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Abstract We design a fast implicit real QZ algorithm for eigenvalue computation
of structured companion pencils arising from linearizations of polynomial rootfind-
ing problems. The modified QZ algorithm computes the generalized eigenvalues of
an N ×N structured matrix pencil using O(N) flops per iteration and O(N) mem-
ory storage. Numerical experiments and comparisons confirm the effectiveness and
the stability of the proposed method.
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1 Introduction

Linearization techniques based on polynomial interpolation are becoming nowa-
days a standard way to solve numerically nonlinear zerofinding problems for poly-
nomials or more generally for analytic functions [2]. Since in many applications the
interest is in the approximation of real zeros, methods using Chebyshev–like ex-
pansions are usually employed. Alternatively, Lagrange interpolation at the roots
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of unity can be considered. For a real function a straightforward modification of
the classical approach [6,18] yields a structured companion pencil A(λ) = F − λG
where F and G are real N ×N low rank corrections of unitary matrices. The com-
putation of the generalized eigenvalues of this pencil can be performed by means
of the QZ algorithm [23] suitably adjusted to work in real arithmetic.

In this paper we propose a fast adaptation of the real QZ algorithm for com-
puting the generalized eigenvalues of certain N ×N structured pencils using only
O(N) flops per iteration and O(N) memory storage. Since in most cases it is rea-
sonable to assume that the total number of iterations is a small multiple of N (see
e.g., [24]), we have a heuristic complexity estimate of O(N2) flops to compute all
the eigenvalues.

The pencils A(λ) = F − λG, F,G ∈ RN×N , we consider here satisfy two basic
properties:

1. F is upper Hessenberg and G is upper triangular;
2. F and G are rank–one corrections of unitary matrices.

We refer to such a pencil A(λ) as a companion–like pencil, since the class includes
companion pencils as a special case. Sometimes A(λ) is also denoted by (F,G) ∈
RN×N ×RN×N .

Let (Fk, Gk), k ≥ 0, F0 = F,G0 = G, be the sequence of matrix pairs (pencils)
generated by the real QZ algorithm starting from the companion–like pencil A(λ).
Single or double shifting is applied in the generic iteration Fk → Fk+1 Gk → Gk+1

in order to carry out all the computations in real arithmetic. Whatever strategy
is used, it is found that both Ak(λ) and Ak+1(λ) are still companion–like pencils.
As a consequence of this invariance we obtain that all the matrices involved in the
QZ iteration inherit a rank structure in their upper triangular parts. This makes
it possible to represent Fk, Gk and Fk+1, Gk+1 as data–sparse matrices specified
by a number of parameters (called generators) which is linear w.r.t. the size of the
matrices. This general principle has been applied, for instance, in [1] and [5].

In this paper we introduce a convenient set of generators and design a struc-
tured variant of the real QZ iteration which takes in input the generators of Fk
and Gk together with the shift parameters and returns as output the generators
of Fk+1 and Gk+1. It is shown that the arithmetic cost for each iteration is O(N)
using linear memory storage. Numerical experiments confirm the effectiveness and
the robustness of the resulting eigensolver.

The paper is organized as follows. In Section 2 we set up the scene by in-
troducing the matrix problem and its basic properties. In Section 3 we define an
appropriate set of generators for the matrices involved. In Section 4 we design
the fast adaptation of the QZ algorithm using these generators and exploiting the
resulting data–sparse representations. We focus here on double shifting, since the
single shifted iteration has been already devised in [5]. A proof of the correctness
of the algorithm is given in Appendix. Finally, in Section 5 we show the results
of numerical experiments, whereas conclusion and future work are presented in
Section 6.

2 The Problem Statement

Companion pencils and companion–like pencils expressed in the Lagrange basis at
the roots of unity are specific instances of the following general class.
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Definition 1 The matrix pair (A,B), A,B ∈ RN×N , belongs to the class PN ⊂
RN×N ×RN×N of companion–like pencils iff:

1. A ∈ RN×N is upper Hessenberg;
2. B ∈ RN×N is upper triangular;
3. There exist two vectors z ∈ RN and w ∈ RN and an orthogonal matrix V ∈

RN×N such that

A = V − zw∗; (2.1)

4. There exist two vectors p ∈ RN and q ∈ RN and an orthogonal matrix U ∈
RN×N such that

B = U − pq∗. (2.2)

In order to characterize the individual properties of the matrices A and B we
give some additional definitions.

Definition 2 We denote by TN the class of upper triangular matrices B ∈ RN×N
that are rank-one perturbations of orthogonal matrices, i.e., such that (2.2) holds
for a suitable orthogonal matrix U and vectors p, q.

Since B is upper triangular the strictly lower triangular part of the orthogonal
matrix U in (2.2) coincides with the corresponding part of the rank one matrix
pq∗, i.e.,

U(i, j) = p(i)q∗(j), 1 ≤ j < i ≤ N, (2.3)

where {p(i)}i=1,...,N and {q(j)}j=1,...,N are the entries of p and q, respectively.

Definition 3 We denote by UN the class of orthogonal matrices U ∈ RN×N that
satisfy the condition (2.3), i.e., for which there exist vectors p, q such that the
matrix B = U − pq∗ is an upper triangular matrix.

Observe that we have

U ∈ UN ⇒ rankU(k + 1: N, 1: k) ≤ 1, k = 1, . . . , N − 1.

From the nullity theorem [13], see also [11, p.142], it follows that the same property
also holds in the strictly upper triangular part, namely,

U ∈ UN ⇒ rankU(1: k, k + 1: N) ≤ 1, k = 1, . . . , N − 1. (2.4)

Definition 4 We denote by HN the class of upper Hessenberg matrices A ∈ RN×N
that are rank one perturbations of orthogonal matrices, i.e., such that (2.1) holds
for a suitable orthogonal matrix V and vectors z,w.

Definition 5 We denote by VN the class of orthogonal matrices V ∈ RN×N for
which there exist vectors z,w such that the matrix A = V − zw∗ is an upper
Hessenberg matrix.

We find that

V ∈ VN ⇒ rankV (k + 2: N, 1: k) ≤ 1, k = 1, . . . , N − 2.
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Again from the nullity theorem it follows that a similar property also holds in the
upper triangular part, namely,

V ∈ VN ⇒ rankV (1: k, k : N) ≤ 2, k = 1, . . . , N. (2.5)

In this paper we consider the problem of efficiently computing the (generalized)
eigenvalues of a companion–like matrix pencil (A,B) ∈ PN by exploiting the rank
and banded structures of the matrix classes mentioned above. The QZ algorithm
is the customary method for solving generalized eigenvalue problems numerically
by means of unitary transformations (see e.g. [14] and [23]). For the pair (A,B) in
Hessenberg/triangular form the implicit QZ step consists in the computation of
unitary matrices Q and Z such that

A1 = Q∗AZ is upper Hessenberg, B1 = Q∗BZ is upper triangular (2.6)

and some initial conditions hold. For the QZ iteration applied to a real matrix pair
with double shifting the initial condition is

(Q∗p(AB−1))(:, 2 : N) = 0, (2.7)

where p(z) = α + βz + γz2 is the shift polynomial. In this case one obtains the
orthogonal Hessenberg matrices Q and Z in the form

Q = Q̃1Q̃2 · · · Q̃N−2Q̃N−1, Z = Z̃1Z̃2 · · · Z̃N−2Z̃N−1, (2.8)

where

Q̃i = Ii−1 ⊕Qi ⊕ IN−i−2, i = 1, . . . , N − 2, Q̃N−1 = IN−2 ⊕QN−1,

Z̃i = Ii−1 ⊕ Zi ⊕ IN−i−2, i = 1, . . . , N − 2, Z̃N−1 = IN−2 ⊕ ZN−1

(2.9)

and Qi, Zi, i = 1, . . . , N − 2 are 3 × 3 orthogonal matrices, QN−1, ZN−1 are real
Givens rotations.

