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A COUNTEREXAMPLE TO WELL-POSEDNESS

OF ENTROPY SOLUTIONS

TO THE COMPRESSIBLE EULER SYSTEM

ELISABETTA CHIODAROLI

Abstract. We deal with entropy solutions to the Cauchy problem

for the isentropic compressible Euler equations in the space-periodic

case. In more than one space dimension, the methods developed

by De Lellis-Székelyhidi enable us to show failure of uniqueness

on a finite time-interval for entropy solutions starting from any

continuously differentiable initial density and suitably constructed

bounded initial linear momenta.

1. Introduction

In this note, we deal with the Cauchy Problem for the isentropic com-

pressible Euler equations in the space-periodic setting. Given any con-

tinuously differentiable initial density, we can construct bounded initial

linear momenta for which admissible solutions are not unique in more

than one space dimension.

We first introduce the isentropic compressible Euler equations of gas

dynamics in n space dimensions, n ≥ 2 (cf. Section 3.3 of [3]). They

are obtained as a simplification of the full compressible Euler equations,

by assuming the entropy to be constant. The state of the gas will be

described through the state vector

V = (ρ,m)

whose components are the density ρ and the linear momentum m. The

balance laws in force are for mass and linear momentum. The resulting

system, which consists of n+ 1 equations, takes the form:




∂tρ+ divxm = 0

∂tm+ divx

(
m⊗m

ρ

)
+∇x[p(ρ)] = 0

ρ(·, 0) = ρ0

m(·, 0) = m0

. (1.1)

The pressure p is a function of ρ determined from the constitutive ther-

modynamic relations of the gas in question. A common choice is the

polytropic pressure law

p(ρ) = kργ
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with constants k > 0 and γ > 1. The set of admissible values is P =

{ρ > 0} (cf. [3] and [19]). The system is hyperbolic if

p′(ρ) > 0.

In addition, thermodynamically admissible processes must also satisfy

an additional constraint coming from the energy inequality

∂t

(
ρε(ρ) +

1

2

|m|2
ρ

)
+ divx

[(
ε(ρ) +

1

2

|m|2
ρ2

+
p(ρ)

ρ

)
m

]
≤ 0 (1.2)

where the internal energy ε : R+ → R is given through the law p(r) =

r2ε′(r). The physical region for (1.1) is {(ρ,m)| |m| ≤ Rρ}, for some

constant R > 0. For ρ > 0, v = m/ρ represents the velocity of the fluid.

We will consider, from now on, the case of general pressure laws given

by a function p on [0,∞[, that we always assume to be continuously

differentiable on [0,∞[. The crucial requirement we impose upon p is that

it has to be strictly increasing on [0,∞[. Such a condition is meaningful

from a physical viewpoint since it is a consequence of the principles of

thermodynamics.

Now, we will disclose the content of this note. Using some techniques

introduced by De Lellis-Székelyhidi (cf. [4] and [5]) we can consider any

continuously differentiable periodic initial density ρ0 and exhibit suitable

periodic initial momenta m0 for which space-periodic weak admissible

solutions of (1.1) are not unique on some finite time-interval.

Theorem 1.1. Let n ≥ 2. Then, for any given function p and any

given continuously differentiable periodic initial density ρ0, there exist a

bounded periodic initial momentum m0 and a positive time T for which

there are infinitely many space-periodic admissible solutions (ρ,m) of

(1.1) on Rn × [0, T [ with ρ ∈ C1(Rn × [0, T [).

Remark 1.2. Indeed, in order to prove Theorem 1.1, it would be enough

to assume that the initial density is a Hölder continuous periodic func-

tion: ρ0 ∈ C0,α(Rn) (cf. Proof of Proposition 7.1).

Some connected results are obtained in [5] (cf. Theorem 2 therein) as

a further consequence of their analysis on the incompressible Euler equa-

tions. Inspired by their approach, we adapt and apply directly to (1.1)

the method of convex integration combined with Tartar’s programme on

oscillation phenomena in conservation laws (see [21] and [13]). In this

way, we can show failure of uniqueness of admissible solutions to the

compressible Euler equations starting from any given continuously dif-

ferentiable initial density. For a survey on these h-principle-type results

in fluid dynamics we refer the reader to [6].
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The paper is organised as follows. Section 2 is an overview on the

definitions of weak and admissible solutions to (1.1) and gives a first

glimpse on how Theorem 1.1 is achieved. Section 3 is devoted to the

reformulation of a simplified version of the isentropic compressible Euler

equations as a differential inclusion and to the corresponding geometrical

analysis. In Section 4 we state and prove a criterion (Proposition 4.1) to

select initial momenta allowing for infinitely many solutions. The proof

builds upon a refined version of the Baire category method for differential

inclusions developed in [5] and aimed at yielding weakly continuous in

time solutions. Section 5 and 6 contain the proofs of the main tools

used to prove Proposition 4.1. In Section 7, we show initial momenta

satisfying the requirements of Proposition 4.1. Finally, in Section 8 we

prove Theorem 1.1 by applying Proposition 4.1.

2. Weak and admissible solutions to

the isentropic Euler system

The deceivingly simple-looking system of first-order partial differential

equations (1.1) has a long history of important contributions over more

than two centuries. We recall a few classical facts on this system (see for

instance [3] for more details).

• If ρ0 and m0 are “smooth” enough (see Theorem 5.3.1 in [3]),

there exists a maximal time interval [0, T [ on which there exists

a unique “smooth” solution (ρ,m) of (1.1) (for 0 ≤ t < T ). In

addition, if T <∞, and this is the case in general, (ρ,m) becomes

discontinuous as t goes to T .

• If we allow for discontinuous solutions, i.e., for instance, solu-

tions (ρ,m) ∈ L∞ satisfying (1.1) in the sense of distributions,

then solutions are neither unique nor stable. More precisely, one

can exhibit sequences of such solutions which converge weakly in

L∞ − ∗ to functions which do not satisfy (1.1).

• In order to restore the stability of solutions and (possibly) the

uniqueness, one may and should impose further restrictions on

bounded solutions of (1.1), restrictions which are known as (Lax)

entropy inequalities.

This note stems from the problem of better understanding the effi-

ciency of entropy inequalities as selection criteria among weak solutions.

Here, we have chosen to emphasize the case of the flow with space

periodic boundary conditions. For space periodic flows we assume that

the fluid fills the entire space Rn but with the condition that m,ρ are

periodic functions of the space variable. The space periodic case is not

a physically achievable one, but it is relevant on the physical side as a
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model for some flows. On the mathematical side, it retains the com-

plexities due to the nonlinear terms (introduced by the kinematics) and

therefore it includes many of the difficulties encountered in the general

case. However the former is simpler to treat because of the absence of

boundaries. Furthermore, using Fourier transform as a tool simplifies

the analysis.

Let Q = [0, 1]n, n ≥ 2 be the unit cube in Rn. We denote by Hm
p (Q),

m ∈ N, the space of functions which are in Hm
loc(R

n) and which are

periodic with period Q:

m(x+ l) = m(x) for a.e. x ∈ Rn and every l ∈ Zn.

For m = 0, H0
p(Q) coincides simply with L2(Q). Analogously, for every

functional space X we define Xp(Q) to be the space of functions which

are locally (over Rn) in X and are periodic of period Q. The functions

in Hm
p (Q) are easily characterized by their Fourier series expansion

Hm
p (Q) =

{
m ∈ L2

p(Q) :
∑

k∈Zn

|k|2m |m̂(k)|2 <∞ and m̂(0) = 0

}
,

(2.1)

where m̂ : Zn → Cn denotes the Fourier transform of m. We will use

the notation H(Q) for H0
p(Q) and Hw(Q) for the space H(Q) endowed

with the weak L2 topology.

