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Abstract 

The reaction of [(η6-p-cymene)RuCl(κ2
N,O-L-serinate)], 1, with CH3C(O)Cl/NEt3, in chloroform at 

reflux temperature, led to the serendipitous isolation of the dehydroacetate complex [(η6-p-

cymene)RuCl(κ2O,O’-dha)], 2, in low amount. Then, dehydroacetic acid (dhaH) was prepared in one 

pot by self condensation of acetyl chloride in the presence of NEt3 at room temperature, this reaction 

being unusual in the landscape of the chemistry of acyl chlorides. Complex 2 was synthesized in 89% 

yield from [(η6-p-cymene)RuCl2]2 and dhaH, and fully characterized by means of X-ray diffraction, IR 

and NMR spectroscopy. Complex 2 underwent fast and extensive dissociation of the dehydroacetate 

ligand in dmso/water solution, the degree of dissociation being substantially higher than that observed 

for the acetylacetonate ligand from [(η6-p-cymene)RuCl(κ2O,O’-acac)], 3.  

 

Keywords: acyl chlorides; self condensation; dehydroacetic acid; ruthenium arene; X-ray diffraction. 
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1. Introduction 

Ruthenium(II) arene compounds have been intensively investigated for their anticancer properties [1] 

(Figure 1), and a common strategy aimed to enhance their cytotoxic activity consists in the 

incorporation of compounds with a known biological function [2]. A series of bioactive carboxylic 

acids have been introduced by esterification reaction of suitable ligands, these ligands being usually 

modified before coordination to the ruthenium centre [3]. However, the direct esterification of 

coordinated hydroxo-substituted triphenylphosphine [4] and tiophenolate [5] ligands has been also 

realized. 

 

Figure 1. Most prominent anticancer ruthenium(II) arene compounds. 

 

In this framework, we investigated the reaction of the complex [(η6-p-cymene)RuCl(κ2
N,O-L-

serinate)], 1 [6], containing a α-amino acidate ligand with a hydroxyl group in the side chain, with 

acetyl chloride in the presence of triethylamine, as a model for esterification reactions. This reaction 

led to the serendipitous finding of the one pot conversion of acetyl chloride to dehydroacetic acid.  

Dehydroacetic acid (dhaH, red compound in Scheme 1) and sodium dehydroacetate (Na[dha]) are 

commercially available chemicals, known for their antifungal and antibacterial activity [7]. 

Dehydroacetic acid is also a useful starting material for the preparation of heterocyclic compounds of 

biological interest, including the veterinary drug Clopidol [8]. Several synthetic procedures are 

available to access dhaH, making use of ethyl acetoacetate [9], dimethyl 3-oxoglutarate [10] or triacetic 

acid lactone [11] as precursors. On the industrial scale, dhaH is produced with the base-catalyzed 

dimerization of diketene. This is the product of the spontaneous 2+2 cycloaddition of ketene (Scheme 
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1d) [12], which in turn is usually obtained through gas-phase thermal decomposition of acetic acid or 

acetone (Scheme 1a-b) [13]. An alternative preparation of diketene (via ketene) from acetyl chloride 

has been reported too [14], finally affording diketene in ca. 50% yield after distillation from the 

reaction mixture (Scheme 1c).  

 

Scheme 1. Preparation of dehydroacetic acid (dhaH) from C2-C3 feedstocks [15]. 

 

It should be remarked that the direct transformation of acetyl chloride to dhaH has not been reported 

heretofore. More in general, although acyl chlorides are versatile reagents hugely employed in organic 

and organometallic synthesis [16], self-condensation reactions of these substrates are not trivial tasks. 

To the best of our knowledge, the only conclusive report in the literature regards the synthesis of 4-

hydroxy-2-pyrones mediated by strong Lewis acids (e.g. AlCl3), via dehydroalogenative C−C bond 

coupling [17]. Anyway, it should be noted that a poor level of regiochemical control may be observed 

under these conditions [18]. 

