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Let (M, g) be an n-dimensional compact Riemannian manifold with bound-
ary. We consider the Yamabe-type problem{

−1gu+ au = 0 on M,

∂νu+ n−2
2 bu = (n− 2)un/(n−2)±ε on ∂M,

where a ∈C1(M), b∈C1(∂M), ν is the outward pointing unit normal to ∂M,
1gu := divg∇gu, and ε is a small positive parameter. We build solutions
which blow up at a point of the boundary as ε goes to zero. The blowing-up
behavior is ruled by the function b− Hg , where Hg is the boundary mean
curvature.

1. Introduction

Let (M, g) be a smooth, compact Riemannian manifold of dimension n ≥ 3 with
a boundary ∂M which is the union of a finite number of smooth closed compact
submanifolds embedded in M .

A well-known problem in differential geometry is whether (M, g) is necessarily
conformally equivalent to a manifold of constant scalar curvature whose boundary
is minimal. When the boundary is empty this is called the Yamabe problem (see
Yamabe [1960]), which has been completely solved by Aubin [1976], Schoen [1984]
and Trudinger [1968]. Cherrier [1984] and Escobar [1992a; 1992b] studied the
problem in the context of manifolds with boundary and gave an affirmative solution
to the question in almost every case. The remaining cases were studied by Marques
[2005; 2007], by Almaraz [2010] and by Brendle and Chen [2014].

Once the problem is solvable, a natural question about compactness of the full set
of solutions arises. Concerning the Yamabe problem, it was first raised by Schoen
in a topics course at Stanford University in 1988. A necessary condition is that the
manifold is not conformally equivalent to the standard sphere Sn , since the group of
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conformal transformations of the round sphere is not compact itself. The problem
of compactness has been widely studied in recent years and has been completely
solved by Brendle [2008], Brendle and Marques [2009] and Khuri, Marques and
Schoen [Khuri et al. 2009].

In the presence of a boundary, a necessary condition is that M is not conformally
equivalent to the standard ball Bn . The problem when the boundary of the manifold
is not empty has been studied by V. Felli and M. Ould Ahmedou [2003; 2005],
Han and Li [1999] and Almaraz [2011a; 2011b]. In particular, Almaraz studied
the compactness property in the case of scalar-flat metrics. Indeed, the zero scalar
curvature case is particularly interesting because it leads one to study a linear
equation in the interior with a critical Neumann-type nonlinear boundary condition

(1-1)

−1gu+ n−2
4(n−1)

Rgu = 0 on M , u > 0 in M ,

∂νu+
n−2

2
Hgu = (n− 2)un/(n−2) on ∂M ,

where ν is the outward pointing unit normal to ∂M , Rg is the scalar curvature of
M with respect to g, and Hg is the boundary mean curvature with respect to g.

We note that in this case compactness of solutions is equivalent to establish
a priori estimates for solutions to equation (1-1). Almaraz [2011b] proved that
compactness holds for a generic metric g. On the other hand, in [Almaraz 2011a]
it was proved that if the dimension of the manifold is n ≥ 25, compactness does
not hold because it is possible to build blowing-up solutions to (1-1) for a suitable
metric g. We point out that the problem of compactness in dimension n ≤ 24 is
still not completely understood.

An interesting issue, closely related to the compactness property, is the stability
problem. One can ask whether or not the compactness property is preserved under
perturbations of the equation, which is equivalent to having or not having uniform
a priori estimates for solutions of the perturbed problem. Let us consider the more
general problem

(1-2)
{
−1gu+ a(x)u = 0 in M , u > 0 in M ,
∂νu+ b(x)u = (n− 2)un/(n−2) on ∂M .

We say that the problem (1-2) is stable if for any sequences of C1 functions
aε : M → R and bε : ∂M → R converging in C1 to functions a : M → R and
b : ∂M→ R, for any sequence of exponents pε := n/(n− 2)± ε converging to the
critical one n/(n− 2) and for any sequence of associated solutions uε bounded in
H 1(M) of the perturbed problems

(1-3)

{
−1gu+ aε(x)u = 0 in M , uε > 0 in M ,

∂νu+
n−2

2
bε(x)u = (n− 2)un/(n−2)±ε

ε on ∂M ,
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there is a subsequence uεk which converges in C2 to a solution to the limit problem
(1-2). The stability of the Yamabe problem has been introduced and studied by
Druet [2003; 2004] and by Druet and Hebey [2005a; 2005b]. Recently, Esposito,
Pistoia and Vetois [Esposito et al. 2014], Micheletti, Pistoia and Vetois [Micheletti
et al. 2009] and Esposito and Pistoia [2014] proved that a priori estimates fail for
perturbations of the linear potential or of the exponent.

In this paper, we investigate the question of stability of the problem (1-2). It is
clear that it is not stable if it is possible to build solutions uε to perturbed problems
(1-3) which blow up at one or more points of the manifold as the parameter ε goes to
zero. Here, we show that the behavior of the sequence uε is dictated by the difference

(1-4) ϕ(q)= b(q)− Hg(q) for q ∈ ∂M.

More precisely, we consider the problem

(1-5)

−1gu+ a(x)u = 0 on M , u > 0 in M ,
∂

∂ν
u+ n−2

2
b(x)u = (n− 2)un/(n−2)±ε on ∂M .

We assume that a ∈ C1(M) and b ∈ C1(∂M) are such that the linear operator
Lu := −1gu+ au with Neumann boundary condition Bu := ∂νu+ 1

2(n− 2)bu is
coercive; namely, there exists a constant c > 0 such that

(1-6)
∫

M

(
|∇gu|2+ a(x)u2) dµg +

n−2
2

∫
∂M

b(x)u2 dσ ≥ c‖u‖2H1(M).

Here ε > 0 is a small parameter, 1gu := divg∇gu, and the space H 1(M) is the
closure of C∞(M) with respect to the norm

‖u‖H1 =

(∫
M

(
|∇gu|2+ u2) dµg

)1/2

.

The problem (1-5) turns out to be either slightly subcritical or slightly supercritical
if the exponent in the nonlinearity is either n/(n−2)−ε or n/(n−2)+ε, respectively.
Let us state our main result.

Theorem 1. Assume (1-6) and n ≥ 7.

(i) If q0 ∈ ∂M is a strict local minimum point of the function ϕ defined in (1-4)
with ϕ(q0) > 0, then provided ε > 0 is small enough, there exists a solution uε
of (1-5) in the slightly subcritical case such that uε blows up at a boundary
point when ε→ 0+.

(ii) If q0 ∈ ∂M is a strict local maximum point of the function ϕ defined in (1-4)
with ϕ(q0) < 0, then provided ε < 0 is small enough, there exists a solution uε
of (1-5) in the slightly supercritical case such that uε blows up at a boundary
point when ε→ 0+.



