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Abstract:

Introduction: Neuroticism is a complex personality trait encompassing diverse aspects. Notably, high 
levels of neuroticism are related to the onset of psychiatric conditions, including anxiety and mood 
disorders. Personality traits are stable individual features; therefore, they can be expected to be 
associated with stable neurobiological features, including the Brain Resting State (RS) activity as 
measured by fMRI. Several metrics have been used to describe RS properties, yielding rather 
inconsistent results. This inconsistency could be due to the fact that different metrics portray different 
RS signal properties and that these properties may be differently affected by neuroticism. To explore 
the distinct effects of neuroticism, we assessed several distinct metrics portraying different RS 
properties within the same population.

Method: Neuroticism was measured in 31 healthy subjects using the Zuckerman-Kuhlman Personality 
Questionnaire; RS was acquired by high-resolution fMRI. Using linear regression, we examined the 
modulatory effects of neuroticism on RS activity, as quantified by the Amplitude of low frequency 
fluctuations (ALFF, fALFF), regional homogeneity (REHO), Hurst Exponent (H), global connectivity 
(GC) and amygdalae functional connectivity.

Results: Neuroticism modulated the different metrics across a wide network of brain regions, including 
emotional regulatory, default mode and visual networks. Except for some similarities in key brain 
regions for emotional expression and regulation, neuroticism affected different metrics in different 
ways. 

Discussion: Metrics more related to the measurement of regional intrinsic brain activity (fALFF, ALFF 
and REHO), or that provide a parsimonious index of integrated and segregated brain activity (HE), 
were more broadly modulated in regions related to emotions and their regulation.  Metrics related to 
connectivity were modulated across a wider network of areas. Overall, these results show that 
neuroticism affects distinct aspects of brain resting state activity. More in general, these findings 
indicate that a multiparametric approach may be required to obtain a more detailed characterization of 
the neural underpinnings of a given psychological trait. 
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1. Introduction

Neuroticism is one of the fundamental traits in personality theories. Its core characteristics 

include emotional instability, along with depression and anxiety symptoms (Zuckerman, 2005; 

Zuckerman et al., 1993). Neuroticism is part of almost every modern personality assessment and 

model. Notably, neuroticism factors across different personality models tend to be highly correlated 

among each others (Zuckerman et al., 1999). Moreover, high neuroticism is associated with trait 

anxiety and represents a predictive index for the clinical onset of anxiety and mood disorders 

(Derryberry and Reed, 1994; Kendler et al., 2006; Kendler et al., 2004; Kotov et al., 2010; Weinstock 

and Whisman, 2006). Finally, neuroticism seems to play a role in maladaptive juvenile schemas that 

may lead to criminal acts (Daffern et al., 2015). 

Several studies looked at how neuroticism modulates responses to emotional cues or stressors. 

A recent meta-analysis on 18 papers identified several brain regions in which neural activity was 

modulated by neuroticism in response to perception of negative emotional stimuli, as compared to 

neutral ones. In particular, areas involved in the anticipation of aversive stimuli - including anterior and 

posterior cingulate, and putamen - were negatively correlated with neuroticism, while those involved in 

fear learning and emotional regulation - including the median cingulate, the hippocampus and the 

superior frontal gyrus - were positively correlated (Servaas et al., 2013). 

Studies of functional connectivity during tasks also offered important insights for the 

understanding of the neurobiology of neuroticism. During a face perception task, higher neuroticism 

was associated with increased functional connectivity between the right amygdala and the fusiform 

gyrus. Conversely, an opposite pattern was found in the left amygdala, whose connectivity strength 

with the anterior cingulate cortex was negatively related to neuroticism. This latter result suggests that 
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higher neuroticism may be related to a diminished control function of the cingulate over the amygdala 

while processing emotional stimuli (Cremers et al., 2010).

Recently, the study of resting state brain activity has been proposed as a novel way to identify 

neurobiological correlates of psychological traits (Barkhof et al., 2014; Damoiseaux et al., 2006; Deco 

et al., 2011; Pannekoek et al., 2013; Peterson et al., 2014). The rationale for studying brain neural 

activity at rest stems from the notion that since a trait is a stable aspect of personality, its effects should 

be detectable in a stable configuration of brain activity (Gentili et al., 2015). In other words, while the 

modulatory effects on neural activity due to a state condition may be expressed maximally only when 

such a condition is elicited by an ad-hoc experimental paradigm, modulatory effects of a trait feature 

should affect brain activity permanently (Gentili et al., 2015). 

Several metrics have been developed to study the brain resting state activity. Among them, 

Regional Homogenity (REHO), functional connectivity and measures of low frequency oscillation 

(LFO), including the Amplitude of Low Frequency Fluctuations – ALFF – and the fractional 

Amplitude of Low Frequency Fluctuations – fALFF, were applied to the study of the neural correlates 

of neuroticism. For instance, recent studies demonstrated that connectivity patterns in the amygdala and 

other structures involved in emotion regulation (including the prefrontal cortex) are modulated by 

different levels of neuroticism (Gao et al., 2013; Kruschwitz et al., 2014). ReHo in prefrontal cortex, 

particularly the middle frontal gyrus, was negatively modulated by neuroticism as well (Wei et al., 

2011). Finally, Wei and coworkers showed a relationship between specific frequencies as measured by 

fALFF and neuroticism (Wei et al., 2014b). Specifically, they found a direct relationship in the right 

posterior portion of the frontal lobe, and an inverse one in the bilateral superior temporal cortex. 

Conversely, another study, using the entire spectrum of frequencies obtained through fALFF, 

demonstrated an inverse correlation between this metric and neuroticism in the precuneus and in the 
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middle frontal gyrus (Kunisato et al., 2011). These findings show that different methodologies 

identified significantly heterogeneous patterns of regional neural activity at rest.

