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Inhomogeneous Point-Processes 
to Instantaneously Assess Affective 
Haptic Perception through 
Heartbeat Dynamics Information
G. Valenza1,2, A. Greco2, L. Citi3, M. Bianchi2,4, R. Barbieri1 & E. P. Scilingo2

This study proposes the application of a comprehensive signal processing framework, based on 
inhomogeneous point-process models of heartbeat dynamics, to instantaneously assess affective 
haptic perception using electrocardiogram-derived information exclusively. The framework relies on 
inverse-Gaussian point-processes with Laguerre expansion of the nonlinear Wiener-Volterra kernels, 
accounting for the long-term information given by the past heartbeat events. Up to cubic-order 
nonlinearities allow for an instantaneous estimation of the dynamic spectrum and bispectrum of the 
considered cardiovascular dynamics, as well as for instantaneous measures of complexity, through 
Lyapunov exponents and entropy. Short-term caress-like stimuli were administered for 4.3–25 seconds 
on the forearms of 32 healthy volunteers (16 females) through a wearable haptic device, by selectively 
superimposing two levels of force, 2 N and 6 N, and two levels of velocity, 9.4 mm/s and 65 mm/s. 
Results demonstrated that our instantaneous linear and nonlinear features were able to finely 
characterize the affective haptic perception, with a recognition accuracy of 69.79% along the force 
dimension, and 81.25% along the velocity dimension.

Emotions such as anger, fear, and love can be communicated through touch to the forearm1,2. Indeed, the human 
tactile system is very sensible to affective stimuli like caressing, stroking or patting, thanks to the activity of 
low-threshold mechanoreceptors called CT fibers1,2. Through this knowledge, the relationship between the phys-
ical characteristics of a haptic stimulus and its pleasantness was previously studied3–5. Most pleasant stimuli were 
associated to the lowest applied force3, with movements velocity in the range 1–10 cm/s (3 cm/s considered as the 
most pleasant)4. Of note, these findings are consistent with stimuli administered in different parts of the body 
(forehead, arm, palm, thigh)6.

The dynamics of hearth contractions, which is modulated by the Autonomic Nervous System (ANS) activity, is 
significantly affected by emotion elicitation and by passive touch7–15. Specifically, linear and nonlinear analysis of 
Heart Rate Variability (HRV)16 revealed parasympatetic changes after massage13,17,18. Of note, the use of nonlinear 
quantifiers is justified by the fact that heartbeat dynamics shows exemplary nonlinear behavior, mainly generated 
through integration of multiple neural signaling at the level of the sinoatrial node19.

Major shortcomings of current signal processing methodologies used to objectively assess affective haptic 
stimuli are related to the stimulus duration. Standard linear and nonlinear HRV measures, in fact, require rela-
tively long-term recordings to accurately characterize the emotional state of a subject. For example, observations 
from 30 seconds to 5 minutes are the least needed for simple HRV spectral analysis16. Nevertheless, actual affec-
tive haptic stimuli, such as caresses, usually last for few seconds. Therefore, standard signal processing meth-
odologies are not suitable to perform such an assessment. Even considering affective haptic stimuli lasting for 
more than 30 seconds, the actual emotional perception will be compromised by the saturation of the CT fibers 
activity3,5. Furthermore, from a methodological point of view, standard methods are generally not suitable to 
provide accurate nonlinear fitting in the absence of information regarding the system phase space, and their 

1
Neuroscience Statistics Research Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, 

MA, USA. 
2
Department of Information Engineering and Research Centre E Piaggio, University of Pisa, Pisa, Italy. 

3�c�oo� of �omputer �cience an� ��ectronic �n�ineerin�ǡ �ni�ersit� of �sse�ǡ �o�c�esterǡ �Oͺ3��ǡ ��. ͺDepartment 

of ���ance� �o�oticsǡ Istituto Ita�iano �i �ecno�o�iaǡ �ia �ore�o 30ǡ 16163 
eno�aǡ Ita��. �orrespon�ence an� 
requests for materials should be addressed to G.V. (email: g.valenza@ieee.org)

Recei�e�: 05 �o�em�er 2015

Accepte�: 07 
une 2016

Pu��is�e�: 30 
une 2016

OPEN

mailto:g.valenza@ieee.org


www.nature.com/scientificreports/

2Scientific RepoRts | 6:28567 | DOI: 10.1038/srep28567

estimates are biased by noise statistics (e.g., white or 1/f noise) underlying physiological dynamics, and interpo-
lation techniques20,21.