Herein, we describe the one pot self condensation reaction of acetyl chloride to dhaH promoted by 

triethylamine, and the incorporation of dha− as a bidentate ligand in a Ru(II) p-cymene complex. The 

structural characterization of this complex and the behavior in aqueous medium, investigated to assess 

the suitability to biological studies, will be discussed.  
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2. Results and discussion 

The reaction of the ruthenium(II) p-cymene α-serinate complex 1 with an excess of CH3COCl/NEt3 led 

to the isolation of few crystals of an orange solid after work-up. Surprisingly, the product was 

identified as the dehydroacetate complex 2 by X-ray single crystal diffraction and elemental analysis 

(Scheme 2).  

 

Scheme 2. Designed synthesis of [(η6-p-cymene)RuCl(κ2
N,O-O2CCH(NH2)CH2OCOCH3)], and serendipitous formation of 

[(η6-p-cymene)RuCl(κ2
O,O’-dha)], 2. 

 

A view of the ORTEP molecular structure of 2 is shown in Figure 2, while relevant bonding parameters 

are given in Table 1.  
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Figure 2. Molecular structure of [(η6-p-cymene)RuCl(κ2
O-OC(Me)CC(O)CHC(Me)OC=O)], 2. Displacement ellipsoids are 

at the 50% probability level. 

 

Table 1. 
Selected bond distances (Å) and angles (°) for 2. 

Ru(1)−(η6-p-cymene)av 2.178(7) Ru(1)−Cl(1) 2.4112(9) 

Ru(1)−O(1) 2.089(2) Ru(1)−O(2) 2.079(2) 

C(11)−O(1) 1.259(4) C(14)−O(2) 1.280(4) 

C(11)−C(12) 1.510(4) C(11)−C(13) 1.440(5) 

C(13)−C(14) 1.429(5) C(13)−C(17) 1.446(5) 

C(14)−C(15) 1.439(5) C(15)−C(16) 1.337(5) 

C(16)−C(18) 1.481(5) C(16)−O(4) 1.369(4) 

C(17)−O(4) 1.396(4) C(17)−O(3) 1.217(4) 

    

O(1)−Ru(1)−O(2) 83.74(9) Ru(1)−O(1)−C(11) 130.1(2) 

Ru(1)−O(2)−C(14) 125.4(2) O(1)−C(11)−C(13) 123.6(3 

C(11)−C(13)−C(14) 121.6(3) C(13)−C(14)−O(2) 125.9(3) 

C(13)−C(14)−C(15) 117.8(3) C(14)−C(15)−C(16) 120.8(3) 

C(15)−C(16)−O(4) 121.6(3) C(16)−O(4)−C(17) 122.0(3) 

O(4)−C(17)−C(13) 117.6(3) C(17)−C(13)−C(14) 119.4(3) 

 

Compound 2 comprises the expected three-leg piano-stool geometry typical of other Ru(II)-arene 

compounds, and the bonding parameters around the Ru(II) center are similar to those reported for 
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related [Ru(O^O)(p-cymene)Cl] structures (O^O = bidentate mono-anion with two O-donor atoms) 

[2b,d, 19]. 

The dehydroacetate anion is coordinated as a chelating O,O’ β-diketonate ligand, while the ester moiety 

is not involved in coordination. The same coordination fashion of dha− has been already observed in a 

variety of complexes with general formula [M(II)(dha)2L2] (M = Cu [20], Co [21], Zn [22], Cd [22], Mn 

[23], Ni [24]) or [M(III)Cl2(dha)L2] (M = Ru [33], Re [25]). Bonding parameters within the dha− ligand 

in 2 are similar to those reported for the related complexes, showing a slightly shorter exocyclic C−O 

bond [C(11)-O(1) 1.259(4) Å] within the β-diketonate moiety, compared to the endocyclic C−O 

[C(14)-O(2) 1.280(4) Å]. A reverse situation is observed for the Ru−O bond distances [Ru(1)-O(1): 

2.089(2) Å; Ru(1)-O(2): 2.079(2) Å]. A comparison of bonding lengths is given in Table 2 concerning 

2, dehydroacetic acid, sodium dehydroacetate and the previously reported complex [(η6-p-

cymene)RuCl(κ2
O,O’-acac)], 3, differing from 2 in the presence of a symmetric O,O’ β-diketonate 

ligand (acetylacetonate). 