82 MARCO GHIMENTI, ANNA MARIA MICHELETTI AND ANGELA PISTOIA

We say that uε blows up at a point q0 of the boundary if there exists a family
of points qε ∈ ∂M such that qε→ q0 as ε→ 0 and, for any neighborhood U ⊂ M
of q0, we have that supq∈U uε(q)→+∞ as ε→ 0.

Our result does not concern the stability of the geometric Yamabe problem (1-1).
Indeed, the function ϕ in (1-4) turns out to be identically zero. It would be interesting
to discover the function which rules the behavior of blowing-up sequences in this
case. We expect that it depends on the trace-free second fundamental form as it is
suggested by Almaraz [2011b], where a compactness result in the subcritical case
is established.

The case of low dimension also remains open, where we expect that the function
ϕ in (1-4) should be replaced by a function which depends on the Weyl tensor of
the boundary, as suggested by Escobar [1992a; 1992b].

The proof of our result relies on a very well known Ljapunov–Schmidt procedure.
In Section 2 we set up the problem, and in Section 3 we reduce the problem to a
finite dimensional one, which is then studied in Section 4.

2. Setting of the problem

Let us rewrite problem (1-5) in a more convenient way.
First of all, assumption (1-6) allows us to endow the Hilbert space H := H 1(M)

with the scalar product

〈〈u, v〉〉H :=
∫

M
(∇gu∇gv+ a(x)uv) dµg +

n−2
2

∫
∂M

b(x)uv dσ

and the induced norm ‖u‖2H := 〈〈u, u〉〉H . We define the exponent

sε =


2(n−1)

n−2
in the subcritical case,

2(n−1)
n−2

+ nε in the supercritical case,

and the Banach space H := H 1(M)∩ Lsε(∂M) endowed with the norm ‖u‖H =
‖u‖H + |u|Lsε (∂M).

Notice that in the subcritical case H is identical to the Hilbert space H .
By trace theorems, we have the inclusion W 1,τ (M)⊂ L t(∂M) for any t and τ

satisfying t ≤ τ(n− 1)/(n− τ).
We consider i : H 1(M)→ L2(n−1)/(n−2)(∂M) and its adjoint with respect to
〈〈 · , · 〉〉H , namely

i∗ : L2(n−1)/n(∂M)→ H 1(M)

defined by

〈〈ϕ, i∗(g)〉〉H =
∫
∂M
ϕg dσ for all ϕ ∈ H 1,
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so that u = i∗(g) is the weak solution of the problem

(2-1)

−1gu+ a(x)u = 0 on M ,
∂

∂ν
u+ n−2

2
b(x)u = g on ∂M .

We recall that by [Nittka 2011], if u ∈ H 1(M) is a solution of (2-1), then for
2n/(n+ 2)≤ q ≤ n/2 and r > 0 we have

(2-2) ‖u‖L(n−1)q/(n−2q)(∂M) = ‖i
∗(g)‖L(n−1)q/(n−2q)(∂M) ≤ ‖g‖L(n−1)q/(n−q)+r (∂M).

By this result, we can choose q and r such that

(2-3) (n−1)q
n−2q

=
2(n−1)

n−2
+ nε and (n−1)q

n−q
+ r = 2(n−1)+n(n−2)ε

n+(n−2)ε
,

that is,

q =
2n+ n2

(n−2
n−1

)
ε

n+ 2+ 2n
( n−2

n−1

)
ε

and r =
2(n− 1)+ n(n− 2)ε

n+ (n− 2)ε
−

2(n− 1)+ n(n− 2)ε
n+ (n− 2)

( n
n−1

)
ε
.

So, if u ∈ L2(n−1)/(n−2)+nε(∂M), then

|u|
n

n−2+ε ∈ L
2(n−1)+n(n−2)ε

n+ε(n−2) (∂M)

and, in light of (2-2), also i∗(|u|n/(n−2)+ε) ∈ L2(n−1)/(n−2)+nε(∂M).
Finally, we rewrite problem (1-5) — both in the subcritical and the supercritical

case — as

(2-4) u = i∗( fε(u)), u ∈H,

where the nonlinearity fε(u) is defined as fε(u) := (n − 2)(u+)n/(n−2)+ε in the
supercritical case or fε(u) := (n − 2)(u+)n/(n−2)−ε in the subcritical case. Here
u+(x) :=max{0, u(x)}. By assumption (1-6), a solution to problem (2-4) is strictly
positive and actually is a solution to problem (1-5). Therefore, we are led to build
solutions to problem (2-4) which blow-up at a boundary point as ε goes to zero.

The main ingredient to cook up our solutions are the standard bubbles

Uδ,ξ (x, t) := δ(n−2)/2

((δ+t)2+|x−ξ |2)(n−2)/2 , (x, t) ∈ Rn−1
×R+, δ > 0, ξ ∈ Rn−1,

which are all the solutions to the limit problem

(2-5)
{
−1U = 0 on Rn−1

×R+,
∂νU = (n− 2)U n/(n−2) on Rn−1

×{t = 0}.

We set Uδ(x, t) :=Uδ,0(x, t).
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We also need to introduce the linear problem

(2-6)
{
−1V = 0 on Rn−1

×R+,
∂νV = nU 2/(n−2)

1 V on Rn−1
×{t = 0}.

In [Almaraz 2011b] it has been proved that the n-dimensional space of solutions of
(2-6) is generated by the functions

Vi =
∂U1
∂xi
= (2− n)

xi

((1+ t)2+ |x |2)n/2
for i = i, . . . , n− 1,

V0 =
∂Uδ

∂δ

∣∣∣
δ=1
=

n−2
2

(
1

(1+t)2+|x |2

)n/2(
t2
+ |x |2− 1

)
.

Next, for a point q ∈ ∂M and the (n− 1)-dimensional unitary ball Bn−1(0, R)
in Rn−1, we introduce the Fermi coordinates ψ∂q : B

n−1(0, R)×[0, R)→ M . We
read the bubble on the manifold as the function

Wδ,q(ξ)=Uδ

(
(ψ∂q )

−1ξ
)
χ
(
(ψ∂q )

−1ξ
)
,

and the functions Vi on the manifold as the functions

Z i
δ,q(ξ)=

1
δ(n−2)/2 Vi

(1
δ
(ψ∂q )

−1ξ
)
χ
(
(ψ∂q )

−1ξ
)

for i = 0, . . . , n− 1,

where χ(x, t)= χ̃(|x |)χ̃(t), for χ̃ a smooth cut off function, χ̃(s)≡ 1 for 0≤ s <
R/2 and χ̃(s)≡ 0 for s ≥ R. Then, it is necessary to split the Hilbert space H into
the sum of the orthogonal spaces

Kδ,q = Span
〈
Z0
δ,q , . . . , Zn−1

δ,q

〉
and

K⊥δ,q =
{
ϕ ∈ H 1(M) | 〈〈ϕ, Z i

δ,q〉〉H = 0 for all i = 0, . . . , n− 1
}
.