To overcome these limitations, we here propose the application of inhomogeneous point-process models 
of heartbeat dynamics to assess short-term affective haptic perception in an instantaneous fashion, such that 
caress-like stimuli lasting for 4.3–25 seconds can be therefore automatically recognized. As an input, the proposed 
methodology takes unevenly sampled heartbeat interval information exclusively, derived from the electrocardi-
ogram. To our knowledge, the use instantaneous measures of linear and nonlinear autonomic control derived 
from cardiovascular dynamics in order to characterize and automatically discern physical properties of affective 
haptic perception is novel in the current literature. Motivations of this study are related to scientific knowledge, 
and possible potential application in the field of experimental psychology and assessment of patients with mental 
disorders.

The model underlying these estimates comprises probability density functions (pdf) characterizing and pre-
dicting the time until the next event occurs, as a function of the past history. Of note, the derived instantaneous 
measures can be estimated without applying any interpolation techniques to the original series, and are associ-
ated to effective goodness-of-fit measures20–23. The framework relies on inverse-Gaussian point-processes with 
Laguerre expansion of the nonlinear Wiener-Volterra kernels, accounting for the long-term information given 
by the past heartbeat events20,21,23. This methodology has been successfully applied to the study of brain-heart 
interaction24, assessment of Parkinson’s disease25 and depression in bipolar disorder26,27.

In this study, the use of instantaneous nonlinear estimates is emphasized. We consider up to cubic-order 
nonlinearities, allowing for a comprehensive assessment through the dynamic spectrum and bispectrum of the 
considered cardiovascular dynamics23, as well as for instantaneous measures of complexity, through Lyapunov 
exponents and entropy20,21. As mentioned above, although the underlying physiological dynamics linked to these 
measures is still unknown, it has been widely accepted that the quantification of ANS nonlinear and complex 
dynamics provides meaningful information on psychophysiological and pathological states28–32. Furthermore, 
measures of time-varying complexity have enhanced discriminant power with respect to standard complexity 
measures20,21.

Short-term caress-like stimuli were administered on the forearms of 32 healthy volunteers (16 females) 
through an ad-hoc wearable haptic device able to mimic caresses33. In order to develop a processing chain able to 
actually discern affective perception using electrocardiogram-derived information exclusively, we moved from 
looking for simple statistical differences between stimulus physical characteristics to building an automatic clas-
sification algorithm.

Next, we describe the mathematical bases of the inhomogeneous point-process modeling, extending the pre-
viously proposed approach reported in23. Then, a brief description of related instantaneous estimates is reported, 
allowing with experimental set-up and results which are expressed in terms of confusion matrix of classification 
and complementary statistics.

Materials and Methods
Point-Process Model of the Heartbeat. A random point process is a stochastic process characterizing 
the occurrence in time of discrete events. Here, this methodology aims to deriving estimates from the intrinsically 
discrete, unevenly sampled heartbeat events at each moment in time. To this extent, starting from the electrocar-
diogram (ECG), it is possible to define the pdf predicting the next ventricular contraction (R-peaks), through a 
parametric formulation of the past heartbeat events. As such a pdf is a continuous function defined in the time 
domain, it is possible to obtain instantaneous cardiovascular estimates at any desired time resolution.

Mathematically, motivated by both goodness-of-fit and physiological reasons, the pdf characterizing cardio-
vascular control dynamics follows an inverse-Gaussian model20,21,23:
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with:
•  t ∈  (0, T], the observation interval;
•   =u{ }j j

J
1 the R-wave events, in this study, detected from the ECG, and =∼j N t( ) the index of the previous 

R-wave event before time t
•  ≤ < < < < < ≤+" "u u u u T0 k k K1 1  the times of the events;
•  RRj =  uj −  uj−1 >  0 the jth RR interval;
•  N(t) =  max{k : uk ≤  t} the sample path of the counting process of the RR interval seris;
•  τ= = = <∼

τ
−

→ −N t N t N k u t( ) ( ) lim ( ) max{ : }t k
•   = …− − +u( , RR , RR , , RR )t j j j j M1 1 ;
•  ξ(t) the vector of the model time-varying parameters;
•  µ ξt t( , , ( ))tRR   the first-moment statistic (mean) of the distribution;
•  ξ0(t) >  0 the shape parameter of the inverse Gaussian distribution;

Accounting for history dependence, ξf t t( , ( ))t  is thus able to predict the next heartbeat event, being para-
metrized in its first-order moment as a Nonlinear Autoregressive model with Laguerre expansions (NARL) of the 
Volterra terms:
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is the ith-order discrete time orthonormal Laguerre function, with n ≥  0 and α is the discrete-time Laguerre 
parameter (0 <  α <  1) which determines the rate of exponential asymptotic decline of these functions. The coef-
ficients g0, {g1(i)}, and {g2(i, j)} correspond to the time-varying zero-, first-, second-order NARL coefficients, 
respectively. Considering the derivative R-R series improves the achievement of stationarity within the sliding 
time window W (in this work we have chosen W =  90 sec.)23.