 

Table 2. 

Comparison of C−C and C−O bond distances in the β-diketonate moiety of dhaH, Na[dha]�H2O and [(η6-p-
cymene)RuCl(L)] (L = acac, dha). 

Bond length / Å Reference 

structure 
Compound 

C1-O1 C1-C2 C2-C3 C3-O3 C=O lactone 
Ref. 

dhaH a 
1.244(4) 
1.240(4) 

1.432(5) 
1.452(5) 

1.398(4) 
1.404(4) 

1.305(3) 
1.305(3) 

1.204(4) 
1.206(4) 

[15b] 

Na[dha]�H2O a 
1.222(4) 
1.241(3) 

1.448(4) 
1.451(4) 

1.437(4) 
1.430(4) 

1.253(3) 
1.260(2) 

1.210(4) 
1.225(4) 

[26] 

2 1.259(4) 1.440(5) 1.429(5) 1.280(4) 1.217(4) this work 
 

3 1.275(3) 1.387(3) 1.394(3) 1.271(3) - [27] 
a Two crystallographically-independent molecules in the asymmetric unit. 
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The serendipitous formation of 2 suggested a possible route to the one pot synthesis of dehydroacetic 

acid (dhaH) from acetyl chloride (Scheme 1). Therefore, despite dhaH is a low-cost, commercial 

product, we did an investigation to reproduce the synthesis of dhaH from CH3COCl/NEt3.  

An excess of triethylamine in chloroform was treated with acetyl chloride at room temperature, leading 

to the formation of dhaH (Scheme 3). Despite several byproducts were present in the crude reaction 

mixture, dhaH was isolated in 17% yield after dichloromethane/water extraction and silica 

chromatography. The formation of dhaH probably proceeds via (di)ketene, according to the known 

mechanism (see Introduction).  

The direct acetyl chloride to dhaH conversion was found to be very sensitive to the experimental 

conditions, strictly requiring the use of dry triethylamine (stored over pre-activated MS-4A) in a dilute 

reaction mixture (see Experimental). It should be mentioned here that former studies on the ketene 

dimerization (polymerization) pointed that different self-condensation products could be generated, the 

presence of H2O traces being responsible for the formation of fused-ring systems [28]. The reactions of 

CH3COCl with NEt3, conducted in the presence of variable amounts of ruthenium(II) p-cymene 

compounds (1 or [(η6-p-cymene)RuCl2]2), did not result in any increase of yield/selectivity; this fact 

suggests that ruthenium does not probably participate to the formation of dhaH, even though it may 

stabilize the anion dha− by coordination (formation of 2, Scheme 2). 

 

Scheme 3. One-pot synthesis of dehydroacetic acid (dhaH) from acetyl chloride and triethylamine. 

 

In order to obtain larger amounts of 2 for full characterization, the reaction between [(η6-p-

cymene)RuCl2]2 and dhaH was performed in methanol at room temperature in the presence of NaOH. 
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Thus, 2 was finally isolated as a yellow-brown solid in 89% yield and then characterized by analytical 

and spectroscopic (IR/NMR) techniques. A comparative view of IR and NMR data for 2 and related 

compounds is supplied in Table 3. 

