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Assuming that naturalness should be modified by ignoring quadratic divergences, we propose a simple

extension of the standard model where the weak scale is dynamically generated together with an

automatically stable vector. Identifying it as thermal dark matter, the model has one free parameter. It

predicts one extra scalar, detectable at colliders, which triggers a first-order dark/electroweak cosmo-

logical phase transition with production of gravitational waves. Vacuum stability holds up to the Planck

scale.
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I. INTRODUCTION

The discovery of the standard model (SM) scalar [1]
together with negative results of searches for supersymme-
try and for other solutions to the usual hierarchy problem
[2] invite us to explore the idea that this paradigm needs to
be abandoned or reformulated. One possibility is that
naturalness still holds but in a modified version, namely
under the assumption that the unknown cutoff at Planckian
scales has the property that quadratic divergences vanish,
like in dimensional regularization. Such modified ‘‘finite
naturalness’’was discussed in [3], showing that it is satis-
fied by the standard model and that new physics models
motivated by data (about neutrino masses, dark matter
(DM), QCD � problem, inflation) can satisfy it.

In this paper we address what could be the dynamical
origin of the weak scale and of the dark matter scale in
the context of finite naturalness. Although not logically
necessary, the extra hypothesis that mass terms are absent
from the fundamental Lagrangian may be conceptually
more appealing than just putting by hand small masses of
the order of the electroweak scale. We adopt the following
three guidelines:

(1) We assume that the SM and DM particles have no
mass terms in the fundamental Lagrangian, and
that their masses arise from some dynamical
mechanism.

(2) We assume that the extended theory has the same
automatic properties of the SM supported by data:
accidental conservation of lepton and baryon
number, of lepton flavor, etc.

(3) We assume that DM stability is one more automatic
consequence of the theory.

The resulting model is presented in Sec. II and its phe-
nomenology is explored in Sec. III. In Sec. IV we conclude.

II. THE MODEL

One simple model is obtained by merging previously
proposed ideas that possess some of the properties 1, 2, 3:

Refs. [4,5] for dynamical generation of the weak scale
(see also [6] for related ideas), and Refs. [7,8] for auto-
matic (accidental) DM stability.
The model has gauge groupUð1ÞY � SUð2ÞL � SUð3Þc �

SUð2ÞX, namely the SM gauge group with an extra SUð2ÞX.
The field content is just given by the SM fields [singlets
under SUð2ÞX] plus a scalar S, doublet under the extra
SUð2ÞX and neutral under the SM gauge group. The
Lagrangian of the model is just the most general one,
omitting the mass terms for the SM scalar doublet H
(‘‘Higgs’’ for short) and for the scalar doublet S, because
we want to dynamically generate the weak and DM scales.
Consequently, the scalar potential of the theory is

V ¼ �HjHj4 � �HSjHSj2 þ �SjSj4: (1)

We now show how it can lead to dynamical symmetry
breaking down to Uð1Þem � SUð3Þc such that, in unitary
gauge, the scalar doublets H and S can be expanded in
components h and s as

HðxÞ¼ 1ffiffiffi
2

p 0

vþhðxÞ

 !
; SðxÞ¼ 1ffiffiffi

2
p 0

wþ sðxÞ

 !
; (2)

where v � 246 GeV is the usual Higgs vacuum expecta-
tion value (vev), and w is the vev that completely breaks
SUð2ÞX giving equal masses MX ¼ gXw=2 to all SUð2ÞX
vectors. Symmetry breaking happens when [9]

4�H�S � �2
HS < 0; (3)

a condition that can be dynamically verified at low energy
because quantum corrections make �S smaller at low
energy, as described by the beta function

��S
� d�S

d ln�
¼ 1

ð4�Þ2
�
9g4X
8

� 9g2X�S þ 2�2
HS þ 24�2

S

�
:

(4)
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Unlike in the � function of �H, there is no negative
Yukawa contribution: ��S

is definite positive and the

gauge term makes �S negative at low energy. Thereby the
dynamically generated hierarchy between v� w and

the Planck scale is exponentially large, of order e�S=��S .
While the analysis of the full one-loop potential is

somehow involved, a simple analytic approximation
holds in the limit of small �HS (which will be phenom-
enologically justified a posteriori). In this limit the insta-
bility condition of Eq. (3) can be approximated as �S < 0
and the potential at one loop order can be approximated
by inserting a running �S in the tree-level potential of
Eq. (1):

�S ’ ��S
ln s=s�; (5)

where s� is the critical scale below which �S becomes
negative. The use of s� is not an approximation but a
convenient parametrization. Given that around s� s� the
typical size of �S is ��S

, ‘‘small �HS’’ in Eq. (3) precisely

means �2
HS � �H��S

. In this approximation, the potential

is minimized as

v ’ w

ffiffiffiffiffiffiffiffiffi
�HS

2�H

s
; w ’ s�e�1=4: (6)

The scalar mass matrix at the minimum in the ðh; sÞ
basis is

v2
2�H � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�H�HS

p

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�H�HS

p
�HS þ 2��S

�H=�HS

 !
: (7)

Its eigenvalues m1 and m2 are

m2
1 ’ 2v2�; m2

2 ’ v2
2��S

�H

�HS

; (8)

where � ’ �H � �2
HS=��S

, having included the next-to-

leading term in the small �HS approximation (as discussed
later, this small effect helps in keeping �H and the whole
potential stable up to large Planckian field values [10]). The
first state, h1 can be identified with the Higgs boson with
mass m1 � 125:6 GeV [1]. The mixing angle, defined by
h1 ¼ h cos�þ s sin�, is given by

sin 2� ¼ v2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8�H�HS

p
m2

2 �m2
1

; i:e:; � ’m1�m2 �3=2
HSffiffiffiffiffiffiffiffiffi

2�H

p
��S

: (9)

Due to mixing, the extra state h2 ¼ s cos�� h sin� inher-
its the couplings to SM particles of the Higgs boson h,
rescaled by the factor sin�. Note that m2

1 can be rewritten
asm2

1 ’ w2�HS, showing explicitly that the SM scalar boson
mass is induced by the �HS portal, proportionally to the
SUð2ÞX gauge symmetry breaking scale w. Electroweak
symmetry breaking (EWSB) does not need a large value

for the portal coupling �HS, provided that w is large
enough.1 Effectively s acts as ‘‘the Higgs of the Higgs’’
and as ‘‘the Higgs of dark matter.’’ Furthermore, the ‘‘Higgs
of the s’’ is s itself: all scales are dynamically generated
via dimensional transmutation.
As discussed in [7,15,16], the SUð2ÞX vectors with

mass MX are DM candidates, automatically stable thanks
to the analogous of the accidental custodial symmetry of
the SM.2 Such symmetry can be violated only by non-
renormalizable dimension-6 operators. If suppressed by
Planckian scales, such operators leave these hidden vector
dark matter TeV-scale particles stable enough on cosmo-
logical time scales.

III. PHENOMENOLOGICAL ANALYSIS

The DM thermal relic abundance and DM indirect
signals require the computation of �v, the nonrelativistic
DM annihilation cross section times the relative velocity v.
We compute them in the limit of small �HS, where only
SUð2ÞX gauge interactions are relevant, and the mixing
angle � is small, such that DM dominantly annihilates
into s. The model gives rise to VV ! ss annihilations
and to VV ! Vs semi-annihilations [7] (see also
[15,16,19]). Averaging over initial spin and gauge compo-
nents we find

�vann ¼ 11g2X
1728�w2

; �vsemi-ann ¼ g2X
32�w2

: (10)

The cosmological DM abundance is reproduced as a
thermal relic for

�vtot ¼ �vann þ 1

2
�vsemi-ann � 2:3� 10�26 cm3

s
; (11)

which means

gX ’ w=1:9 TeV: (12)