Of note, the corresponding nonlinear autoregressive (NAR) Wiener-Volterra model with degree of nonline-
arity 2 and long-term memory34 becomes:
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As mentioned above, as µ ξt t( , , ( ))tRR   is defined in continuous time, it is possible to obtain an instantaneous 
R–R mean estimate at a very fine timescale, which requires no interpolation between the arrival times of two 
beats. In this work, we consider nonlinearities associated to eq. 5 up to the third-order. Cubic terms, in fact, allow 
for the estimation of the dominant Lyapunov exponent, whereas quadratic terms account for the high-order 
spectral estimation (see sections below).

Parameter Estimation, Model Selection, Goodness-of-Fit. The optimal time-varying parameter vector ξ(t) is 
defined as the set maximizing the following local log-likelihood23:
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where:
•  (t −  l, t] is a local observation interval of duration l;
•  Um m:1 2

 is a subset of R-wave events;
•  m1 =  N(t −  l) +  1;
•  m2 =  N(t);
•  imax =  max{i1, i2, … , in};
•  w(τ) =  e−ϖτ is an exponential weighting function.

We use a Newton-Raphson procedure to maximize the local log-likelihood in eq. 6. This formulation is also 
used to preprocess all the actual heartbeat data with a previously developed algorithm35, performing a real-time 
R-R interval error (e.g., peak detection errors and ectopic beats) detection and correction.

Because there is significant overlap between adjacent local likelihood intervals, we start the Newton-Raphson 
procedure at t with the previous local maximum-likelihood estimate at time t −  ∆ , where ∆  defines the time 
interval shift to compute the next parameter update.

We determine the optimal model orders based on the Kolmogorov-Smirnov (KS) test and associated KS sta-
tistics23. Autocorrelation plots are also considered to test the independence of the model-transformed intervals23.

Instantaneous Time, Frequency, and Higher-Order Spectral Analysis. Estimation of the 
Input-Output Volterra Kernels. In order to provide quantitative tools related to representations defined in the 
time, frequency, and higher order spectral domains, considering quadratic nonlinearities (with n =  2), estimated 
parameters of the fully autoregressive eq. 5 have to be linked to classical input-output Wiener-Volterra model23.
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This transformation can be performed in the frequency domain by using the following relationships23
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where
•  Hp(f1, … , fn) is the Fourier transforms of the Wiener-Volterra kernels of order p
•  Γ′ f( )1 1  and Γ′ f f( , )2 1 2  are the Fourier transforms of the extended terms of γ1(i) and γ2(i, j)23, respectively
•  M is a given integer representing the kernel order
•  = ⌈ ⌉M Mmid( ) /2
•  r =  2p −  M and σM is the permutation set of �q

Since the Volterra kernels induced by the NAR model are nested, the Mth-order kernel can be deduced 
recursively23.

Instantaneous Analysis in the Time and Frequency Domain. The time-domain characterization is based on the 
first and the second order moments of the underlying probability structure22. Namely, given the time-varying 
parameter set ξ(t), the instantaneous estimates of mean µ ξt t( , , ( ))tRR  , R-R interval standard deviation 
σ ξt t( , , ( ))RR t

2  , mean heart rate µ ξt t( , , ( ))HR t , and heart rate standard deviation σ ξt t( , , ( ))HR t  can be 
derived at each moment in time as follows22:
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By integrating the (11) in each frequency band, we can compute the index within the very low frequency 
(VLF =  0.01–0.05 Hz), low frequency (LF =  0.05–0.15 Hz), and high frequency (HF =  0.15–0.5 Hz) ranges22.

Instantaneous Bispectral Analysis. The higher-order spectral representation allows for statistics beyond the sec-
ond order, and phase relations between frequency components otherwise suppressed.

The analytical solution for the bispectrum of a nonlinear system response subject to stationary, zero-mean 
Gaussian input can be found in36.

Further details on the instantaneous bispectrum derivation from point-process nonlinear models can be 
found in23.