Compound 2 is a racemate in CDCl3 solution, containing a stereogenic Ru center. As a consequence, 

distinct resonances for otherwise equivalent isopropyl/methyl groups of the p-cymene ligand can be 

found in the 1H and 13C NMR spectra. In the 1H spectrum of 2, the dha− ligand gives rise to three 

singlets at 5.80, 2.59 and 2.15 ppm, assigned to the vinyl proton and the two methyl groups, 

respectively. In the 13C spectrum, the β-diketonate moiety is featured by resonances at 196.7, 180.6 and 

101.9 ppm, while the lactone resonance has been found at 163.8 ppm. These chemical shift values are 

reminiscent of those of sodium dehydroacetate. 

The IR spectrum of dehydroacetic acid shows four strong bands in the 1700-1500 cm-1 region, due to 

the stretching of the ketone (1730 cm-1) and lactone (1708 cm-1) carbonyls and two C=C stretching of 

the aromatic system (1638 and 1547 cm-1). In the IR spectrum of 2 (solid state), two strong bands at 

1650 and 1567 cm-1 have been attributed to the ν(C-C-O) stretchings of the β-diketonate ligand. As a 

comparison, the corresponding absorptions fall at 1574 and 1521 cm-1 in the IR spectrum of 3. The 

lactone stretching in 2 occurs at 1694 cm-1, showing minor variation with respect to non-coordinated 

dhaH.  

 

Table 3.  

Comparison of selected IR and NMR data for 2, 3, dhaH and Na[dha]. 

IR (solid state) : ῦ/cm-1 
13C NMR (CDCl3)

 : 
δ/ppm 

1H NMR (CDCl3)
 : 

δ/ppm 
Compound 

ν(C=O) 
lactone 

ν(C-C-O) 
1,2-diketonate 

ν(C=C) 
CO2 

lactone 
1,2-diketo 

moiety 
CH3-C=O H-C=C 

dhaH a 1708s 1730s-sh b 1638s b 1547s 161.4 
205.4, 181.2, 

100.0 
2.66 5.93 

Na[dha] c 1676s 1659s 1604s 1538s 159.1 
196.7, 181.0, 

102.3 
2.30 5.44 

2 1694s 1650s 1567s 1567s 163.8 
197.6, 180.6, 

101.9 
2.59 5.80 

3 d - 1574s 1521s - - 186.4, 98.7 1.96 - 
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Reference structures and 
color code 

                 
a IR assignments from ref. [29]. b Corresponding to ν(C=O) and ν(C=C) in the α-ketoenol structure of dhaH (see Scheme 1, 
red compound). c NMR data in DMSO-d6 from ref. [30]. d 13C NMR data from ref. [43a]. 

 

In the light of the biological properties of dehydroacetic acid (see Introduction), a number of 

dehydroacetate metal complexes have been investigated for their possible biological applications [31]. 

In particular, Cu(II) [32], Ru(II) [33], Zn(II) and Sn(II) [34] compounds have been demonstrated to 

exhibit antifungal, antimicrobial or antibacterial activity, the activity being sometimes enhanced 

compared to that of dhaH itself. It should be noticed also that structurally-related pyrones have been 

conjugated to Pt(II) or Ru(II) arene scaffolds with the aim of obtaining a synergic effect in terms of 

anticancer activity [35]. 

In order to assess the suitability of 2 to cytotoxicity studies, we investigated the stability of this 

compound in aqueous medium at 37°C along 72 h. Due to insolubility in water, the stability of 2 was 

evaluated by 1H NMR in a DMSO:D2O 9:1 v/v solution, being DMSO a solvent of choice in drug 

research [36]. NaCl 0.11 M was added to the solution, thus matching the chloride concentration 

normally employed for in vitro tests. Under these conditions, rapid release of dha− from 2 took place, 

with only minor amounts (< 10%) of the starting material still in solution from 7 h onwards (see 

Scheme 4 and Table 4). On the other hand, the analogous acetylacetonate compound 3 resulted 

significantly more inert toward ligand dissociation, as ca. 70% of Ru-acac persisted in solution after 72 

h (see Scheme 5 and Table 5).  