Additional approaches can be used to assess the brain resting state activity, including global 

connectivity (GC), which measures the average connectivity between any given brain voxel and all the 

other brain voxels (Di et al., 2013), or measurements of complexity, such as the Hurst Exponent (HE) 

(Gentili et al., 2015; Hahn et al., 2012; Sokunbi et al., 2014). The HE provides a model of 1/f-like 

behaviors based on fractional Gaussian Noise (fGN) (Mandelbrot and Van Ness, 1968).  In particular, a 

higher HE (closer to 1) defines a more predictable time series, while a lower HE (closer to 0.5) defines 

a less predictable, more chaotic time series.

While typically in brain activation studies the focus is on whether a certain area responds to a 

given task and to what extent its response changes across different conditions, in the study of the brain 

resting state neural activity the main issue is that different metrics may each capture just a portion of 

the resting state activity and consequently portray an incomplete and heterogeneous picture. Thus, 

identifying a region modulated by a given psychological trait is just a part of the issue, since results 

may vary depending on the metric utilized. For instance, functional connectivity describes the 

relationship among areas and consequently is thought to reflect interregional flows of information. 

However, functional connectivity provides no information on intrinsic, segregated neuronal activity 

(Lu and Stein, 2014; Raichle, 2015). On the contrary, LFO measures and REHO are more related to 

intrinsic local brain activity, although they concern distinct properties of the neural signal and thus 

provide different information. Finally, measures of complexity seem to be able to quantify the interplay 

between the first two types of metrics, to evaluate both segregated and integrated contributions to the 

regional activity (Jao et al., 2013).
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We argue that this assortment of indices that provide only a fragmented description of the brain 

resting activity is an important reason for the lack of consistency across studies seeking to identify 

resting state correlates of psychological traits. We hold that a comprehensive evaluation of any 

psychological dimension cannot be pursued considering only one, or a few, metrics. To overcome these 

limitations, we designed a resting state fMRI experiment aiming to portray a multiparametric 

description of the neural correlates of neuroticism by using measurements of connectivity, REHO, 

complexity and LFO. Specifically, we seek to demonstrate within the same dataset that different 

metrics do indeed portray different aspects of the neurobiology of neuroticism and that the brain resting 

state neural activity as measured by fMRI is not only a matter of topography, but also of functions (i.e., 

of the characteristics of neuronal activity). Based on data from the above-mentioned literature on 

resting state modulation of neuroticism, we hypothesized that brain activity in regions related to the 

processing (e.g., superior temporal sulcus), expression (e.g., amygdala, insula, cingulate cortices) and 

regulation (e.g., inferior frontal gyrus, prefrontal cortex) of emotions would be modulated by 

neuroticism scores. Emotional regulation may affect several other mental functions, including 

reasoning and memory. (Forsman et al., 2012; Richards and Gross, 2000; Westen et al., 2006). 

Therefore, we hypothesized that different metrics would be modulated in different ways in key regions 

related to the processing and expression of emotion, and that this differential modulation may extend to 

regions related to other high-cortical functions as well.
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2. Methods

2.1 Subjects

Thirty-one healthy volunteer participants were recruited for the present studies (25F/6M, mean 

age±s.d.: 25±3 years). All subjects were right-handed, drug-free and received a clinical examination to 

exclude history or presence of any medical, neurological, or psychiatric disorders that could affect 

brain function. None of the participants had first-degree relatives with history of psychiatric disorders 

as well. All participants gave their written informed consent to the study, which had been approved by 

the Ethical Committee at the Babes-Bolyai University, Cluj-Napoca, Romania. 

2.2 Psychological measurements

To assess neuroticism we used the Anxiety-Neuroticism factor of the Romanian Version of 

Zuckerman Kuhlman Personality Questionnaire (ZKPQ), administered in the week prior to the fMRI 

scan. The ZKPQ (Zuckerman et al., 1993) represents a five-factor (Impulsive Sensation Seeking, 

Neuroticism-Anxiety, Aggression-Hostility, Sociability and Activity) personality inventory containing 

99 true-false items. The Romanian adaptation of this scale presents an adequate internal consistency (α 

ranging from .69 to .88) and a good convergent validity (Sarbescu and Negut, 2013).

2.3 MRI data acquisition

A single Echo Planar Image of 512 time-points (15 minutes duration) was obtained in each fMRI 

session using a 3T Siemens Skyra Scanner (32 Channel Coil). The sequence had the following 

parameters 18 4-mm-thick axial slices (with 1-mm gap) (TR/TE = 1640/40ms, FA 90◦, FOV= 24 cm, 

resolution = 94×94 pixels). High-resolution anatomical brain scan was acquired with a T1-weighted 

spoiled gradient recall sequence (190 slices, 0.6-mm-thick sagittal images –voxel dimension 1*1 mm).
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Subjects were all scanned after a full night of sleep and were instructed to lie in the scan with 

eyes closed and to relax without falling asleep. Upon completion of the resting state acquisition, we 

asked the subjects whether they felt asleep at any time during the fMRI sequence.

2.4 Data analysis

2.4.1 Common data preprocessing

We used the AFNI package (Cox, 1996) for spatial and time registration. Spatial registration was 

performed with the program 3dvolreg. Time registration was used to compensate for slice acquisition 

delays and was obtained by using the program 3dTshift. Residual movement related effects were first 

removed using a linear regression approach. In fact, signal changes related to head movements cannot 

be fully compensated by spatial realignment. These artifactual signals are generated by movement-

dependent modulation of magnetization history of voxels (Friston et al., 1996). Six time-series 

describing three rigid body translations and three rigid body rotations of the head across time were 

obtained from the volume registration algorithm. These series were used in a multiple regression model 

at each voxel. Time dependent regressor was also included to linear detrended voxel time-series. Time-

series that underwent further processing were consequently obtained as the residuals of the model.