Since the Hessenberg/triangular form is preserved under the QZ iteration an
easy computation then yields

(A,B) ∈ PN , (A,B)
QZ step→ (A1, B1)⇒ (A1, B1) ∈ PN . (2.10)

Indeed if Q and Z are unitary then from (2.1) and (2.2) it follows that the matrices
A1 = Q∗AZ and B1 = Q∗BZ satisfy the relations

A1 = V1 − z1w
∗
1, B1 = U1 − p1q

∗
1

with the unitary matrices V1 = Q∗V Z, U1 = Q∗UZ and the vectors z1 = Q∗z, w1 =
Z∗w, p1 = Q∗p, q1 = Z∗q. Moreover one can choose the unitary matrices Q and
Z such that the matrix A1 is upper Hessenberg and the matrix B1 is upper tri-
angular. Thus, one can in principle think of designing a structured QZ iteration
that, given in input a condensed representation of the matrix pencil (A,B) ∈ PN ,
returns as output a condensed representation of (A1, B1) ∈ PN generated by one
step of the classical QZ algorithm applied to (A,B). In the next sections we first
introduce an eligible representation of a rank-structured matrix pencil (A,B) ∈ PN
and then discuss the modification of this representation under the QZ process.
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3 Quasiseparable Representations

In this section we exploit the properties of quasiseparable representations of rank–
structured matrices [10], [11, Chapters 4,5]. First we recall some general results
and definitions. Subsequently, we describe their adaptations for the representation
of the matrices involved in the structured QZ iteration applied to an input matrix
pencil (A,B) ∈ PN .

A matrix M = {Mij}Ni,j=1 is (rL, rU )-quasiseparable, with rL, rU positive inte-

gers, if, using MATLAB1 notation,

max
1≤k≤N−1

rank (M(k + 1 : N, 1 : k)) ≤ rL,

max
1≤k≤N−1

rank (M(1 : k, k + 1 : N)) ≤ rU .

Roughly speaking, this means that every submatrix extracted from the lower tri-
angular part of M has rank at most rL, and every submatrix extracted from the
upper triangular part of M has rank at most rU . Under this hypothesis, M can
be represented using O(((rL)2 + (rU )2)N) parameters. In this section we present
such a representation.

The quasiseparable representation of a rank–structured matrix consists of a
set of vectors and matrices used to generate its entries. For the sake of notational
simplicity and clarity, generating matrices and vectors are denoted by a roman
lower-case letter.

In this representation, the entries of M take the form

Mij =


p(i)a>ijq(j), 1 ≤ j < i ≤ N,
d(i), 1 ≤ i = j ≤ N,
g(i)b<ijh(j), 1 ≤ i < j ≤ N

(3.1)

where:

- p(2), . . . , p(N) are row vectors of length rL, q(1), . . . , q(N−1) are column vectors
of length rL, and a(2), . . . , a(N−1) are matrices of size rL×rL; these are called
lower quasiseparable generators of order rL;

- d(1), . . . , d(N) are numbers (the diagonal entries),
- g(2), . . . , g(N) are row vectors of length rU , h(1), . . . , h(N − 1) are column vec-

tors of length rU , and b(2), . . . , b(N − 1) are matrices of size rU × rU ; these are
called upper quasiseparable generators of order rU ;

- the matrices a>ij and b<ij are defined as

{
a>ij = a(i− 1) · · · a(j + 1) for i > j + 1;

a>j+1,j = 1

and {
b<ij = b(i+ 1) · · · b(j − 1) for j > i+ 1;

b<i,i+1 = 1.

1 MATLAB is a registered trademark of The Mathworks, Inc..
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From (2.4) it follows that any matrix from the class UN has upper quasisepa-
rable generators with orders equal to one.

The quasiseparable representation can be generalized to the case where M is
a block matrix, and to the case where the generators do not all have the same
size, provided that their product is well defined. Each block Mij of size mi × nj is
represented as in (3.1), except that the sizes of the generators now depend on mi

and nj , and possibly on the index of a and b. More precisely:

- p(i), q(j), a(k) are matrices of sizes mi × rLi−1, r
L
j × nj , r

L
k × r

L
k−1, respectively;

- d(i) (i = 1, . . . , N) are mi × ni matrices,
- g(i), h(j), b(k) are matrices of sizes mi× rUi , r

U
j−1×nj , r

U
k−1× r

U
k , respectively.

The numbers rLk , r
U
k (k = 1, . . . , N − 1) are called the orders of these generators.

It is worth noting that lower and upper quasiseparable generators of a matrix
are not uniquely defined. A set of generators with minimal orders can be deter-
mined according to the ranks of maximal submatrices located in the lower and
upper triangular parts of the matrix.

One advantage of the block representation for the purposes of the present
paper consists in the fact that N × N upper Hessenberg matrices can be treated
as (N + 1)× (N + 1) block upper triangular ones by choosing block sizes as

m1 = · · · = mN = 1, mN+1 = 0, n1 = 0, n2 = · · · = nN+1 = 1. (3.2)

Such a treatment allows also to consider quasiseparable representations which
include the main diagonals of matrices. Assume that C is an N ×N scalar matrix
with the entries in the upper triangular part represented in the form

C(i, j) = g(i)b<i−1,jh(j), 1 ≤ i ≤ j ≤ N (3.3)

with matrices g(i), h(i) (i = 1, . . . , N), b(k) (k = 1, . . . , N − 1) of sizes 1 × ri, ri ×
1, rk×rk+1. The elements g(i), h(i) (i = 1, . . . , N), b(k) (k = 1, . . . , N−1) are called
upper triangular generators of the matrix C with orders rk (k = 1, . . . , N). From (2.5)
it follows that any matrix from the class VN has upper triangular generators with
orders not greater than two. If we treat a matrix C as a block one with entries
if sizes (3.2) we conclude that the elements g(i) (i = 1, . . . , N), h(j − 1) (j =
2, . . . , N + 1), b(k − 1) (k = 2, . . . , N) are upper quasiseparable generators of C.

Matrix operations involving zero-dimensional arrays (empty matrices) are de-
fined according to the rules used in MATLAB and described in [7]. In particular,
the product of a m×0 matrix by a 0×m matrix is a m×m matrix with all entries
equal to 0. Empty matrices may be used in assignment statements as a convenient
way to add and/or delete rows or columns of matrices.

3.1 Representations of matrix pairs from the class PN

Let (A,B) be a matrix pair from the class PN . The corresponding matrix A from
the class HN is completely defined by the following parameters:

1. the subdiagonal entries σAk (k = 1, . . . , N − 1) of the matrix A;
2. the upper triangular generators gV (i), hV (i) (i = 1, . . . , N), bV (k) (k = 1, . . . , N−

1) of the corresponding unitary matrix V from the class VN ;
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3. the vectors of perturbation z = col(z(i))Ni=1, w = col(w(i))Ni=1.

From (2.5) it follows that the matrix V ∈ VN has upper triangular generators with
orders not greater than two.

The corresponding matrix B from the class TN is completely defined by the
following parameters:

1. the diagonal entries dB(k) (k = 1, . . . , N) of the matrix B;
2. the upper quasiseparable generators gU (i) (i = 1, . . . , N − 1), hU (j) (j =

2, . . . , N), bU (k) (k = 2, . . . , N − 1) of the corresponding unitary matrix U

from the class UN ;
3. the vectors of perturbation p = col(p(i))Ni=1, q = col(q(i))Ni=1.

From (2.4) it follows that the matrix U ∈ UN has upper quasiseparable generators
with orders equal one.

All the given parameters define completely the matrix pair (A,B) from the class
PN . Updating of these parameters while keeping the minimal orders of generators
is a task of the fast QZ iteration described in the next section.

4 A fast implicit double shifted QZ iteration via generators

In this section we present our fast adaptation of the double–shifted QZ algorithm
for a matrix pair (A,B) ∈ PN . The algorithm takes in input a quasiseparable
representation of the matrices A and B together with the coefficients of the real
quadratic shift polynomial and it returns as output a possibly not minimal qua-
siseparable representation of the matrices (A1, B1) ∈ PN such that (2.10) holds.
The algorithm computes the unitary matrices Qi and Zi defined in (2.9). It basi-
cally splits into the following four stages:

1. a preparative phase where Q1 is found so as to satisfy the shifting condition;
2. the chasing the bulge step where the unitary matrices Q2, . . . , QN−2 and

Z1, . . . , ZN−3 are determined in such a way to perform the Hessenberg/triangular
reduction procedure;

3. a closing phase where the last three transformations QN−1, ZN−2 and ZN−1

are carried out;
4. the final stage of recovering the generators of the updated pair.

For the sake of brevity the stage 2 and 3 are grouped together by using empty
and zero quantities when needed. The correctness of the algorithm is proved in
the Appendix. Some technical details concerning shifting strategies and shifting
techniques are discussed in the section on numerical experiments. Compression of
generators yielding minimal representations can be achieved by using the methods
devised in [5]. The incorporation of these compression schemes does not alter the
complexity of the main algorithm shown below.

