherein q+(p) and q−(p, λj) are increasing in p and given
by

q+(p) =

K∑

k=1

q+k (p) (27)

q−(p, λj) =

K∑

k=1

q−k (p) + λj
(
µkpk + Ψk

)
. (28)

Next, define pmax = [Pmax,1, . . . , Pmax,K ] and introduce the
auxiliary variable t = q−(pmax, λj) − q−(p, λj). Then, for
any given λj , (26) can be rewritten as

maximize
(t,p)

q+(p) + t (29)

s.t. (t, p) ∈ P ∩Q (30)

with

Q=

{
(t,p) :

0 ≤ t+ q−(p, λj) ≤ q−(pmax, λj)
0 ≤ t ≤ q−(pmax, λj)− q−(0K , λj)

}
.
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Problem (29) is not a monotonic problem yet, because the
constraint functions ck(p) are expressed as the difference of
increasing functions. To overcome this problem, observe that
the set of constraints ck(p) ≥ 0 with k = 1, . . . ,K, can be
equivalently rewritten as the following single constraint:

min
k=1,...,K

[
c+k (p)− c−k (p)

]
≥ 0 ⇐⇒ (31)

min
k=1,...,K


c+k (p)−




K∑

i=1

c−i (p)−
K∑

i=1,i6=k
c−i (p)




= (32)

min
k=1,...,K


c+k (p) +

K∑

i=1,i6=k
c−i (p)




︸ ︷︷ ︸
c+(p)

−
K∑

i=1

c−i (p)

︸ ︷︷ ︸
c−(p)

≥ 0 (33)

which is the difference of the two increasing functions c+(p)
and c−(p). Similarly as above, we can thus introduce the
auxiliary variable s and reformulate (29) as

maximize
(t,s,p)

q+(p) + t (34)

s.t. (t, p) ∈ Q , 0 ≤ s ≤ c−(pmax)− c−(0K)

c−(p)+s ≤ c−(pmax) , c+(p)+s ≥ c−(pmax).

In order to complete the proof, it remains to verify that
(34) fulfills Definition 5, thus being a monotonic problem
in canonical form. To this end, let us first observe that the
objective of (34) is monotonic in (t, s,p).

Next, to show that the feasible set of (34) is the intersection
of a normal and a co-normal set, let us observe that, for any
p in the feasible set, we have that

q−(0K , λj) ≤ q−(p, λj) (35)

c−(0K) ≤ c−(p). (36)

As a consequence, the feasible set of (34) can be written as
the intersection of the following two sets:

S =
{

(t, s,p) : p � pmax, t+q
−(p, λj)≤q−(pmax, λj),

s+ c−(p) ≤ c−(pmax)
}

(37)

Sc =
{

(t, s,p) : p � 0K , t ≥ 0, s+ c+(p) ≥ c−(pmax)
}
.

(38)

Then, since all the constraint functions in (37) and (38) are
monotonic and continuous, by virtue of Proposition 2 and
employing again (35), it follows that S and Sc are normal
and co-normal sets in the hyper-rectangle given by:

[0, q−(pmax, λj)− q−(0K , λj)] × [c−(pmax)− c−(0K)]

× [0K ,pmax]. (39)

This completes the proof.

B. WMEE maximization

WMEE maximization belongs to the class of generalized
fractional programs and requires to solve the following auxil-

iary problem at iteration j:

maximize
p

min
k=1,...,K

q+k (p)−q−k (p)−λj(µkpk+Ψk)

s.t. p ∈ P. (40)

As in the case of GEE maximization, the objective function is
not monotonic. However, the following result can be proved:

Proposition 5. If Assumption 3 holds true, then (40) can be
expressed as a monotonic problem in canonical form.

Proof: Let νk(p, λj) = q−k (p) + λj (µkpk + Ψk) such
that we may rewrite the objective function as

q+k (p)− q−k (p)− λj (µkpk+Ψk)

= q+k (p)−




K∑

i=1

νi(p, λj)−
K∑

i=1,i6=k
νi(p, λj)




=


q+k (p) +

K∑

i=1,i6=k
νi(p, λj)


−

K∑

i=1

νi(p, λj). (41)

Then, introduce t =
∑K
i=1 νi(pmax, λj)−

∑K
i=1 νi(p, λj) and

reformulate (40) as

maximize
(t,p)

min
k=1,...,K

q+k (p) +
K∑

i=1,i6=k
νi(p, λj) + t

s.t. (t, p) ∈ P ∩Q′ (42)

with

Q′=
{

(t,p) :
0 ≤ t ≤∑K

i=1 νi(pmax, λj)− νi(p, λj)
0 ≤ t ≤∑K

i=1 νi(pmax, λj)− νi(0K , λj)

}
.

Reformulating the constraints ck(p) ≥ 0 ∀k as the single
constraint (33), (42) is shown to be a monotonic problem in
canonical form by using the same arguments adopted in the
proof of Proposition 4.