Finally, we can look for a solution to problem (2-4) in the form

uε(x)=Wδ,q(x)+φ(x)

where the blow-up point q is in ∂M , the blowing-up rate δ satisfies

(2-7) δ := dε for some d > 0

and the remainder term φ belongs to the infinite dimensional space K⊥δ,q ∩H of
codimension n. We are led to solve the system

5⊥δ,q
{
Wδ,q(x)+φ(x)− i∗

(
fε(Wδ,q(x)+φ(x))

)}
= 0,(2-8)

5δ,q
{
Wδ,q(x)+φ(x)− i∗

(
fε(Wδ,q(x)+φ(x))

)}
= 0,(2-9)

5⊥δ,q and 5δ,q being the projections on K⊥δ,q and Kδ,q , respectively.
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3. The finite dimensional reduction

In this section we perform the finite dimensional reduction. We rewrite the auxiliary
equation (2-8) in the equivalent form

(3-1) L(φ)= N (φ)+ R,

where L = Lδ,q : K⊥δ,q ∩H→ K⊥δ,q ∩H is the linear operator

L(φ)=5⊥δ,q
{
φ(x)− i∗( f ′ε(Wδ,q)[φ])

}
,

N (φ) is the nonlinear term

(3-2) N (φ)=5⊥δ,q
{
i∗
(

fε(Wδ,q(x)+φ(x))
)
−i∗

(
fε(Wδ,q(x))

)
−i∗( f ′ε(Wδ,q)[φ])

}
and the error term R is defined by

(3-3) R =5⊥δ,q
{
i∗
(

fε(Wδ,q(x))
)
−Wδ,q(x)

}
.

3.1. The invertibility of the linear operator L.

Lemma 2. For a, b∈R with 0<a<b, there exists a positive constant C0=C0(a, b)
such that, for ε small, for any q ∈ ∂M , for any d ∈ [a, b] and for any φ ∈ K⊥δ,q ∩H,
we have

‖Lδ,q(φ)‖H ≥ C0‖φ‖H.

Proof. We argue by contradiction. Suppose that there exist two sequences of real
numbers εm→ 0 and dm ∈ [a, b], a sequence of points qm ∈ ∂M and a sequence of
functions φεmdm ,qm ∈ K⊥εmdm ,qm

∩H such that

‖φεmdm ,qm‖H = 1 and ‖Lεmdm ,qm (φεmdm ,qm )‖H→ 0 as m→+∞.

For the sake of simplicity, we set δm = εmdm and define

φ̃m := δ
(n−2)/2
m φδm ,qm(ψ

∂
qm
(δmη))χ(δmη) for η = (z, t) ∈ Rn

+
, z ∈ Rn−1, t ≥ 0.

Since ‖φεmdm ,qm‖H ≤1, by a change of variables we easily get that {φ̃m}m is bounded
in D1,2(Rn

+
) (but not in H 1(Rn

+
)). Therefore, there exists φ̃ ∈ D1,2(Rn

+
) such that

φ̃m ⇀ φ̃ almost everywhere, weakly in D1,2(Rn
+
), in L2n/(n−2)(Rn

+
) and strongly

in L2(n−1)/(n−2)
loc (∂Rn

+
).

Since φδm ,qm ∈ K⊥δm ,qm
, and taking (2-6) into account, for i = 0, . . . , n− 1 we

get

(3-4) o(1)=
∫

Rn
+

∇φ̃∇Vi dz dt = n
∫

Rn−1
U 2/(n−2)

1 (z, 0)Vi (z, 0)φ̃(z, 0) dz.
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Indeed, by a change of variables we have

0=
〈〈
φδm ,qm , Z i

δm ,qm

〉〉
H

=

∫
M

(
∇gφδm ,qm∇g Z i

δm ,qm
+ a(x)φδm ,qm Z i

δm ,qm

)
dµg

+
n−2

2

∫
∂M

b(x)φδm ,qm Z i
δm ,qm

dσ

=

∫
Rn
+

|gqm (δη)|
1/2δ(n−2)/2gαβqm

(δη)
∂

∂ηα
Vi (η)χ(δη)

∂

∂ηα
φδm ,qm (ψ

∂
qm
(δmη)) δη

+

∫
Rn
+

|gqm (δη)|
1/2δ(n+2)/2a(ψ∂qm

(δη))Vi (η)φδm ,qm (ψ
∂
qm
(δmη)) δη

+

∫
∂Rn
+

|gqm (δz, 0)|1/2δn/2b(ψ∂qm
(δη))φδm ,qm (ψ

∂
qm
(δmz, 0))Vi (δmz, 0) dz

=

∫
Rn
+

∇Vi (η)∇φ̃m(η)+ δ
2a(qm)Vi (η)φ̃m(η) δη

+ δ

∫
∂Rn
+

b(qm)Vi (z, 0)φ̃m(z, 0) δη+ O(δ)

=

∫
Rn
+

∇Vi (η)∇φ̃m(η)+ O(δ)=
∫

Rn
+

∇Vi (η)∇φ̃(η)+ o(1),

By definition of Lδm ,qm we have

(3-5) φδm ,qm − i∗( f ′ε(Wδm ,qm )[φδm ,qm ])− Lδm ,qm (φδm ,qm )=

n−1∑
i=0

ci
m Z i

δm ,qm
.

We want to prove that, for all i = 0, . . . , n− 1, ci
m → 0 as m→∞. Multiplying

(3-5) by Z j
δm ,qm

we obtain, by definition of i∗,

n−1∑
i=0

ci
m
〈〈

Z i
δm ,qm

, Z j
δm ,qm

〉〉
H =

〈〈
i∗( f ′εm

(Wδm ,qm )[φδm ,qm ]), Z j
δm ,qm

〉〉
H

=

∫
∂M

f ′εm
(Wδm ,qm )[φδm ,qm ]Z

j
δm ,qm

dσ.

Moreover, by multiplying (3-5) by φδm ,qm we obtain that

‖φδm ,qm‖H −

∫
∂M

f ′εm
(Wδm ,qm )φ

2
δm ,qm

dσ → 0.

Thus ( f ′εm
(Wδm ,qm ))

1/2φδm ,qm is bounded and weakly convergent in L2(∂M). With
this consideration we easily get
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∂M

f ′εm
(Wδm ,qm )[φδm ,qm ]Z

j
δm ,qm

dσ

=

∫
∂M
( f ′εm

(Wδm ,qm ))
1/2φδm ,qm ( f ′εm

(Wδm ,qm ))
1/2 Z j

δm ,qm
dσ

= n
∫

Rn−1
U 2/(n−2)

1 (z, 0)φ̃(z, 0)Vi (z, 0) dz+ o(1)= o(1),

once we take (3-4) into account.
Now, it is easy to prove that〈〈

Z i
δm ,qm

, Z j
δm ,qm

〉〉
H = Cδi j + o(1),

hence we can conclude that ci
m → 0 as m→∞ for each i = 0, . . . , n− 1. This,

combined with (3-5) and using ‖Lεmdm ,qm (φεmdm ,qm )‖H→ 0, gives us that

(3-6)
∥∥φδm ,qm − i∗( f ′ε(Wδm ,qm )[φδm ,qm ])

∥∥
H =

n−1∑
i=0

ci
m‖Z

i
‖H+ o(1)= o(1).