Through this powerful computational tool, we here evaluate the instantaneous presence of nonlinearity in 
heartbeat series by calculating the nonlinerar sympatho-vagal interactions. Specifically, by integrating |Bis(f1, f2, t)|  
in the appropriate frequency bands, it is possible to obtain:
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Instantaneous Measures of Complexity. Instantaneous Lyapunov Exponents. Considering cubic non-
linearities (with n =  3) in the fully autoregressive eq. 5, and using a Fast Orthogonal Search algorithm, it is pos-
sible to estimate the complete Lyapunov Exponents (LE) spectrum at each moment in time21. In this study, we 
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use the Instantaneous Dominant Lyapunov Exponent (IDLE, λ1), which is the first exponent of the LE spectrum, 
along with λ2:

∑λ =
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N
R1 ln

(15)
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j ii
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where ∆  is the sampling time step, N the length of data samples, and R(j)ii is part of the QR decomposition of the 
Jacobian of the time series21.

Instantaneous Entropy Measures. In this study, the estimated instantaneous entropy measures refer to the inho-
mogeneous point-process approximate and sample entropy, AI and SI, respectively20. These measures have their 
foundation in the instantaneous phase space estimation, in which the distance between two points is calculated 
through KS distance (i.e. the maximum value of the absolute difference between two cumulative distribution 
functions) between the two pdfs associated to these points. The time-varying radius r(t) is instantaneously 
expressed as σ= . µr t( ) 0 2

te( )

20.
Moreover, AI and SI dynamical values are not seriously affected by the kind of noise underlying the complex 

system, thus ensuring truly instantaneous tracking of the dynamic system complexity20.

Experimental Setup. Thirty-two participants aged 27 ±  2 (16 females) gave their informed consent to 
take part in the study. No participants reported physical limitations and any experience of mental or personality 
disorder in their life that would affect the experimental outcomes. All participants gave written informed con-
sent to participating in the study, which was approved by the Ethical Committee of the University of Pisa-Pisa 
University Hospital, Pisa (Italy). All experimental procedures and analyses were carried out in accordance with 
such approved guidelines. During the experimental protocol the participants were comfortably seated, the right 
forearm was horizontal and placed on the forearm support, hand palm down. For all trials, participants wore 
earplugs in order to prevent any auditory cues.

The ad-hoc robotic device uses a layer of elastic fabric to convey haptic like-caressing stimuli33 (see Fig. 1). The 
system is endowed with a load cell placed at the basis of the forearm support, prior to the experiment, the load 
cell was auto calibrated with respect to the forearm weight. When the device was active, two different operating 
phases were distinguishable: a calibration phase, when forces exerted by the fabric on the user were calibrated, 
and a movement phase. In this phase, the motors started to coherently rotate and the fabric moves forward and 
backward over the user forearm, simulating a caress. For further technical details on the device, the reader is 
invited to refer to ref. 33.

In this study, we considered 4 different stimuli among 2 levels of force (F1 =  2 N, F2 =  6 N) and 2 levels of 
velocity (V1 =  9.4 mm/s, V2 =  65 mm/s), obtained by feeding the motors with two different sinusoidal input tra-
jectories, at the frequencies of 0.1 Hz and 0.4 Hz. These values were chosen according to previous studies4,33. 
Exemplary timeline is shown in Fig. 1. Between two stimuli, the motors were stopped and the force was set to 0 N, 
in this case the fabric was only lightly in contact with the forearm. As the force increases, the fabric is more closely 
wrapped around the forearm and there is no more pure sliding (as with light forces) but also skin torsion. This 
behavior was coherent with the goal to reproduce as exhaustively as possible the behavior of the human caress. 
Throughout the experiment, there were two phases of resting sessions with a duration of two minutes: the first at 
the beginning of the protocol, the second at the end of the stimulation.

The four kinds of stimulation were suitably randomized, with a pre-stimulus and a post-stimulus interval of 
35 seconds each. During the elicitation, the ECG was continuously acquired, following the Einthoven triangle 
configuration, by means of a dedicate hardware module, i.e. the ECG100C Electrocardiogram Amplifier from 
BIOPAC inc. with a sampling rate of 500 Hz. To obtain the HRV series from the ECG, a QRS complex detection 

Figure 1. (Top) Experimental protocol timeline and (bottom) the haptic system worn by a subject. 
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algorithm was used, i.e. the automatic algorithm developed by Pan-Tompkins37. Peak detection and consequent 
correction of ectopic beats was performed with an automatic technique previously described in ref. 35.