Observe that the results of Propositions 4 and 5 do not
specifically require an affine power consumption model, as
the one adopted in this article. Indeed, the above results
can be extended to any power consumption model such that
q−(p, λj) (for GEE maximization) and νk(p, λj) (for WMEE
maximization) are monotonic in p. Moreover, the above result
applies also to scenarios in which each user has Nc > 1
constraint functions {ck,i(p)}Nc

i=1, provided ck,i can be still
expressed as the difference of two monotonic functions.

C. WSEE and WPEE maximization

We now look at the maximization of WSEE and WPEE,
which belong to the classes of sum of ratios and product of
ratios problems, respectively. Both are hard to solve even if all
numerators are concave, all denominators are convex, and the
feasible set is convex [5], [44]. Nevertheless, the proposed
monotonic fractional programming framework can also be
used to solve WSEE and WPEE maximization problems2. To

2Alternative approaches for the maximization of sum-of-ratios problems
have recently appeared in [45], [46]
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begin with, observe that the WSEE can be expressed as a
single ratio:

WSEE(p)=
K∑

k=1

q+k (p)− q−k (p)

µkpk + Ψk
(43)

=

∑K
k=1

(
q+k (p)− qk(p)−

)∏
i 6=k(µipi + Ψi)

∏K
k=1 (µkpk + Ψk)

. (44)

Since the product of increasing functions is still an increasing
function, (44) turns out to be a single ratio whose numerator is
the difference of increasing functions, and the denominator is
an increasing function. Hence, the method adopted in Section
IV-A can also be used to globally maximize the WSEE.

The same property holds for WPEE maximization since (15)
can be reformulated as

WPEE(p) =

∏K
k=1

(
q+k (p)− q−k (p)

)
∏K
k=1 (µkpk + Ψk)

. (45)

Expanding the products in the numerator of the above function,
we obtain again the difference of two increasing functions,
while the denominator is clearly increasing with respect to p.

Remark 1. While this section has focused on power control
or on power control and linear receiver design (when the
SINR (8) is considered), the approaches described here can
be formally extended to transmit beamforming problems, too,
upon applying domain changes techniques [25], [26], which
enable to reformulate beamforming matrix-variate problems
into vector-variate problems formally similar to the power
control problems studied in this section, and with a number
of variables again equal to the number of links. The resulting
problems can be globally solved again by means of the
polyblock algorithm. However, the problem feasible set after
the domain change technique in general is not available in
closed-form, which increases the complexity of the polyblock
method.

V. FIRST-ORDER OPTIMALITY:
SEQUENTIAL FRACTIONAL PROGRAMMING

As observed in Section IV, despite enjoying a lower
complexity than standard global optimization algorithms, the
complexity of the proposed monotonic fractional programming
framework is still exponential. Motivated by the need of
providing also a practical optimization framework for large
networks, in this section fractional programming is combined
with the sequential optimization results from Proposition 3.
This results in a novel sequential fractional programming
framework able to compute candidate solutions of EE prob-
lems with affordable complexity, while at the same time
fulfilling theoretical optimality claims. In particular, the pro-
posed algorithm yields points fulfilling the KKT first-order
optimality conditions of the GEE and WMEE maximization
problems3. Section VI will provide numerical evidence that the
sequential fractional programming approach actually attains

3As for the WMEE problem, the KKT conditions refer to the equivalent
epigraph-form representation, which removes the non-differentiability of the
WMEE function.

global optimality, as it finds the same solution as the glob-
ally optimal solution computed by means of the monotonic
fractional programming framework in Section IV.

This is not the first time that fractional programming
and sequential optimization are used together to solve EE
optimization problems [17], [19]. In [17], the two theories
are employed to maximize the GEE as well as the WPEE
under the assumption that the SINR takes the form in (2)
whereas (5) is adopted in [19], also including rate constraints
in the analysis and addressing WMEE maximization. In these
works, the approximate problems Gj required by Proposition
3 are obtained by means of a logarithmic approximation of
the achievable rate plus a change of variable. Compared to
[17], [19], a different approach is pursued here that has the
following main advantages:

i) It is more general since it can handle SINRs in the form
of (8), besides those given as (2) and (5), whereas the
approaches from [17], [19] do not apply to the SINR
expression in (8). It should be stressed that this is not
a minor accomplishment, since the SINR in (8) arises
when joint power control and receiver design is carried
out. Thus, being able to handle the SINR in (8) enables
to extend the framework from power control problems,
to joint power control and receiver design problems.

ii) Another extension compared to available literature is
that the proposed framework can include multiple types
of constraint functions. Previous works which employ
sequential optimization for energy-efficient resource al-
location do not enforce interference temperature con-
straints. This appears a relevant scenario, since it arises
for example in device-to-device communications, one
strong candidate technology for 5G networks. Instead, as
already mentioned, our framework is broad enough to in-
clude interference temperature constraints by specializing
accordingly the constraint functions ck.

iii) As demonstrated in the two points described above,
the optimization framework developed here encompasses
many relevant scenarios, in terms of both objective func-
tions, and constraint functions, whereas previous works
have considered only specific instances of communication
systems and related problem formulations. This makes
our framework suitable for many important instances
of communication systems, including the leading 4G
technologies, and the strongest 5G candidate techniques.
In fact, in contrast to previous works, we take a higher-
level approach, working with generic objectives qk and
constraints ck, and identifying general assumptions that
these functions must fulfill in order for the sequential and
fractional tools to be used.