1This differs from the DM driven EWSB mechanism proposed
in Ref. [11] in the framework of the inert Higgs doublet model
(see also [12,13] with singlet scalars). In these models only the
SM scalar field gets a vacuum expectation value, so that in order
to compensate the negative top Yukawa coupling contribution to
��H

, EWSB requires either quite large new quartic couplings
(that can become nonperturbative already at multi-TeVenergies)
or many extra scalars. This differs also from another DM
induced EWSB framework based on dimensionful scalar pa-
rameters turning negative at low energy [14].

2DM vectors are a triplet, and thereby cannot decay into the
bosons, which are singlets under the dark custodial symmetry. In
this respect, it is important that the dark gauge group is SUð2ÞX.
In models that employ instead an Abelian Uð1ÞX dark gauge
group [7,17], vectors are unstable unless kinetic mixing with
Uð1ÞY is forbidden. In models with a non-Abelian group larger
than SUð2ÞX it is more difficult to find a scalar representation
with dimension just above the dimension of the gauge group,
which can fully break it (but possible if one makes extra
assumptions on the structure of the vacuum [18]).
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With this assumption, the model only has one free
parameter: out of the four parameters �, �HS, �S (or s�)
and gX, three of them are fixed by the observed Higgs mass
and vacuum expectation value, and by the cosmological
DM abundance �DM [20]. We can view gX or �HS as the
only free parameter. They are related as

�HS ’ 0:004=g2X: (13)

The observables are predicted in terms of gX as

m2 ’ 165 GeVg3X; � ’ 0:07=g7X;

MX ’ 985 GeVg2X;

�SI ’ 0:7� 10�45 cm2½1� ðm2
1=m

2
2Þ	2=g12X ;

(14)

where�SI is theDMdirect detection cross section, computed
below. These approximations hold in the limit of small �HS,
which numerically means �HS �

ffiffiffiffiffiffiffiffiffiffiffiffi
�H�S

p � 0:015, i.e.
gX 
 0:5. Figure 1 shows the same predictions, computed
numerically without making the small �HS approximation.

A. The Higgs of the Higgs

The left panel of Fig. 1 shows the predictions for Higgs
physics. We see that the new scalar h2 cannot have a mass
in the range between 100 and 140 GeV. Indeed, the two
scalar states roughly have the same mass terms for �HS �
0:005;
however, due to the off-diagonal term in their mass matrix,
the mass difference must be larger than

jm1 �m2j � � � jm2
12j=m1 � m1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�HS=2�H

q
� 17 GeV:

(15)

The extra state h2 behaves as an extra Higgs boson with
couplings rescaled by sin�. This means that it is a narrow
resonance even if heavier than 1 TeV. For m2 < 2m1 the
extra scalar behaves as a Higgs-like state with production

cross section suppressed by sin 2� (the decay mode into h1
and an off-shell h1 being subdominant), while for m2 >
2m1 the extra state also has a decay width into two Higgs,

�ðh2 ! h1h1Þ ¼ �2
HS

32�

w2

m2
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

2 � 4m2
1

q
; (16)

which contributes up to 20% to its total width, dominated
by h2 ! WW, ZZ, t�t. The shaded regions in the left panel
of Fig. 1 are excluded by LEP (at small mass) and LHC
(at large mass, h ! WW searches are plotted as dashed
curves and h ! ZZ searches as dot-dashed curves).
Future sensitivities are discussed in [21]. Present experi-
mental searches for h ! ZZ and for h ! �� show some
(nonstatistically significant) hint for an extra state at
m2 � 143 GeV [1].
The cross section for DM production at LHC (mediated

by off-shell h1 or h2) can easily be negligibly small.