ALGORITHM: Implicit QZ iteration for companion–like pencils with double shift

1. INPUT:
(a) the subdiagonal entries σAk (k = 1, . . . ,N − 1) of the matrix A;
(b) the upper triangular generators gV (i), hV (i) (i = 1, . . . , N), bV (k) (k =

1, . . . , N − 1) with orders rVk (k = 1, . . . , N) of the matrix V ;
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(c) the diagonal entries dB(k) (k = 1, . . . , N) of the matrix B;
(d) the upper quasiseparable generators gU (i) (i = 1, . . . , N − 1), hU (j) (j =

2, . . . , N), bU (k) (k = 2, . . . , N − 1) with orders rUk (k = 1, . . . , N − 1) of the
matrix U ;

(e) the perturbation vectors z = col(z(i))Ni=1, w = col(w(i))Ni=1, p = col(p(i))Ni=1,
q = col(q(i))Ni=1;

(f) the coefficients of the shift polynomial p(z) = α+ βz + γz2 ∈ R[z];
2. OUTPUT:

(a) the subdiagonal entries σA1

k (k = 1, . . . , N − 1) of the matrix A1;

(b) upper triangular generators g
(1)
V (i), h

(1)
V (i) (i = 1, . . . , N), b

(1)
V (k) (k =

1, . . . , N − 1) of the matrix V1;

(c) the diagonal entries d
(1)
B (k) (k = 1, . . . , N) of the matrix B1;

(d) upper quasiseparable generators g
(1)
U (i) (i = 1, . . . , N − 1), h

(1)
U (j) (j =

2, . . . , N), b
(1)
U (k) (k = 2, . . . , N − 1) of the matrix U1;

(e) perturbation vectors z1 = col(z(1)(i))Ni=1, w1 = col(w(1)(i))Ni=1, p1 =
col(p(1)(i))Ni=1, q1 = col(q(1)(i))Ni=1;

3. COMPUTATION:
– Preparative Phase

(a) Compute s = (p(AB−1)e1)(1: 3) and determine the 3 × 3 orthogonal
matrix Q1 from the condition

Q∗1s =
(
× 0 0

)∗
. (4.1)

(b) Compute

(
g̃V (3)

βV3

)
= Q∗1

 gV (1)hV (1) gV (1)bV (1)hV (2) gV (1)bV (1)bV (2)

σV1 gV (2)hV (2) gV (2)bV (2)

z(3)w(1) σV2 gV (3)


(4.2)

and determine the matrices fV3 , φ
V
3 of sizes 2× 2, 2× rV3 from the par-

tition

βV3 =
[
fV3 φV3

]
. (4.3)

(c) Compute

(
z(1)(1)
χ3

)
= Q∗1

 z(1)
z(2)
z(3)

 , γ2 =

(
w(1)
w(2)

)
(4.4)

with the number z(1) and two-dimensional columns χ3, γ2. Compute

fA3 = fV3 − χ3γ
∗
2 , ϕA3 = φV3 . (4.5)

(d) Set

c2 =

(
p(1)
p(2)

)
, θ1 = q(1), θ2 =

(
q(1)
q(2)

)
. (4.6)

Compute

dU (1) = dB(1) + p(1)q(1), dU (2) = dB(2) + p(2)q(2) (4.7)
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and set

fU2 =

(
dU (1) gU (1)hU (2)
p(2)q(1) dU (2)

)
, φU2 =

(
gU (1)bU (2)
gU (2)

)
, (4.8)

ε = gU (1)hU (2)− p(1)q(2), (4.9)

fB2 =

(
dB(1) ε

0 dB(2)

)
, ϕB2 = φU2 . (4.10)

– Chasing the Bulge For k = 1, . . . , N − 1 perform the following:
(a) (Apply Qk and determine Zk). Compute the two-dimensional column

εBk+1 via

εBk+1 = ϕBk+1hU (k + 2)− ck+1q(k + 2), (4.11)

and the 3× 3 matrix Φk by the formula

Φk = Q∗k

(
fBk+1 εBk+1

0 dB(k + 2)

)
. (4.12)

Determine the 3× 3 orthogonal matrix Zk such that

Φk(2 : 3, :)Zk =

(
0 × ×
0 0 ×

)
. (4.13)

(b) (Determine Qk+1). Compute the column

εAk+2 = ϕAk+2hV (k + 2)− χk+2w(k + 2) (4.14)

and the 3× 3 matrix Ωk by the formula

Ωk =

(
fAk+2 ε

A
k+2

0 σAk+2

)
Zk. (4.15)

Determine the 3× 3 orthogonal matrix Qk+1 and the number (σAk )(1)

such that

Q∗k+1Ωk(:, 1) =

 (σAk )(1)

0
0

 . (4.16)

(c) (Update generators for U and B). Compute

dU (k + 2) = dB(k + 2) + p(k + 2)q(k + 2), (4.17)(
d̃U (k + 2) g̃U (k + 2)

× βUk+2

)
= Q∗k Ũk

(
Zk 0
0 IrUk+2

)
(4.18)

where

Ũk =

(
fUk+1 φUk+1hU (k + 2) φUk+1bU (k + 2)

p(k + 2)θ∗k+1 dU (k + 2) gU (k + 2)

)
and determine the matrices fUk+2, φ

U
k+2 of sizes 2× 2, 2× rUk+2 from the

partition
βUk+2 =

[
fUk+2 φ

U
k+2

]
. (4.19)
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Compute (
h̃U (k + 2) b̃U (k + 2)

)
=(

I2 0 0
0 hU (k + 2) bU (k + 2)

)(
Zk 0
0 IrUk+2

)
.

(4.20)

Compute (
p(1)(k)
ck+2

)
= Q∗k

(
ck+1

p(k + 2)

)
(
q(1)(k)
θk+2

)
= Z∗k

(
θk+1

q(k + 2)

) (4.21)

with the numbers p(1)(k), q(1)(k) and two-dimensional columns ck+2, θk+2.
Compute

fBk+2 = fUk+2 − ck+2θ
∗
k+2, ϕBk+2 = φUk+2. (4.22)

(d) (Update generators for V and A). Compute

σVk+2 = σAk+2 + z(k + 3)w(k + 2), (4.23)(
d̃V (k + 3) g̃V (k + 3)

× βVk+3

)
=

Q∗k+1 Ṽk+2

(
Zk 0
0 IrVk+3

)
,

(4.24)

where

Ṽk+2 =

(
fVk+2 φVk+2hV (k + 2) φVk+2bV (k + 2)

z(k + 3)γ∗k+1 σVk+2 gV (k + 3)

)
.

Determine the matrices fVk+3, φ
V
k+3 of sizes 2 × 2, 2 × rVk+3 from the

partition

βVk+3 =
[
fVk+3 φ

V
k+3

]
. (4.25)

Compute (
h̃V (k + 3) b̃V (k + 3)

)
=(

I2 0 0
0 hV (k + 2) bV (k + 2)

)(
Zk 0
0 IrVk+3

)
,

(4.26)

and (
z(1)(k + 1)
χk+3

)
= Q∗k+1

(
χk+2

z(k + 3)

)
(
w(1)(k)
γk+2

)
= Z∗k

(
γk+1

w(k + 2)

) (4.27)

with the numbers z(1)(k + 1), w(1)(k) and two-dimensional columns
χk+3, γk+2. Compute

fAk+3 = fVk+3 − χk+3γ
∗
k+2, ϕAk+3 = φVk+3. (4.28)

– Recovering of generators
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(a) Set

g
(1)
V (i− 2) = g̃V (i), i = 3, . . . , N + 2,

h
(1)
V (j − 3) = h̃V (j), j = 4, . . . , N + 3,

b
(1)
V (k − 3) = b̃V (k), j = 4, . . . , N + 2.

(b) Set

g
(1)
U (i− 2) = g̃U (i), i = 3, . . . , N + 1,

h
(1)
U (j − 2) = h̃U (j), j = 4, . . . , N + 2,

b
(1)
U (k − 2) = b̃U (k), k = 3, . . . , N + 1,

d
(1)
U (k − 2) = d̃U (k), k = 3, . . . , N + 2.

END

Remark 1 The complete algorithm incorporates the compression technique intro-
duced in [5] to further process the generators returned by the algorithm by com-

puting final upper quasiseparable generators g
(1)
U (i) (i = 1, . . . , N−1)), h

(1)
U (j) (j =

2, . . . , N), b
(1)
U (k) (k = 2, . . . , N −1) with orders not greater than one of the matrix

U1 and, moreover, upper triangular generators g
(1)
V (i), h

(1)
V (i) (i = 1, . . . , N), b

(1)
V (k)

(k = 1, . . . , N − 1) with orders not greater than two of the matrix V1.