In this section, besides the Assumptions in Section II, we
only require the following assumption:

Assumption 4. The functions q+k (p) and q−k (p) in (1), and
the functions c+k (p) and c−k (p) in (19) are concave functions
of p ∀k.

In other words, it is only required that all the achiev-
able rates and constraint functions can be expressed as the
difference of concave functions. It should be observed that
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Assumption 3 is not required in the sequel. Indeed, in general
no relation exists between concavity and monotonicity, since
a function can be concave even if it is not monotonic, or vice
versa. In this section we only assume the concavity of the
functions q+k (p) and q−k (p), without any claim about their
monotonicity. As in Section IV, we consider the GEE and
WMEE maximizations separately.

A. GEE maximization

By virtue of Assumptions 1 and 2, the GEE maximization
problem can be cast as:

maximize
p

∑K
k=1 q

+
k (p)− q−k (p)

∑K
k=1 µkpk + Ψk

(46a)

s.t. 0 ≤ pk ≤ Pmax,k ∀k (46b)

c+k (p)− c−k (p) ≥ 0 ∀k. (46c)

If Assumption 4 holds true, then the numerator of (46a) and the
constraint functions in (46c) are expressed as the difference of
concave functions, and therefore are not concave in general.
As pointed out in Section III-A, this prevents from directly
using fractional programming to solve (46). To circumvent this
issue, we exploit its hidden structure and obtain the following
main result:

Proposition 6. For any given pj , denote by Gj the optimiza-
tion problem

maximize
p

∑K
k=1q

+
k (p)−

[
q−k (pj)+

(
∇pq

−
k |p=pj

)T
(p−pj)

]

∑K
k=1 µkpk + Ψk

(47a)
s.t. 0 ≤ pk ≤ Pmax,k ∀k (47b)

c+k (p)−
[
c−k (pj)+

(
∇pc

−
k |p=pj

)T
(p−pj)

]
≥0 ∀k

(47c)

and call p?j its optimal solution. If pj = p?j−1 ∀j ≥ 1,
and p0 is any feasible power vector, then {GEE(p?j )}j is
monotonically increasing and converges to a value GEE.
Moreover, any limit point of the sequence {GEE(p?j )}j that
achieves GEE fulfills the KKT optimality conditions of (46)
under suitable constraint qualifications4.

Proof: Recall that any concave function is upper-bounded
by its first-order Taylor expansion at any point. Since q−k (p)
and c−k (p) are concave functions, for any power vector pj we
thus have that

q+k(p)−q−k (p)≥q+k(p)−
[
q−k (pj)+

(
∇pq

−
k |p=pj

)T
(p−pj)

]
(48)

c+k(p)−c−k (p)≥c+k (p)−
[
c−k(pj)+

(
∇pc

−
k |p=pj

)T
(p−pj)

]

Hence, (47a) and (47c) are lower bounds of (46a) and (46c),
respectively. Next, since the lower bounds in (48) are tight
when evaluated in pj , it immediately follows that (47a) and
(47c) are equal to (46a) and (46c), respectively, for p = pj .

4We observe that Slater’s condition is a suitable constraint qualification for
pseudo-concave maximization problems subject to convex constraints [47].

Similarly, it can be shown that the gradients of (47a) and (47c)
are equal to those of (46a) and (46c), for p = pj . Thus, (47)
fulfills all the assumptions of Proposition 3 with respect to
(46), which completes the proof of this proposition.

For any pj , (47a) has a concave numerator, and affine
denominator, while the constraint functions in (47b) and (47c)
are all affine or concave. As a result, (47) is a single-ratio
problem, which can be globally solved by means of fractional
programming theory. In particular, it is possible to either
use Algorithm 1 directly solving (47), or Charnes-Cooper
transform can be used to further reformulate (47) into a an
equivalent convex program [40].

Remark 2. Observe that the gradients in (48) can be com-
puted in closed form, once the SINR expression is specified.
If the SINRs are expressed as in (5), then we have

∂q−k
∂p`

=





φk

ln(2)
(
σ2 + φkpk +

∑K
i=1,i6=k βi,kpi

) , ` = k,

β`,k

ln(2)
(
σ2 + φkpk +

∑K
i=1,i6=k βi,kpi

) ` 6= k.

(49)
The formulas for the SINR (2) can be obtained by setting
φk = 0 in (49). On the other hand, if the SINR takes the
expression in (8), then we have5

∂q−k
∂p`

=





1

ln(2)
uHk


σ2Ir+pkuku

H
k +

K∑

i=1,i6=k
pivkiv

H
ki



−1

uk , `=k,

1

ln(2)
vHk`


σ2Ir+pkuku

H
k +

K∑

i=1,i6=k
pivkiv

H
ki



−1

vk` , ` 6=k.