B. Direct dark matter signals

The spin-independent cross section for DM direct
detection is [7]

�SI ¼ m4
Nf

2

16�v2

�
1

m2
1

� 1

m2
2

�
2
g2Xsin

22�; (17)

where f � 0:295 is the nucleon matrix element andmN is
the nucleon mass. The right panel of Fig. 1 shows the
predictions for DM direct searches. Present direct detec-
tion constraints imply the bounds �HS ¼ 0:007 (so that
the approximation of small �HS holds in the pheno-
menologically interesting region), m2 ¼ 70 GeV, w ¼
1:5 TeV, MX ¼ 560 GeV, gX ¼ 0:75, and � ¼ 0:5. A
value of �HS ¼ 0:007 is also disfavored by LEP Higgs
searches [left panel of Fig. 1]. Future experiments should
be able to probe smaller values of �HS by improving the
sensitivity to the extra Higgs cross section by 1–2 orders
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FIG. 1 (color online). Predicted cross sections for the extra scalar boson (left) and for DM direct detection (right) as functions of the
only free parameter of the model �HS, varied as shown in the color legend.
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of magnitude and the sensitivity to �SI by 2–3 orders of
magnitude before 2020.

Signals disappear in the limit of small �HS. However, �HS

cannot be arbitrarily small, because Eq. (13) would imply a
nonperturbatively large value for gX.

3 In practice, values of
�HS below about 10�3 imply a large value of the gauge
coupling gX ¼ 2 and correspond to m2 ¼ 1:3 TeV, MX ¼
4 TeV, and� ¼ 0:0005. This is enough to render the signals
too small to be observed in forthcoming experiments.

C. Indirect dark matter signals

Concerning indirect DM signals, DM annihilates into ss
and into s DM at leading order in the small mixing �. The
total amount of s particles produced is not affected by the
presence of coannihilations and is effectively dictated by
the standard thermal cross section �vtot in Eq. (11). Next,
via its mixing with the SM scalar, the s particles decay into
SM particles, producing a detectable astrophysical flux of
eþ, �p, �, 	, �d which can be computed using e.g. the public
code in [22]. Figure 2 shows two examples of �p, eþ, �
spectra at production (astrophysical propagation effects are
not included), which are typical of hadronic channels.
Present data have a sensitivity to �v which, for the
considered DM masses MX � TeV, is about 2 orders of
magnitude above the predicted thermal cross section.

Furthermore, DM semi-annihilations (around the center of
theGalaxyandof theSun)produceafluxofDMparticleswith
E ¼ MX. They could be detected by looking for hadronic
showers produced byDMscatteringswithmatter.However, it
is difficult to detect such DM particles, because their cross
section onmatter,�� g4Xm

2
Nsin

22�=4�M4
X, is smaller than

the analogous cross section of neutrinos on matter.

D. RGE and stability of the potential

Having determined the weak-scale values of the parame-
ters, we now explore how the model can be extrapolated up
to large energies, dynamically generating the weak scale.
The renormalization group equations (RGE) for the model
are those of the SM, with extra terms in the RGE for the
quartic Higgs coupling,

ð4�Þ2 d�H

d ln�
¼
�
12g2t � 9g21

5
� 9g22

�
�H � 6g4t þ 27g41

200

þ 9

20
g22g

2
1 þ

9g42
8

þ 24�2
H þ 2�2

HS; (18)

and supplemented by the RGE for the extra couplings:

ð4�Þ2 dgX
d ln�

¼ � 43

6
g3X � 1

ð4�Þ2
259

6
g5X þ � � � ; (19a)

ð4�Þ2 d�HS

d ln�
¼ �HS

�
6y2t � 9g2X

2
� 9g21

10
� 9g22

2

þ 12�H þ 12�S

�
� 4�2

HS; (19b)

ð4�Þ2 d�S

d ln�
¼ �9g2X�S þ 9g4X

8
þ 2�2

HS þ 24�2
S: (19c)

Figure 3 shows the resulting running of the couplings of
the model up to the Planck scale for gX ¼ 1, which corre-
sponds to �HS ¼ 0:004. We notice that the model interprets
the observed proximity of the QCD scale to the electro-
weak scale as due to a proximity between the strong gauge
coupling g3 and the dark gauge coupling gX. Indeed, g3
and gX happen to have not only similar values at the weak
scale, but also a numerically similar � function, such that
all gauge couplings roughly reach a common value at large
energies. At low energy gX becomes large, of order one,
triggering a negative �S and consequently dynamically
generating the DM scale and the weak scale.