Remark 2 It can be interesting to compare the complexity and timings of the
above algorithm versus the single-shift version presented in [5]. Roughly speaking,
each iteration of double-shift Fast QZ requires about twice as many floating-point
operations as single-shift Fast QZ; however, the double-shift version works in real
arithmetic, whereas the single-shift algorithm requires complex operations. So we
can expect a double-shift iteration to be µ/2 times faster than a single-shift one,
where µ is the speedup factor of real vs. complex arithmetic. A näıve operation
count suggests that a complex addition requires two real flops and a complex
multiplication requires six real flops; see also [Knuth, section 4.6.4] and MATLAB’s
old documentation page for the flops function. This yields on average µ ≈ 4,
although in practice µ is more difficult to quantify; here, for practical purposes,
we have used the experimental estimate given below.

For the computation of all eigenvalues, the double-shift algorithm is about ρµ/2
times faster than the single-shift version, where ρ is the ratio between the number
of iterations needed to approximate a single eigenvalue with double shift and the
number of iterations per eigenvalue with single shift. In practice, ρ is often close
to 2, because each double-shift iteration approximates two eigenvalues instead of
a single one, so the total number of iterations will be cut by one half.

Experiments done on the same machine and configuration used for the Fortran
tests in Section 5 gave the following results:

– After testing on a large number of scalar ax + y operations, the parameter µ
was estimated at about 2. We used scalar operations for consistency with the
structure of the algorithm. It should be pointed out, however, that experimental
estimates of µ may depend on the machine and on the way the operations are
computed, because the weight of increased storage and bandwidth may become



12 P. Boito et al.

prominent. (The same experiment run on matrix-vector operations gives µ ≈ 4
as predicted by the operation count).

– For random polynomials we found ρ ≈ 2, whereas in the case of cyclotomic
polynomials the double-shift algorithm converged faster and ρ was closer to 3.

– Comparison on total running time showed double-shift QZ to be about twice
as fast as the single-shift version in the case of random polynomials, and about
three times as fast for cyclotomic polynomials, which is consistent with the
discussion above.

In the next section we report the results of numerical experiment to illustrate
the performance of the algorithm.

5 Numerical Results

The fast QZ algorithm for eigenvalue computation of structured pencils described
in the previous section has been implemented in MATLAB and in Fortran 90.2

The program deals with real companion–like pencils by applying the QZ method
with single or double shift and it returns as output the list of real or complex
conjugate paired approximations of the eigenvalues.

The design of a practical algorithm needs to account for various possible shift-
ing strategies and deflation techniques. Deflation is an important concept in the
practical implementation of the QR/QZ iteration. Deflation amounts to setting
a small subdiagonal element of the Hessenberg matrix A to zero. This is called
deflation because it splits the Hessenberg/triangular matrix pair into two smaller
subproblems which may be independently refined further. We say that ak+1,k is
negligible if

|ak+1,k| ≤ u(|ak+1,k+1|+ |ak,k|),

and then we set ak+1,k = 0 and split the computation into two smaller eigenprob-
lems. Here u denotes the machine precision. Another kind of deflation can happen
in the matrix B and it is related to the occurrence of infinite eigenvalues. If bk,k
is numerically zero then there exists at least an infinite eigenvalue and this can
be deflated by moving up the zero entry to the top left corner of B. The criterion
used in our implementation to check the nullity of bk,k is

|bk,k| ≤ u ‖ B ‖ .

Eligible shift polynomials are generally determined from the (generalized) eigen-
values of the trailing principal submatrices of A and B We first compute the
generalized eigenvalues (α1, β1) and (α2, β2) of the matrix pair (A(n − 1: n, n −
1: n), B(n − 1: n, n − 1: n)). If they correspond with a pair of complex conjugate
numbers then we set

p(z) = (β2z − α2)(β2z − α2).

Otherwise we perform a linear shift, that is, p(z) = βz − α, where the eigenvalue
σ = α/β is the closest to the value aN,N/bN,N .

Our resulting algorithm has been tested on several numerical examples. We
begin with some classical polynomials that are meant to test the algorithm for

2 Both implementations are available for download at
http://www.unilim.fr/pages perso/paola.boito/software.html.
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Table 1 Timings and errors for the Fortran implementation of Fast QZ applied to random
polynomials.

N abs. forward error average n. it. Fast QZ time LAPACK time

50 1.34e−14 1.82 1.19e−2 8.80e−3
100 1.09e−14 1.67 2.73e−2 9.70e−3
200 1.87e−14 1.59 8.84e−2 6.26e−2
300 3.03e−14 1.50 1.76e−1 1.97e−1
400 1.88e−13 1.46 3.12e−1 4.71e−1
500 8.08e−14 1.42 4.72e−1 1.18
600 4.73e−13 1.45 7.03e−1 2.32
700 2.19e−13 1.41 9.54e−1 4.04
800 1.46e−13 1.39 1.22 5.15
900 1.04e−13 1.37 1.50 9.00
1000 1.57e−13 1.39 1.90 13.06

speed and for backward stability. With the exception of Example 6, all polynomials
are normalized so as to have 2-norm equal to 1: in practice, the algorithm is
always applied to p/‖p‖2. Absolute forward and backward errors for a polynomial

p(x) =
∑N
j=0 pjx

j = pN
∏N
k=1(x− αk) are defined as

forward error = max
k=1,...,N

|αk − α̃k|,

backward error = max
j=0,...,N

|pj − p̃j |,

where {α̃k}k=1,...,N are the computed roots, and {p̃j}j=0,...,N are the polynomial
coefficients reconstructed from the computed roots, working in high precision. The
polynomial p̃(x) =

∑N
j=0 p̃jx

j is also normalized so that ‖p̃‖2 = 1 prior to backward
error computation.

Examples 1 and 2 use the Fortran implementation of Fast QZ, compiled with
GNU Fortran compiler and running under Linux Ubuntu 14.04 on a laptop equipped
with an Inter i5-2430M processor and 3.8 GB memory. All the other tests are based
on the MATLAB version of the code and were run on a Mac Book Pro equipped
with MATLAB R2016a.

Example 1 Fortran implementation applied to random polynomials. Polynomial coef-
ficients are random real numbers uniformly chosen in [−1, 1]. Here N denotes the
degree. Table 1 shows forward absolute errors w.r.t. the roots computed by LA-
PACK, as well as the average number of iterations per eigenvalue and the running
times, in seconds, for LAPACK and Fast QZ. All the results are averages over 10
runs for each degree.

In this example, Fast QZ is faster than LAPACK for polynomials of degree
larger than 250. (Of course, the results of timing comparisons may vary slightly
depending on the machine and architecture). The quadratic growth of the running
time for our algorithm is shown in Figure 1.

Example 2 Fortran implementation applied to cyclotomic polynomials. The polynomi-
als used in this example take the form p(x) = xN − 1. In this case we know the
exact roots, which can be computed using the Fortran function cos and sin. We
can therefore compute errors for Fast QZ and for Lapack, both with respect to
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Fig. 1 This is a log-log plot of running times vs. polynomial degree N for Example 1. Here
we have chosen N as powers of 2, from N = 26 = 64 to N = 215 = 32768. The linear fit has
equation y = 1.93x− 5.50, which is consistent with the O(N2) complexity of Fast QZ.

Table 2 Timings and absolute forward errors for the Fortran implementation of Fast QZ
applied to cyclotomic polynomials. Errors are computed w.r.t. “exact” roots.

N err. Fast QZ err. LAPACK average n. it. Fast QZ time LAPACK time

100 4.65e−15 3.11e−15 1.38 3.00e−2 9.00e−3
200 5.31e−15 8.67e−15 1.25 7.90e−2 5.20e−2
300 6.76e−15 1.37e−14 1.19 1.52e−1 1.67e−1
400 1.05e−14 1.74e−14 1.16 2.82e−1 3.97e−1
500 9.49e−15 2.28e−14 1.14 4.03e−1 1.03
600 1.46e−14 2.85e−14 1.12 5.79e−1 2.01
700 1.51e−14 3.19e−14 1.12 7.85e−1 3.40
800 1.53e−14 3.90e−14 1.10 9.73e−1 5.39
900 1.93e−14 3.95e−14 1.10 1.24 8.00
1000 1.69e−14 4.84e−14 1.10 1.53 11.18
1500 3.00e−14 7.37e−14 1.09 3.35 41.47
2000 2.45e−14 1.02e−13 1.08 5.80 107.97

the “exact” roots: FastQZ turns out to be as accurate as LAPACK. Table 2 shows
forward absolute errors, as well as the average number of iterations per eigenvalue
and running times (in seconds). Figure 2 shows a logarithmic plot of the running
times for Fast QZ, together with a linear fit.