(50)

B. WMEE maximization

If Assumptions 1 and 2 are satisfied, the WMEE maximiza-
tion problem can be cast as

maximize
p

min
k=1,...,K

q+k (p)− q−k (p)

µkpk + Ψk
(51a)

s.t. 0 ≤ pk ≤ Pmax,k ∀k (51b)

c+k (p)− c−k (p) ≥ 0 ∀k. (51c)

By virtue of Assumption 4, each numerator in (51a) and the
constraint functions in (51c) are the difference of concave
functions, and therefore are not concave in general. In prin-
ciple, the same approach used for the GEE could be used
here to obtain a power allocation algorithm with affordable
complexity. This is formalized in the following proposition.

Proposition 7. For any given pj , denote by Gj the optimiza-

5Recall that
∂ log2 |A+ xB|

∂x
= tr

(
(A+ xB)−1B

)
, for a scalar x and

A,B being square matrices of proper dimensions [48].



11

tion problem

max
(t,p)

min
k=1,...,K

q+k (p)−
[
q−k (pj)+

(
∇pq

−
k |p=pj

)T
(p−pj)

]

µkpk + Ψk

(52a)
s.t. 0 ≤ pk ≤ Pmax,k ∀k (52b)

c+k (p)−
[
c−k (pj) +

(
∇pc

−
k |p=pj

)T
(p− pj)

]
≥ 0 ∀k

(52c)

and call p?j its optimal solution. If pj = p?j−1 ∀j ≥ 1,
and p0 is any feasible power vector, then {WMEE(p?j )}j is
monotonically increasing and converges.

Proof: The proof follows along the same line of reasoning
used for Proposition 6.

Since, the numerator and denominator of (52a) are concave
and convex, respectively, and all constraint functions are
concave or affine, it is possible to globally solve (52) by means
of fractional programming theory with affordable complexity.
Also, it should be mentioned that KKT-optimality is not
mentioned in the statement of Proposition 7, for the simple
reason that, unlike the GEE, the WMEE is not differentiable,
thus implying that (51) admits no KKT conditions. However, it
is possible to reformulate (51) through its equivalent epigraph-
form representation [38], expressed as:

maximize
(t,p)

t (53a)

s.t. 0 ≤ pk ≤ Pmax,k ∀k (53b)

c+k (p)− c−k (p) ≥ 0 ∀k (53c)

q+k (p)− q−k (p)− t(µkpk + Ψk) ≥ 0 ∀k. (53d)

Then, it is possible to apply the sequential method to obtain
a first-order optimal solution of (53).

Remark 3. Similarly as for Section IV, the approaches de-
scribed in this section can be extended to beamforming prob-
lems, too. This would result again in optimization problems
with objectives and constraints expressed as the difference
of concave functions, with the additional difficulty that the
functions would be matrix-variate. However, the approach
developed here extends to this case, because it is always
possible to linearize the non-concave part of the numerators
of the energy efficiencies with respect to the matrix variables.

VI. NUMERICAL EXAMPLES

Among the many possible scenarios under the umbrella
of the proposed optimization frameworks, we focus on the
two case-studies of a multi-antenna LTE network, the leading
standard in 4G systems, and of a massive MIMO network, one
of the strongest candidate technologies for 5G networks.

A. MIMO LTE network with LMMSE detection

Consider the uplink of a multi-cell LTE system in which
the same resource block is used by multiple user equipments
(UEs). Each UE and each base station (BS) are equipped with
NT and NR antennas, respectively. Let us denote by Hk,` ∈
CNR×NT the channel matrix between UE k and BS `, while

bk ∈ CNT is the unit-norm beamforming vector, and sk is
the unit-modulus information symbol sent by UE k. UE k is
associated with BS a(k). In order to perform data detection
for user k, the signal received at BS a(k) is linearly processed
by a filter ck. Thus, the signal received at BS a(k) is

ya(k) =cHk


√pkHk,a(k)bksk+

K∑

i=1,i6=k

√
piHi,a(k)bisi+ na(k)




(54)
with na(k) ∼ CN (0, σ2) modeling the receiver noise. As-
suming ck is the LMMSE detector, which is known to be
the optimal linear receive structure [29], the SINR enjoyed
by UE k turns out to be formally equivalent to (8), with
vki = Hi,a(k)bi, uk = 0, and r = NR. Thus, the functions
q+k (p) and q−k (p) are expressed as in (9) and (10).

In our numerical simulations, we considered a multi-cell
system which covers a square area of 2 km × 2 km, wherein
UEs are randomly placed and equipped with NT = 2 antennas
each. The area is served by L = 3 BSs placed at coordinates
(0.5; 0.5) km, (0.5;−0.5) km, (−0.5; 0) km, with respect to a
reference system with the origin at the center of the square,
and UEs are associated to the nearest BS. All propagation
channels are generated as realizations of uncorrelated Rayleigh
fading, using the path-loss model in [49] with power decay
factor equal to 3.5. All mobiles have the same maximum
feasible power Pmax = −20 dBW and hardware-dissipated
power Ψk = −20 dBW. The receiver noise power is generated
as σ2 = FBN0, wherein F = 3 dB is the noise figure,
B = 180 Hz is the communication bandwidth, and N0 =
−174 dBm/Hz is the thermal noise power spectral density.