2.4.2 HE calculation

After these pre-processing steps, we used fractional Gaussian noise (fGn) to describe the time 

series (Maxim et al., 2005). In particular, fGn can be modeled as a stochastic process, whose behavior 

can be characterized by its auto-covariance function. The fGn can be seen as the increment of a 

fractional Brownian motion sequence (fBm) sequence. This implies that a fBm sequence  can be BHE(n)

obtained as:

     (1)BHE(n) = ∑n
k = 0GHE(k)
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where  are the samples of a fGn sequence. The equation (1) was used to obtain a fBm GHE(k)

sequence from the movement corrected and linear detrended voxel time-series. The HE was estimated 

from this sequence by adopting the discrete second-order derivative approach (Istas and Lang, 1997; 

Kiviniemi et al., 2009) as implemented by the wfbmesti function of the Wavelet Toolbox of the Matlab 

package.

2.4.3 Preprocessing steps for the calculation of ALFF, fALFF, REHO and functional 

connectivity. 

According to standard literature on resting state data processing, we performed further common 

steps for the above-mentioned analysis. Specifically, two time-series obtained from two spherical ROIs 

(4-mm radius) centered in the left lateral ventricle and in the corpus callosum were added to the 

multiple regression model described in 2.4.1 to control for white matter (WM) and cerebrospinal fluid 

(CSF) signals, respectively. 

2.4.4 ALFF and fALFF calculation. 

ALFF and fALFF parameters were estimated on a voxel-by-voxel basis from fMRI time-series as 

in Zang and colleagues (Zang et al., 2007) and in Zou and colleagues (Zou et al., 2008) respectively. In 

both cases, the parameters were estimated with the 3dRFSC command of the AFNI package. For the 

ALFF calculation, this function estimates the power spectrum of each voxel’s time series between 0.01 

and 0.1 Hz, using the Fast Fourier Transform (FFT). Specifically, the signal was transformed in the 

frequency domain using FFT and the frequency bins within the frequency interval of interest were 

retained for the power spectrum computation. The ALFF was then estimated by taking the average 

between 0.01 and 0.1Hz of the square root of the power spectrum (Zang et al., 2007). As far as the 

fALFF parameter is concerned, the sum of the square root of the power spectrum components between 
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0.01 and 0.1 Hz was divided by the sum of the power spectrum components estimated across the entire 

frequency range (for the used TR, this interval corresponded to 0-0.30 Hz) (Zou et al., 2008).

2.4.5 Functional connectivity calculations.

As far as functional connectivity is concerned, we calculated two measurements: GC and ROI 

based maps for right and left amygdala connectivity. To estimate these metrics, motion outliers were 

detected by using the root mean square intensity difference (DVARS) (Power et al., 2012) of volume N 

to volume N+1. This was achieved using the program fsl_motion_outliers of the FSL distribution. 

Outliers were indentified as those values over the 75th percentile +1.5 * Inter quartile range. The 

outliers were substituted with an interpolated value obtained using the program 3dTproject of the AFNI 

distribution. Functional connectivity was estimated on the band filtered signal, (0.01 Hz < f < 0.10 Hz)  

to reduce the artifactual contribution due to physiological noise sources(Lowe et al., 1998). Bandpass 

filtering was achieved by using 3dTproject program.

GC was defined as the connectivity strength, i.e. the correlation coefficient, of each brain voxel 

with the mean time series derived from all the brain voxels. To perform such a calculation we used the 

program 3dTcorrMap of the AFNI package. As ROI for the amygdalae we used the anatomical 

probabilistic ROI for the two amygdalae (probability threshold: 0.5) from the Cytoarchitectonic 

probabilistic atlas by Eickhoff and colleagues (Eickhoff et al., 2005), implemented in the AFNI 

distribution. The extracted time series were used as the input for correlation analysis through the 

program 3dfim+ of the AFNI package. Two different maps for each of the two amygdalae were 

obtained.
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2.4.6. REHO calculation

REHO calculation was performed with the command 3dReHo of the FATCAT toolbox (Taylor 

and Saad, 2013). The neighborhood number of voxels was 27 to include face-, edge-, and node-wise 

neighbors. For the REHO analysis we performed the same movement outliers interpolation and the 

same bandpass filtering operation that were used for the estimation of functional connectivity 

measures.

2.4.7. Group analysis 

To perform the group analysis, the maps of HE ALFF, fALFF, connectivity and REHO for each 

subject were re-sampled into standardized Talairach space (1mm3 isovoxel volume) using a linear 

transformation (Talairach and Tournoux, 1988). We then performed a linear regression analysis (with 

the 3dttest++ command of AFNI package) on the whole brain where the score of neuroticism was used 

as the predictor to estimate each of the above-mentioned metric (criterion). We calculated the Family 

Wise Error (FWE) with a Montecarlo simulation through the 3dClustSim command of the AFNI 

package. For this simulation, we estimated the mean full width half maximum (FWHM) of the spatial 

structure of the noise with the command 3dFWHMx applied on a time series of residuals obtained from 

the command 3dDeconvolve both of AFNI package. We performed this estimation both on unsmoothed 

(for HE calculation) and smoothed data. The simulation was performed on a mask (693,261 voxels) 

including only voxels of gray matter common to all subjects. According to these calculations, we 

considered significant those clusters with a size > 95 µl for a p value < 0.01 (corresponding to a FWE < 

0.05). It is relevant to underline that the FWE calculation was performed with the emended version of 

3dClustSim of the AFNI distribution. Such new version corrected a precedent bias. This version also 

has the option to consider the non guassianity of the noise distribution (Eklund et al., 2016). The effect 
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of non-gaussianity seems to be related to task design data analysis. However, we also considered the 

non gaussianity of the noise distribution in our simulations.