Example 3 In this example we use a classical set of test polynomials taken from
[22] . The polynomials are all of degree 20:
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Fig. 2 Log-log plot of running times vs. polynomial degree for Example 2. The linear fit has
equation y = 1.93x− 5.58.

1. the Wilkinson polynomial, i.e., P (x) =
∏20
k=1(x− k),

2. the polynomial with roots uniformly spaced in [-1.9, 1.9],
3. P (x) =

∑20
k=0 x

k/k!,
4. the Bernoulli polynomial of degree 20,
5. P (x) = 1 + x+ x2 + . . .+ x20,
6. the polynomial with roots 2−10, 2−9, . . . , 29,
7. the Chebyshev polynomial of degree 20.

Table 3 shows absolute forward and backward errors for our fast QZ and for clas-
sical QZ applied to the companion pencil. For the purpose of computing forward
errors we have taken as {αk}k=1,...,N either the exact roots, if known, or numerical
roots computed with high accuracy.

Forward errors may vary, consistently with the conditioning of the problem.
However, backward errors are always of the order of the machine epsilon, which
points to a backward stable behavior in practice.

Example 4 We apply here our structured algorithm to some polynomials taken
from the test suite proposed by Jenkins and Traub in [15]. The polynomials are:

p1(x) = ((x− a)(x− 1)(x+ a)), with a = 10−8, 10−15, 108, 1015,
p3(x) =

∏r
j=1(x− 10−j), with r = 10, 20,

p4(x) = (x− 0.1)3(x− 0.5)(x− 0.6)(x− 0.7),
p7 = (x − 0.001)(x − 0.01)(x − 0.1)(x − 0.1 + ai)(x − 0.1 − ai)(x − 1)(x − 10),
with a = 10−10,
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Table 3 Forward and backward errors for a set of ill-conditioned polynomials. Note that
the MATLAB implementation of classical QZ sometimes finds infinite roots, which prevent
computation of the backward error. This behavior is denoted by the entry Inf.

P (x) f. err. (fast QZ) f. err. (classical QZ) b. err. (fast QZ) b. err. (classical QZ)

1 28.73 Inf 6.52e−16 Inf
2 5.91e−13 8.07e−13 8.07e−16 1.11e−15
3 5.70 Inf 2.22e−16 Inf
4 3.76e−10 1.83e−12 1.72e−15 1.20e−15
5 3.06e−15 1.09e−15 4.52e−15 1.58e−15
6 1.09e−2 2.30e−3 2.28e−15 3.05e−15
7 5.47e−11 1.68e−11 1.08e−15 1.91e−15

Table 4 Forward and backward errors for polynomials taken from Jenkins and Traub’s test
suite; see Example 4.

P (x) f. err. (fast QZ) f. err. (class. QZ) b. err. (fast QZ) b. err. (class. QZ)

p1(x), a = 1e−8 1.52e−8 1.00e−8 2.22e−16 1.11e−16
p1(x), a = 1e−15 1.64e−8 8.08e−16 1.90e−16 1.11e−16
p3(x), r = 10 8.76e−6 1.00e−6 8.60e−16 3.61e−16
p3(x), r = 15 1.25e−6 1.37e−6 6.80e−16 9.10e−16
p3(x), r = 20 1.99e−4 9.90e−7 3.14e−15 8.07e−16
p4(x) 9.088e−6 4.26e−6 6.66e−16 3.33e−16
p7(x), a = 1e−10 1.91e−5 6.47e−6 2.77e−16 1.11e−16
p10(x), a = 1e+3 2.71e−16 0 1.91e−16 0
p10(x), a = 1e+6 1.16e−16 8.25e−18 8.20e−17 5.83e−18
p10(x), a = 1e+9 1.81e−16 0 1.28e−16 1.11e−16
p11(x), m = 15 1.11e−14 9.87e−15 3.45e−14 1.80e−14

p10(x) = (x− a)(x− 1)(x− a−1), with a = 103, 106, 109,

p11(x) =
∏m−1
j=1−m(x− e

ijπ
2m )

∏3m
j=m 0.9e

ijπ
2m , with m = 15.

In particular, the polynomial p1(x) is meant to test whether large or small zeros
may pose a difficulty, the polynomial p3(x) can be used to test for underflow, the
polynomials p4(x) and p7(x) test for multiple or nearly multiple roots, whereas
p10(x) and p11(x) test for deflation stability. Table 4 shows absolute forward and
backward errors, computed as in the previous example, for Fast QZ and classical
QZ. Note that larger values of r for p3(x) tend to slow down convergence, so for
r = 20 we needed to increase the allowed number of iterations per eigenvalue
(before an exceptional shift is applied).

When QZ is tested on the polynomial p1(x) with large values of a, normalization
of the coefficients inevitably leads to a numerically zero leading coefficient and
therefore to infinite eigenvalues. In this case, both fast and classical QZ retrieve
the root 1 with accuracy up to machine precision. Of course one may also try using
the non-normalized polynomials, in which case Fast QZ finds roots {1, 1,−1} and
classical QZ finds roots {1, 0, 0}, up to machine precision.

Example 5 The jumping polynomial. This is a polynomial of degree 20 where the
coefficients are heavily unbalanced and QZ applied to the companion pencil tends
to work better than computing the eigenvalues of the companion matrix (see also

[5]). The polynomial is defined as p(x) =
∑20
k=0 pkx

k, where pk = 106(−1)(k+1)−3
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Table 5 Forward and backward errors for several methods applied to a polynomial with highly
unbalanced coefficients (Example 5).

method forward error backward error

fast QZ 2.78e−15 4.94e−15
classical QZ 1.49e−15 3.22e−15
balanced QR 2.46e−9 5.86e−9

unbalanced QR 1.68e−15 2.72e−15

for k = 0, . . . , 20. Table 5 shows that Fast QZ is just as accurate as classical QZ,
and more accurate than the MATLAB command roots.

Example 6 In order to test the behavior of backward error for non-normalized
polynomials (that is, for unbalanced pencils), we consider polynomials of degree 50
with random coefficients and 2-norms ranging from 1 to 1014. For each polynomial
p we apply QZ (structured or unstructured) without normalization to compute its
roots. Then we form a polynomial p̃ from the computed roots, working in high
precision, and define the 2-norm absolute backward error as

backward error2 = min
α∈R
‖p− αp̃‖2.

In practice, the value of α that minimizes the backward error is computed as

α =
(∑N

i=0 pip̃i

)
/
∑N
i=0 p̃

2
i .

Figure 3 shows that in this example the backward error grows proportionally
to ‖p‖22 and its behavior when using Fast QZ is very similar to the case of classical
QZ (that is, the Matlab function eig). See also the analysis in [1].

Our algorithm has been tested on several numerical examples resulting from the
linearization of nonlinear eigenvalue problems by using Lagrange type interpola-
tion schemes. In particular, if f Ω ⊆ R → R is analytic then increasingly accurate
approximations of its zeros can be found by rootfinding methods applied to cer-
tain polynomial approximations of f . The unique polynomial of degree less than

n interpolating the function f(z) at the N−th roots of unity zk = e2π(k − 1)/N ,
1 ≤ k ≤ N , can be expressed as

p(z) = (zN − 1)
n∑
j=1

wjfj
z − zj

,

where

fj = f(zj), wj =
( ∏
k=1,k 6=j

(zj − zk)
)−1

= zj/N, 1 ≤ j ≤ N.

In [6] it was shown that the roots of p(z) are the finite eigenvalues of the matrix
pencil F − zG, F,G ∈ C(N+1)×(N+1), given by

F =


0 −f1/ξ1 . . . −fN/ξN

w1ξ1 z1
...

. . .

wN ξN zN

 , G =


0

1
. . .

1

 , (5.29)
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Fig. 3 Absolute backward error vs. polynomial norm for Example 6. The black line is a linear
fit for the backward error of Fast QZ. Its equation is y = 1.94x− 14.4, which suggests that the
absolute backward error grows proportionally to ‖p‖22.

where ξ1, . . . , ξN are nonzero real numbers used for balancing purposes. Observe
that since the size of the matrices is N + 1 we obtain at least two spurious infinite
eigenvalues. By a suitable congruence transformation F → F1 = QFQ∗ and G →
G1 = QGQ∗ with Q orthogonal, we generate an equivalent real matrix pair (F1, G1)
where G1 = G and F1 is arrowhead with 2 × 2 orthogonal diagonal blocks. Then
the usual Hessenberg/triangular reduction procedure can be applied by returning
a final real matrix pair (Ã, B̃). One infinite eigenvalue can immediately be deflated
by simply performing a permutation between the first and the second rows of Ã
and B̃ by returning a final matrix pair (A,B) belonging to the class PN . It can
be shown that if ξi = ξ for all i then this latter matrix pair is the companion
pencil associated with the interpolating polynomial expressed in the power basis.
Otherwise, if ξi are not constant then A is generally a dense Hessenberg matrix
which can be represented as a rank one modification of an orthogonal matrix.