Choose a smooth function ϕ ∈ C∞0 (R
n
+
) and define

ϕm(x)=
1

δ
(n−2)/2
m

ϕ
( 1
δm

(
ψ∂qm

)−1
(x)
)
χ
((
ψ∂qm

)−1
(x)
)

for x ∈ M.

We have that ‖ϕm‖H is bounded and, by (3-6), that

〈〈φδm ,qm , ϕm〉〉H

=

∫
∂M

f ′εm
(Wδm ,qm )[φδm ,qm ]ϕm dσ +

〈〈
φδm ,qm − i∗( f ′εm

(Wδm ,qm )[φδm ,qm ]), ϕm
〉〉

H

=

∫
∂M

f ′εm
(Wδm ,qm )[φδm ,qm ]ϕm dσ + o(1)

= (n± εm(n− 2))
∫

Rn−1

1
δ
±εn/(n−2)
m

U 2/(n−2)±εm
1 (z, 0)φ̃m(z, 0)ϕ dz+ o(1)

= n
∫

Rn−1
U 2/(n−2)

1 (z, 0)φ̃(z, 0)ϕ(z, 0) dz+ o(1),

by the strong L2(n−1)/(n−2)
loc (∂Rn

+
) convergence of φ̃m . On the other hand,

〈〈φδm ,qm , ϕm〉〉H =

∫
Rn
+

∇φ̃∇ϕ δη+ o(1),

so φ̃ is a weak solution of (2-5) and we conclude that

φ̃ ∈ Span{V0, V1, . . . , Vn}.
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This, combined with (3-4), gives that φ̃ = 0. Proceeding as before we have

〈〈φδm ,qm , φδm ,qm 〉〉H

=

∫
∂M

f ′εm
(Wδm ,qm )[φδm ,qm ]φδm ,qm dσ + o(1)

= (n± εm(n− 2))
∫

Rn−1

1
δ
±εn/(n−2)
m

U 2/(n−2)±εm
1 (z, 0)φ̃2

m(z, 0)ϕ dz+ o(1)= o(1).

In a similar way, by (3-6) we have

|φδm ,qm |Lsε =
∣∣i∗( f ′ε(Wδm ,qm )[φδm ,qm ])

∣∣
Lsε+ o(1)= o(1),

which gives ‖φδm ,qm‖H→ 0, which is a contradiction. �

3.2. The estimate of the error term R.
Lemma 3. For a, b∈R with 0<a<b, there exists a positive constant C1=C1(a, b)
such that, for ε small, for any q ∈ ∂M and for any d ∈ [a, b] we have

‖Rε,δ,q‖H ≤ C1ε|ln ε|

Proof. We estimate∥∥i∗
(

fε(Wδ,q(x))
)
−Wδ,q(x)

∥∥
H

≤
∥∥i∗
(

fε(Wδ,q(x))
)
− i∗

(
f0(Wδ,q(x))

)∥∥
H +

∥∥i∗
(

f0(Wδ,q(x))
)
−Wδ,q(x)

∥∥
H .

By definition of i∗ there exists 0 which solves the equation

(3-7)

−1g0+ a(x)0 = 0 on M ,
∂

∂ν
0+

n−2
2

b(x)0 = f0(Wδ,q) on ∂M ,

so, by (3-7), we have∥∥i∗
(

f0(Wδ,q(x))
)
−Wδ,q(x)

∥∥
H

= ‖0(x)−Wδ,q(x)‖2H

=

∫
M
[−1g(0−Wδ,q)+ a(0−Wδ,q)](0−Wδ,q) dµg

+

∫
∂M

[
∂

∂ν
(0−Wδ,q)+

(n−2)
2

b(x)(0−Wδ,q)
]
(0−Wδ,q) dµg

=

∫
M
[1gWδ,q − aWδ,q ](0−Wδ,q) dµg

+

∫
∂M

[
f0(Wδ,q)−

∂

∂ν
Wδ,q

]
(0−Wδ,q) dµg

−
n−2

2

∫
∂M

b(x)Wδ,q(0−Wδ,q) dµg := I1+ I2+ I3.
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We obtain

(3-8) I1 = ‖0−Wδ,q‖H O(δ).

In fact,
I1 ≤ |1gWδ,q − aWδ,q |L2n/(n+2)(M)|0−Wδ,q |L2n/(n−2)(M)

≤ |1gWδ,q − aWδ,q |L2n/(n+2)(M)‖0−Wδ,q‖H .

We easily have that |Wδ,q |L2n/(n+2) = O(δ2). For the other term we have, in coordi-
nates,

(3-9) 1gWδ,q =1[Uδχ ] + (gab
− δab)∂ab[Uδχ ] − gab0k

ab∂k[Uδχ ],

0k
ab being the Christoffel symbols. Using the expansion of the metric gab given by

(4-2) and (4-3) we have that

(3-10)

∣∣(gab
− δab)∂ab[Uδχ ]

∣∣
L2n/(n+2)(M) = O(δ),∣∣gab0k

ab∂k[Uδχ ]
∣∣

L2n/(n+2)(M) = O(δ2).

Since Uδ is a harmonic function we deduce

(3-11) |1[Uδχ ]|L2n/(n+2)(M) = |Uδ1χ + 2∇Uδ∇χ |L2n/(n+2)(M) = O(δ2).

For the second integral I2 we have

(3-12) I2 = ‖0−Wδ,q‖H O(δ2),

since

I2 ≤

∣∣∣ f0(Wδ,q)−
∂

∂ν
Wδ,q

∣∣∣
L2(n−1)/n(∂M)

|0−Wδ,q |L2(n−1)/n−2(∂M)

≤ C
∣∣∣ f0(Wδ,q)−

∂

∂ν
Wδ,q

∣∣∣
L2(n−1)/n(∂M)

‖0−Wδ,q‖H ,

and, using the boundary condition for (2-5), we have

(3-13)
∣∣∣ f0(Wδ,q)−

∂

∂ν
Wδ,q

∣∣∣
L2(n−1)/n(∂M)

=
1
δn/2

(∫
Rn−1
|g(δz, 0)|1/2

[
(n− 2)U n/(n−2)(z, 0)χn/(n−2)(δz, 0)

−χ(δz, 0)∂U
∂t
(z, 0)

] 2(n−1)
n

δn−1 dz
) n

2(n−1)

≤ C
(∫

Rn−1

[
(n− 2)U n/(n−2)(z, 0)[χn/(n−2)(δz, 0)

−χ(δz, 0)]
]2(n−1)

n dz
) n

2(n−1)
= O(δ2).