Fig. 1 shows the energy-efficient Pareto region of the system
for K = 2 UEs. 200 sample points at the Pareto boundary
are obtained by solving the WMEE maximization problem
for 200 different choices of the weights, each corresponding
to finding the outmost point in a certain search direction. The
maximization problem was solved using the proposed mono-
tonic fractional programming framework. As a comparison,
we show the non-uniform grid of operating points that are
achieved by a grid search over 40000 equally-spaced feasible
transmit power points. We note that the monotonic fractional
programming framework is able to characterize the complete
region, while the 40000 points from the grid search fail to
explore all parts of the region. Two particular operating points
are shown as reference. The point where both UEs use full
power is in the interior of the region and thus inefficient,
for any choice of EE metric. The maximum GEE points
found by sequential fractional programming and monotonic
fractional programming coincide, and are also in the interior
of the region. This is an interesting result, as it shows that
GEE maximization does not necessarily yield a point on the
boundary of the energy-efficient Pareto region, thus showing
how the GEE metric might fail to capture the efficiency of
the individual links. A similar scenario is illustrated in Fig. 2,
which considers the case with K = 3 UEs. In this case, the
Pareto region is illustrated using a number of lines that lie on
the boundary. All star-marked points on each line were com-
puted using the proposed monotonic fractional programming
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framework. It is interesting to observe that the obtained region
does not define a convex set, which implies that in general
only WMEE maximization can guarantee to characterize the
energy-efficient Pareto region of wireless networks.
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Fig. 1. Energy-efficient Pareto region for K = 2, generated by: 1) Monotonic
Fractional Programming; 2) Grid Search. The points corresponding to the
maximum GEE and to Full Power Allocation are also reported, which are
both inside the Pareto region.
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Fig. 2. Energy-efficient Pareto region for K = 3, generated by Monotonic
Fractional Programming. The region can be seen to define a non-convex set.

B. Massive multiple-input multiple-output (MIMO) networks

Consider the uplink6 of a massive MIMO network com-
posed of K single-antenna UEs and L BSs (which can
represent either macro cells or small cells), each equipped with
NR antennas. Each UE k is associated to a specific serving
BS a(k), while interfering with all other UEs. Let us define by
hk,m ∈ CNR the channel vector from UE k to BS m. Denoting

6Similar results can be obtained for the downlink, but we selected the uplink
to reduce the amount of notation.

by ck ∈ CNR the linear detector that BS a(k) applies to its
received signal to detect the signal from UE k, a lower bound7

on the uplink SINR of UE k takes the following form [50]:

γk=
pk

∣∣∣E{cHk hk,a(k)}
∣∣∣
2

pkvar{cHk hk,a(k)}+ ik
(55)

with ik = σ2E{‖ck‖2}+
∑K
i=1,i6=k piE{|cHk hi,a(k)|2}. As-

sume that a maximum ratio combining (MRC) detector is
employed. This amounts to setting ck = ĥk,a(k) where
ĥk,a(k) denotes the estimate of hk,a(k) given by hk,a(k) =

ĥk,a(k) + h̃k,a(k), with h̃k,a(k) being the estimation error
statistically independent of ĥk,a(k). We consider Rayleigh
fading channels hk,m ∼ CN (0, dk,mINR

) where the vari-
ance dk,m accounts for the large-scale channel fading and
attenuation from UE k to BS m. If a minimum mean
square error (MMSE)-based channel estimation scheme is
used at the BS (with full pilot reuse across cells) [50], then
we have that ĥk,a(k) ∼ CN (0, ρk,a(k)INR

) and h̃k,a(k) ∼
CN (0, (dk,a(k) − ρk,a(k))INR

) where ρk,a(k) =
dk,a(k)

τ+
∑

m dk,m
,

with τ being a given parameter that depends on the total
pilot transmit power over the pilot sequence. Under the above
assumptions, we have that γk takes the form in (5), with
αk = ρk,a(k), φk = dk,a(k) +

∑
m 6=a(k) ρ

2
k,m/ρk,a(k), and

βi,k = di,a(k)ρi,a(k)/ρk,a(k), which is formally equivalent to
(5). Thus, the functions q+k (p) and q−k (p) are expressed as in
(6) and (7) for all k = 1, . . . ,K.