In the following examples we test the application of Fast QZ to the barycentric
Lagrange interpolation on the roots of unity in order to find zeros of functions or
solve eigenvalue problems. We point out here some implementation details:

– Scaling. The first row and column of the matrix F can be scaled independently
without modifying G. We consistently normalize them so that ‖F (1, :)‖2 =
‖F (:, 1)‖2 = 1, which makes the pencil more balanced.

– Deflation of infinite eigenvalues. Spurious infinite eigenvalues can be elimi-
nated by applying repeatedly the permutation trick outlined above for the
pencil (Ã, B̃). This leaves us, of course, with the problem of choosing a suit-
able deflation criterion. In practice, we perform this form of deflation when
|Ã(1, 1)| < ε

√
N , where ε is the machine epsilon.

– Reduction of the arrowhead pencil to Hessenberg/triangular form: this can be
done in a fast (e.g., O(N2)) way via Givens rotations that exploit structure,
see e.g. [17], Section 2.2.2.
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Table 6 Approximations of the zeros of f(z) = sin(z−0.3) log(1.2−z). Here N is the number
of interpolation points. See Example 7.

N approx. of 0.2 approx. of 0.3

20 0.2153 0.2841
30 0.2014 0.2986
40 0.20016 0.29983
50 0.200021 0.299978
60 0.2000028 0.2999970
100 0.2000000011 0.2999999988
200 0.199999999999894 0.300000000000120

Example 7 This example is discussed in [2]. Consider the function f(z) = sin(z −
0.3) log(1.2−z). We seek the zeros of f in the unit disk; the exact zeros are 0.2 and
0.3. Table 6 shows the computed approximations of these zeros for several values
of N (number of interpolation points). The results are consistent with findings in
[2], where 50 interpolation points yielded an accuracy of 4 digits.

Example 8 This is also an example from [2]. Define the matrix

A =


3.2 1.5 0.5 −0.5
−1.6 0.0 −0.4 0.6
−2.1 −2.2 0.2 −0.1
20.7 9.3 3.9 −3.4

 .

We want to compute its eigenvalues by approximating the zeros of the polynomial
p(λ) = det(A − λI). The exact eigenvalues are 0.2, 0.3, 1.5 and −2. Interpola-
tion plus Fast QZ using 6 nodes yields all the correct eigenvalues up to machine
precision.

One may also apply a similar approach to the computation of the eigenvalues
in the unit circle for a larger matrix. See Figures 4 and 5 for tests on two 100×100
matrices with random entries (uniformly chosen in [-1,1]).

Example 9 We consider some nonlinear eigenvalue problems taken from [3]:

1. mobile manipulator: this 5 × 5 quadratic matrix polynomial is close to being
nonregular;

2. gen tpal2: a real T-palindromic quadratic matrix polynomial of size 16 × 16
whose eigenvalues lie on the unit circle;

3. closed loop: the eigenvalues of this 2× 2 parameterized quadratic polynomial
lie inside the unit disc for a suitable choice of the parameter;

4. relative pose 5pt: a 10 × 10 cubic matrix polynomial which comes from the
five point relative pose problem in computer vision. See Figure 6 for a plot of
the eigenvalues.

Table 7 shows the distance, in ∞-norm, between the eigenvalues computed via
interpolation followed by Fast QZ and the eigenvalues computed via polyeig.

Example 10 Random matrix polynomials: we use matrix polynomials with random
coefficients (given by the Matlab function rand). Table 8 shows errors with respect
to polyeig for several values of the degree and of the size of the polynomial.
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Fig. 4 Eigenvalues of a 100 × 100 random matrix; see Example 8. The blue circles are the
eigenvalues computed via interpolation, the red crosses are the eigenvalues computed by eig.
Here 120 interpolation nodes were used.

Table 7 Distance between the eigenvalues computed by interpolation+Fast QZ and polyeig,
for some problems taken from the NLEVP suite (Example 9). Here N is the number of inter-
polation points. The error for the fourth problem is computed on all the eigenvalues (fourth
line) and on the eigenvalues in the unit disk (fifth line, error marked by an asterisk.)

problem error N

mobile manipulator 2.53e−15 20
gen tpal2 1.61e−9 50

closed loop 1.22e−15 10
relative pose 5pt 2.81e−10 40

relative pose 5pt 8.99e−15(∗) 40

Table 8 Distance between the eigenvalues computed by interpolation+Fast QZ and polyeig,
for random matrix polynomials of different degrees and sizes (Example 10). The error is com-
puted on the eigenvalues contained in the disk of center 0 and radius 2.

degree size error

10 5 1.12e−11
10 10 1.11e−9
10 20 2.93e−5
15 5 6.98e−9
15 10 5.15e−9
15 20 3.24e−4
20 5 2.13e−10
20 10 4.50e−9
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Fig. 5 Eigenvalues of a 100 × 100 random matrix; see Example 8. The blue circles are the
eigenvalues computed via interpolation, the red crosses are the eigenvalues computed by eig.
Here 60 interpolation nodes were used.

Example 11 We consider here a nonlinear, non polynomial example: the Lambert
equation

w6 exp(w6) = 0.1. (5.30)

This equation has two real solutions

w = ±W (0, 0.1) ≈ ±0.671006

and complex solutions of the form

w = ± (W (ν, x))
1/6

,

w = ±(−1)1/3 (W (ν, x))
1/6

,

w = ±(−1)2/3 (W (ν, x))
1/6

,

where W (ν, x), with ν ∈ Z and x ∈ C, denotes the ν-th branch of the product-log
function (Lambert function) applied to x.

Such solutions can be computed in Matlab using the lambertw function: in
the following we will consider them as the “exact” solutions. We want to test the
behavior of the “interpolation+QZ” approach in this case. Experiments suggest
the following remarks:

– As expected, interpolation only “catches” roots inside the unit disk: see Figure
7. Since the roots of (5.30) are mostly outside the unit disk, we introduce a
scaled version of the equation:

α6w6 exp(α6w6) = 0.1, (5.31)
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Fig. 6 Eigenvalues of the matrix polynomial relative pose 5pt; see Example 9. The blue
circles are the eigenvalues computed via interpolation, the red crosses are the eiganvalues
computed by polyeig.

where α ≥ 1 is a scaling parameter. The drawback is that, as α grows, the
matrix pencil becomes more unbalanced.

– A large number of interpolation nodes is needed (considerably larger than the
number of approximated roots).

See Figure 8 for an example.
Tables 9, 10 and 12 show the accuracy of the approximation for several values

of α and of the number of nodes. Here by “distance” we denote the distance in
∞-norm between the roots of (5.31) inside the unit disk and their approximations
computed via interpolation followed by structured or unstructured QZ.

Table 9 Example 11: we take α = 1 and there are 6 roots inside the unit circle. The number
of nodes is denoted by N , taken as N = 6k+ 1 for some k ∈ N, for symmetry. The accuracy in
the approximation of the roots is the same for structured and unstructured QZ. An accuracy
of about 10−15 is reached using 103 nodes.

N distance

7 1.88e−1
19 2.53e−2
31 1.18e−3
43 2.80e−5
55 3.88e−7
67 3.52e−9
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Fig. 7 This is a plot of the roots of (5.30) in the complex plane. Red crosses denote the
“exact” roots computed by lambertw with ν up to 5. Blue circles are the roots computed via
interpolation+QZ with 60 nodes. Note that only the 6 roots inside the unit circle (plotted in
black for reference) are correctly approximated.
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Fig. 8 This is a plot of the roots of (5.31) in the complex plane, with α = 1.7, so that
54 roots are inside the unit circle (plotted in black for reference). Red crosses denote the
“exact” roots computed by lambertw with ν up to 5. Blue circles are the roots computed via
interpolation+QZ. Here we have taken 446 interpolation nodes.
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Table 10 Example 11: we take α = 1.5 and there are 18 roots inside the unit circle.

N distance (unstructured) distance (structured)

181 1.67e−1 1.67e−1
217 7.50e−4 7.50e−4
253 4.36e−7 4.36e−7
289 7.06e−10 1.40e−9

Table 11 Example 11: we take α = 1.6 and there are 30 roots inside the unit circle.

N distance (unstructured) distance (structured)

301 1.62e−3 1.62e−3
361 9.73e−8 6.03e−7

Table 12 Example 11: we take α = 1.7 and there are 54 roots inside the unit circle.