 

Scheme 4 and Table 4. NMR detected species as a function of time in the dmso/H2O/NaCl solution of 2 at 37°C. 
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time / hours 0 7 25 47 72 

2 vs. internal standard 73 9 8 7 5 

2 73 6 5 4 3 

S 14 48 45 41 38 

dha−−−− 13 43 43 43 43 

% NMR 

p-cymene 0 3 7 12 16 

 

Scheme 5 and Table 5. NMR detected species as a function of time in the dmso/H2O/NaCl solution of 3 at 37°C. 

 

time / hours 0 5.75 24 48 72 

3 vs. internal standard 97 80 78 72 69 

3 97 62 59 56 52 

S 3 19 18 17 16 

acac-derivative 0 17 16 16 16 

% NMR 

p-cymene 0 2 7 11 16 

 

Earlier studies on the behavior of ruthenium arene complexes in aqueous solution evidenced that N,N- 

and N,O-bidentate ligands usually remained bound to the metal centre [1f, 37]. In contrast with this 

general trend, a significant release over time has been reported for a variety of O,O-ligands, including 

fluoro-substituted diketonates [38], quinolones [19a], maltolate [39] and 3-hydroxy-4-pyr(id)ones [35]. 

For instance, ca. 40% release of quinolone ligands was detected after 24 h in aqueous solution. It is 
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noteworthy that a high degree of dissociation may correlate with a low cytotoxicity against a panel of 

cancer cell lines [35]. On account of these considerations, we decided not to proceed with biological 

assays on compound 2. 

 

3. Conclusions 

In the course of our studies on the structural modification of Ru(II) arene complexes for medicinal 

purposes, we have serendipitously found that acetyl chloride can be converted into dehydroacetic acid 

in one pot, in the presence of triethylamine. This reaction, albeit occurring in low yield, represents an 

unusual case of acyl chloride self condensation. A Ru(II) arene - dehydroacetate conjugate has been 

prepared and structurally characterized. This compound manifests fast and extensive release of the 

bidentate O,O-ligand in aqueous medium, the degree of dissociation being superior to that exhibited by 

acetylacetonate in an analogous system. This observation resembles previous reports on the relative 

lability, in aqueous environment, of various bidentate O,O-donors coordinated to Ru(II) arene 

complexes. 
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4. Experimental 

4.1. General experimental details.  

RuCl3·xH2O (99.9%) was purchased from Alfa Aesar, then [(η6-p-cymene)RuCl2]2 [40] and [(η6-p-

cymene)RuCl(κ2
N,O-L-serinate)], 1 [6], were prepared according to the literature. The organic 

reactants and solvents were obtained from Alfa Aesar, Sigma Aldrich or TCI Europe, and were of the 

highest purity available. Acetyl chloride and Et3N (over 4Å MS) were stored under nitrogen as 

received. 1.0 M NaOH solution in water was prepared from Normex solution (Carlo Erba) and 

standardized by potassium hydrogen phthalate titration before use. The synthesis of dehydroacetic acid 

(dhaH) and the reaction of 1 with MeCOCl/Et3N were performed under a nitrogen atmosphere using 

standard Schlenk techniques and solvents distilled from appropriate drying agents. All the other 

operations were carried out in air with common laboratory glassware. NMR spectra were recorded at 

298 K on a Bruker Avance II DRX400 instrument equipped with a BBFO broadband probe. Chemical 

shifts (expressed in parts per million) are referenced to the residual solvent peaks (1H, 13C) [41]. 

Spectra were assigned with the assistance of DEPT-135, 1H-1H (COSY) and 1H-13C (gs-HSQC and gs-

HMBC) correlation experiments [42]. Infrared spectra were recorded on a Perkin Elmer Spectrum One 

FT-IR spectrometer, equipped with a UATR sampling accessory. Carbon, hydrogen and nitrogen 

analyses were performed on a Carlo Erba mod. 1106 instrument.  