2.4.8 Metrics overlapping

As we indented to illustrate whether specific areas are more broadly modulated by Neuroticism – 

that is, independently from the metric taken into account –, the significant clusters from each maps (p 

<0.01 corrected) were overlapped as binary masks. In the resulting overlapped map, we considered 

significant only those clusters that resulted from the overlapping of at least three different metrics and 

above the size of 95 µl, as defined before. For this reason, each metric may contribute to clusters in the 

overlapped maps although the same clusters do not reach the statistical volume-threshold in the single 

metric analysis.
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3. Results

3.1 Psychological and behavioral results

Neuroticism score was 6.8 ± 4.2 (mean ± s.d.), ranging between 1 and 14 (maximum score 19). 

Grubb’s test for outliers did not find any outlier in the score distribution. None of the subjects reported 

to have fallen asleep during the resting state acquisition.

3.2 fMRI results

All the metrics correlated with neuroticism in different brain areas (see tables 1 and 2 and figures 

1-3). In particular, the brain regions that were significantly modulated by neuroticism scores were: 

Posterior Cingulate and precuneus (PCC/precun), Anterior Cingualte (ACC), Medial Frontal Gyrus 

(MFG), Inferior Parietal Lobule (IPL) for ALFF; Inferior Frontal Gyrus (IFG), thalamus, fusiform 

gyrus, Superior Frontal Gyrus (SFG), IFG, SFG, cingulate gyrus, Middle Frontal Gyrus (MidFG), 

Superior Parietal Lobule (SPL), IPL and cuneus for fALFF; amygdala, precuneus, SFG, MidFG, 

fusiform gyrus, MFG, IFG, Middle Temporal Gyrus (MidTG), Superior Temporal Sulcus (STS), ACC, 

precentral gyrus (preCG) for REHO;  IPL, amygdala, precuneus, IFG, parahippocampal gyrus, MidTG, 

Transverse Temporal Gyrus (TTG), OrbitoFrontal Gyrus (OFG), STS, thalamus, ACC for Hurst 

Exponent; amygdala, IFG, lingual gyrus, MidFG for Global Connectivity; Supramarginal gyrus 

(SMG), Inferior Occipital Gyrus (IOG), cuneus, fusiform gyrus, preCG, IFG, temporal pole, amygdala, 

insula, SMG, STS, lingual gyrus, Superior Occipital Gyrus (SOG), IPL, middle Occipital Gyrus 

(midOG), SPL, postCG, Medial Temporal Gyrus (MTG), for left amygdala connectivity; angular 

gyrus, MTG, amygdala, cingulate cortex, Medial Occipital Gyrus (MOG), Medial orbital Gyrus, MTG, 

hippocampus, IFGm precuneus, insula, MTG, SMG.

We did not find a complete dissociation among metrics, since neuroticism scores modulated 

multiple metrics within the same areas. However, the overlapping map did not find any regions in 
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which all the metrics were influenced by neuroticism levels at the same time; just in two clusters (IFG 

and right amygdala) four out of the seven measures were significantly modulated by the degree of 

neuroticism (table 3 and figure 4). As far as the metrics that were more present in the common clusters 

are concerned, REHO contributed to four out of five significant clusters, while the fALFF only to three. 

The HE was the metric that contributed the less to the common clusters, being present in only one 

cluster.
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4. Discussion

Psychological traits are stable aspects of mindset and, as such, should arguably be reflected by 

stable configurations in brain activity, detectable even when the individual is not engaged in any 

specific activity. Given the complexity typically encapsulated in psychological traits and the vast 

amount of information present in the resting state signal, we sustain that studying the neurobiology of 

personality by relying on just one type of index is overly reductionist and bound to provide a 

fragmented picture. Consequently, we used multiple metrics to evaluate the modulatory effects of 

neuroticism on resting state brain activity.  

4.1. LFO metrics (ALFF-fALFF)

LFO metrics are considered a measure of components of the BOLD signal, intrinsically related 

to the neurovascular coupling (Jao et al., 2013; Zang et al., 2007; Zou et al., 2008). In our study, we 

found that neuroticism modulated ALFF in the precuneus, prefrontal cortex, and inferior parietal 

lobule, while fALFF was modulated by neuroticism in precuneus, prefrontal cortex and visual cortex. 

Specifically, regions related to emotional regulation, like the prefrontal cortex, showed altered 

LFO with the increase in neuroticism: we found decreased LFO in IFG and an increased LFO in the 

other prefrontal regions (SFG, MFG, midFG). Alterations in structure and functional activity within the 

IFG in individuals with higher neuroticism were also reported by other studies and may represent the 

neural correlate of the reduced ability for the cognitive regulation of emotions (Bjørnebekk et al., 2013; 

Lu et al., 2014; Sosic-Vasic et al., 2012). Other studies have found alterations in connectivity and brain 

activity in MFG, midFG and, more generally, in the prefrontal cortex (Forbes et al., 2014; Szameitat et 

al., 2016; Tzschoppe et al., 2014). Alterations of the LFO metrics were also found in the DMN network 

confirming the relative vast literature linking DMN alterations to neuroticism (Sampaio et al., 2014; 

Wei et al., 2011; Wei et al., 2016). In particular, fALFF in the IPL and precuneus was reduced along 
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with the increase in neuroticism. It is interesting to note that in another cluster within the 

PCC/precuneus area, both ALFF and fALFF increased with higher levels of neuroticism. Conversely, 

ALFF showed an opposite pattern in the IPL, since it increased with the rise in neuroticism.  The same 

direct linear relationship was present in the ACC. The significant clusters for fALFF and ALFF did not 

overlap. Therefore, we conclude that the two LFO metrics portray different modulation of neuroticism 

across distinct brain areas, consequently providing complementary information.

Two previous studies evaluated fALFF and its relationship with neuroticism. The results from 

our study are in line with the findings by Kunisato and colleagues who demonstrated an inverse 

correlation between fALFF and neuroticism in the precuneus and in the middle frontal cortex (Kunisato 

et al., 2011). However, we also found clusters in these regions in which fALFF increased with higher 

neuroticism. This result is partially in line with the findings obtained by Wei and coworkers (2011) 

showing a relationship between fALFF and neuroticism in the frontal cortex and in the superior 

termporal gyrus (Wei et al., 2011). 