Let T be a fixed positive time. By a weak solution of (1.1) on Rn×[0, T [

we mean a pair (ρ,m) ∈ L∞([0, T [;L∞
p (Q)) satisfying

|m(x, t)| ≤ Rρ(x, t) for a.e. (x, t) ∈ Rn × [0, T [ and some R > 0,

(2.2)

and such that the following identities hold for every test functions ψ ∈
C∞
c ([0, T [;C∞

p (Q)), φ ∈ C∞
c ([0, T [;C∞

p (Q)):

∫ T

0

∫

Q
[ρ∂tψ +m · ∇xψ] dxdt+

∫

Q
ρ0(x)ψ(x, 0)dx = 0 (2.3)

∫ T

0

∫

Q

[
m · ∂tφ+

〈
m⊗m

ρ
,∇xφ

〉
+ p(ρ) divx φ

]
dxdt

+

∫

Q
m0(x) · φ(x, 0)dx = 0. (2.4)

For n ≥ 2 the only non-trivial entropy is the total energy η = ρε(ρ) +
1
2
|m|2

ρ which corresponds to the flux Ψ =
(
ε(ρ) + 1

2
|m|2

ρ2
+ p(ρ)

ρ

)
m.
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Then a bounded weak solution (ρ,m) of (1.1) satisfying (1.2) in the

sense of distributions, i.e. satisfying the following inequality

∫ T

0

∫

Q

[(
ρε(ρ) +

1

2

|m|2
ρ

)
∂tϕ+

(
ε(ρ) +

1

2

|m|2
ρ2

+
p(ρ)

ρ

)
m · ∇xϕ

]

+

∫

Q

(
ρ0ε(ρ0) +

1

2

∣∣m0
∣∣2

ρ

)
ϕ(·, 0) ≥ 0, (2.5)

for every nonnegative ϕ ∈ C∞
c ([0, T [;C∞

p (Q)), is said to be an entropy

(or admissible) solution of (1.1).

The lack of entropies is one of the essential reasons for a very lim-

ited understanding of compressible Euler equations in dimensions greater

than or equal to 2.

A recent paper by De Lellis-Székelyhidi gives an example in favour

of the conjecture that entropy solutions to the multi-dimensional com-

pressible Euler equations are in general not unique. Showing that this

conjecture is true has far-reaching consequences. The entropy condition

is not sufficient as a selection principle for physical/unique solutions.

The non-uniqueness result by De Lellis-Székelyhidi is a byproduct of

their new analysis of the incompressible Euler equations based on its

formulation as a differential inclusion. They first show that, for some

bounded compactly supported initial data, none of the classical admis-

sibility criteria singles out a unique solution to the Cauchy problem for

the incompressible Euler equations. As a consequence, by constructing

a piecewise constant in space and independent of time density ρ, they

look at the compressible isentropic system as a “piecewise incompress-

ible” system (i.e. still incompressible in the support of the velocity field)

and thereby exploit the result for the incompressible Euler equations to

exhibit bounded initial density and bounded compactly supported initial

momenta for which admissible solutions of (1.1) are not unique (in more

than one space dimension).

Inspired by their techniques, we give a further counterexample to the

well-posedeness of entropy solutions to (1.1). Our result differs in two

main aspects: here the initial density can be any given “regular” function

and remains “regular” forward in time while in [5] the density allowing

for infinitely many admissible solutions must be chosen as piecewise con-

stant in space; on the other hand we are not able to deal with compactly

supported momenta (indeed we work in the periodic setting), hence our

non-unique entropy solutions are only locally L2 in contrast with the

global-L2-in-space property of solutions obtained in [5]. Moreover, we

have chosen to study the case of the flow in a cube of Rn with space

periodic boundary conditions. This case leads to many technical simpli-

fications while retaining the main structure of the problem.
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More precisely, we are able to analyze the compressible Euler equa-

tions in the framework of convex integration. This method works well

with systems of nonlinear PDEs such that the convex envelope (in an

appropriate sense) of each small domain of the submanifold represent-

ing the PDE in the jet-space (see [8] for more details) is big enough.

In our case, we consider a simplification of system (1.1), namely the

semi-stationary associated problem, whose submanifold allows a convex

integration approach leading us to recover the result of Theorem 1.1.

We are interested in the semi-stationary Cauchy problem associated

with the isentropic Euler equations (simply set to 0 the time derivative

of the density in (1.1) and drop the initial condition for ρ):




divxm = 0

∂tm+ divx

(
m⊗m

ρ

)
+∇x[p(ρ)] = 0

m(·, 0) = m0.

(2.6)

A pair (ρ,m) ∈ L∞
p (Q)× L∞([0, T [;L∞

p (Q)) is a weak solution on Rn ×
[0, T [ of (2.6) if m(·, t) is weakly-divergence free for almost every 0 < t <

T and satisfies the following bound

|m(x, t)| ≤ Rρ(x) for a.e. (x, t) ∈ Rn × [0, T [ and some R > 0,

(2.7)

and if the following identity holds for every φ ∈ C∞
c ([0, T [;C∞

p (Q)):

∫ T

0

∫

Q

[
m · ∂tφ+

〈
m⊗m

ρ
,∇xφ

〉
+ p(ρ) divx φ

]
dxdt

+

∫

Q
m0(x) · φ(x, 0)dx = 0. (2.8)

A general observation suggests us that a non-uniqueness result for

weak solutions of (2.6) whose momentum’s magnitude satisfies some

suitable constraint could lead us to a non-uniqueness result for entropy

solutions of the isentropic Euler equations (1.1). Indeed, the entropy

solutions we construct in Theorem 1.1 come from some weak solutions

of (2.6).

Theorem 2.1. Let n ≥ 2. Then, for any given function p, any given

density ρ0 ∈ C1
p(Q) and any given finite positive time T , there exists a

bounded initial momentum m0 for which there are infinitely many weak

solutions (ρ,m) ∈ C1
p(Q)×C([0, T ];Hw(Q)) of (2.6) on Rn× [0, T [ with

density ρ(x) = ρ0(x).

In particular, the obtained weak solutions m satisfy

|m(x, t)|2 = ρ0(x)χ(t) a.e. in Rn × [0, T [, (2.9)
∣∣m0(x)

∣∣2 = ρ0(x)χ(0) a.e. in Rn, (2.10)

for some smooth function χ.



A COUNTEREXAMPLE TO WELL-POSEDNESS OF ENTROPY SOLUTIONS 7

An easy computation shows how, by properly choosing the function

χ in (2.9)-(2.10), the solutions (ρ0,m) of (2.6) obtained in Theorem 2.1

satisfy the admissibility condition (2.5).

Theorem 2.2. Under the same assumptions of Theorem 2.1, there ex-

ists a maximal time T > 0 such that the weak solutions (ρ,m) of (2.6)

(coming from Theorem 2.1) satisfy the admissibility condition (2.5) on

[0, T [.

Our construction yields initial data m0 for which the nonuniqueness

result of Theorem 1.1 holds on any time interval [0, T [, with T ≤ T . How-

ever, as pointed out before, for sufficiently regular initial data, classical

results give the local uniqueness of smooth solutions. Thus, a fortiori,

the initial momenta considered in our examples have necessarily a certain

degree of irregularity.

3. Geometrical analysis

This section is devoted to a qualitative analysis of the isentropic com-

pressible Euler equations in a semi-stationary regime (i.e. (2.6)).

As in [4] we will interpret the system (2.6) in terms of a differential

inclusion, so that it can be studied in the framework combining the plane

wave analysis of Tartar, the convex integration of Gromov and the Baire’s

arguments.

3.1. Differential inclusion. The system (2.6) can indeed be naturally

expressed as a linear system of partial differential equations coupled with

a pointwise nonlinear constraint, usually called differential inclusion.

The following Lemma, based on Lemma 2 in [5], gives such a reformu-

lation. We will denote by Sn the space of symmetric n× n matrices, by

Sn
0 the subspace of Sn of matrices with null trace, and by In the n × n

identity matrix.

Lemma 3.1. Let m ∈ L∞([0, T ];L∞
p (Q;Rn)), U ∈ L∞([0, T ];L∞

p (Q;Sn
0 ))

and q ∈ L∞([0, T ];L∞(Q;R+)) such that

divxm = 0

∂tm+ divx U +∇xq = 0. (3.1)

If (m,U, q) solve (3.1) and in addition there exists ρ ∈ L∞
p (Rn;R+) such

that (2.7) holds and

U =
m⊗m

ρ
− |m|2

nρ
In a.e. in Rn × [0, T ],

q = p(ρ) +
|m|2
nρ

a.e. in Rn × [0, T ], (3.2)
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then m and ρ solve (2.6) distributionally. Conversely, if m and ρ are

weak solutions of (2.6), then m, U = m⊗m
ρ − |m|2

nρ In and q = p(ρ) + |m|2

nρ

solve (3.1)-(3.2).

In Lemma 3.1 we made clear the distinction between the augmented

system (3.1), whose linearity allows a plane wave analysis, and the non-

linear pointwise constraint (3.2), which leads us to study the graph below.