 

4.2. Synthesis and characterization of compounds. 

4.2.1. Reaction of [(η
6
-p-cymene)RuCl(κ

2
N,O-L-serinate)], 1, with CH3C(O)Cl/NEt3. 

In a 25-mL Schlenk tube, Et3N (1.1 mL, 7.9 mmol) was added to a mixture of 1 (58 mg, 0.16 mmol) 

and acetyl chloride (55 µL, 0.77 mmol) in CHCl3 (8 mL). The resulting yellow solution was stirred at 

reflux temperature for 4 hours then at room temperature overnight. The mixture was then extracted 

with H2O (3x15 mL) and volatiles were removed under vacuum from the organic phase, affording a 
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yellow-orange solid. X-ray quality crystals of 2 were collected from a CHCl3 solution of this solid 

layered with hexane and settled aside at -20°C. Anal. Calcd. for C18H21ClO4Ru: C, 49.37; H, 4.83. 

Found: C, 4; 49.84, 4.70.  

 

4.2.2. Dehydroacetic acid (dhaH). 

In a 25-mL Schlenk tube, acetyl chloride (0.10 mL, 1.4 mmol) was added dropwise to a solution of 

Et3N (0.40 mL, 2.9 mmol) in CHCl3 (9 mL) and the resulting colorless solution (cMeCOCl = 0.15 mol�L-

1) was stirred at room temperature for 15 hours. A pale yellow solution was obtained, thus volatiles 

were removed under vacuum and the residue was re-dissolved in CH2Cl2. The organic phase was 

extracted with H2O (x3) and then loaded on top of a silica column. The title compound was obtained as 

a colorless solid following elution with EtOAc:hexane 2:1 v/v and solvent removal under vacuum 

(40°C). Yield: 11 mg, 19%. Anal. Calcd. for C8H8O4: C, 57.14; H, 4.79. Found: C, 57.22; H, 4.65. IR 

(solid state): ῦ/cm-1 = 3087w, 2962w, 2927w, 1730s-sh (νC7=O), 1708s (νC5=O), 1638s (νC1=C6), 1611m-

sh, 1547s (νC2=C3), 1449m, 1429m-sh, 1416m-sh, 1371m, 1349m, 1254s, 1170w, 1031m, 1008m-sh, 

995s, 963m, 923m, 856s, 806w, 778m, 711w, 704w. 1H NMR (CDCl3): δ/ppm = 16.69 (s, 1H, OH), 

5.93 (s, 1H, C2-H), 2.66 (s, 3H, C8-H), 2.27 (s, 3H, C4-H). 13C{1H} NMR (CDCl3): δ/ppm = 205.4 

(C7), 181.2 (C1), 169.2 (C3), 161.4 (C5), 101.6 (C2), 100.0 (C6), 30.2 (C8), 20.8 (C4). 

A comparable yield of dhaH was obtained when the reaction was performed under protection from the 

light or with 10 eq. of Et3N. The development of a red color with massive precipitation of [NEt3H]Cl 

was observed when the reaction was performed in more concentrated solutions (cMeCOCl = 0.5, 1.0 

mol�L-1). In these cases, no dhaH was identified in the crude reaction mixture by 1H NMR. When the 

reaction was performed with cMeCOCl = 0.5 mol�L-1 at 0°C, a yellow solution not containing dhaH was 

obtained. 
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Chart 1. Structure of dhaH (numbering refers to carbon atoms). [15] 

 

4.2.3. [(η
6
-p-cymene)RuCl(κ

2
O,O’-dha)], 2. 

A brick red solution of [(η6-p-cymene)RuCl2]2 (302 mg, 0.493 mmol) and dhaH (167 mg, 0.993 mmol) 

in MeOH (20 mL) was treated with 1.0 M NaOH (1.0 mL, 1.0 mmol). The resulting yellow-orange 

solution was stirred at room temperature overnight, therefore volatiles were removed under vacuum. 