E. Dark/electroweak phase transition

The mechanism of dynamical scale generation implies
a negative value of the cosmological constant (barring
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FIG. 2 (color online). Energy spectra of final-state antiprotons,
positrons, and photons produced per DM annihilation for two
different values of the DM mass: 1 TeV (continuous curves) and
2 TeV (dashed).

102 104 106 108 1010 1012 1014 1016 1018 1020
10 3

10 2

10 1

1

RGE scale in GeV

C
ou

pl
in

gs

g1
g2
g3

yt

H

gX

HS

S

FIG. 3 (color online). Running of the model parameters up to
the Planck scale for gX ¼ 1.

3If the gX coupling becomes nonperturbative at a scale�X larger
than the scalewhere Eq. (3) is satisfied, the dark scalars and vectors
confine [15]. In this case the �HSS

ySHyH term could also lead to
EWSB by inducing a negative �HS�

2
XH

yH mass term [15].
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metastable minima). The contribution of the present model
is Vmin ’ �w4��S

=16. Despite being suppressed by a

one-loop factor, this contribution is larger by about 60
orders of magnitude than the observed value. Assuming
that the cosmological constant problem is solved by a
fine-tuning, we can proceed to study how the dark and
electroweak phase transitions occur during the big bang.

We recall that the SM predicts a second-order phase
transition where the Higgs boson starts to obtain a vacuum
expectation value vðTÞ at temperatures below TSM

c �
170 GeV and sphalerons decouple when TSM

dec � vðTSM
dec Þ �

140 GeV [23].
Within the present model, using again the small �HS

approximation, the one-loop thermal correction to the
potential is

VTðs; h � 0Þ ¼ 9T4

2�2
f

�
MX

T

�
þ T

4�
½M3

X � ðM2
X þ�XÞ3=2	;

(20)

where fðrÞ ¼ R1
0 x2 ln ð1 � e�

ffiffiffiffiffiffiffiffiffiffi
x2þr2

p
Þdx and �X ¼

11g2XT
2=6 is the thermal propagator for the longitudinal X

component which accounts for resummation of higher order
daisy diagrams [12,13]. Equation (20) predicts that s and
consequently h acquire a vacuum expectation value through
a first-order phase transition. The critical temperature at
which the two phases are degenerate is Tc=MX ’ 0:37,
0.42, 0.49, 0.75 for gX ¼ 0:75, 1, 1.2, 1.5, respectively.

A cosmological first-order phase transition occurring at
temperatures around the weak scale generates gravitational
waves at a potentially detectable level.

Their present peak frequency and energy density are
[13,24]

fpeak � 5 mHz
�=H

100

Tf

1 TeV
;

�peakh
2 � 1:84� 10�6
2

�
�

1þ �

�
2 H2

�2

v3
b

0:42þ v2
b

;

(21)

where Tf & Tc is the temperature at which the phase

transition happens, � is the energy fraction involved in the
first-order phase transition, H=� is the duration of the phase

transition in Hubble units, vb¼ð ffiffiffiffiffiffiffiffi
1=3

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2þ2�=3

p Þ=
ð1þ�Þ is the wall velocity, and 
¼ð0:715�þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8�=243
p Þ=

ð1þ0:715�Þ is the fraction of latent heat converted into
gravitational waves. � and � are explicitly given by