Statistical Analysis and Pattern Recognition. All features were instantaneously calculated with a ∆  =  5 ms tem-
poral resolution. We considered the time-varying dynamics of a given feature X estimated throughout the 
short-time window when the affective stimulus occurs. Although the length of such a short-time window depends 
on the caressing velocity ranging from 4.3 to 25 seconds, in order to avoid possible biases related to signal length, 
we considered feature values derived from the last second of each caressing stimulus. In order to reduce possible 
intra-, and inter-subject variability, this value was then normalized by the feature value gathered from the fist 10 s 
of the initial resting state. Quantification of the feature dynamical information was performed through the max-
imum value lX, the median ∼X and its respective absolute deviation ∼

∼
X, all calculated along the time of last second 

of caressing. Accordingly, since we derived 13 instantaneous features, the total number of parameter used for the 
force/velocity classification was 39. A summary of all considered features is reported in Table 1. The median ∼X is 
considered as a measure of central tendency, which can be related to classical estimation methods that provide 
one finite value when considering a given time window, whereas the median absolute deviation ∼

∼
X and the maxi-

mum value lX  depend on the feature variability along the time. Then, to average among multiple subjects, we 
consider group values expressed as median and its respective absolute deviation (i.e., for a feature ∼X , 
= ±∼ ∼ ∼X X XMedian( ) MAD( ) where = | − |˜ ˜ ˜X X XMAD( ) Median( Median( ) )).
As an exploratory preliminary step, for each feature, we evaluated the statistical differences between groups 

of caresses, identified by levels of force/velocity. The difference was expressed in terms of p-values from a 
non-parametric Wilcoxon test for paired data, under the null hypothesis that the medians of the two sample 
groups are equal.

In order to actually discern between force and velocity of the caresses using heartbeat dynamics exclusively, 
an automatic classification algorithm is needed. To this extent, each feature constituted a single dimension of the 
feature space. A multidimensional point was considered an outlier if z-scores associated to its dimensions were 
greater than 4. The obtained feature set is taken as an input of the Leave-One-Out (LOO) procedure applied on 
a Support Vector Machine (SVM)-based pattern recognition38 (see Fig. 2). Within the LOO scheme, the training 
set was normalized by subtracting the median value and dividing by the MAD over each dimension. More spe-
cifically, we used a nu-SVM (nu =  0.5) having a radial basis kernel function with γ =  n−1, with n =  39 equal to the 
number of features.

Additionally, in order to explore the relative importance of all features in the classification problem, we 
employed a support vector machine recursive feature elimination (SVM-RFE) procedure in a wrapper approach 

Feature Symbol Description Meaning Reference

µ∼RR, µ∼
∼

RR, µnRR
Mean of the Inverse-Gaussian pdf Instantaneous Mean of the RR 

Interval Series 22,23

σ∼RR, σ∼∼RR, σnRR
Standard Deviation of the Inverse-
Gaussian pdf

Instantaneous Standard 
Deviation of the RR Interval 
Series

22,23

σ∼HR, σ∼∼HR, σnHR Heart rate Standard Deviation Instantaneous Std of the 
Heartbeat Series 22,23

∼LF, ∼
∼
LF, mLF

Low-Frequency Power of the RR 
interval series spectrum

Instantaneous Sympathetic and 
Parasympathetic Activity 22,23

∼HF, ∼
∼
HF, nHF

High-Frequency Power of the RR 
interval series spectrum

Instantaneous Parasympathetic 
Activity 22,23

∼LF HF/ , ∼
∼
LF HF/ , nLF HF/

Ratio between Low- and High-
Frequency Power of the RR 
interval series spectrum

Instantaneous Sympatho-Vagal 
Balance 22,23

∼LL, ∼
∼
LL, mLL

Low-Freq./Low-Freq. integration 
of the RR interval series 
bispectrum

Instantaneous Nonlinear 
Sympatho-Vagal Interactions 23

∼LH , ∼
∼
LH , nLH

Low-Freq./High-Freq. integration 
of the RR interval series 
bispectrum

Instantaneous Nonlinear 
Sympatho Vagal Interactions 23

∼HH , ∼
∼
HH , nHH

High-Freq./High-Freq. 
integration of the RR interval 
series bispectrum

Instantaneous Nonlinear 
Sympatho-Vagal Interactions 23

∼AI, 
∼∼AI, mAI

Inhomogeneous Point-Process 
Approximate Entropy of the RR 
interval series

Measure of Instantaneous 
Complexity 20

∼SI, 
∼∼SI, mSI

Inhomogeneous Point-Process 
Sample Entropy of the RR interval 
series

Measure of Instantaneous 
Complexity 20

λ∼1, λ∼
∼

1, λm1
First Lyapunov Exponent of the 
RR interval series

Measure of Instantaneous 
Complexity 21

λ∼2, .., λm2
Second Lyapunov Exponent of the 
RR interval series

Measure of Instantaneous 
Complexity 21

Table 1.  A summary of all features used in this study.



www.nature.com/scientificreports/

7Scientific RepoRts | 6:28567 | DOI: 10.1038/srep28567

(RFE was performed on the training set of each fold and we computed the median rank for each feature over all 
folds). We specifically chose a recently developed nonlinear SVM-RFE which employes a radial basis function 
kernel and includes a correlation bias reduction strategy into the feature elimination procedure39.