N distance (unstructured) distance (structured)

379 2.11e−1 2.11e−1
433 4.59e−4 1.34e−3

Example 12 This example comes from the discretization of a nonlinear eigenvalue
problem governing the eigenvibrations of a string with an elastically attached mass:
see e.g., [3], [8] and [21]. The original problem is given by

−u′′(x) = λu(x)
u(0) = 0

u′(1) + k λ
λ−k/mu(1) = 0

where the parameters k and m correspond to the elastic constant and to the mass,
respectively. We are interested in computing the two smallest real eigenvalues λ1
and λ2.

The discretization is applied on a uniform grid with nodes xi = i/n, i = 0, . . . , n
and step h = 1/n, yielding a nonlinear matrix eigenvalue problem of the form
K(λ)v = 0 with

K(λ) = A− λB + k
λ

λ− k/mC,

where

A =
1

h


2 1

−1
. . .

. . .

. . . 2 −1
−1 1

 , B =
h

6


4 1

1
. . .

. . .

. . . 4 1
1 2

 , C = ene
T
n
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and en = [0, . . . , 0, 1]T . Here we choose k = 2 and m = 1. In this case the eigen-
values are known to be λ1 ≈ 0.572224720810327 and λ2 ≈ 6.02588212472795. In-
terpolation of det(K(λ))/det(K(λ))′ on the unit circle followed by FastQZ allows
us to approximate λ1, see Table 13. The same technique applied after a suitable
translation of λ (here λ→ λ− 6) gives approximations for λ2.

Note that, since K(λ) is a rational function, we should make sure that its pole
λ̃ = k/m does not lie in the unit disk, otherwise interpolation might not be able
to detect the eigenvalues. Experiments with k = 0.01 and m = 1, for instance,
showed that the first eigenvalue (in this case λ1 ≈ 9.90067 · 10−3) could not be
computed via interpolation.

Table 13 Example 12: the table shows the absolute errors on λ1 and λ2 for several values
of n (the number of nodes on the discretization grid). The number of interpolation nodes is
taken as N = 100. The distance between the approximations computed by structured and
unstructured QZ is always of the order of the machine epsilon.

n error on λ1 error on λ2

100 5.19e−3 8.48e−2
500 1.04e−3 1.72e−2
1000 5.23e−4 8.61e−3
5000 1.05e−4 1.72e−3

6 Conclusions

In this paper we have developed and tested a fast structured version of the double-
shift QZ eigenvalue method tailored to a particular class of real matrix pencils.
This class includes companion pencils, as well as pencils arising from barycentric
Lagrange interpolation. Numerical tests confirm the expected complexity gains
with respect to the classical method and show that our fast algorithm behaves
as backward stable in practice, while retaining an accuracy comparable to the
nonstructured method.

We also propose an application to nonlinear eigenvalue problems using inter-
polation techniques. While preliminary experiments look promising, this approach
deserves further investigation, which will be the subject of further work.

Acknowledgements: Thanks to Thomas Mach for useful suggestions concern-
ing the Fortran implementation of Givens transformations.

References

1. J. L. Aurentz, T. Mach, L. Robol, R. Vandebril, and D. S. Watkins, Roots of poly-
nomials: on twisted QR methods for companion matrices and pencils, arXiv:1611.02435
[math.NA], 2016.

2. A. P. Austin, P. Kravanja, and L. N. Trefethen, Numerical algorithms based on
analytic function values at roots of unity, SIAM J. Numer. Anal. 52 (2014), 1795–1821.

3. T. Betcke, N. J Higham, V. Mehrmann, C. Schröder, F. Tisseur, NLEVP: a collection
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Appendix

In this appendix we give a formal proof of the correctness of the algorithm stated
in Section 4. Specifically, we prove the following:

Theorem 1 Let (A,B) ∈ PN be a matrix pair with an upper Hessenberg matrix A =
V − zw∗ from the class HN and an upper triangular matrix B = U − pq∗ from the

class TN with the unitary matrices V ∈ VN , U ∈ UN and the vectors z,w,p, q ∈ RN .

Let p(z) = α+βz+γz2 ∈ R[z] be a polynomial of degree at most 2. Let Q,Z be unitary
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matrices defined as in (2.8), (2.9) where the matrices Qi and Zi, 1 ≤ i ≤ N − 1, are

generated by the algorithm in Section 4. Then A1 = Q∗∗AZ and B1 = Q∗BZ are upper

Hessenberg and upper triangular, respectively, and, moreover, Q∗p(AB−1)e1 = αe1 for

a suitable scalar α ∈ R.

Proof The property Q∗p(AB−1)e1 = αe1 easily follows by construction. The proof
of the remaining properties is constructive by showing that A1 is upper Hessenberg
and B1 is upper triangular and then providing structured representations of the
entries of their unitary components V1 = Q∗V Z and U1 = Q∗UZ. We restrict
ourselves to consider A1 and V1 since the computation of B1 and U1 and of the
perturbation vectors can be treated in a similar way.

We treat A and V as block matrices with entries of sizes mA
i × nAj , i, j =

1, . . . , N + 3, where

mA
1 = · · · = mA

N = 1, mA
N+1 = mA

N+2 = mA
N+3 = 0,

nA1 = 0, nA2 = · · · = nAN+1 = 1, nAN+2 = nAN+3 = 0.
(6.32)

Relative to this partition the matrix V has diagonal entries

dV (1) to be the 1× 0 empty matrix,

dV (k) = σVk−1 = σAk−1 + z(k)w(k − 1), k = 2, . . . , N,

dV (N + 1), dV (N + 2), dV (N + 3) to be the 0× 1, 0× 0, 0× 0 empty matrices,
(6.33)

upper quasiseparable generators

ĝV (k) = gV (k), k = 1, . . . , N, ĝV (N + 1), gV (N + 2) to be the 0× 0 empty matrices,

ĥV (k) = hV (k − 1), k = 2, . . . , N + 1,

ĥV (N + 2), ĥV (N + 3) to be the 0× 0 empty matrices,

b̂V (k) = bV (k − 1), k = 2, . . . , N,

b̂V (N + 1), b̂V (N + 2) to be the rVN × 0, 0× 0 empty matrices
(6.34)

and lower quasiseparable generators

pV (k) = z(k), k = 2, . . . , N,

pV (N + 1), pV (N + 2) to be the 0× 1 empty matrices,

qV (1) to be the 1× 0 empty matrix,

qV (k) = w(k − 1), k = 2, . . . , N + 1,

aV (k) = 1, k = 2, . . . , N + 1.

(6.35)

Relative to the partition (6.32) the matrix A is a block upper triangular matrix
with diagonal entries

dA(1) to be the 1× 0 empty matrix,

dA(k) = σAk−1, k = 2, . . . , N,

dA(N + 1), dA(N + 2) to be the 0× 1, 0× 0 empty matrices.

(6.36)
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Moreover using (2.1) we obtain upper quasiseparable of the matrix A relative to
the partition (6.32) with orders

rAk = rVk + 1, k = 1, . . . , N, rAN+1 = rAN+2 = 0 (6.37)

by the formulas

gA(k) =
[
gV (k) −z(k)

]
, k = 1, . . . , N,

gA(N + 1), gA(N + 2) to be the 0× 0 empty matrices,
(6.38)

hA(k) =

[
hV (k − 1)
w(k − 1)

]
, k = 2, . . . , N + 1,

hA(N + 2), hA(N + 3) to be the 0× 0 empty matrix,

bA(k) =

(
bV (k − 1) 0

0 1

)
, k = 2, . . . , N,

bA(N + 1), bA(N + 2) to be the (rVN + 1)× 0, 0× 0 empty matrices.