For any given ρ ∈]0,∞[, we define the following graph

Kρ :=

{
(m,U, q) ∈ Rn × Sn

0 × R+ : U =
m⊗m

ρ
− |m|2

nρ
In,

q = p(ρ) +
|m|2
nρ

}
. (3.3)

The key of the forthcoming analysis is the behaviour of the graph Kρ

with respect to the wave vectors associated with the linear system (3.1):

are differential and algebraic constraints in some sense compatible?

For our purposes, it is convenient to consider “slices” of the graph Kρ,

by considering vectors m whose modulus is subject to some ρ-depending

condition. Thus, for any given χ ∈ R+, we define:

Kρ,χ :=

{
(m,U, q) ∈ Rn × Sn

0 × R+ : U =
m⊗m

ρ
− |m|2

nρ
In,

q = p(ρ) +
|m|2
nρ

, |m|2 = ρχ

}
. (3.4)

3.2. Wave cone. Following Tartar’s framework [21], we consider a sys-

tem of first order linear PDEs

∑

i

Ai∂iz = 0 (3.5)

where z is a vector valued function and the Ai are matrices. Then,

planewave solutions to (3.5) are solutions of the form

z(x) = ah(x · ξ), (3.6)

with h : R → R. In order to find such solutions, we have to solve

the relation
∑

i ξiAia = 0, where ξi is the oscillation frequency in the

direction i. The set of directions a for which a solution ξ 6= 0 exists

is called wave cone Λ of the system (3.5): equivalently Λ characterizes

the directions of one dimensional high frequency oscillations compatible

with (3.5).
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The system (3.1) can be analyzed in this framework. Consider the

(n + 1)× (n + 1) symmetric matrix in block form

M =

(
U + qIn m

m 0

)
. (3.7)

Note that, with the new coordinates y = (x, t) ∈ Rn+1, the system (3.1)

can be easily rewritten as divyM = 0 (the divergence of M in space-time

is zero). Thus, the wave cone associated with the system (3.1) is equal

to

Λ =

{
(m,U, q) ∈ Rn × Sn

0 × R+ : det

(
U + qIn m

m 0

)
= 0

}
. (3.8)

Indeed, the relation
∑

i ξiAia = 0 for the system (3.1) reads simply

as M · (ξ, c) = 0, where (ξ, c) ∈ Rn × R (ξ is the space-frequency and

c the time-frequency): this equation admits a non-trivial solution if M

has null determinant, hence (3.8).

3.3. Convex hull and geometric setup. Given a cone Λ, we say that

K is convex with respect to Λ if, for any two points A,B ∈ K with

B − A ∈ Λ, the whole segment [A,B] belongs to K. The Λ-convex

hull of Kρ,χ is the smallest Λ-convex set KΛ
ρ,χ containing Kρ,χ, i.e. the

set of states obtained by mixture of states of Kρ,χ through oscillations

in Λ-directions (Gromov [11], who works in the more general setting of

jet bundles, calls this the P - convex hull). The key point in Gromov’s

method of convex integration (which is a far reaching generalization of

the work of Nash [17] and Kuiper [14] on isometric immersions) is that

(3.5) coupled with a pointwise nonlinear constraint of the form z ∈ K

a.e. admits many interesting solutions provided that the Λ-convex hull

of K, KΛ, is sufficiently large. In applications to elliptic and parabolic

systems we always have KΛ = K so that Gromov’s approach does not

directly apply. For other applications to partial differential equations it

turns out that one can work with the Λ-convex hull defined by duality.

More precisely, a point does not belong to the Λ- convex hull defined by

duality if and only if there exists a Λ-convex function which separates it

from K. A crucial fact is that the second notion is much weaker. This

surprising fact is illustrated in [13].

In our case, the wave cone is quite large, therefore it is sufficient to

consider the stronger notion of Λ-convex hull, indeed it coincides with

the whole convex hull of Kρ,χ.

Lemma 3.2. For any S ∈ Sn let λmax(S) denote the largest eigenvalue

of S. For (ρ,m,U) ∈ R+ × Rn × Sn
0 let

e(ρ,m,U) := λmax

(
m⊗m

ρ
− U

)
. (3.9)
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Then, for any given ρ, χ ∈ R+, the following holds

(i) e(ρ, ·, ·) : Rn × Sn
0 → R is convex;

(ii) |m|2

nρ ≤ e(ρ,m,U), with equality if and only if U = m⊗m
ρ − |m|2

nρ In;

(iii) |U |∞ ≤ (n− 1)e(ρ,m,U), with |U |∞ being the operator norm of

the matrix;

(iv) the χ
n -sublevel set of e defines the convex hull of Kρ,χ, i.e.

Kco
ρ,χ =

{
(m,U, q) ∈ Rn × Sn

0 × R+ : e(ρ,m,U) ≤ χ

n
,

q = p(ρ) +
χ

n

}
(3.10)

and Kρ,χ = Kco
ρ,χ ∩ {|m|2 = ρχ}.

For the proof of (i)-(iv) we refer the reader to the proof of Lemma 3.2

in [5]: the arguments there can be easily adapted to our case.

We observe that, for any ρ, χ ∈ R+, the convex hull Kco
ρ,χ lives in

the hyperplane H of Rn × Sn
0 × R+ defined by H :=

{
(m,U, q) ∈ Rn ×

Sn
0 × R+ : q = p(ρ) + χ

n

}
. Therefore, the interior of Kco

ρ,χ as a subset

of Rn × Sn
0 × R+ is empty. This seems to prevent us from working in

the classical framework of convex integration, but we can overcome this

apparent obstacle.

For any ρ, χ ∈ R+, we define the hyperinterior of Kco
ρ,χ, and we denote

it with “hint Kco
ρ,χ”, as the following set

hint Kco
ρ,χ :=

{
(m,U, q) ∈ Rn × Sn

0 × R+ : e(ρ,m,U) <
χ

n
,

q = p(ρ) +
χ

n

}
. (3.11)

In the framework of convex integration, the larger the Λ-convex hull

of Kρ,χ is, the bigger the breathing space will be. How to “quantify” the

meaning of a “large” Λ-convex hull in our context? The previous defini-

tion provides an answer: the Λ-convex hull of Kρ,χ will be “large” if its

hyperinterior is nonempty. The wave cone of the semi-stationary Euler

isentropic system is wide enough to ensure that the Λ-convex hull of Kρ,χ

coincides with the convex hull of Kρ,χ and has a nonempty hyperinterior.

As a consequence, we can construct irregular solutions oscillating along

any fixed direction. For our purposes, it will be convenient to restrict to

some special directions in Λ, consisting of matrices of rank 2, which are

not stationary in time, but are associated with a constant pressure.
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Lemma 3.3. Let c, d ∈ Rn with |c| = |d| and c 6= d, and let ρ ∈ R+.

Then
(
c− d, c⊗c

ρ − d⊗d
ρ , 0

)
∈ Λ.

Proof. Since the vector
(
c+ d,−

(
|c|2+c·d

ρ

))
is in the kernel of the ma-

trix

C =

(
c⊗c
ρ − d⊗d

ρ c− d

c− d 0

)
,

C has indeed determinant zero, hence
(
c− d, c⊗c

ρ − d⊗d
ρ , 0

)
∈ Λ. �

Now, we introduce some important tools: they allow us to prove that

KΛ
ρ,χ = Kco

ρ,χ is sufficiently large, thus providing us room to find many

solutions for (3.1)-(3.2).

As first, we define the admissible segments as segments in Rn×Sn
0 ×R+

whose directions belong to the wave cone Λ for the linear system of PDEs

(3.1) and are indeed special directions in the sense specified by Lemma

3.3.

Definition 3.4. Given ρ, χ ∈ R+ we call σ an admissible segment for

(ρ, χ) if σ is a line segment in Rn × Sn
0 × R+ satisfying the following

conditions:

• σ is contained in the hyperinterior of Kco
ρ,χ;

• σ is parallel to
(
c− d, c⊗c

ρ − d⊗d
ρ , 0

)
for some c, d ∈ Rn with

|c|2 = |d|2 = ρχ and c 6= ±d.

The admissible segments defined above correspond to suitable plane-

wave solutions of (3.1). The following Lemma ensures that, for any

ρ, χ ∈ R+, the hyperinterior of Kco
ρ,χ is “ sufficiently round ” with respect

to the special directions: given any point in the hyperinterior of Kco
ρ,χ,

it can be seen as the midpoint of a sufficiently large admissible segment

for (ρ, χ).