Classification results are here expressed in terms of recognition accuracy, and in form of confusion matrix. 
The generic element rij of the confusion matrix indicated a percentage as to how many times a pattern belonging 
to class i was classified as belonging to class j. A more diagonal confusion matrix corresponded to a higher degree 
of classification. All of the algorithms were implemented by using Matlab© v8.4 endowed with an additional 
toolbox for pattern recognition, i.e., LIBSVM40.

In the next section, we report experimental results in classifying force and velocity level of the administered 
caress-like stimuli. Specifically, we show best classification results given the ad-hoc number of feature identified 
through the SVM-RFE procedure.

Results
Instantaneous series from a representative subject are shown in Figs 3 and 4. The model order selection anal-
ysis revealed optimal NARL order as p =  3 and M1 =  1, M2 =  0. Over all the considered subjects, 31 out of a 
total of 32 recordings showed KS plots and more than 98% of the autocorrelation samples within the 95% of 
the confidence interval. Of note, KS distances were as low as 0.0313 ±  0.0062. Figures 5 and 6 show an exem-
plary Kolmogorow-Smirnov and autocorrelation plots demonstrating how our model well predicted all heartbeat 
events of a given RR interval series.

As a first preliminary investigation, we performed a statistical analysis of all the features between force and 
velocity levels. Significant results (p <  0.05) from such an analysis are shown in Table 2.

Significant differences were found in discerning caresses performed at different velocities only. No relevant 
changes, in fact, were found in instantaneous heartbeat linear and nonlinear dynamics between caresses per-
formed at different force levels. On the other hand, caresses performed at higher velocity affected the variability of 
all of the instantaneous measures, as well as median value of four features, one of which was related to heartbeat 
complex dynamics, and maximum value of 8 features, six of which were related to heartbeat complex/nonlinear 
dynamics (see Table 2).

Caressing Force Classification. Table 3 shows the confusion matrix as well as the total average accuracy 
whilst discerning caresses-like stimuli performed at different force levels, considering first 26 features selected 
by the nonlinear SVM-RFE algorithm. This specific feature set, giving the best total average accuracy, which was 
69.79%, is partially listed in Table 4 ordered by median rank over every fold computed during the LOO procedure.

Figure 7 shows the recognition accuracy while discerning caressing force levels, as a function of the feature 
rank estimated through the SVM-RFE procedure.

Furthermore, we performed the classification of caressing at low force vs. high force levels using features only 
related to the central tendency (median) of the time-varying estimates, such as µ∼RR, σ∼RR, σ∼HR, ∼LF, ∼HF, and ∼LF HF/ , ∼LL, ∼LH, ∼HH, λ∼1, λ

∼
2, ∼AI, 

∼SI, avoiding any measure of variability (i.e., MAD and maximum values). Results of this 
classification are shown in Table 5. In this case, the total average accuracy was 57.66%.

Caressing Velocity Classification. Table 6 shows the confusion matrix as well as the total average accu-
racy whilst discerning caresses performed at different velocity levels, considering first 35 features selected by the 

Figure 2. Overview of the signal processing and classification chain. ANS dynamics on cardiovascular 
control modulates the heartbeat dynamics. Starting from data acquisition, RR series are extracted by using 
automatic peak detection algorithms applied on artifact-free signals. The nonlinear point-process model is fitted 
to the HRV series, and all features are estimated in an instantaneous fashion. Successively, for each subject, a 
feature set is defined and fed into support vector machine-based classification using leave-one our procedures.
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nonlinear SVM-RFE algorithm. This specific feature set, giving the best total average accuracy, which was 81.25%, 
is partially listed in Table 7 ordered by median rank over every fold computed during the LOO procedure.

Figure 3. Instantaneous heartbeat estimates computed from a representative subject, obtained through 
a point-process NARL model. Black lines and gray areas indicate median and MAD values among subjects. 
Vertical red lines mark the short-time window of caressing. From the top panel, the estimated mean, µRR(t), the 
RR standard deviation, σRR(t), the high frequency (HF), the low frequency (LF), the (LF/HF) ratio, and LL are 
reported.
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Figure 8 shows the recognition accuracy, while discerning caressing velocity levels, as a function of the feature 
rank estimated through the SVM-RFE procedure.