90 MARCO GHIMENTI, ANNA MARIA MICHELETTI AND ANGELA PISTOIA

Lastly,

(3-14) I3 ≤ |Wδ,q |L2(n−1)/n(∂M)|0−Wδ,q |L2(n−1)/(n−2)(∂M) = ‖0−Wδ,q‖H O(δ).

By (3-8), (3-12) and (3-14) we conclude that∥∥i∗
(

f0(Wδ,q(x))
)
−Wδ,q(x)

∥∥
H = ‖0(x)−Wδ,q(x)‖H = O(δ).

To conclude the proof we estimate the term
∥∥i∗
(

fε(Wδ,q(x))
)
−i∗

(
f0(Wδ,q(x))

)∥∥
H .

We have, by the properties of i∗, that∥∥i∗
(

fε(Wδ,q(x))
)
− i∗

(
f0(Wδ,q(x))

)∥∥
H

≤
∣∣Wδ,q(x)n/(n−2)±ε

−W n/(n−2)
δ,q (x)

∣∣
L2(n−1)/n(∂M)

=

(∫
Rn−1

[(
1

δ±ε(n−2)/2 U±ε(z, 0)− 1
)

U n/(n−2)(z, 0)
]2(n−1)

n
dz

) n
2(n−1)

+ O(δ2).

To estimate the last integral, we first recall two Taylor expansions with respect to ε:

U±ε = 1± ε ln U + 1
2
ε2 ln2 U + o(ε2),(3-15)

δ∓ε(n−2)/2
= 1∓ εn−2

2
ln δ+ ε2 (n−2)2

8
ln2 δ+ o(ε2 ln2 δ).(3-16)

In light of (3-15) and (3-16) we have

(3-17)
∥∥i∗( fε(Wδ,q))− i∗( f0(Wδ,q))

∥∥
H

≤

(∫
Rn−1

∣∣∣(∓n−2
2
ε ln δ± ε ln U (z, 0)+ O(ε2)

+ O(ε2 ln δ)
)

U n/(n−2)(z, 0)
∣∣∣2(n−1)

n
dz
) n

2(n−1)
+ O(δ2)

=
n−2

2
ε ln δ

∣∣U (z, 0)
∣∣n/(n−2)

L2(n−1)/(n−2)(Rn−1)

+ ε

(∫
Rn−1

U 2(n−1)/(n−2)(z, 0) ln U (z, 0) dz
) n

2(n−1)

+ O(ε2)+ O(ε2
|ln δ|)+ O(δ2)

= O(ε)+ O(ε|ln δ|)+ O(δ2).

Choosing δ = dε concludes the proof of Lemma 3 for the subcritical case.
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For the supercritical case, we have to control |Rε,δ,q |Lsε (∂M). As in the previous
case we consider

|Rε,δ,q |Lsε (∂M) ≤
∣∣i∗( fε(Wδ,q(x))

)
− i∗

(
f0(Wδ,q(x))

)∣∣
Lsε (∂M)

+
∣∣i∗( f0(Wδ,q(x))

)
−Wδ,q(x)

∣∣
Lsε (∂M).

As before, set 0 = i∗( f0(Wδ,q(x)). Since 0 solves (3-7), 0−Wδ,q solves
−1g(0−Wδ,q)+ a(x)(0−Wδ,q)=−1gWδ,q + a(x)Wδ,q on M ,

∂

∂ν
(0−Wδ,q)+

n−2
2

b(x)(0−Wδ,q)

= f0(0)+
∂

∂ν
Wδ,q +

n−2
2

b(x)Wδ,q

on ∂M .

We choose q as in (2-3), and r = ε. Thus, by Theorem 3.14 in [Nittka 2011], we
have

|0−Wδ,q |Lsε (∂M) ≤ |−1gWδ,q + a(x)Wδ,q |Lq+ε(M)

+

∣∣∣ f0(0)+
∂

∂ν
Wδ,q +

n−2
2

b(x)Wδ,q

∣∣∣
L(n−1)q/(n−q)+ε(∂M)

.

We remark that

q =
2n+ n2

( n−2
n−1

)
ε

n+ 2+ 2n
( n−2

n−1

)
ε
=

2n
n+2

+ O+(ε) with 0< O+(ε) < Cε

for some positive constant C . By direct computation we have

|a(x)Wδ,q |Lq+ε(M) ≤ Cδ2−O+(ε),

|b(x)Wδ,q |L(n−1)q/(n−q)+ε(∂M) ≤ Cδ1−O+(ε).

Moreover, proceeding as in (3-9), (3-10), (3-11) and (3-13) we get

|1gWδ,q |Lq+ε(M) ≤ Cδ2−O+(ε),∣∣∣ f0(0)+
∂

∂ν
Wδ,q

∣∣∣
L(n−1)q/(n−q)+ε(∂M)

≤ Cδ1−O+(ε).

Since i∗( fε(Wδ,q)) solves (1-5), and i∗( fε|u|n/(n−2)+ε(Wδ,q)) solves (1-5), we
again use Theorem 3.14 in [Nittka 2011]. Taking (3-15) and (3-16) into account,
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we finally get

(3-18)
∣∣i∗( fε(Wδ,q))− i∗( f0(Wδ,q))

∣∣
Lsε (∂M)

≤ | fε(Wδ,q)− f0(Wδ,q)|L2(n−1)/n+O+(ε)(∂M)

≤ δ−O+(ε)
(∫

Rn−1

[( 1
δε(n−2)/2 U ε(z, 0)− 1

)
·U n/(n−2)(z, 0)

] 2(n−1)
n +O+(ε)

dz
) 1

2(n−1)/n+O+(ε)
+ O(δ2)

= δ−O+(ε)(O(ε|ln δ|)+ O(ε))+ O(δ2).

Now, choosing δ = dε, we can conclude the proof, since

δ−O+(ε)
= 1+ O+(ε)|ln(εd)| = 1+ O+(ε|ln ε|)= O(1). �

3.3. Solving (2-8): the remainder term φ.

Proposition 4. For a, b ∈ R with 0 < a < b, there exists a positive constant
C = C(a, b) such that, for ε small, for any q ∈ ∂M and for any d ∈ [a, b] there
exists a unique φδ,q which solves (2-8). This solution satisfies

‖φδ,q‖H ≤ Cε|ln ε|.

Moreover the map q 7→ φδ,q is a C1(∂M,H) map.

Proof. First of all, we point out that N is a contraction mapping. We remark that
the conjugate exponent of sε is

s
′

ε =


2(n−1)

n
in the subcritical case,

2(n−1)+εn(n−2)
n+εn(n−2)

in the supercritical case.