Lemma 3.5. There exists a constant F = F (n) > 0 such that for any

ρ, χ ∈ R+ and for any z = (m,U, q) ∈ hint Kco
ρ,χ there exists an admissi-

ble line segment for (ρ, χ)

σ =
[
(m,U, q)− (m,U, 0), (m,U, q) + (m,U, 0)

]
(3.12)

such that

|m| ≥ F√
ρχ

(
ρχ− |m|2

)
.

The proof rests on a clever application of Carathéodory’s theorem for

convex sets and can be carried out, with minor modifications, as in [5]

(cf. Lemma 6 therein).

As an easy consequence of the previous Lemma, we can finally estab-

lish that the Λ-convex hull of Kρ,χ coincides with Kco
ρ,χ.
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Proposition 3.6. For all given ρ, χ ∈ R+, the Λ-convex hull of Kρ,χ

coincides with the convex hull of Kρ,χ.

Proof. Recall that, given ρ, χ ∈ R+, we denote the Λ-convex hull of Kρ,χ

with KΛ
ρ,χ. Of course KΛ

ρ,χ ⊂ Kco
ρ,χ, hence we have to prove the opposite

inclusion, i.e. Kco
ρ,χ ⊂ KΛ

ρ,χ. For every z ∈ Kco
ρ,χ we can follow the

procedure in the proof of Lemma 3.5 (cf. [5]) and write it as z =
∑

j λjzj ,

with (zj)1≤j≤N+1 in Kρ,χ, (λj)1≤j≤N+1 in [0, 1] and
∑

j λj = 1. Again,

we can assume that λ1 = maxj λj . In case λ1 = 1 then z = z1 ∈ Kρ,χ ⊂
KΛ

ρ,χ and we can already conclude. Otherwise (i.e. when λ1 ∈ (0, 1)) we

can argue as in Lemma 3.5 so to find an admissible segment σ for (ρ, χ) of

the form (3.12). Since we aim at writing z as a Λ-barycenter of elements

of Kρ,χ, we “play” with these admissible segments by prolongations and

iterative constructions until we get segments with extremes lying in Kρ,χ.

More precisely: we extend the segment σ until we meet ∂ hintKco
ρ,χ thus

obtaining z as the barycenter of two points (w0, w1) with (w0 −w1) ∈ Λ

and such that every wi = (mi, Ui, qi), i = 0, 1, satisfies either |mi|2 = ρχ

or |mi|2 < ρχ and e(ρ,mi, Ui) = χ/n.

In the first case, Ui −
(
mi⊗mi

ρ − |mi|
2

nρ In

)
≥ 0, and since it is a null-

trace-matrix it is identically zero, whence wi ∈ Kρ,χ

(
note that in the

construction of σ the q-direction remains unchanged, hence qi = p(ρ) +
χ
n

)
.

In the second case, i.e. when |mi|2 < ρχ and e(ρ,mi, Ui) = χ/n,

we apply again Lemma 3.5 and a limit procedure to express wi as

barycentre of (wi,0, wi,1) with (wi,0 − wi,1) ∈ Λ and such that every

wi,k = (mi,k, Ui,k, qi,k), k = 0, 1, will satisfy either |mi,k|2 = ρχ or

λ2(ρ,mi,k, Ui,k) = e(ρ,mi,k, Ui,k) = χ/n, where λ1(ρ,m,U) ≥ λ2(ρ,m,U) ≥
...... ≥ λn(ρ,m,U) denote the ordered eigenvalues of the matrix m⊗m

ρ −U
(note that λ1(ρ,m,U) = e(ρ,m,U)). Now, we iterate this procedure of

constructing suitable admissible segments for (ρ, χ) until we have writ-

ten z as Λ-barycenter of points (m,U, q) satisfying either |m|2 = ρχ or

λn(ρ,m,U) = χ/n and therefore all belonging to Kρ,χ as desired. �

4. A criterion for the existence of infinitely many

solutions

The following Proposition provides a criterion to recognize initial data

m0 which allow for many weak admissible solutions to (1.1). Its proof

relies deeply on the geometrical analysis carried out in Section 3. The

underlying idea comes from convex integration. The general principle of

this method, developed for partial differential equations by Gromov [11]
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and for ordinary differential equations by Filippov [10], consists in the

following steps: given a nonlinear equation E(z),

• (i) we rewrite it as (L(z) ∧ z ∈ K) where L is a linear equation;

• (ii) we introduce a strict subsolution z0 of the system, i.e. satis-

fying a relaxed system (L(z0) ∧ z ∈ U);
• (iii) we construct a sequence (zk)k∈N approaching K but staying

in U ;

• (iv) we pass to the limit, possibly modifying the sequence (zk) in

order to ensure a suitable convergence.

Step (i) has already been done in Section 3.1. The choice of z0 will be

specified in Sections 7-8. Here, we define the notion of subsolution for

an appropriate set U , we construct an improving sequence and we pass

to the limit. The way how we construct the approximating sequence will

be described in Section 6 using some tools from Section 5.

One crucial step in convex integration is the passage from open sets

K to general sets. This can be done in different ways, e.g. by the Baire

category theorem (cf. [18]), a refinement of it using Baire-1 functions or

the Banach-Mazur game [12] or by direct construction [20]. Whatever

approach one uses the basic theme is the same: at each step of the

construction one adds a highly oscillatory correction whose frequency

is much larger and whose amplitude is much smaller than those of the

previous corrections.

In this section, we achieve our goals following some Baire category

arguments as in [4]: they are morally close to the methods developed by

Bressan and Flores in [1] and by Kirchheim in [12].

In our framework the initial data will be constructed starting from

solutions to the convexified (or relaxed) problem associated to (2.6), i.e.

solutions to the linearized system (3.1) satisfying a “relaxed” nonlinear

constraint (3.2) (i.e. belonging to the hyperinterior of the convex hull of

the “constraint set”), which we will call subsolutions.

As in [4], our application shows that the Baire theory is comparable in

terms of results to the method of convex integration and they have many

similarities: they are both based on an approximation approach to tackle

problems while the difference lies only in the limit arguments, i.e. on the

way the exact solution is obtained from better and better approximate

ones. These similarities are clarified by Kirchheim in [12], where the

continuity points of a first category Baire function are considered; a

comparison between the two methods is drawn by Sychev in [20].

Here, the topological reasoning of Baire theory is preferred to the it-

eration technique of convex integration, since the first has the advantage

to provide us directly with infinitely many different solutions.
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Proposition 4.1. Let ρ0 ∈ C1
p(Q;R+) be a given density function and let

T be any finite positive time. Assume there exist (m0, U0, q0) continuous

space-periodic solutions of (3.1) on Rn×]0, T [ with

m0 ∈ C([0, T ];Hw(Q)), (4.1)

and a function χ ∈ C∞([0, T ];R+) such that

e(ρ0(x),m0(x, t), U0(x, t)) <
χ(t)

n
for all (x, t) ∈ Rn×]0, T [, (4.2)

q0(x, t) = p(ρ0(x)) +
χ(t)

n
for all (x, t) ∈ Rn×]0, T [. (4.3)

Then there exist infinitely many weak solutions (ρ,m) of the system (2.6)

in Rn × [0, T [ with density ρ(x) = ρ0(x) and such that

m ∈ C([0, T ];Hw(Q)), (4.4)

m(·, t) = m0(·, t) for t = 0, T and for a.e. x ∈ Rn, (4.5)

|m(x, t)|2 = ρ0(x)χ(t) for a.e. (x, t) ∈ Rn×]0, T [. (4.6)

4.1. The space of subsolutions. We define the space of subsolutions

as follows. Let ρ0 and χ be given as in the assumptions of Proposi-

tion 4.1. Let m0 be a vector field as in Proposition 4.1 with associ-

ated modified pressure q0 and consider space-periodic momentum fields

m : Rn × [0, T ] → Rn which satisfy

divm = 0, (4.7)

the initial and boundary conditions

m(x, 0) = m0(x, 0), (4.8)

m(x, T ) = m0(x, T ), (4.9)

(4.10)

and such that there exists a continuous space-periodic matrix field U :

Rn×]0, T [→ Sn
0 with

e(ρ0(x),m(x, t), U(x, t)) <
χ

n
for all (x, t) ∈ Rn×]0, T [,

∂tm+ divx U +∇xq0 = 0 in Rn × [0, T ].
(4.11)

Definition 4.2. Let X0 be the set of such linear momentum fields, i.e.