Figure 4. Instantaneous heartbeat estimates computed from a representative subject, obtained through 
a point-process NARL model. Black lines and gray areas indicate median and MAD values among subjects. 
Vertical red lines mark the short-time window of caressing. From the top panel, LL and HH bispectral statistics, 
the instantaneous first and second Lyapunov exponent, λ1 and λ2, respectively, and the instantaneous point-
process entropy measures AI and SI are reported.
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Likewise performed for the caressing force classification, we performed the classification of caressing at low 
velocity vs. high velocity levels using features only related to the central tendency (median) of the time-varying 
estimates, avoiding any measure of variability. Results of this classification are shown in Table 8. In this case, the 
total average accuracy was 57.14%.

Discussion and Conclusion
In conclusion, we proposed a comprehensive signal processing framework to assess short-term affective haptic 
stimuli through the analysis of heartbeat dynamics exclusively. We built on a previously proposed set of equations 
defining inhomogeneous point-process nonlinear models23 to obtain instantaneous linear, nonlinear, and com-
plex estimates of cardiovascular dynamics. Key concepts relay on the definition of a continuous pdf predicting the 
next heartbeat event, identified through R-waves from the ECG, parametrized using a nonlinear autoregressive 
model with Laguerre expansion of the Wiener-Volterra terms23. Such a parametrization is defined up to the cubic 
terms, allowing for the instantaneous estimation of Lyapunov exponents21 and approximate and sample entropy20, 
as well as instantaneous nonlinear bispectral measures, and linear estimates defined in the time and frequency 
domain23.

To our knowledge, this is the only signal processing method proposed so far able to objectively assess 
short-term (4.3 to 25 seconds) affective haptic stimuli such as caresses. Standard linear and nonlinear HRV meas-
ures16, in fact, would be unable to perform such an assessment as they require relatively long-term recordings to 
accurately characterize the emotional state of a subject. On the other hand, recognition of long-term caressing 
(i.e., > 30 seconds) would lead to the saturation of the CT fibers activity3,5, strongly biasing the affective part of the 
emotional perception. Of note, motivation of this study are strictly related to objective assessments performed in 
experimental psychology and, more in general, in the evaluation of patients with mental disorders.

Our analysis revealed that instantaneous cardiovascular dynamics is significantly affected by the velocity of 
the affective haptic stimuli (see Table 2). As a matter of fact, no relevant changes were found between caresses 
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Figure 5. KS plot using the proposed inhomogeneous point process nonlinear models for a representative 
subject (N. 1) undergoing caressing-like stimuli. Blue diagonal and red lines indicate the 95% confidence 
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performed at different force levels. Of note, 14 out of the 25 features which were sensitive to caressing velocity 
level are derived in a nonlinear fashion, revealing a decrease of complexity variability and maximum values dur-
ing the haptic stimulus. This result further justify the use of real-time estimates of heartbeat dynamics through 
point-process modeling, also highlighting the great role of nonlinear dynamics in cardiovascular control, fer-
vently pointed out in the current literature16. In order to develop a processing chain able to actually discern 

Feature Velocity 9.4 mm/s Velocity 65 mm/s p-values

µnRR 0.88 ±  0.11 0.84 ±  0.11 0.0075
nHF 591.10 ±  357.82 547.99 ±  321.54 0.046
nLH 8.43 108 ±  4.22 108 5.09 108 ±  2.5 108 0.040
nHH 1.6 109 ±  9.37 108 1.29 109 ±  8.3 108 0.0076

λm1 0.080 ±  0.074 0.056 ±  0.066 0.047

λm2 − 0.064 ±  0.041 − 0.11 ±  0.035 < 10−6

mAI 0.39 ±  0.051 0.33 ±  0.051 < 7 *  10−5

mSI 0.30 ±  0.059 0.24 ±  0.064 < 4 *  10−5

σ∼HR 4.48 ±  1.89 5.47 ±  1.99 0.049
∼LF 538.25 ±  354.08 706.40 ±  496.25 0.015
∼HF 384.12 ±  231.03 451.63 ±  269.10 0.013