By the properties of i∗ and using the expansion of fε(Wδ,q + φ1) centered in
Wδ,q +φ2 we have

‖N (φ1)−N (φ2)‖H ≤
∥∥ fε(Wδ,q+φ1)− fε(Wδ,q+φ2)− f ′ε(Wδ,q)[φ1−φ2]

∥∥
Ls′ε (∂M)

≤
∥∥( f ′ε(Wδ,q+θφ1+(1−θ)φ2)− f ′ε(Wδ,q)

)
[φ1−φ2]

∥∥
Ls′ε (∂M)

and, since |φ1−φ2|
s′ε ∈ Lsε/s′ε(∂M) and | f ′ε(·)|

s′ε ∈ L(sε/s
′
ε)
′

(∂M) as f ′ε(·)∈ Lsε(∂M),
we have

‖N (φ1)− N (φ2)‖H

≤
∥∥( f ′ε(Wδ,q + θφ1+ (1− θ)φ2)− f ′ε(Wδ,q)

)∥∥
Lsε (∂M)‖φ1−φ2‖Lsε (∂M)

= γ ‖φ1−φ2‖H,
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where

γ =
∥∥( f ′ε(Wδ,q + θφ1+ (1− θ)φ2)− f ′ε(Wδ,q)

)∥∥
Lsε (∂M) < 1

provided ‖φ1‖H and ‖φ2‖H are sufficiently small.
In the same way we can prove that ‖N (φ)‖H ≤ γ ‖φ‖H with γ < 1 if ‖φ‖H is

sufficiently small.
Next, by Lemmas 2 and 3 we have

‖L−1(N (φ)+ Rε,δ,q)‖H ≤ C(γ ‖φ‖H+ ε|ln ε|),

where C =max{C0,C0C1}> 0, for the constants C0,C1 which appear in Lemmas 2
and 3. Notice that, given C > 0, it is possible (up to a choice of ‖φ‖H sufficiently
small) to choose 0< Cγ < 1

2 .
Now, if ‖φ‖H ≤ 2Cε|ln ε|, then the map

T (φ) := L−1(N (φ)+ Rε,δ,q)

is a contraction from the ball ‖φ‖H ≤ 2Cε|ln ε| in itself, so, by the fixed point
theorem, there exists a unique φδ,q with ‖φδ,q‖H ≤ 2Cε|ln ε| solving (3-1), and
hence (2-8). The regularity of the map q 7→ φδ,q can be proven via the implicit
function theorem. �

4. The reduced problem

Problem (1-5) has a variational structure. Weak solutions to (1-5) are critical points
of the energy functional Jε :H→ R given by

Jε(u)=
1
2

∫
M
(|∇u|2+ a(x)u2) dµg

+
n−2

4

∫
∂M

b(x)u2 dσ − (n−2)2

2n−2±ε(n−2)

∫
∂M

u(2n−2)/(n−2)±ε dσ.

Let us introduce the reduced energy Iε : (0,+∞)× ∂M→ R by

(4-1) Iε(d, q) := Jε(Wεd,q +φεd,q),

where the remainder term φεd,q has been found in Proposition 4.

4.1. The reduced energy. Here we use the following expansion for the metric
tensor on M :

gi j (y)= δi j + 2hi j (0)yn + O(|y|2) for i, j = 1, . . . , n− 1,(4-2)

gin(y)= δin for i = 1, . . . , n− 1,(4-3)
√

g(y)= 1− (n− 1)H(0)yn + O(|y|2),(4-4)
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where (y1, . . . , yn) are the Fermi coordinates and, by definition of hi j ,

(4-5) H = 1
n−1

n−1∑
i

hi i .

We also recall that on ∂M the Fermi coordinates coincide with the exponential ones,
so we have that

(4-6)
√

g(y1, . . . , yn−1, 0)= 1+ O(|y|2).

To improve the readability of this paper, hereafter we write z = (z1, . . . , zn−1)

to indicate the first n − 1 Fermi coordinates and t to indicate the last one, so
(y1, . . . , yn−1, yn) = (z, t). Moreover, indices i, j conventionally refer to sums
from 1 to n− 1, while l,m usually refer to sums from 1 to n.

Proposition 5. (i) If (d0, q0) ∈ (0,+∞)× ∂M is a critical point for the reduced
energy Iε defined in (4-1), then Wεd0,q0 +φεd0,q0 ∈H solves problem (1-5).

(ii) It holds true that{
Iε(d, q)= cn(ε)+ ε[αndϕ(q)−βn ln d] + o(ε) in the subcritical case,
Iε(d, q)= cn(ε)+ ε[αndϕ(q)+βn ln d] + o(ε) in the supercritical case,

C0-uniformly with respect to d in compact subsets of (0,+∞) and q ∈ ∂M.
Here cn(ε) is a constant which only depends on ε and n, αn and βn are positive
constants which only depend on n, and ϕ(q)= h(q)− Hg(q) is the function
defined in (1-4) .

Proof. (i) Set q := q(y)= ψ∂q0
(y). Since (d0, q0) is a critical point, we have, for

any h ∈ 1, . . . , n− 1,

0= ∂

∂yh
Iε
(
d, ψ∂q0

(y)
)∣∣∣

y=0

=

〈〈
Wεd,q(y)+φεd,q(y)− i∗( fε(Wεd,q(y)+φεd,q(y))),

∂

∂yh
Wεd,q(y)+

∂

∂yh
φεd,q(y)

〉〉
H

∣∣∣
y=0

=

n−1∑
i=0

ci
ε

〈〈
Z i
εd,q(y),

∂

∂yh
Wεd,q(y)+

∂

∂yh
φεd,q(y)

〉〉
H

∣∣∣
y=0

=

n−1∑
i=0

ci
ε

〈〈
Z i
εd,q(y),

∂

∂yh
Wεd,q(y)

〉〉
H

∣∣∣
y=0
−

n−1∑
i=0

ci
l

〈〈
∂

∂yh
Z i
εd,q(y), φεd,q(y)

〉〉
H

∣∣∣
y=0
,

using that φεd,q(y) is a solution of (2-8) and that〈〈
Z i
εd,q(y),

∂

∂yh
φεd,q(y)

〉〉
H
=−

〈〈
∂

∂yh
Z i
εd,q(y), φεd,q(y)

〉〉
H
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since φεd,q(y) ∈ K⊥εd,q(y) for all y. Now it is enough to observe that〈〈
∂

∂yh
Z i
εd,q(y), φεd,q(y)

〉〉
H
≤

∥∥∥ ∂

∂yh
Z i
εd,q(y)

∥∥∥
H
‖φεd,q(y)‖H = o(1),〈〈

Z i
εd,q(y),

∂

∂yh
Wεd,q(y)

〉〉
H
=

1
εd
〈〈

Z i
εd,q(y), Zh

εd,q(y)
〉〉

H =
1
εd
δih
+ o(1),

to conclude that

0= 1
εd

n−1∑
i=0

ci
ε(δ

ih
+ o(1)),

and so ci
ε = 0 for all i = 0, . . . , n− 1. This concludes the proof of (i).