X0 =

{
m ∈ C0(]0, T [;C0

p (Q)) ∩ C([0, T ];Hw(Q)) :

(4.7) − (4.11) are satisfied

}
(4.12)

and let X be the closure of X0 in C([0, T ];Hw(Q). Then X0 will be the

space of strict subsolutions.
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As ρ0 is continuous and periodic on Rn and χ is smooth on [0, T ],

there exists a constant G such that χ(t)
∫
Q ρ0(x)dx ≤ G for all t ∈ [0, T ].

Since for any m ∈ X0 with associated matrix field U we have that (see

Lemma 3.2- (ii))
∫

Q
|m(x, t)|2 dx ≤

∫

Q
nρ0(x)e(ρ0(x),m(x, t), U(x, t))dx

< χ(t)

∫

Q
ρ0(x)dx for all t ∈ [0, T ],

we can observe that X0 consists of functions m : [0, T ] → H(Q) taking

values in a bounded subset B of H(Q). Without loss of generality, we

can assume that B is weakly closed. Then, B in its weak topology is

metrizable and, if we let dB be a metric on B inducing the weak topology,

we have that (B, dB) is a compact metric space. Moreover, we can define

on Y := C([0, T ], (B, dB)) a metric d naturally induced by dB via

d(f1, f2) := max
t∈[0,T ]

dB(f1(·, t), f2(·, t)). (4.13)

Note that the topology induced on Y by d is equivalent to the topology of

Y as a subset of C([0, T ];Hw). In addition, the space (Y, d) is complete.

Finally, X is the closure in (Y, d) of X0 and hence (X, d) is as well a

complete metric space.

Lemma 4.3. If m ∈ X is such that |m(x, t)|2 = ρ0(x)χ(t) for almost

every (x, t) ∈ Rn×]0, T [, then the pair (ρ0,m) is a weak solution of (2.6)

in Rn × [0, T [ satisfying (4.4)-(4.5)-(4.6).

Proof. Let m ∈ X be such that |m(x, t)|2 = ρ0(x)χ(t) for almost every

(x, t) ∈ Rn×]0, T [. By density of X0, there exists a sequence {mk} ⊂ X0

such that mk
d→ m in X. For any mk ∈ X0 let Uk be the associated

smooth matrix field enjoying (4.11). Thanks to Lemma 3.2 (iii) and

(4.11), the following pointwise estimate holds for the sequence {Uk}

|Uk|∞ ≤ (n− 1)e(ρ0,mk, Uk) <
(n− 1)− χ

n
.

As a consequence, {Uk} is uniformly bounded in L∞([0, T ];L∞
p (Q)); by

possibly extracting a subsequence, we have that

Uk
∗
⇀ U in L∞([0, T ];L∞

p (Q)).

Note that hintKco
ρ0,χ = Kco

ρ0,χ is a convex and compact set by Lemma

3.2-(i)-(ii)-(iii). Hence, m ∈ X with associated matrix field U solves

(3.1) on Rn× [0, T ] for q = q0 and (m,U, q0) takes values in Kco
ρ0,χ almost

everywhere. If, in addition, |m(x, t)|2 = ρ0(x)χ(t), then (m,U, q0)(x, t) ∈
Kρ,χ a.e. in Rn × [0, T ] (cf. Lemma 3.2-(iv)). Lemma 3.1 allows us to

conclude that (ρ0,m) is a weak solution of (2.6) in Rn × [0, T [. Finally,

since mk → m in C([0, T ];Hw(Q)) and |m(x, t)|2 = ρ0(x)χ(t) for almost

every (x, t) ∈ Rn×]0, T [, we see that m satisfies also (4.4)-(4.5)-(4.6). �
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Now, we will argue as in [4] exploiting Baire category techniques to

combine weak and strong convergence (see also [12]).

Lemma 4.4. The identity map I : (X, d) → L2([0, T ];H(Q)) defined by

m → m is a Baire-1 map, and therefore the set of points of continuity is

residual in (X, d).

Proof. Let φr(x, t) = r−(n+1)φ(rx, rt) be any regular spacetime convo-

lution kernel. For each fixed m ∈ X, we have

φr ∗m→ m strongly in L2(H) as r → 0.

On the other hand, for each r > 0 and mk ∈ X,

mk
d→ m implies φr ∗mk → φr ∗m in L2(H).

Therefore, each map Ir : (X, d) → L2(H), m→ φr∗m is continuous, and

I(m) = limr→0 Ir(m) for all m ∈ X. This shows that I : (X, d) → L2(H)

is a pointwise limit of continuous maps; hence it is a Baire-1 map. As a

consequence, the set of points of continuity of I is residual in (X, d) (cf.

[18]). �

4.2. Proof of Proposition 4.1. We aim to show that all points of

continuity of the identity map correspond to solutions of (2.6) enjoying

the requirements of Proposition 4.1: Lemma 4.4 will then allow us to

prove Proposition 4.1 once we know that the cardinality of X is infinite.

In light of Lemma 4.3, for our purposes it suffices to prove the following

claim:

CLAIM. If m ∈ X is a point of continuity of I, then

|m(x, t)|2 = ρ0(x)χ(t) for almost every (x, t) ∈ Rn×]0, T [. (4.14)

�

Note that proving (4.14) is equivalent to prove that ‖m‖L2(Q×[0,T ]) =(∫
Q

∫ T
0 ρ0(x)χ(t)dtdx

)1/2
, since for any m ∈ X we have |m(x, t)|2 ≤

ρ0(x)χ(t) for almost all (x, t) ∈ Rn × [0, T ]. Thanks to this remark, the

claim is reduced to the following lemma (cf. Lemma 4.6 in [4]), which

provides a strategy to move towards the boundary of X0: given m ∈ X0,

we will be able to approach it with a sequence inside X0 but closer than

m to the boundary of X0.

Lemma 4.5. Let ρ0, χ be given functions as in Proposition 4.1. Then,

there exists a constant β = β(n) such that, given m ∈ X0, there exists a
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sequence {mk} ⊂ X0 with the following properties

‖mk‖2L2(Q×[0,T ]) ≥‖m‖2L2(Q×[0,T ])

+ β

(∫

Q

∫ T

0
ρ0(x)χ(t)dtdx − ‖m‖2L2(Q×[0,T ])

)2

(4.15)

and

mk → m in C([0, T ],Hw(Q)). (4.16)

The proof is postponed to Section 6. Let us show how Lemma 4.5

implies the claim. As in the claim, assume that m ∈ X is a point of

continuity of the identity map I. Let {mk} ⊂ X0 be a fixed sequence that

converges to m in C([0, T ],Hw(Q)). Using Lemma 4.5 and a standard

diagonal argument, we can find a second sequence {m̃k} yet converging

to m in X and satisfying

lim inf
k→∞

‖m̃k‖2L2(Q×[0,T ]) ≥ lim inf
k→∞

(
‖mk‖2L2(Q×[0,T ])

+ β

(∫

Q

∫ T

0
ρ0(x)χ(t)dtdx− ‖mk‖2L2(Q×[0,T ])

)2
)
.

According to the hypothesis, I is continuous at m, therefore both mk

and m̃k converge strongly to m and

‖m‖2L2(Q×[0,T ]) ≥ ‖m‖2L2(Q×[0,T ])

+ β

(∫

Q

∫ T

0
ρ0(x)χ(t)dtdx− ‖m‖2L2(Q×[0,T ])

)2

.

Hence ‖m‖L2(Q×[0,T ]) =
(∫

Q

∫ T
0 ρ0(x)χ(t)dtdx

)1/2
and the claim holds

true. Finally, since the assumptions of Proposition 4.1 ensure that X0 is

nonempty, by Lemma 4.5 we can see that the cardinality of X is infinite

whence the cardinality of any residual set in X is infinite. In particular,

the set of continuity points of I is infinite: this and the claim conclude

the proof of Proposition 4.1.