Similar results can be obtained when the system is affected
by hardware impairments [51], [52]; for example, unavoidable
clock drifts in local oscillators, finite-precision digital-to-
analog converters, amplifier non-linearities, non-ideal analog
filters, and so forth. For the sake of simplicity, let us assume
that the hardware impairments are only present at the UEs.8

Following [51], hardware impairments result in a reduction
of the uplink signals by a factor 1 − ε2, with ε being the
error vector magnitude, and in an additive Gaussian distor-
tion noise which carries the removed useful power. In these
circumstances, a lower bound of the SINR is given by

γk=
pk(1− ε2)

∣∣∣E{cHk hk,a(k)}
∣∣∣
2

pk(1− ε2)var{cHk hk,a(k)}+ pkε2E{|cHk hk,a(k)|2}+ ik
(56)

Plugging ck = ĥk,a(k) into the above equation and tak-
ing into account that in the presence of hardware impair-
ments ĥk,a(k) ∼ CN (0,

√
1− ε2ρk,a(k)INR

) and h̃k,a(k) ∼
CN (0, (dk,a(k) −

√
1− ε2ρk,a(k))INR

), the SINR is easily
found to be again in the same form of (5).

In our numerical simulations, we consider a cellular setup
wherein 3 small-cell receivers equipped with 20 antennas each
are deployed in a similar way as in Section VI-A. In addition,
one macro-BS with 50 receive antennas is placed at the center

7This refers to the standard worst-case lower bound on the mutual informa-
tion where the uncorrelated interference is treated as Gaussian noise, which
is information-theoretic optimal for small interference powers.

8The impact of BS hardware impairments vanishes as NR increases [52],
thus UE hardware impairments are expected to dominate in massive MIMO
networks.
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of the area to serve. Instead, all mobiles have a single antenna.
We consider the presence of hardware impairments with ε =
10−1, and of channel estimation errors with τ = 0.3.

Our numerical experiments confirm that the sequential
fractional programming framework performs as the mono-
tonic fractional programming framework and thus achieves
the global GEE maximum, and not a suboptimal solution.
Recall that the latter framework is guaranteed to find the
GEE maximum, but with a computational complexity that
grows exponentially in the number of UEs. If the algorithm
is initiated at λ0 = 0, corresponding to zero GEE, it finds
the sum-rate maximizing solution in the first iteration of
Dinkelbach’s algorithm. In our experiments, only one or two
further iterations are required to converge to the global GEE
optimum, which is line with the super-linear convergence
rate of Dinkelbach’s algorithm. At convergence, the difference
between the current GEE value λj and the next obtained
GEE value λj+1 is negligible. Fig. 3 shows the behavior
when λj equals the GEE value obtained by the sequential
fractional programming framework with K = 2. Fig. 4 shows
the corresponding behavior for K = 3. In both cases, the
lower and upper bounds in the BRB algorithm that solves
the monotonic subproblem converge to the same GEE value
(λj+1 = λj), which validates that the algorithm has already
converged to the global maximum. The bounding behavior is
very typical for the BRB algorithm [27]; a relatively small
difference between the lower and upper bounds is obtained
quickly, while many more iterations in the BRB algorithm
are required to push the difference down to zero. Notice that
40 iterations are sufficient for K = 2, while the number of
iterations for K = 3 is of the order of 104, which shows the
exponential complexity scaling with the number of UEs.

Finally, Figs. 5 and 6 compare the GEE achieved by the
monotonic fractional programming and the sequential frac-
tional programming frameworks, versus Pmax, for K = 2 and
K = 3, respectively. The GEE obtained when the sequential
framework is used to maximize the sum-rate, and when all
users transmit with full power (i.e. pk = Pmax for all k)
are shown, too. The results again confirm the optimality of
the sequential approach, which performs as the monotonic
approach. In addition, both schemes saturate at large Pmax,
because once Pmax is large enough to allow attaining the
GEE global maximum, the excess transmit power is no longer
used. Using full power at all UEs is globally optimal up to
Pmax = −34 dBW, whereas using all the excess power at
larger Pmax will degrade the GEE. The GEE obtained by sum-
rate maximization is globally optimal up to Pmax = −28 dBW,
while it decreases for larger Pmax. This shows that at least one
UE should transmit at −28 dBW at the globally optimal GEE
point, but not all of them.

Next, we provide numerical results when a larger number
of mobiles is to be optimized. In particular, we assume K = 8
mobiles are present in the area to cover, and Fig. 7 compares
the GEE achieved by the monotonic fractional programming
and the sequential fractional programming frameworks, versus
Pmax. Again, the GEE obtained by sum-rate maximization
and by full power transmission are reported for comparison
purposes. The results again indicate that the sequential frac-

tional programming framework performs as the globally opti-
mal monotonic fractional programming framework. Moreover,
similar remarks as for previous illustrations can be made.