λ∼1 − 0.0059 ±  0.057 0.016 ±  0.058 0.01

µ∼
∼

RR
0.020 ±  0.0065 0.015 ±  0.0061 0.016

σ∼
∼

RR 29.83 ±  18.92 9.24 ±  5.57 < 10−6

σ∼
∼

HR 0.341 ±  0.17 0.138 ±  0.085 < 10−4

∼∼LF 79.17 ±  48.63 29.71 ±  26.19 < 10−3

∼∼HF 41.44 ±  31.21 16.21 ±  11.30 < 10−3

∼∼LF HF/ 0.30 ±  0.23 0.12 ±  0.089 < 10−3

∼∼LL 5.08 107 ±  3.8 107 2.27 107 ±  2.02 107 0.041

∼∼LH 6.88 107 ±  3.76 107 2.29 107 ±  1.09 107 < 10−4

∼∼HH 1.18 108 ±  8.05 107 5.52 107 ±  4.57 107 < 10−5

λ∼
∼

1
0.026 ±  0.0079 0.011 ±  0.0044 < 10−6

λ∼
∼

2
0.020 ±  0.0035 0.011 ±  0.0040 < 10−6

∼∼AI
0.021 ±  0.0077 0.0060 ±  0.0034 < 10−6

∼∼SI
0.019 ±  0.0080 0.0057 ±  0.0033 < 10−6

Table 2.  Significant features and p-values. p-values are gathered from the Wilcoxon non-parametric test.

SVM Force 2 N Force 6 N
Force 2 N 76.09 23.91
Force 6 N 36.00 64.00

Table 3.  Confusion matrix for caressing administered at different force levels. Values are expressed as 
percentages. Total Accuracy: 69.79%.

Rank Feature
1 mLL

2 σ∼
∼

HR

3 ∼HH
4 σnHR

5 nLF HF/

6 λ∼
∼

1

Table 4.  Selected features ordered by their median rank over every fold computed during the LOO 
procedure for force classification.
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affective perception, we moved from looking for simple statistical differences between stimulus physical charac-
teristics to building an automatic classification algorithm. The automatic classification, embedded in the on-line 
processing chain, was performed by means of nu-SVM, and following a LOO and nonlinear SVM-RFE proce-
dures for cross-validation and feature selection, respectively. Recognition accuracies were very satisfactory, being 
of 69.79% along the force dimension, and 81.25% along the velocity dimension. This suggest that, in line with 
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Figure 7. Recognition accuracy in discerning caressing force levels as a function of the feature rank 
estimated through the SVM-RFE procedure. 

SVM Force 2 N Force 6 N
Force 2 N 53.70 46.30
Force 6 N 38.60 61.40

Table 5.  Confusion matrix for caressing at different force levels, without features related to instantaneous 
variability. Values are expressed as percentages. Total Accuracy: 57.66%.

SVM Velocity 9.4 mm/s Velocity 65 mm/s
Velocity 9.4 mm/s 86.67 13.33
Velocity 65 mm/s 23.53 76.47

Table 6.  Confusion matrix for caressing administered at different velocity levels. Values are expressed as 
percentages. Total Accuracy: 81.25%.

Rank Feature
1 σ∼RR

2 ∼LF HF/

3 nLF LF/

4 ∼LL
5 σnRR

6 mSI

Table 7.  Selected features ordered by their median rank over every fold computed during the LOSO 
procedure for velocity classification.
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Figure 8. Recognition accuracy in discerning caressing velocity levels as a function of the feature rank 
estimated through the SVM-RFE procedure. 
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results from the statistical analysis, cardiovascular dynamics is strongly affected by the caressing velocity, rather 
than the caressing force. In order to further emphasize the role of our processing framework, which allows for the 
calculation of features’ variability measures through the definition of instantaneous estimates, we performed the 
caressing force and velocity classification using features only related to the central tendency. In these cases, recog-
nition accuracy were as low as < 58%. This result demonstrates that information on central tendency only are not 
sufficient to achieve an automatic discrimination of affective haptic perception using heartbeat dynamics exclu-
sively. This is also demonstrated by the results of the SVM-RFE feature selection procedure, pointing out how 
complexity variability measures are the most needed for the classification (see Tables 4 and 7). Indeed, as shown 
in Fig. 3, the time-varying dynamics of the heartbeat features is highly non-stationary, with most significant 
changes in nonlinear and complex dynamics (i.e., LL, LH, HH, λ1, λ2, AI, SI) during caressing at slower velocity. 
Importantly, our results are not biased by possible stochastic components underlying physiological dynamics, as 
our instantaneous complexity measures are not significantly affected by the statistical properties of the physiolog-
ical noise behind the observed dynamics20,21.

Finally, we remark that in this study caressing-like stimuli were administered through an ad-hoc robotic 
device29. Further research is needed to investigate possible differences/similarities with actual caresses by a 
human hand, possibly investigating more than two levels of caressing force and velocity.
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