5. Localized oscillating solutions

The wild solutions are made by adding one dimensional oscillating

functions in different directions λ ∈ Λ. For that it is needed to localize

the waves. More precisely, the proof of Lemma 4.5 relies on the con-

struction of solutions to the linear system (3.1), localized in space-time

and oscillating between two states in Kco
ρ0,χ along a given special direc-

tion λ ∈ Λ. Aiming at compactly supported solutions, one faces the

problem of localizing vector valued functions: this is bypassed thanks

to the construction of a “localizing” potential for the conservation laws
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(3.1). This approach is inherited from [5]. As in [4] it could be realized

for every λ ∈ Λ, but in our framework it is convenient to restrict only to

special Λ-directions (cf. [5]): this restriction will allow us to localize the

oscillations at constant pressure.

Why oscillations at constant pressure are meaningful for us and needed

in the proof of Lemma 4.5?

Owing to Section 3, in the variables y = (x, t) ∈ Rn+1, the system

(3.1) is equivalent to divyM = 0, where M ∈ Sn+1 is defined via the

linear map

Rn × Sn
0 × R ∋ (m,U, q) 7−→M =

(
U + qIn m

m 0

)
. (5.1)

More precisely, this map builds an identification between the set of solu-

tions (m,U, q) to (3.1) and the set of symmetric (n+1)×(n+1) matrices

M with M(n+1)(n+1) = 0 and tr(M) = q.

Therefore, solutions of (3.1) with q ≡ 0 correspond to matrix fields

M : Rn+1 → R(n+1)×(n+1) such that

divyM = 0, MT =M, M(n+1)(n+1) = 0, tr(M) = 0. (5.2)

Moreover, given a density ρ and two states (c, Uc, qc), (d, Ud, qd) ∈ Kρ

with non collinear momentum vector fields c and d having same magni-

tude (|c| = |d|), and hence same pressure (qc = qd), then the correspond-

ing matrices Mc and Md have the following form

Mc =

(
c⊗c
ρ + p(ρ)In c

c 0

)
and Md =

(
d⊗d
ρ + p(ρ)In d

d 0

)

and satisfy

Mc −Md =

(
c⊗c
ρ − d⊗d

ρ c− d

c− d 0

)
.

Finally note that tr(Mc −Md) = 0 and Mc −Md ∈ Λ corresponds to a

special direction.

The following Proposition provides a potential for solutions of (3.1)

oscillating between two states Mc and Md at constant pressure. It is an

easy adaptation to our framework of Proposition 4 in [5].

Proposition 5.1. Let c, d ∈ Rn such that |c| = |d| and c 6= d. Let also

ρ ∈ R. Then there exists a matrix-valued, constant coefficient, homoge-

neous linear differential operator of order 3

A(∂) : C∞
c (Rn+1) → C∞

c (Rn+1;R(n+1)×(n+1))

such that M = A(∂)φ satisfies (5.2) for all φ ∈ C∞
c (Rn+1). Moreover

there exists η ∈ Rn+1 such that

• η is not parallel to en+1;
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• if φ(y) = ψ(y · η), then

A(∂)φ(y) = (Mc −Md)φ
′′′(y · η).

We also report Lemma 7 from [5]: it ensures that the oscillations of

the planewaves generated in proposition 5.1 have a certain size in terms

of an appropriate norm-type-functional.

Lemma 5.2. Let η ∈ Rn+1 be a vector which is not parallel to en+1.

Then for any bounded open set B ⊂ Rn

lim
N→∞

∫

B
sin2(Nη · (x, t))dx =

1

2
|B|

uniformly in t ∈ R.

For the proof we refer the reader to [5].

6. The improvement step

We are now about to prove one of the cornerstones of the costruc-

tion. Before moving forward, let us resume the plan. We have already

identified a relaxed problem by introducing subsolutions. Then, we have

proved a sort of “h-principle” (even if there is no homotopy here) accord-

ing to which, the space of subsolutions can be “reduced” to the space

of solutions or, equivalently, the typical (in Baire’s sense) subsolution

is a solution. Once assumed that a subsolution exists, the proof of our

“h-principle” builds upon Lemma 4.5 combined with Baire category ar-

guments. Indeed, we could also prove Proposition 4.1 by applying itera-

tively Lemma 4.5 and thus constructing a converging sequence of subso-

lutions approaching Kρ,χ: this would correspond to the convex integra-

tion approach. So two steps are left in order to conclude our argument:

showing the existence of a “starting” subsolution and prove Lemma 4.5.

This section is devoted to the second task, the proof of Lemma 4.5,

while in next section we will exhibit a “concrete” subsolution.

What follows will be quite technical, therefore we first would like to

recall the plan: we will add fast oscillations in allowed directions so to

let |m|2 increase in average. The proof is inspired by [4]-[5].

Proof. [Proof of Lemma 4.5] Let us fix the domain Ω := Q × [0, T ].

We look for a sequence {mk} ⊂ X0, with associated matrix fields {Uk},
which improves m in the sense of (4.15) and has the form

(mk, Uk) = (m,U) +
∑

j

(m̃k,j, Ũk,j) (6.1)

where every zk,j = (m̃k,j, Ũk,j) is compactly supported in some suitable

ball Bk,j(xk,j, tk,j) ⊂ Ω. We proceed as follows.
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Step 1. Let m ∈ X0 with associated matrix field U . By Lemma 3.5, for

any (x, t) ∈ Ω we can find a line segment σ(x,t) := [(m(x, t), U(x, t), q0(x))−
λ(x,t), (m(x, t), U(x, t), q0(x))+λ(x,t)] admissible for (ρ0(x), χ(t)) and with

direction

λ(x,t) = (m(x, t), U (x, t), 0)

such that

|m(x, t)| ≥ F√
ρ0(x)χ(t)

(
ρ0(x)χ(t)− |m(x, t)|2

)
. (6.2)

Since z := (m,U) and Kco
ρ0,χ are uniformly continuous in (x, t), there

exists an ε > 0 such that for any (x, t), (x0, t0) ∈ Ω with |x− x0| +
|t− t0| < ε, we have

(z(x, t), q0(x))± (m(x0, t0), U(x0, t0), 0) ⊂ hintKco
ρ0,χ. (6.3)

Step 2. Fix (x0, t0) ∈ Ω for the moment. Now, let 0 ≤ φr0 ≤ 1

be a smooth cutoff function on Ω with support contained in a ball

Br0(x0, t0) ⊂ Ω for some r0 > 0, identically 1 on Br0/2(x0, t0) and

strictly less than 1 outside. Thanks to Proposition 5.1 and the iden-

tification (m,U, q) → M , for the admissible line segment σ(x0,t0), there

exist an operator A0 and a direction η0 ∈ Rn+1 not parallel to en+1, such

that for any k ∈ N

A0

(
cos(kη0 · (x, t))

k3

)
= λ(x0,t0) sin(kη0 · (x, t)),

and such that the pair (m̃k,0, Ũk,0) defined by

(m̃k,0, Ũk,0)(x, t) := A0

[
φr0(x, t)k

−3 cos(kη0 · (x, t))
]

satisfies (3.1) with q ≡ 0. Note that (m̃k,0, Ũk,0) is supported in the ball

Br0(x0, t0) and that

∥∥∥(m̃k,0, Ũk,0)− φr0
(
m(x0, t0), U (x0, t0)

)
sin(kη0 · (x, t))

∥∥∥
∞

≤ const (A0, η0, ‖φ0‖C3)
1

k
(6.4)

since A0 is a linear differential operator of homogeneous degree 3. Fur-

thermore, for all (x, t) ∈ Br0/2(x0, t0), we have

|m̃k,0(x, t)|2 = |m(x0, t0)|2 sin2(kη0 · (x, t)).

Since η0 ∈ Rn+1 is not parallel to en+1, from Lemma 5.2 we can see that

lim
k→∞

∫

Br0/2
(x0,t0)

|m̃k,0(x, t)|2 dx =
1

2

∫

Br0/2
(x0,t0)

|m(x0, t0)|2 dx
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uniformly in t. In particular, using (6.2), we obtain

lim
k→∞

∫

Br0/2
(x0,t0)

|m̃k,0(x, t)|2 dxdt ≥

F 2

2ρ0(x0)χ(t0)

(
ρ0(x0)χ(t0))− |m(x0, t0)|2

)2 ∣∣Br0/2(x0, t0)
∣∣ . (6.5)

Step 3. Next, observe that since m is uniformly continuous, there

exists an r̄ > 0 such that for any r < r̄ there exists a finite family of

pairwise disjoint balls Brj(xj , tj) ⊂ Ω with rj < r̄ such that
∫

Ω

(
ρ0(x)χ(t) − |m(x, t)|2

)2
dxdt ≤

2
∑

j

(
ρ0(xj)χ(tj)− |m(xj, tj)|2

)2 ∣∣Brj (xj , tj)
∣∣ . (6.6)

Fix s > 0 with s < min{r̄, ε} and choose a finite family of pairwise

disjoint balls Brj(xj , tj) ⊂ Ω with radii rj < s such that (6.6) holds. In

each ball B2rj(xj , tj) we apply the construction of Step 2 to obtain, for

every k ∈ N, a pair (m̃k,j, Ũk,j).