Finally, considering the same scenario as in Fig. 7, Tab.
VI-B shows the number of iterations to reach convergence for
the monotonic fractional programming approach and for the
sequential fractional programming approach versus Pmax. For
the former algorithm, the reported value is just the number
of iterations required by Dinkelbach’s algorithm to converge,
whereas for the latter approach the reported value is the
number of outer iterations, i.e. the number of approximate
fractional problems to be solved by fractional programming.
In both cases the convergence was declared when the relative
squared error between the GEE values between two successive
iterations was not larger than 10−4. Full power allocation
was used as initialization point. The results show that the
monotonic-based algorithm converges in a very limited num-
ber of iterations. This is expected since the monotonic ap-
proach allows for the optimal implementation of Dinkelbach’s
method, which is known to have a super-linear convergence.
Instead, a slightly larger, but still limited, number of iterations
is required for the sequential method. However, it is important
to remember that solving each approximate problem in the
sequential method can be accomplished with limited complex-
ity, whereas the globally optimal method requires to solve a
monotonic problem in each Dinkelbach iteration. Thus, the
results show how the sequential method indeed lends itself to
being implemented in practical systems, while the monotonic
approach is useful for benchmarking purposes. Finally, it is
seen that the number of iterations increases with Pmax, which
is expected since a larger Pmax means a larger feasible set
over which to optimize.
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Fig. 3. Convergence behavior of the BRB algorithm, with K = 2, in the last
iteration of Dinkelbach’s algorithm. The behavior shows the convergence to
the global GEE optimal solution and illustrates the optimality of the sequential
fractional programming framework.

VII. CONCLUSION

This work has developed two optimization frameworks
to characterize the ultimate energy-efficient performance of
wireless networks. The former merges the tool of monotonic
optimization with the theory of fractional programming, and
is guaranteed to achieve global optimality, with a complexity
that, although still exponentially increasing with the number
of links, is significantly lower than that of standard global op-
timization methods. The latter combines the tool of sequential
optimization with fractional programming theory and enjoys
first-order optimality with affordable complexity. Numeri-
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Fig. 4. Convergence behavior of the BRB algorithm, with K = 3, in the last
iteration of Dinkelbach’s algorithm. The behavior shows the convergence to
the global GEE optimal solution and illustrates the optimality of the sequential
fractional programming framework.
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Fig. 5. Achieved GEE versus Pmax for K = 2, using: 1) Monotonic
fractional programming; 2) Sequential Fractional Programming, 3) Sum-rate
maximization by sequential programming; 4) Full Power Allocation.
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Fig. 6. Achieved GEE versus Pmax for K = 3, using: 1) Monotonic
fractional programming; 2) Sequential Fractional Programming, 3) Sum-rate
maximization by sequential programming; 4) Full Power Allocation.
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Fig. 7. Achieved GEE versus Pmax for K = 8, using: 1) Monotonic
fractional programming; 2) Sequential Fractional Programming, 3) Sum-rate
maximization by sequential programming; 4) Full Power Allocation.

Pmax Monotonic Sequential
−50 dBW 1 1
−45 dBW 1 1
−40 dBW 1.57 2.17
−35 dBW 2.23 3.01
−30 dBW 2.47 4.17
−25 dBW 2.81 5.90
−20 dBW 3.01 7.77
−15 dBW 3.15 8.56
−10 dBW 3.28 8.64

TABLE I
AVERAGE NUMBER OF ITERATIONS VERSUS Pmax FOR K = 8, USING: 1)

MONOTONIC FRACTIONAL PROGRAMMING (I.E. OPTIMAL
IMPLEMENTATION OF DINKELBACH’S ALGORITHM); 2) SEQUENTIAL

FRACTIONAL PROGRAMMING.

cal results also show that sequential fractional programming
achieves global optimality in several practical scenarios.
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Footprint of Mobile Communications–The Ecological and Economic
Perspective,” IEEE Communications Magazine, issue on Green Com-
munications, pp. 55–62, Aug. 2011.

[2] Ericsson White Paper, “More than 50 billion connected devices,” Eric-
sson, Tech. Rep. 284 23-3149 Uen, Feb. 2011.

[3] “The 1000x data challenge,” Qualcomm, Tech. Rep. [Online]. Available:
http://www.qualcomm.com/1000x

[4] C. Isheden, Z. Chong, E. Jorswieck, and G. Fettweis, “Framework
for link-level energy efficiency optimization with informed transmitter,”
IEEE Transactions on Wireless Communications, vol. 11, no. 8, pp.
2946–2957, Aug. 2012.

[5] A. Zappone and E. Jorswieck, “Energy efficiency in wireless networks
via fractional programming theory,” Foundations and Trends in Commu-
nications and Information Theory, vol. 11, no. 3-4, pp. 185–396, 2015.

[6] D. W. K. Ng, E. S. Lo, and R. Schober, “Energy-efficient resource al-
location in multi-cell OFDMA systems with limited backhaul capacity,”
IEEE Transactions on Wireless Communications, vol. 11, no. 10, pp.
3618–3631, Oct. 2012.



15

[7] Q. Xu, X. Li, H. Ji, and X. Du, “Energy-efficient resource allocation
for heterogeneous services in OFDMA downlink networks: Systematic
perspective,” IEEE Transactions on Vehicular Technology, vol. 63, no. 5,
pp. 2071–2082, June 2014.

[8] J. Xu and L. Qiu, “Energy efficiency optimization for MIMO broadcast
channels,” IEEE Transactions on Wireless Communications, vol. 12,
no. 2, pp. 690–701, Feb. 2013.

[9] D. W. K. Ng, E. S. Lo, and R. Schober, “Energy-efficient resource
allocation in OFDMA systems with large numbers of base station
antennas,” IEEE Transactions on Wireless Communications, vol. 11,
no. 9, pp. 3292–3304, September 2012.