4.2 REHO

We found an inverse association between neuroticism and REHO in areas involved in emotional 

response (cingulate, amygdala), emotional regulation (inferior frontal) and mentalizing (STS), in, 

which REHO decreased with the increase in neuroticism. Our results partially overlap with those of 

Wei and colleagues (Wei et al., 2011), who also reported an inverse relationship between neuroticism 

and REHO in the inferior frontal cortex. However, we found positive correlation between REHO and 

neuroticism in the prefrontal cortex (SFG, MFG, MidFG), in the fusiform gyrus and in precuneus. As 

mentioned, the prefrontal cortex and DMN areas including the precuneus were found to be modulated 

by neuroticism both in resting state analysis, as well as during task (Forbes et al., 2014; Sampaio et al., 
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2014; Szameitat et al., 2016; Tzschoppe et al., 2014; Wei et al., 2011; Wei et al., 2016). As far as the 

fusiform gyrus is concerned, Kruschwitz and colleagues showed an altered amygdala-fusiform gyrus 

connectivity in individuals with higher neuroticism (Kruschwitz et al., 2014). Nevertheless, they found 

this relationship within the right fusiform gyrus while, to our knowledge, our result is the first report of 

neuroticism modulation of brain activity in the left fusiform gyrus. 

On the whole, these results are consistent with those for the LFO metrics. Moreover, both LFO 

metrics and REHO portray specific aspects of the brain local resting activity. An increased local 

coherence, indexed by the REHO, has been linked to the coordinated neuronal discharge typical of a 

task-related activation. Consequently, variations in REHO may represent an index of the potential to 

respond with an organized and coherent neuronal discharge (Zang et al., 2004). However, other authors 

have suggested that, although local, REHO may reflect in short-range brain dynamics properties of 

long-range whole-brain networks (Liang et al., 2013).

4.3 Hurst Exponent

None of previous studies on neuroticism measured HE. In the present study, HE was inversely 

correlated to neuroticism in regions related to emotional response (e.g., amygdala) and emotional 

regulation (e.g., inferior frontal gyrus). We also found significant clusters within the DMN (precuneus 

and inferior parietal gyrus), and theory of mind regions (STS, and MidTG). These results are similar to 

those reported with LFO metrics, suggesting that these measurements reflected similar, though not 

identical, processes. 

However, HE also was the only metric that inversely correlated with neuroticism in the 

parahippocampal gyrus. The parahippocampal gyrus plays a pivotal role in the limbic system and 

appears to be a hub station for the connections between the amygdala and hippocampus (Stefanacci et 

al., 1996). The interplay of these structures was postulated to play a key role in the regulation of stress 
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(Ulrich-Lai and Herman, 2009) and in emotional learning (LaBar and Cabeza, 2006). Recently, 

parahippocampal volume was found to moderate the relationship between neuroticism and 

psychosomatic symptoms (Wei et al., 2014a), a relationship very well-known at the clinical level 

(Costa and McCrae, 1987; Netter and Hennig, 1998; Tanum and Malt, 2001). Specifically, neuroticism 

predicted psychosomatic complaints in the presence of a higher parahippocampal volume. 

The HE is considered an index that takes into account both the intrinsic and extrinsic 

contributions to the BOLD-signal time-course. Namely, as it gives a compact measure of the 

predictability of a time series, the contributions of both the intrinsic regional discharge and the 

influence from the distant connected regions are allegedly taken into account (Jao et al., 2013).

The increase of chaoticity, or randomness/unpredictibility in these structures, which was 

associated with higher neuroticism, may be related to an alteration in spontaneous periodic discharge in 

emotional and cognitive brain structures. This purported lack of regulation may trigger an abnormal 

response while the individual copes with emotionally relevant situations. Conversely, HE positively 

correlated with neuroticism in both the precunues/posterior cingulate and in the anterior cingulate. 

Higher HE in the precuneus/posterior cingulate may be related to an increased rigidity of neural 

activity in this region. Like for fALFF, this may represent the neurobiological counterpart of increased 

rumination and self-focused attention, typical cognitive components in anxiety and neuroticism. 

4.4 Amygdalae functional connectivity

We found that increased neuroticism scores were related to a wide modulation of the strength of 

connectivity between the two amygdalae and the visual cortical areas. In some of the clusters within the 

visual cortex, the connectivity positively correlated with neuroticism (e.g. MOG and lingual gyrus) 

while in others there was a negative correlation (e.g. cuneus).  We also found a positive correlation 

between the fusiform gyrus and left amygdala. Our findings are partially consistent with those from the 
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only study on resting state functional connectivity, that reported a direct correlation between 

neuroticism and connectivity strength between the amygdalae and fusiform cortex bilaterally 

(Kruschwitz et al., 2014). 

Additionally, we found a reduction in the connectivity strength between the right amygdalae and 

cingulate cortex, which is consistent with the findings obtained by Cremer and colleagues during a face 

perception task (Cremers et al., 2010). In line with them, we speculate that such a decrement was 

related to the loosening of the control of the cingulate cortex over the discharge of the amygdala. More 

in general, our resting state data showed that with the augment in neuroticism scores, the connectivity 

of the bilateral amygdala with a range of areas decreased. These areas were related not only to 

emotions (insula, ACC and precuneus), but also to cognition, memory and perception (STS, 

hippocampus and prefrontal cortex). Notably, this modulation was present in the connectivity between 

the left and right amygdala as well. We hypothesized that the loss of synchronicity between the two 

amygdalae may be due to the increased chaotic pattern of discharge of these regions. Such an augment 

in chaos is coherent with the results obtained with the HE. 