(ii) We prove (ii) in two steps.

Step 1. We prove that for ε small enough and for any q ∈ ∂M ,

|Jε(Wδ,q +φδ,q)− Jε(Wδ,q)| ≤ ‖φδ,q‖
2
H+Cε|ln ε|‖φδ,q‖H = o(ε).

We have

|Jε(Wδ,q +φδ,q)− Jε(Wδ,q)|

=

∣∣∣∣∫
M
[−1gWδ,q + a(x)Wδ,q ]φδ,q dµg

∣∣∣∣+ 1
2
‖φδ,q‖

2
H

+

∣∣∣∣∫
∂M

[
∂

∂ν
Wδ,q +

n−2
2

b(x)Wδ,q − f0(Wδ,q)
]
φδ,q dσ

∣∣∣∣
+

∣∣∣∣∫
∂M

[
f0(Wδ,q)− fε(Wδ,q)

]
φδ,q dσ

∣∣∣∣
+

∣∣∣∣∫
∂M

(n−2)2

2n−2±ε(n−2)
[
(Wδ,q +φδ,q)

(2n−2)/(n−2)±ε
−W (2n−2)/(n−2)±ε

δ,q

]
− fε(Wδ,q)φδ,q dσ

∣∣∣∣.
With the same estimate of I1 in Lemma 3 we obtain that∣∣∣∣∫

M
[−1gWδ,q + a(x)Wδ,q ]φδ,q dµg

∣∣∣∣= O(δ)‖φδ,q‖H ,

and in light of the estimate of I2 and I3 in Lemma 3 we get∣∣∣∣∫
∂M

[
∂

∂ν
Wδ,q +

n−2
2

b(x)Wδ,q − f0(Wδ,q)
]
φδ,q dσ

∣∣∣∣= O(δ)‖φδ,q‖H .
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In the subcritical case, following the computation in (3-17) we obtain∣∣∣∣∫
∂M
[ f0(Wδ,q)− fε(Wδ,q)]φδ,q dσ

∣∣∣∣
≤ C | f0(Wδ,q)− fε(Wδ,q)|L2(n−1)/n(∂M)|φδ,q |L2(n−1)/(n−2)(∂M)

= [O(ε)+ O(ε ln δ)]‖φδ,q‖H = O(ε|ln ε|)‖φδ,q‖H ,

and in a similar way, for the supercritical case, in light of (3-18) we get∣∣∣∣∫
∂M
[ f0(Wδ,q)− fε(Wδ,q)]φδ,q dσ

∣∣∣∣
≤ C | f0(Wδ,q)− fε(Wδ,q)|L2(n−1)/n+O+(ε)(∂M)

|φδ,q |L2(n−1)/(n−2)−O+(ε)(∂M)

≤
(
δ−O+(ε)(O(ε ln δ)+ O(ε))+ O(δ2)

)
‖φδ,q‖H = O(ε|ln ε|)‖φδ,q‖H .

Finally, by the Taylor expansion formula, for some θ ∈ (0, 1) we immediately have∣∣∣∣∫
∂M

(n−2)2

2n−2±ε(n−2)

[(
Wδ,q +φδ,q

)2n−2
n−2 ±ε −W

2n−2
n−2 ±ε
δ,q

]
− fε(Wδ,q)φδ,q dσ

∣∣∣∣
=

∣∣∣∣n±ε(n−2)
2

∫
∂M

(
Wδ,q + θφδ,q

) 2
n−2±εφ2

δ,q dσ
∣∣∣∣

≤ C
[∫

∂M

∣∣Wδ,q + θφδ,q
∣∣( 2

n−2±ε
)

sε
sε−2 dσ

] sε−2
sε
[∫

∂M
|φδ,q |

sε dσ
] 2

sε

≤ C |Wδ,q + θφδ,q |
sε−2
Lsε ‖φδ,q‖

2
H ≤ C‖φδ,q‖2H.

Choosing δ = dε, and recalling that, by Proposition 4, ‖φδ,q‖H = O(ε| ln ε|)
concludes the proof.

Step 2. We prove that

Jε(Wδ,q)

= C(ε)+ ε
(

d n−2
4
[b(q)− H(q)] ± ln d (n−2)3(n−3)

4(n−2)(2n−2)

)
ωn−1 I n−2

n−2 + o(ε)

C0-uniformly with respect to d in compact subsets of (0,+∞) and q ∈ ∂M , where

C(ε)= 1
2

∫
Rn
+

|∇U (y)|2 dy

−
(n−2)2

2n−2

∫
Rn−1

U
2n−2
n−2 (z, 0) dz± ε (n−2)3

2n−2

∫
Rn−1

U
2n−2
n−2 (z, 0) dz

∓ ε
(n−2)2

2n−2

∫
Rn−1

U
2n−2
n−2 (z, 0) ln U (z, 0) dz

∓ ε|ln ε| (n−2)3

2(2n−2)

∫
Rn−1

U
2n−2
n−2 (z, 0) dz,
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and

I n−2
n−2 =

∫
∞

0

sn−2

(1+s2)n−2 dz,

and ωn−1 is the volume of the (n− 1)-dimensional unit ball.

We compute each term separately. First, we have, by a change of variables and
by (4-2), (4-3) and (4-4),∫

M
|∇Wδ,q |

2 dµg =

n∑
l,m=1

∫
Rn
+

glm(δy) ∂
∂yl

U (y) ∂
∂ym

U (y)
√

g(δy) dy+ o(δ)

=

∫
Rn
+

|∇U (y)|2 dy− δ(n− 1)H(q)
∫

Rn
+

yn|∇U (y)|2 dy

+ 2δ
n−1∑

i, j=1

∫
Rn
+

ynhi j (q)
∂

∂yi
U (y) ∂

∂y j
U (y) dy+ o(δ).

By a symmetry argument we can simplify the last integral to obtain, in a more
compact form,

1
2

∫
M
|∇Wδ,q |

2 dµg =
1
2

∫
Rn
+

|∇U |2− δ (n−1)H(q)
2

∫
Rn
+

yn|∇U |2

+ δ

n−1∑
i=1

hi i (q)
∫

Rn
+

yn

(
∂U
∂yi

(y)
)2
+ o(δ).

Since ∂U
∂yi
=
∂U
∂yl

for all i, l = 1, . . . , n− 1, by (4-9) we get

n−1∑
i=1

hi i (q)
∫

Rn
+

yn

(
∂U
∂yi

(y)
)2

dy = 1
n−1

n−1∑
i=1

hi i (q)
∫

Rn
+

yn

n−1∑
l=1

(
∂U
∂yl

(y)
)2

dy

=
H(q)

4

∫
Rn−1

U 2(z, 0) dz,

and in light of (4-7) we conclude that

1
2

∫
M
|∇Wδ,q |

2 dµg =
1
2

∫
Rn
+

|∇U |2− δ (n−2)H(q)
4

∫
Rn−1

U 2(z, 0) dz+ o(δ).