[10] X. Chen, X. Wang, and X. Chen, “Energy-efficient optimization for
wireless information and power transfer in large-scale MIMO systems
employing energy beamforming,” IEEE Wireless Communications Let-
ters, vol. 2, no. 6, pp. 667–670, Dec. 2013.

[11] Q. Shi, C. Peng, W. Xu, M. Hong, and Y. Cai, “Energy efficiency
optimization for miso swipt systems with zero-forcing beamforming,”
IEEE Transactions on Signal Processing, vol. 4, no. 64, pp. 842–854,
2016.

[12] B. Du, C. Pan, W. Zhang, and M. Chen, “Distributed energy-efficient
power optimization for CoMP systems with max-min fairness,” IEEE
Communications Letters, vol. 18, no. 6, pp. 999–1002, June 2014.

[13] S. He, Y. Huang, S. Jin, and L. Yang, “Coordinated beamforming
for energy efficient transmission in multicell multiuser systems,” IEEE
Transactions on Communications, vol. 61, no. 12, pp. 4961–4971, Dec.
2013.

[14] S. He, Y. Huang, L. Yang, and B. Ottersten, “Coordinated multicell
multiuser precoding for maximizing weighted sum energy efficiency,”
IEEE Transactions on Signal Processing, vol. 62, no. 3, pp. 741–751,
Feb. 2014.

[15] M. Chiang, C. Wei, D. P. Palomar, D. O’Neill, and D. Julian, “Power
control by geometric programming,” IEEE Transactions on Wireless
Communications, vol. 6, no. 7, pp. 2640–2651, July 2007.

[16] L. Venturino, N. Prasad, and X. Wang, “Coordinated scheduling and
power allocation in downlink multicell OFDMA networks,” IEEE Trans-
actions on Vehicular Technology, vol. 58, no. 6, pp. 2835–2848, Jul.
2009.

[17] L. Venturino, A. Zappone, C. Risi, and S. Buzzi, “Energy-efficient
scheduling and power allocation in downlink OFDMA networks with
base station coordination,” IEEE Transactions on Wireless Communica-
tions, vol. 14, no. 1, pp. 1–14, Jan. 2015.

[18] A. Zappone, E. A. Jorswieck, and S. Buzzi, “Energy efficiency and
interference neutralization in two-hop MIMO interference channels,”
IEEE Transactions on Signal Processing, vol. 62, no. 24, pp. 6481–
6495, Dec. 2014.

[19] A. Zappone, L. Sanguinetti, G. Bacci, E. A. Jorswieck, and M. Debbah,
“Energy-efficient power control: A look at 5G wireless technologies,”
IEEE Transactions on Signal Processing, vol. 54, no. 7, pp. 1668–1683,
April 2016.

[20] D. Nguyen, L.-N. Tran, P. Pirinen, and M. Latva-aho, “Precoding for
full duplex multiuser MIMO systems: Spectral and energy efficiency
maximization,” IEEE Transactions on Signal Processing, vol. 61, no. 16,
pp. 4038–4050, August 2013.

[21] H. Tuy, “Monotonic optimization,” SIAM Journal on Optimization,
vol. 11, no. 2, pp. 464–494, 2000.

[22] H. Tuy, F. Al-Khayyal, and P. Thach, “Monotonic optimization: Branch
and cut methods,” in Essays and Surveys in Global Optimization,
C. Audet, P. Hansen, and G. Savard, Eds. Springer US, 2005.

[23] L. Qian and Y. Zhang, “S-MAPEL: Monotonic optimization for non-
convex joint power control and scheduling problems,” IEEE Transac-
tions on Wireless Communications, vol. 9, no. 5, pp. 1708–1719, May
2010.

[24] E. Björnson, G. Zheng, M. Bengtsson, and B. Ottersten, “Robust
monotonic optimization framework for multicell MISO systems,” IEEE
Transactions on Signal Processing, vol. 60, no. 5, pp. 2508–2523, May
2012.

[25] L. Liu, R. Zhang, and K. C. Chua, “Achieving global optimality for
weighted sum-rate maximization in the K-User Gaussian interference
channel with multiple antennas,” IEEE Transactions on Wireless Com-
munications, vol. 11, no. 5, pp. 1933–1945, May 2012.

[26] W. Utschick and J. Brehmer, “Monotonic optimization framework for
coordinated beamforming in multicell networks,” IEEE Transactions on
Signal Processing, vol. 60, no. 4, pp. 1899–1909, April 2012.

[27] E. Björnson and E. A. Jorswieck, “Optimal resource allocation in coor-
dinated multi-cell systems,” Now Publishers: Foundations and Trends in
Communications and Information Theory, vol. 9, no. 2-3, pp. 113–381,
Jan. 2013.

[28] Y. J. Zhang, L. Qian, and J. Huang, “Monotonic optimization in
communication and networking systems,” Now Publishers: Foundations
and Trends in Networking, vol. 7, no. 1, pp. 1–75, 2012.
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