4.5.Global connectivity 

To our knowledge, the present study is the first to evaluate the relationship between global 

connectivity and personality traits. Of note, in our data, global connectivity was decreased in emotional 

regulation structures (like amgydala, IFG and MidFG) and in visual areas (lingual gyrus). In this sense, 

we suggest that global disconnection of these structures may be related to the difficulties in emotional 

regulation and hyperactivity, which are typical in highly neurotic subjects. Particularly, we would argue 

that the functional connectivity breakdown may impair the integration of information. Since this 

breakdown was localized in emotional regulation regions as well as in the visual cortex, we suggest 
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that neuroticism may affect the wide-ranging network fundamental for dealing with emotions in an 

efficient way. 

Only a few studies to date have evaluated this measure and the way in which it can be affected by 

psychological dimensions and by psychopathology. For instance, Cole and colleagues found that 

intelligence correlated with global connectivity in the prefrontal cortex (Cole et al., 2012), while 

alterations of global connectivity were related to obsessive-compulsive disorder (Anticevic et al., 

2014). Finally, an altered global connectivity was seen in ketamine-assuming subjects who showed 

schizophrenic-like symptoms (Driesen et al., 2013). 

4.6 Limitations

A potential limitation of the present study is the lack of control for heart rate and respiration, as 

we did not monitor these signals. In particular, functional connectivity seems to be highly affected by 

heart rate and respiration with the risk of introducing false positives (Jo et al., 2010; Khalili-Mahani et 

al., 2013). However, other metrics, like fALFF and HE, appear to be much less affected by 

physiological noise (Jao et al., 2013; Zou et al., 2008). Furthermore, we regressed out white matter and 

cerebrospinal fluid signals, though we cannot rule out completely the possibility that our results were 

influenced by residual confounds related to physiological signal changes. 

Another potential limitation of our study is related to the individual sample. Although both 

individuals with very low and high scores in neuroticism were included, the study did not cover the 

entire range of the scale. Future studies with larger groups of subjects, including also patients with 

anxiety and mood disorders, who typically show very high levels of neuroticism, may contribute to 

clarify if the present findings extend to the entire range of the trait. 

Finally, regarding the overlapping map, it is necessary to underline that it mainly has an 

illustrative purpose to show the regions that are more often modulated by neuroticism. Importantly, 



21

each of the clusters contributing to this map was FEW corrected and we reported only the clusters over 

the FWE cluster correction size (>95 microliters).  Notably, FWE correction implies that at least one of 

the voxel in the clusters over the threshold is not a false positive detection. However, it is not possible 

to ascertain which voxels among those that result significantly activated are not false positive ones. In 

turn, this implies that we cannot determine to what extent the voxels that overlap are those that are truly 

significantly activated and not false positives

4.7. Conclusions

To our knowledge this is the first study to demonstrate the importance of a multiparametric 

approach to the brain resting state fMRI data in the study of the neurobiological underpinnings of 

psychological traits. Given that different metrics portray different aspects of the resting state signal, a 

multiparametric approach is necessary to achieve a more complete picture of the psychological trait 

being studied. We claim that this approach should be considered both for basic research on 

psychological and psychopathological traits as well as when neuroimaging methods are applied to 

clinical or forensic matters (Rigoni et al., 2010; Sartori et al., 2011). 

When projecting the results of the different metrics on a single map, a partial overlap among 

regions was detected. In particular, the different metrics were consistently modulated by neuroticism in 

regions related to emotion regulation, including the inferior frontal, middle frontal and precentral 

cortex, to emotional reactivity, such as the amygdala, to self-evaluation and introspection, like the 

precuneus.  These results confirm our exploratory hypothesis that different metrics often convey largely 

different and not redundant information. Hence, all the metrics should be analyzed when studying the 

neurobiological correlates of psychological or psychopathological processes by measuring brain resting 

state activity. In our work, some metrics seemed to be less informative or specific, while others, for 

instance REHO and LFO, modulated similar clusters. Therefore, arguing that all the metrics considered 



22

should hold the same weight when studying the impact of psychological traits on resting state may be a 

bit too strong conclusion. However, we would maintain that in the context of an exploratory study, a 

wide multi-metric approach should be considered in order to pinpoint the more informative measure of 

brain activity. In this sense, different metrics portray different aspects of the modulatory effect of 

personality traits on brain dynamics. Conversely, focusing only on one metric, may give an incomplete 

and hence misleading description of the psychological traits.
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Figure and table legend:

Figure 1

Regions in which fALFF and ALFF metrics were modulated by neuroticism. Warm colors 

portrait positive correlations while cold ones portrait negative correlations (p < 0.01 FWE corrected).

Figure 2

Regions in which HE and REHO metrics were modulated by neuroticism. Warm colors portrait 

positive correlations while cold ones portrait negative correlations (p < 0.01 FWE corrected).

Figure 3

Regions in which functional global connectivity and functional connectivity, using left and right 

amygdalae as ROI, were modulated by neuroticism. Warm colors portrait positive correlations while 

cold ones portrait negative correlations (p < 0.01 FWE corrected).

Figure 4

Conjunction analysis for the metrics used in the study. Significant clusters for each metrics (p < 

0.01) entered in the conjunction analysis. Cluster size correction (FWE) was performed on the conjunct 

map (cluster size > 280 µl for a FEW p < 0.05). red= 6 overlapping metrics; blue= 5 overlapping 

metrics; green = 4 overlapping metrics; yellow = 3 overlapping metrics

Table 1

Significant clusters in which fALFF, ALFF, REHO and HE metrics were modulated by 

neuroticism (all clusters p < 0.01, FWE corrected). 
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 PCC/precun; posterior cingulate/ precuneus;  IFG: inferior frontal gyrus; PreCG: Precentral 

Gyrus;  IPL: inferior parietal lobule; STS: superior temporal sulcus;  paraHip: parahippocampal gyrus; 

midTG: middle temporal gyrus; TTG: transversal temporal gyrus; OFG: orbitofrontal gyrus; ACC: 

anterior cingulate cortex

Table 2

Significant clusters in which GC and left and right amygdalae functional connectivity were 

modulated by neuroticism (all clusters p < 0.01, FEW corrected). PreCG: precentral gyrus; IFG: 

inferior frontal gyrus; STS: superior temporal sulcus; IPL: inferior parietal lobule; SFG: superior 

frontal gyrus; Fgyr: fusiform gyrus; SFG: superior frontal gyrus; STS: superior temporal sulcus; 

MedFG: medial frontal gyrus; IPL: inferior parietal lobule; postCG: postcentral gyrus;  midFG: middle 

frontal gyrus;  PCC: posterior cingulate cortex; Pcun:  precuneus.