By a change of variables, we immediately obtain

1
2

∫
M

a(x)|Wδ,q |
2 dµg =

δ2

2

∫
Rn
+

a(x)U 2(y)
√

g(δy) dy+ o(δ2)= O(δ2).
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Coming to the boundary integral, we get, by a change of variables, by (4-6), and by
expanding b,

n−2
4

∫
∂M

b(z)|Wδ,q |
2 dσ = δ n−2

4

∫
Rn−1

b(δz)U 2(z, 0)
√

g(δz) dz+ O(δ2)

= δb(q) n−2
4

∫
Rn−1

U 2(z, 0) dz+ O(δ2).

Introducing the abbreviation Un(z) = U (2n−2)/(n−2)(z, 0), by (3-15), (3-16) and
(4-6), we have∫
∂M
|Wδ,q |

(2n−2)/(n−2)±ε dσ

=

∫
Rn−1

δ∓ε(n−2)/2Un(z)U±ε(z, 0)
√

g(δz) dz+ o(δ)

=

∫
Rn−1

Un(z) dz± ε
∫

Rn−1
Un(z) ln U (z, 0) dz∓ n−2

2
ε ln δ

∫
Rn−1

Un(z) dz

+ o(δ)+ O(ε2)+ O(ε2 ln δ),

and, since (n−2)2

2n−2±ε(n−2)
=
(n−2)2

2n−2
∓ ε

(n−2)3

2n−2
, we get

−
(n−2)2

2n−2±ε(n−2)

∫
∂M
|Wδ,q |

(2n−2)/(n−2)−ε dσ

=−
(n−2)2

2n−2

∫
Rn−1

Un(z) dz± ε (n−2)3

2n−2

∫
Rn−1

Un(z) dz

∓ ε
(n−2)2

2n−2

∫
Rn−1

Un(z) ln U (z, 0) dz± (n−2)3

2(2n−2)
ε ln δ

∫
Rn−1

Un(z) dz

+ o(δ)+ O(ε2)+ O(ε2 ln δ).

Notice that, with the choice δ = dε it holds that o(δ)+ O(ε2)+ O(ε2 ln δ)= o(ε)
and ε ln δ = ε ln d − ε|ln ε|. At this point we have

Jε(Wδ,q)= C(ε)+ εd n−2
4
[b(q)− H(q)]

∫
Rn−1

U 2(z, 0) dz

± ε
(n−2)3

2(2n−2)
ln d

∫
Rn−1

Un(z) dz+ o(ε|ln ε|).

To conclude, observe that∫
Rn−1

U 2(z, 0) dz = ωn−1 I n−2
n−2 and

∫
Rn−1

Un(z) dz = ωn−1 I n−2
n−1 ,
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where

I αβ =
∫
∞

0

sα

(1+s2)β
ds.

The conclusion follows after we observe that I n−2
n−1 =

n−3
2(n−2)

I n−2
n−2 (for a proof, see

[Almaraz 2011b, Lemma 9.4(b)]). �

4.2. Proof of Theorem 1. Let us introduce

Î (d, q)= αndϕ(q)−βn ln d.

If q0 is a local minimizer of ϕ(q) with ϕ(q0) > 0, set d0 = βn/(αnϕ(q0)) > 0.
Thus the pair (d0, q0) is a critical point for Î . Moreover, since there exists a
neighborhood B such that ϕ(q) > ϕ(q0) on ∂B, it is possible to find a neighborhood
B̃ ⊂ [a, b]×∂M , (d0, q0) ∈ B̃ such that Î (d, q) > Î (d0, q0) for (d, q) ∈ ∂ B̃. Since,
in the subcritical case, by (i) of Proposition 5 we have

Iε(d, q)= cn(ε)+ ε Î (d, q)+ o(ε),

we get that for ε sufficiently small there is a (d∗, q∗)∈ B̃ such that Wεd∗,q∗+φεd∗,q∗

is a critical point for Iε. Then, by (i) of Proposition 5, Wεd∗,q∗ +φεd∗,q∗ ∈H is a
solution for problem (1-5) in the subcritical case.

The proof for the supercritical case follows in a similar way. �

4.3. Some technicalities. If U is a solution of (2-5), then the following hold:∫
Rn
+

t |∇U |2 dz dt = 1
2

∫
Rn−1

U 2(z, 0) dz,(4-7) ∫
Rn
+

t |∇U |2 dz dt = 2
∫

Rn
+

t |∂tU |2 dz dt,(4-8)

∫
Rn
+

t
n−1∑
i=1

|∂zi U |
2 dz dt = 1

4

∫
Rn−1

U 2(z, 0) dz.(4-9)

Proof. To simplify the notation, we set

η = (z, t) ∈ Rn
+

where z ∈ Rn−1 and t ≥ 0.

The first estimate can be obtained by integration by parts, taking into account that
1U = 0. Indeed,∫

Rn
+

ηn|∇U |2 δη =−
n∑

l=1

∫
Rn
+

U∂l[ηn∂lU ] δη =−
∫

Rn
+

U∂nU δη −

∫
Rn
+

ηnU1U δη

=−
1
2

∫
Rn
+

∂n[U 2
] δη =

1
2

∫
Rn−1

U 2(z, 0) dz.
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To obtain (4-8), we proceed in a similar way: since 1U = 0 we have

0=−
∫

Rn
+

1Uη2
n∂nU δη =

n∑
l=1

∫
Rn
+

∂lU∂l[η
2
n∂nU ] δη

=

∫
Rn
+

2ηn|∂nU |2 δη+
n∑

l=1

∫
Rn
+

η2
n∂lU∂2

lnU δη

=

∫
Rn
+

2ηn|∂nU |2 δη+ 1
2

∫
Rn
+

η2
n∂n|∇U |2 δη

=

∫
Rn
+

2ηn|∂tU |2 δη −
∫

Rn
+

ηn|∇U |2 δη,

so (4-8) is proved. Now (4-9) is a direct consequence of the first two equalities. In
fact, by (4-8) we have∫

Rn
+

ηn|∇U |2 δη =
∫

Rn
+

ηn

n−1∑
i=1

|∂iU |2 δη+
∫

Rn
+

ηn|∂nU |2 δη

=

∫
Rn
+

ηn

n−1∑
i=1

|∂iU |2 δη+
1
2

∫
Rn
+

ηn|∇U |2 δη.

Thus, ∫
Rn
+

ηn

n−1∑
i=1

|∂iU |2 δη =
1
2

∫
Rn
+

ηn|∇U |2 δη,

and in light of (4-7) we get the proof. �
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