(6.39)

Using (2.8) and setting

S̃A1 = S̃A2 = IN , S̃Ai = Q̃∗i−2, i = 3, . . . , N + 1, S̃AN+2 = S̃AN+3 = IN ,

T̃A1 = T̃A2 = T̃A3 = IN , T̃Ai = Z̃i−3, i = 4, . . . , N + 2, T̃AN+3 = IN
(6.40)

we get
Q∗ = S̃AN+3 · · · S̃

A
1 , Z = T̃A1 · · · T̃AN+3. (6.41)

We have

S̃A1 = diag{SA1 , IN−1}, S̃A2 = diag{SA2 , IN−2};

S̃Ak = diag{Ik−2, S
A
k , IN−k}, k = 2, . . . , N ;

S̃AN+1 = diag{IN−2, S
A
N+1}, S̃

A
N+2 = diag{IN−1, S

A
N+2}, S̃

A
N+3 = diag{IN , SAN+3}

with

SA1 = 1, SA2 = I2, SAk = Q∗k−2, k = 3, . . . , N + 1, SAN+2 = 1,

SAN+3 to be the 0× 0 empty matrix
(6.42)

and

T̃A1 = diag{TA1 , IN}, T̃A2 = diag{TA2 , IN−1}, T̃A3 = diag{TA2 , IN−2};

T̃k = diag{Ik−4, T
A
k , IN−k+1}, k = 4, . . . , N + 2;

T̃AN+3 = diag{IN−1, T
A
N+3}

with

TA1 to be the 0× 0 empty matrix,

TA2 = 1, TA3 = I2, TAk = Zk−3, k = 4, . . . , N + 2, TAN+3 = 1.
(6.43)

We treat the lower Hessenberg matrix Q∗ as a block matrix with entries of sizes
τAi ×m

A
j , i, j = 1, . . . , N + 3, where

τA1 = τA2 = 0, τA3 = · · · = τAN+2 = 1, τAN+3 = 0. (6.44)
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The matrix Q∗ has the representation considered in Lemma 31.1 in [12] with the
matrices Sk (k = 1, . . . , N+2) of sizes (τA1 +rS1 )×mA

1 , (τAk +rSk )×(mA
k +rSk−1) (k =

2, . . . , N + 1), τAN+2 × (mA
N+2 + rSN+1), where

rS1 = 1, rSk = 2, k = 2, . . . , N), rSN+1 = 1, rSN+2 = 0.

We treat the upper Hessenberg matrix Z as a block matrix with entries of sizes
nAi × ν

A
j , i, j = 1, . . . , N + 2, where

νA1 = νA2 = νA3 = 0, νA4 = · · · = νAN+3 = 1. (6.45)

The matrix Z has the representation considered in Lemma 31.1 in [12] with the
matrices TAk (k = 1, . . . , N+2) of sizes nA1 ×(νA1 +r∗1), (nAk +r∗k−1)×(νAk +r∗k) (k =

2, . . . , N + 1), (nAN+2 + r∗N+1)× νAN+2, where

r∗1 = 0, r∗2 = 1, r∗k = 2, k = 3, . . . , N + 1, r∗N+2.

Now we apply the structured multiplication algorithm for quasiseparable rep-
resentations stated in Corollary 31.2 in [12] in order to determine diagonal en-
tries d̃A(k) (k = 3, . . . , N + 2) and quasiseparable generators q̃(j) (j = 3, . . . , N +
1); g̃A(i) (i = 3, . . . , N + 2) of the matrix A1 = Q∗AZ as well as auxiliary variables
βAk , f

A
k , φ

A
k , ϕ

A
k . The matrix A1 is obtained as a block one with entries of sizes

τAi × ν
A
j , i, j = 1, . . . , N + 3.

For the variables βk = βAk , fk = fAk , φk = φAk used in Corollary 31.2 we use the
partitions

βAk =
[
fAk φAk

]
, φAk =

[
ϕAk −χk

]
, k = 2, . . . , N − 1, (6.46)

with the matrices fAk , ϕ
A
k , χk of sizes 2 × 2, 2 × rVk , 2 × 1. For k = 1, . . . , N − 2

combining Corollary 31.2 with (6.42), (6.43), (6.36) and (6.38),(6.39) we get(
d̃A(k + 3) g̃A(k + 3)

q̃(k + 3) βAk+3

)
=

Q∗k+1

(
fAk+2 φ

A
k+2hA(k + 2) φAk+2bA(k + 2)

0 σAk+2 gA(k + 3)

)(
Zk 0
0 IrAk+3

)
,

k = 1, . . . , N − 3,(
d̃A(N + 1) g̃A(N + 1)

q̃(N + 1) βAN+1

)
= Q∗N−1

(
fAN φANhA(N)

)
ZN−2.

(6.47)

Using (6.46) and (6.39) we get

φAk+2hA(k + 2) = εAk+2, k = 1, . . . , N − 2 (6.48)

and

φAk+2bA(k + 2) =
[
ϕAk+2bV (k + 2) −χk+2

]
, k = 1, . . . , N − 3 (6.49)

with εAk+2 as in (4.14).
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Inserting (6.48), (6.49) in (6.47) and using (6.46), (6.38) we obtain(
d̃A(k + 3) × × ×
q̃(k + 3) fAk+3 ϕ

A
k+3 −χk+3

)
=

Q∗k+1

(
fAk+2 ε

A
k+2 ϕ

A
k+2bV (k + 2) −χk+2

0 σAk+2 gV (k + 3) −z(k + 3)

)(
Zk 0
0 IrAk+3

)
,

k = 1, . . . , N − 3.

(6.50)

From (6.50) using (4.15) we obtain the relations(
d̃A(k + 3)
q̃(k + 3)

)
= Q∗k+1

(
Ωk(1, 1)
Ωk(2, 1)

)
(6.51)

and (
× × ×

fAk+3 ϕ
A
k+3 −χk+3

)
=

Q∗k+1

(
Ωk(1 : 2, 2 : 3) ϕAk+2 −χk+2

Ωk(3, 2 : 3) gV (k + 3) −z(k + 3)

)
, k = 1, . . . , N − 4.

(6.52)

From (6.51) using (4.16) we have

d̃A(k + 3) = (σAk )(1), k = 1, . . . , N − 2 (6.53)

and
q̃(k + 3) = 0, k = 1, . . . , N − 2. (6.54)

The formulas (6.44) and (6.45) mean that (σAk )(1), k = 1, . . . , N−2 are subdiagonal
entries of the matrix A1 (treated as an usual scalar matrix). The equalities (6.54)
imply that A1 is an upper Hessenberg matrix.

Next we apply the structured multiplication algorithm stated in Lemma 31.1
in [12] to compute (block) upper quasiseparable generators g̃V (i) (i = 1, . . . , N +
2), h̃V (j) (j = 2, . . . , N + 3), b̃V (k) (k = 2, . . . , N + 2) with orders

r̃V1 = rV1 , r̃
V
2 = rV2 + 1, r̃Vk = rVk + 2, k = 3, . . . , N, r̃VN+1 = 2, r̃VN+1 = 1

and diagonal entries d̃V1
(k) (k = 1, . . . , N+3) of the matrix V1 = Q∗V Z. The matrix

V1 is obtained as a block one with entries of sizes τAi × ν
A
j , i, j = 1, . . . , N + 3,

where the numbers τai , ν
A
j are defined in (6.44), (6.45).

Using Lemma 31.1 and (6.42), (6.43) we obtain that(
d̃V (k) g̃V (k)
× Γk

)
=

(
Q∗k−2 0

0 1

) fVk−1 φVk−1hV (k − 1) φVk−1bV (k − 1)

z(k)αk−1 σVk−1 gV (k)
αk−1 w∗(k − 1) 0

(Zk−2 0
0 IrVk

)
,

Γk =

[
fVk φVk
αk 0

]
, k = 4, . . . , N,

(6.55)

together with the relation (4.26).
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From (6.55) we find that the auxiliary matrices αk (k = 3, . . . , N) satisfy the
relations

α3 =
(
w(1) w(2)

)
,
(
× αk

)
=
(
αk−1 w(k − 1)

)
Zk−3, k = 4, . . . , N.

Comparing this with (4.4), (4.21) we get

αk = γ∗k−1, k = 3, . . . , N. (6.56)

Thus using (6.56) and (6.55) we obtain (4.24), (4.25).
Next we show that the auxiliary variables fAk , ϕ

A
k (k = 3, . . . , N) may be deter-

mined via relations (4.5), (4.28). Take γ2 as in (4.4) and assume that for some k
with 1 ≤ k ≤ N − 2 the relations

fAk+2 = fVk+2 − χk+2γ
∗
k+1, ϕAk+2 = φVk+2 (6.57)

hold. By (4.15) and (6.52) we have(
d̃A(k + 3) × ×

0 fAk+3 ϕ
A
k+3

)
=

Q∗k+1

(
fAk+2 ε

A
k+2 φ

V
k+2bV (k + 2)

0 σAk+2 gV (k + 3)

)(
Zk 0
0 IrVk+3

)
.

(6.58)

Using (4.23) and (4.14) we get(
fAk+2 εk+2

0 σAk+2

)
=(

fVk+2 − χk+2γ
∗
k+1 φVk+2hV (k + 2)− χk+2w(k + 2)

z(k + 3)γ∗k+1 − z(k + 3)γ∗k+1 σVk+2 − z(k + 3)w(k + 2)

)
.

(6.59)

Thus combining (6.58) and (6.59) together and using (4.24), (4.25) and (4.27) we
obtain (4.28).