The residue was suspended in CH2Cl2 and filtered. The filtrate solution was taken to dryness under 

vacuum affording a yellow-brown solid, which was washed with hexane and dried under vacuum 

(50°C). Yield: 396 mg, 89%. Compound 2 is soluble in DMSO, MeOH and CH2Cl2, poorly soluble in 

Et2O and insoluble in hexane and H2O. Anal. Calcd. for C18H21ClO4Ru: C, 49.37; H, 4.83. Found: C, 

49.22; H, 4.75. IR (solid state): ῦ/cm-1 = 3062w, 3002w, 2961w, 2922w, 2869w, 1694s (νC12=O), 1650s 

(νC13-C14-O), 1567s (νC13-C8-O + νC9=C10), 1471s, 1421s, 1396s, 1378s, 1363s, 1349s, 1280w, 1264w, 

1238m, 1201w, 1165m, 1114w, 1092w, 1066m, 1056w-sh, 1033m, 1023w-sh, 1003m, 970m, 947m, 

882m, 844m, 806w, 780m, 728w, 718w, 687w, 668w. 1H NMR (CDCl3): δ/ppm = 5.80 (s, 1H, C9-H), 

5.53 (pseudo-t, 3
JHH = 5.0 Hz, 2H, C4-H + C4’-H), 5.27 (d, 3

JHH = 6.0 Hz, 2H, C3-H + C3’-H), 2.89 

(hept, 3JHH = 7.0 Hz, 1H, C6-H), 2.59 (s, 3H, C15-H), 2.24 (s, 3H, C1-H), 2.04 (s, 3H, C11-H), 1.33 (d, 

3
JHH = 6.9 Hz, 6H, C7-H + C7’-H). 13C{1H} NMR (CDCl3): δ/ppm = 197.6 (C14), 180.6 (C8), 163.8 

(C12), 163.4 (C10), 106.5 (C9), 101.9 (C13), 100.2 (C5), 97.4 (C2), 82.8, 82.6 (C4 + C4’), 79.5, 79.5 

(C3 + C3’), 31.9 (C15), 30.9 (C6), 22.4, 22.3 (C7 + C7’), 19.9 (C11), 18.0 (C1). A clean recovery of 

the starting materials was obtained when the reaction was performed in refluxing CH2Cl2 without the 

addition of a base. 
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Chart 2. Structure of [(η6-p-cymene)RuCl(κ2
O,O’-dha)], 2 (numbering refers to carbon atoms). 

 

4.2.4. Sodium dehydroacetate monohydrate, Na[dha]�H2O. 

NaOH (1.0 M, 0.64 mL, 0.64 mmol) was added dropwise to a suspension of dhaH (107 mg, 0.636 

mmol) in water (3 mL). The resulting pale yellow solution (pH = 8) was stirred at room temperature for 

2.5 hours. Therefore volatiles were removed under vacuum and the residue was suspended in Et2O. The 

suspension was filtered and the resulting colorless solid was washed with Et2O and dried under vacuum 

(40°C). Yield: 123 mg, 93%. Anal. Calcd. for C8H9NaO5: C, 46.16; H, 4.36. Found: C, 46.30; H, 4.29. 

IR (solid state): ῦ/cm-1 = 3400w-br (νOH), 3077w, 2994w, 2965w, 2927w, 1711m-sh, 1676s (νC5=O), 

1659s (νC6-C7-O), 1604s (νC6-C1-O), 1538s (νC2=C3), 1444m-sh, 1401s, 1382s-sh, 1358s, 1343s, 1263m, 

1221w, 1203w, 1165m, 1112w, 1061w, 1022m, 1000s, 952m, 898m, 833m, 776m, 723w, 698m. 

 

Chart 3. Structure of Na[dha] (numbering refers to carbon atoms). [26] 

 

4.2.5. [(η
6
-p-cymene)RuCl(κ

2
O,O’-acac)], 3 [43]. 

The title compound was prepared as described for [(η6-p-cymene)RuCl(κ2
O,O’-dha)], using [(η6-p-

cymene)RuCl2]2 (123 mg, 0.200 mmol), acetyl acetone (45 µL, 0.44 mmol) and 1.0 M NaOH (0.45 mL, 
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0.45 mmol) in MeOH (4 mL). Reaction time = 2 hours. Yield: 123 mg, 83% (ocher-yellow solid). 