Final step. Letting (mk, Uk) be as in (6.1), we observe that the sum

therein consists of finitely many terms. Therefore from (6.3) and (6.4)

we deduce that there exists k0 ∈ N such that

mk ∈ X0 for all k ≥ k0. (6.7)

Moreover, owing to (6.5) and (6.6) we can write

lim
k→∞

∫

Ω
|mk(x, t)−m(x, t)|2 dxdt =

∑

j

lim
k→∞

∫

Ω
|m̃k,j(x, t)|2 dxdt

≥
∑

j

F 2

2ρ0(xj)χ(tj)

(
ρ0(xj)χ(tj))− |m(xj, tj)|2

)2 ∣∣Brj (xj , tj)
∣∣

≥ C

∫

Ω

(
ρ0(x)χ(t)− |m(x, t)|2

)2
dxdt. (6.8)

Since mk
d→ m, due to (6.8) we have

lim inf
k→∞

‖mk‖2L2(Ω) = ‖m‖22 + lim inf
k→∞

‖mk −m‖22

≥ ‖m‖22 + C

∫

Ω

(
ρ0(x)χ(t)− |m(x, t)|2

)2
dxdt, (6.9)

which gives (4.15) with β = β(n) = β(F (n)). �

7. Construction of suitable initial data

In this section we show the existence of a subsolution in the sense

of Definition 4.2. Since the subsolution we aim to construct has to be

space-periodic, it will be enough to work on the building brick Q and

then extend the costruction periodically to Rn.
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The idea to work in the space-periodic setting has been recently adopted

by Wiedemann [22] in order to construct global solutions to the incom-

pressible Euler equations.

Proposition 7.1. Let ρ0 ∈ C1
p(Q;R+) be a given density function as

in Proposition 4.1 and let T be any given positive time. Then, there

exist a smooth function χ̃ : R → R+, a continuous periodic matrix field

Ũ : Rn → Sn
0 and a function q̃ ∈ C1(R;C1

p(R
n)) such that

divx Ũ +∇xq̃ = 0 on Rn × R (7.1)

and

e(ρ0(x), 0, Ũ (x)) <
χ̃(t)

n
for all (x, t) ∈ Rn × [0, T [ (7.2)

q̃(x, t) = p(ρ0(x)) +
χ̃(t)

n
for all x ∈ Rn × R. (7.3)

Proof. [Proposition 7.1] Let us define Ũ componentwise by its Fourier

transform as follows:

̂̃
U ij(k) :=

(
nkikj

(n− 1) |k|2

)
̂p(ρ0(k)) if i 6= j,

̂̃
U ii(k) :=

(
nk2i − |k|2

(n− 1) |k|2

)
̂p(ρ0(k)). (7.4)

for every k 6= 0, and
̂̃
U(0) = 0. Clearly

̂̃
U ij thus defined is symmetric and

trace-free. Moreover, since p(ρ0) ∈ C1
p(R

n), standard elliptic regularity

arguments allow us to conclude that Ũ is a continuous periodic matrix

field. Next, notice that
∥∥∥e(ρ0(x), 0, Ũ (x))

∥∥∥
∞

=
∥∥∥λmax(−Ũ)

∥∥∥
∞

= λ̃ (7.5)

for some positive constant λ̃. Therefore, we can choose any smooth

function χ̃ on R such that χ̃ > nλ̃ on [0, T ] in order to ensure (7.2).

Now, let q̃ be defined exactly as in (7.3) for the choice of χ̃ just done. It

remains to show that (7.1) holds. In light of (7.3), we can write equation

(7.1) in Fourier space as

n∑

j=1

kj
̂̃
U ij = kip̂(ρ0) (7.6)

for k ∈ Zn. It is easy to check that
̂̃
U as defined by (7.4) solves (7.6)

and hence Ũ and q̃ satisfy (7.1)

�

Remark 7.2. We note that the Hölder continuity of ρ0 would be enough

to argue as in the previous proof in order to infer the continuity of Ũ .
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Proposition 7.3. Let ρ0 ∈ C1
p(Q;R+) be a given density function as in

Proposition 4.1 and let T be any given positive time. There exist triples

(m,U, q) solving (3.1) distributionally on Rn ×R enjoying the following

properties:

(m,U, q) is continuous in Rn × (R\{0}) and m ∈ C(R;Hw(R
n)),

(7.7)

U(·, t) = Ũ(·) for t = −T, T (7.8)

and

q(x) = p(ρ0(x)) +
χ̃(t)

n
for all (x, t) ∈ Rn × R, (7.9)

e(ρ0(x),m(x, t), U (x, t)) <
χ̃(t)

n
for all (x, t) ∈ Rn × ([−T, 0[∩]0, T ]).

(7.10)

Moreover

|m(x, 0)|2 = ρ0(x)χ(0) a.e. in Rn. (7.11)

Proof. [Proposition 7.3] We first choose q := q̃ given by Proposition 7.1.

This choice already yields (7.9).

Now, in analogy with Definition 4.2 we consider the space X0 defined

as the set of continuous vector fields m : Rn×] − T, T [→ Rn in C0(] −
T, T [;C0

p (Q)) to which there exists a continuous space-periodic matrix

field U : Rn×]− T, T [→ Sn
0 such that

divxm = 0,

∂tm+ divx U +∇xq = 0, (7.12)

supp(m) ⊂ Q× [−T/2, T/2[ (7.13)

U(·, t) = Ũ(·) for all t ∈ [−T, T [\[−T/2, T/2] (7.14)

and

e(ρ0(x),m(x, t), U(x, t)) <
χ̃(t)

n
for all (x, t) ∈ Rn×]− T, T [. (7.15)

As in Section 4.1, X0 consists of functions m :]−T, T [→ H taking values

in a bounded set B ⊂ H. On B the weak topology of L2 is metrizable,

and correspondingly we find a metric d on C(] − T, T [;B) inducing the

topology of C(]− T, T [;Hw(Q)).

Next we note that with minor modifications the proof of Lemma 4.5

leads to the following claim:
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Claim: Let Q0 ⊂ Q be given. Let m ∈ X0 with associated matrix

field U and let α > 0 such that
∫

Q0

[
|m(x, 0)|2 − (ρ0(x)χ̃(0))

]
dx < −α

Then, for any δ > 0 there exists a sequence mk ∈ X0 with associated

smooth matrix field Uk such that

supp(mk −m,Uk − U) ⊂ Q0 × [−δ, δ],

mk
d→ m,

and

lim inf
k→∞

∫

Q0

|mk(x, 0)|2 ≥
∫

Q0

|m(x, 0)|2 dx+ βα2.

Fix an exhausting sequence of bounded open subsets Qk ⊂ Qk+1 ⊂ Q,

each compactly contained in Ω, and such that |Qk+1\Qk| ≤ 2−k. Let also

γε be a standard mollifying kernel in Rn (the unusual notation γε for the

standard mollifying kernel is aimed at avoiding confusion between it and

the density function). Using the claim above we construct inductively a

sequence of momentum vector fields mk ∈ X0, associated matrix fields

Uk and a sequence of numbers ηk < 2−k as follows.

First of all let m1 ≡ 0, U1(x, t) = Ũ(x) for all (x, t) ∈ Rn+1 and having

obtained (m1, U1), ..., (mk, Uk), η1, ..., ηk−1 we choose ηk < 2−k in such

a way that

‖mk −mk ∗ γηk‖L2 < 2−k. (7.16)

Then, we set

αk = −
∫

Qk

[|mk(x, 0)|2 − ρ0(x)χ̃(0))]dx.