� � �V � dð�VÞ=d lnT
�2g�T4=30

;
�

H
� dðS3=TÞ

d lnT
; (22)

where S3 is the action of the thermal bubble that determines

the tunneling rate per space-time volume as � �
ðS3=2�TÞ3=2T4e�S3=T and �V is the potential difference
between the two minima. These quantities are evaluated at
T � Tf, which is roughly determined as the temperature at

which S3=T � 4 lnMPl=MX � 142. Given that S3 scales as
1=��S

/ g4X, the result depends strongly on gX:

(i) For the critical value gX�1:2, one has � � 1 in view
of Tf�0:15Tc. Furthermore �=H�70 such that

�peakh
2�2�10�11, which could be easily detected

by planned experiments such as LISA. Notice that
Tf � MX=13 � 110 GeV is larger than the DM

freeze-out temperature, Tfo � MX=25 (such that DM
freeze-out is negligibly affectedby thephase transition)
and is smaller than TSM

c (such that also the SM scalar
boson is involved in the first-order phase transition).

(ii) For gX * 1:2 tunneling is faster and consequently
Tf higher. For example, for gX � 1:5 one has Tf �
0:5Tc � 0:4MX � 800 GeV and � � 0:01, �=H �
200 such that �peakh

2 � 10�19, which could be

detected by futuristic experiments. The Higgs phase
transition happens later independently of the dark
phase transition.

(iii) For gX & 1:2 thermal tunneling is slower than the
Hubble rate such that the universe would enter into
an inflationary stage, which presumably ends when
the temperature cools down to the SUð2ÞX confine-
ment scale �X after N � ln s�=�X � 8�2=7g2X
e-folds, next reheating the universe up to
g��2T4

reh=30 � �V i.e. Treh � MX=9. The baryon

asymmetry gets suppressed by a factor � e�3N ,
such that the model is excluded when this factor
is smaller than the observed baryon asymmetry
�10�9, provided that the baryon asymmetry can-
not be regenerated at the weak scale.

The critical value of gX could have an uncertainty of about
30%, given that higher order corrections to the thermal
potential are suppressed by gX=�.
Finally note that the extended dark/electroweak phase

transition also occurs for a more general situation with e.g.
positiveH and S squared mass terms typically smaller than
the v and w symmetry breaking scales.

IV. CONCLUSIONS

‘‘Just so’’ comparable small masses for the Higgs boson
and for dark matter (much smaller than the Planck scale)
satisfy a reformulation of the naturalness concept, modi-
fied by assuming that quadratic divergences should be
ignored and thereby named finite naturalness. Within this
heretic point of view, it might be more satisfactory to find a
dynamical explanation of the smallness and of the prox-
imity of these low-energy scales. We here assumed that
such masses vanish to start with, and that they originate
from a physical mechanism that occurs at such energy
scales.4

4This assumption is not demanded by finite naturalness. An
alternative possibility compatible with this scenario is e.g. that
gravitational loops of unobservable intermediate-scale particles
(as suggested to us by A. Arvinataki, S. Dimopoulos, and S.
Dubovsky) could generate small and comparable Higgs and scalar
DM masses.
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This is achieved by a simple extension of the standard
model, which contains just one extra scalar doublet under
one extra SU(2) gauge group. The extra vectors are
automatically stable thermal DM candidates, just like the
proton is automatically stable within the SM. The extra
scalar doublet gives mass to such vectors (because of their
gauge interactions), to the SM Higgs boson (because of
a quartic coupling between them), and to itself (because
its quartic couplings run negative at low energy). Thereby,
all scales are related and exponentially suppressed with
respect to the Planck scale.

As a function of only one free parameter, the model
predicts the properties of the extra scalar [observable at
collider experiments, see left panel of Fig. 1], of dark

matter [observable in direct and indirect detection experi-
ments, see right panel of Fig. 1]. The scalar potential of the
model can be stable up to the Planck scale, even when the
SM potential is unstable, namely for the present best-fit
values of its parameters. In cosmology, the model predicts
a first order phase transition with emission of gravitational
waves at a possibly detectable level.
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