Table 3

Conjunction analysis for regions in which at least two metrics were modulated by neuroticism 

scores (aggregated clusters p < 0.01, FEW corrected). PreCG: precentral gyrus;  IFG: inferior frontal 

gyrus;  precun: precuneus;  SFG: superior frontal gyrus; IFG: inferior frontal gyrus; STS: superior 

temporal sulcus.

 











Volume
Hemi-
sphere Region

center 
of mass peak Z score

x y z x y z
ALFF

592 L PCC/precun -2.3 -58.8 29.6 -1.0 -56.0 44.0 3.14
192 R ACC -6.7 41.6 -0.8 -6.0 41.0 2.0 2.94
163 L MFG 2.9 -20.6 44.2 1.0 -19.0 47.0 2.65
95 L IPL -31.6 -59.0 32.6 -33.0 -59.0 31.0 2.86

fALFF
577 R IFG 52.7 20.2 1.2 55.0 19.0 -2.0 -3.34
474 R IPL 58.9 -17.1 19.8 62.0 -21.0 21.0 -3.08
411 L precuneus -22.6 -80.5 26.5 -27.0 -80.0 25.0 -3.36
241 R thalamus 10.1 -17.9 0.6 6.0 -18.0 4.0 -2.78
228 R precuneus 23.5 -58.2 47.2 24.0 -58.0 46.0 -4.05
207 R fusiform gyr 25.5 -49.9 -8.7 21.0 -56.0 -12.0 -2.72
173 L SFG -26.4 32.7 30.0 -28.0 36.0 31.0 3.71
153 L PCC/precun -1.5 -55.2 19.5 -1.0 -55.0 21.0 3.84
141 R IFG 52.1 28.3 0.5 52.0 28.0 2.0 -3.74
129 R SFG 24.7 61.0 16.0 23.0 62.0 17.0 -3.84

119 R
cingulate 

gyrus 5.9 -24.8 41.1 6.0 -24.0 41.0 -3.20
114 L MidFG -25.4 48.1 12.2 -25.0 51.0 13.0 3.29
114 L SPL -24.9 -55.0 51.7 -25.0 -56.0 55.0 -3.60
102 R IPL 61.8 -28.7 27.8 62.0 -28.0 27.0 -3.77
102 R cuneus 3.8 -76.7 31.1 2.0 -79.0 29.0 -2.77
100 R IPL 37.5 -32.1 42.4 40.0 -33.0 45.0 -4.07

REHO
1597 R amygdala 24.0 -3.7 -16.1 21.0 -7.0 -21.0 -3.16
1103 L precuneus -4.3 -60.4 29.3 -2.0 -60.0 33.0 2.98
459 L SFG -14.2 55.4 22.9 -13.0 56.0 21.0 4.02
394 R MidFG -25.3 29.6 33.2 -22.0 23.0 40.0 2.77
269 L fusiform gyr 42.4 -51.1 -9.8 42.0 -50.0 -10.0 4.21
269 R MFG -1.8 44.0 13.4 -0.0 46.0 13.0 3.41
245 R IFG 23.0 16.9 -14.2 26.0 19.0 -17.0 -2.79
235 L precuneus 8.5 -57.0 34.8 7.0 -56.0 37.0 3.19
175 R MidFG 24.1 28.4 34.9 24.0 28.0 36.0 2.86
162 R IFG 53.1 18.3 -4.4 55.0 19.0 -2.0 -3.02
148 L MidTG -64.4 -18.6 -7.4 -63.0 -18.0 -6.0 2.88
139 L STS 48.0 -45.4 11.3 48.0 -46.0 11.0 3.84
135 R STS 36.5 15.8 -18.4 40.0 19.0 -19.0 -2.80
123 L precuneus -29.2 -59.2 28.5 -28.0 -61.0 31.0 2.74
111 L ACC 4.6 -3.3 -2.2 4.0 -2.0 0.0 -3.10
98 L preCG 33.0 -4.9 33.2 33.0 -4.0 38.0 2.99



96 R MidFG -38.1 17.0 27.6 -39.0 18.0 29.0 3.02

HE
282 R IPL -58,4 28,6 21,8 -55 28 18 -4.21
174 L amygdala 22,9 5 -8,5 22 5 -8 -3.01
155 L precuneus 12,2 64,6 26,1 11 67 26 3.86
139 L IFG 31,4 -3,8 -10,4 34 -5 -8 -3.04
138 L paraHip 20,4 27,1 -4,6 21 26 -6 -3.15
135 L paraHip 14,2 34 -6,2 13 34 -6 -2.91
132 L paraHip 9,3 38,6 2 8 41 0 -3.11
118 R midTG -50,5 -9,5 -16,9 -51 -9 -19 -3.48
118 R TTG -59,7 15,4 12 -60 16 12 -3.20
108 R OFG -16,6 -10,4 -13,3 -19 -4 -10 -3.03
105 R STS -61,1 22,2 12,8 -61 21 12 -3.57
104 L thalamus 3,7 12,8 8,2 3 14 8 -3.32
94 L ACC 6,7 -43,3 5,6 6 -44 11 3.25