Note that (7.15) ensures αk > 0. Then, we apply the claim with Qk,

α = αk and δ = 2−kT to obtain mk+1 ∈ X0 and associated smooth

matrix field Uk+1 such that

supp(mk+1 −mk, Uk+1 − Uk) ⊂ Qk × [−2−kT, 2−kT ], (7.17)

d(mk+1,mk) < 2−k, (7.18)

∫

Qk

|mk+1(x, 0)|2 dx ≥
∫

Qk

|mk(x, 0)|2 dx+ βα2
k. (7.19)

Since d induces the topology of C(]− T, T [;Hw(Ω)) we can also require

that
∥∥(mk −mk+1) ∗ γηj

∥∥
L2(Ω)

< 2−k for all j ≤ k for t = 0. (7.20)
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From (7) we infer the existence of a function m ∈ C(] − T, T [,Hw(Ω))

such that

mk
d→ m.

Besides, (7.17) implies that for any compact subset S ofQ×]−T, 0[∪]0, T [
there exists k0 such that (mk, Uk)|S = (mk0 , Uk0)|S for all k > k0. Hence

(mk, Uk) converges in C0
loc

(Q×]−T, 0[∪]0, T [) to a continuous pair (m,U )

solving equations (7.12) in Rn×]−T, 0[∪]0, T [ and such that (7.7)-(7.10)

hold. In order to conclude, we show that also (7.11) holds for m.

As first, we observe that (7.19) yields

αk+1 ≤ αk − βα2
k + |Qk+1\Qk| ≤ αk − βα2

k + 2−k,

from which we deduce that

αk → 0 as k → ∞.

This, together with the following inequality

0 ≥
∫

Q

[
|mk(x, 0)|2 − ρ0(x)χ(0)

]
dx ≥ −(αk+C |Q\Qk|) ≥ −(αk+C2−k),

implies that

lim
k↑∞

∫

Ω

[
|mk(x, 0)|2 − ρ0(x)χ(0)

]
dx = 0. (7.21)

On the other hand, owing to (7.16) and (7.20), we can write for t = 0

and for every k

‖mk −m‖L2

≤ ‖mk −mk ∗ γηk‖L2 + ‖mk ∗ γηk −m ∗ γηk‖L2 + ‖m ∗ γηk −m‖L2

≤ 2−k +

∞∑

j=0

‖mk+j ∗ γηk −mk+j+1 ∗ γηk‖L2 + 2−k

≤ 2−(k−2). (7.22)

Finally, (7.22) implies that mk(·, 0) → m(·, 0) strongly in H(Q) as

k → ∞, which together with (7.21) gives

|m(x, 0)|2 = ρ0(x)χ(0) for almost every x ∈ Rn.

�

8. Proof of the main Theorems

Proof. [Proof of Theorem 2.1] Let T be any finite positive time and

ρ0 ∈ C1
p(Q) be a given density function. Let also (m,U, q) be as in

Proposition 7.3. Then, define χ(t) := χ̃(t), q0(x) := q(x),

m0(x, t) =

{
m(x, t) for t ∈ [0, T ]

m(x, t− 2T ) for t ∈ [T, 2T ],
(8.23)



26 ELISABETTA CHIODAROLI

U0(x, t) =

{
U(x, t) for t ∈ [0, T ]

U(x, t− 2T ) for t ∈ [T, 2T ].
(8.24)

For this choices, the quadruple (m0, U0, q0, χ) satisfies the assumptions

of Proposition 4.1. Therefore, there exist infinitely many solutions m ∈
C([0, 2T ],Hw(Q)) of (2.6) in Rn × [0, 2T [ with density ρ0, such that

m(x, 0) = m(x, 0) = m(x, 2T ) for a.e. x ∈ Ω

and

|m(·, t)|2 = ρ0(·)χ(0) for almost every (x, t) ∈ Rn×]0, 2T [. (8.25)

Since |m0(·, 0)|2 = ρ0(·)χ(0) a.e. in Rn as well, it is enough to define

m0(x) = m0(x, 0) to satisfy also (2.10) and hence conclude the proof. �

Proof. [Proof of Theorem 2.2] Under the assumptions of Theorem 2.1,

we have proven the existence of a bounded initial momentum m0 allowing

for infinitely many solutions m ∈ C([0, T ];Hw(Q)) of (2.6) on Rn× [0, T [

with density ρ0. Moreover, the proof (see Proof of Proposition 7.1)

showed that for any smooth function χ : R → R+ with χ > nλ̃ > 0 the

following holds

|m(x, t)|2 = ρ0(x)χ(t) a.e. in Rn × [0, T [, (8.26)
∣∣m0(x)

∣∣2 = ρ0(x)χ(0) a.e. in Rn. (8.27)

Now, we claim that there exist constants C1, C2 > 0 such that choos-

ing the function χ(t) > nλ̃ on [0, T [ among solutions of the following

differential inequality

χ′(t) ≤ −C1χ
1/2(t)− C2χ

3/2(t), (8.28)

then the weak solutions (ρ0,m) of (2.6) obtained in Theorem 2.1 will also

satisfy the admissibility condition (2.5) on Rn × [0, T [. Of course, there

is an issue of compatibility between the differential inequality (8.28) and

the condition χ > nλ̃: this motivates the existence of a time T > 0

defining the maximal time-interval in which the admissibility condition

indeed holds.

Let T be any finite positive time. As first, we aim to prove the claim.

Since m ∈ C([0, T ];Hw(Q)) is divergence-free and fulfills (8.26)-(8.27)

and ρ0 is time-independent, (2.5) reduces to the following inequality

1

2
χ′(t)+m ·∇

(
ε(ρ0(x))+

p(ρ0(x))

ρ0(x)

)
+
χ(t)

2
m ·∇

(
1

ρ0(x)

)
≤ 0, (8.29)

intended in the sense of (space-periodic) distributions on Rn× [0, T ]. As

ρ0 ∈ C1
p(Q), there exists a constant c20 with ρ0 ≤ c20 on Rn, whence (see

(8.26)-(8.27) )

|m(x, t)| ≤ c0
√
χ(t) a.e. on Rn × [0, T [. (8.30)
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Similarly we can find constants c1, c2 > 0 with
∣∣∣∣∣∇
(
ε(ρ0(x)) +

p(ρ0(x))

ρ0(x)

)∣∣∣∣∣ ≤ c1 a.e. in Rn (8.31)

∣∣∣∣∇
(

1

ρ0(x)

)∣∣∣∣ ≤ c2 a.e. in Rn. (8.32)

As a conseguence of (8.30)-(8.32), (8.29) holds as soon as χ satisfies

χ′(t) ≤ −2c1c0χ
1/2(t)− c2c0χ

3/2(t) on [0, T [.

Therefore, by choosing C1 := 2c1c0 and C2 := c2c0 we can conclude the

proof of the claim.

Now, it remains to show the existence of a function χ as in the claim,

i.e. that both the differential inequality (8.28) and the condition χ > nλ̃

can hold true on some suitable time-interval. To this aim, we can consider

the equality in (8.28), couple it with the initial condition χ(0) = χ0 for

some constant χ0 > nλ̃ and then solve the resulting Cauchy problem.

For the obtained solution χ, there exists a positive time T such that

χ(t) > nλ̃ on [0, T [.

Finally, applying the claim on the time-interval [0, T [ we conclude that

the admissibility condition holds on Rn × [0, T [ as desired. �

Proof. [Proof of Theorem 1.1] The proof of Theorem 1.1 strongly relies

on Theorems 2.1-2.2. Given a continuously differentiable initial density

ρ0 we apply Theorems 2.1-2.2 for ρ0(x) := ρ0(x) thus obtaining a positive

time T and a bounded initial momentum m0 allowing for infinitely many

solutions m ∈ C([0, T ];Hw(Q)) of (2.6) on Rn × [0, T [ with density ρ0

and such that the following holds

|m(x, t)|2 = ρ0(x)χ(t) a.e. in Rn × [0, T [, (8.33)
∣∣m0(x)

∣∣2 = ρ0(x)χ(0) a.e. in Rn, (8.34)

for a suitable smooth function χ : [0, T ] → R+. Now, define ρ(x, t) =

ρ0(x)1[0,T [(t). This shows that (2.4) holds. To prove (2.3) observe that

ρ is independent of t and m is weakly divergence-free for almost every

0 < t < T . Therefore, the pair (ρ,m) is a weak solution of (1.1) with

initial data (ρ0,m0). Finally, we can also prove (2.5): each solution

obtained is also admissible. Indeed, for ρ(x, t) = ρ0(x)1[0,T [(t), (2.5) is

ensured by Theorem 2.2. �
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