 Volume
Hemi-
sphere Region  

 center 
of mass   peak  z score

    x y z x y z  
global connectivity

174 R amygdala 26.5 2.0 -18.2 22.0 -0.0 -14.0 -2.56
113 R IFG 50.4 15.5 4.4 52.0 15.0 2.0 -3.01
104 L lingual gyr -15.3 -50.6 -6.9 -14.0 -52.0 -6.0 -2.62
96 R IFG 48.5 17.3 -9.1 49.0 18.0 -8.0 3.13
96 R MidFG 22.7 -4.7 45.4 23.0 -9.0 46.0 -2.56

 95 R IFG 53.1 23.7 -4.2 53.0 21.0 -4.0 -2.57

FC Left Amygdala
350 R SMG 57.6 -18.9 26.4 57.0 -18.0 29.0 -3.62
348 R MOG 39.9 -79.2 -0.7 38.0 -80.0 -1.0 3.52

325 L
lingual 
gyrus -2.6 -73.4 1.6 -1.0 -77.0 -2.0 2.87

294 R MOG 26.0 -87.3 12.6 21.0 -85.0 19.0 3.65
209 R cuneus -17.8 -89.0 21.9 -16.0 -89.0 25.0 -3.68
182 R fusiform 23.1 -56.9 -10.9 25.0 -60.0 -11.0 3.72
167 R preCG -58.1 -3.1 21.3 -61.0 -7.0 16.0 3.63
159 R IFG 24.8 30.3 -9.5 25.0 31.0 -9.0 -3.97

148 R
temporal 
pole 48.5 17.4 -8.8 49.0 18.0 -9.0 -3.99

137 L amygdala -27.9 -8.8 -10.6 -28.0 -9.0 -9.0 -3.98
136 L insula -44.2 -14.5 11.7 -45.0 -15.0 10.0 -3.53
136 R SMG 56.8 -38.0 22.4 59.0 -38.0 23.0 -3.36
128 R STS 43.2 -18.1 10.8 46.0 -19.0 7.0 -3.98
123 L IFG -45.1 12.3 9.2 -46.0 14.0 11.0 -2.98

122 L
lingual 
gyrus -11.0 -59.7 1.6 -11.0 -60.0 -2.0 -3.24

118 R IFG 45.3 30.9 -9.4 44.0 34.0 -10.0 -4.00
117 L SOG -22.7 -80.3 22.4 -23.0 -78.0 25.0 -3.00
117 R IPL 39.8 -36.1 47.2 41.0 -37.0 50.0 -3.10
116 L preCG -45.9 -8.6 37.1 -44.0 -9.0 38.0 -3.69
115 L STS -59.4 -27.1 16.2 -59.0 -27.0 17.0 -3.63
114 L insula -34.2 16.2 -0.1 -34.0 16.0 0.0 -4.05
114 L STS -50.8 -25.1 9.9 -52.0 -25.0 10.0 -3.27
112 R midOG 35.3 -85.0 10.0 36.0 -85.0 10.0 -4.83
105 R SMG 31.7 -36.7 38.5 32.0 -38.0 40.0 -3.11
105 L SPL -24.7 -42.9 50.1 -25.0 -43.0 55.0 -3.33
102 R postCG 57.7 -9.9 27.4 59.0 -9.0 24.0 -3.53
99 R IFG 33.7 26.4 -14.3 32.0 24.0 -14.0 -3.37
99 R MTG 41.1 -64.7 -1.6 41.0 -65.0 -1.0 -4.08

 95 R amygdala 16.9 -7.5 -12.5 17.0 -7.0 -8.0 -3.31

FC Right 



Amygdala

882 L
angular 
gyrus -43.2 -56.8 24.7 -41.0 -56.0 26.0 -4.18

402 L MTG -51.7 -49.6 19.5 -53.0 -51.0 20.0 -3.28

314 R
angular 
gyrus 41.3 -53.9 34.7 41.0 -57.0 34.0 -3.53

272 R amygdala 27.0 3.3 -17.5 21.0 5.0 -12.0 -3.08
163 R cingulate -1.1 -26.8 36.8 -1.0 -25.0 35.0 -3.53
151 L STS -37.3 -71.7 21.6 -35.0 -70.0 22.0 -3.54
141 R MorG 3.9 60.5 1.0 3.0 59.0 3.0 -2.88
136 L MTG -40.8 -64.0 16.1 -42.0 -64.0 15.0 -3.42

133 R
hyppocamp
us 19.6 -16.3 -10.5 20.0 -16.0 -11.0 -3.72

125 R IFG 54.9 20.9 0.6 56.0 19.0 3.0 -3.50
119 L IFG 3.9 -74.6 31.9 4.0 -76.0 32.0 -3.62
118 R precuneus -44.8 10.8 15.0 -46.0 10.0 17.0 -3.23
113 L insula -25.0 8.3 -9.1 -26.0 8.0 -10.0 -3.06
103 R MTG 65.8 -26.2 -7.7 65.0 -26.0 -8.0 -3.54
99 R MOG -2.9 17.4 46.8 -2.0 17.0 46.0 -3.43

 98 R SMG 32.2 -67.3 30.5 31.0 -67.0 31.0 -3.54



Volume
Hemi-
sphere Region  peak  

metrics 
influenced 

in the 
cluster      

FC 
amygdala

   x y z  ALFF fALFF REHO HE GC L R

283 L
precuneus/

PCC -2.6 -58.4 24.8 2 X X
234 R amygdala 27.2 1.1 -18.2 4 X X X X
158 R IFG 51.8 19.9 -5.6 4 X X X X
125 L MidFG -25.4 31.0 29.0 2 X X
117 R preCG 55.3 -18.9 25.6 3 X X X

shared presence in the common 
clusters 1 3 4 1 2 2 2



Highlights

Neuroticism (NE) can be associated with stable Restig State (RS) features,

Several metrics have been used to describe RS, yielding to inconsistent results. 

Different metrics portrait different RS properities 

Despite regional similarities NE affects different metrics, in different ways. 

Multiparametric approach is needed for the characterization of psychological traits.