Compound 3 is soluble in MeOH and CH2Cl2, poorly soluble in Et2O and insoluble in hexane. Anal. 

Calcd. for C15H21ClO2Ru: C, 48.71; H, 5.72. Found: C, 48.84; H, 5.75. IR (solid state): ῦ/cm-1 = 

3066w, 3030w, 2962m, 2918w, 2873w, 1574s (νC10-C9-O), 1521s (νC10-C9-O), 1469m, 1427m, 1386s, 

1324m, 1300w, 1269m, 1198m, 1161w,1145w,  1115w, 1095m, 1055m, 1018m,932m,  904w, 881m, 

794m, 779m-sh, 677w, 657w. 1H NMR (CDCl3): δ/ppm = 5.43 (d, 3
JHH = 5.9 Hz, 2H, C4-H), 5.18 (d, 

3JHH = 5.9 Hz, 2H, C3-H), 5.12 (s, 1H, C10-H), 2.84 (hept, 3JHH = 6.9 Hz, 1H, C6-H), 2.24 (s, 3H, C1-

H), 1.96 (s, 6H, C8-H), 1.28 (d, 3JHH = 6.9 Hz, 6H, C7-H). 

 

Chart 4. Structure of [(η6-p-cymene)RuCl(κ2
O,O’-acac)], 3 (numbering refers to carbon atoms). 

 

4.3. Stability of Ru compounds in dmso/water solutions 

4.3.1. General procedure. A stock DMSO-d6/D2O 9:1 v/v solution containing NaCl (0.11 mol·L-1) and 

dimethyl sulfone (5.6·10-3 mol·L-1) as reference for 1H NMR spectra (δ/ppm = 2.97 (s, 6H) in DMSO-

d6/D2O 9:1 v/v) was used for the following experiments. Complexes 2 and 3 were dissolved in the 

DMSO-d6/D2O solution (0.6 mL; [Ru] = 1.5·10-2 mol·L-1) and the resulting solution was maintained at 

37°C for 72 hours and analyzed by 1H NMR spectroscopy as a function of time. Percent values of 

compounds in solution are based on 1H NMR spectroscopy and refer to identified compounds only 

(indicated as “% NMR”) or refer to dimethyl sulfone used as internal standard (indicated as “% NMR vs 

internal standard”). 
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4.3.2. Reference data. NMR spectra of the following compounds dissolved in the DMSO-d6/D2O 

solution were recorded and used for comparison for NMR assignments. p-cymene. 1H NMR (DMSO-

d6:D2O 9:1): δ/ppm = 7.12–7.03 (m, 4H), 2.80 (hept, J = 6.9 Hz, 1H), 2.23 (s, 3H), 1.15 (d, J = 6.9 Hz, 

6H). Na[dha]�H2O. 1H NMR (DMSO-d6:D2O 9:1): δ/ppm = 5.47 (s, 1H), 2.28 (s, 3H), 1.96 (s, 3H). 

acacH. 1H NMR (DMSO-d6:D2O 9:1): δ/ppm = 5.68 (s, 0.2H*), 3.63 (s, 0.5H), 2.10 + 1.96 (s, 6H). 

Na[acac]. 1H NMR (DMSO-d6:D2O 9:1): δ/ppm = 4.77 (s, 1H*), 1.65 (s, 6H). *H/D exchange with the 

solvent lowers the integral value. [(η6-p-cymene)RuCl2]2. 
1H NMR (DMSO-d6:D2O 9:1): δ/ppm = 

5.79 (d, J = 6.3 Hz, 2H), 5.74 (d, J = 6.3 Hz, 2H), 2.79 (hept, J = 6.9 Hz, 1H), 2.07 (s, 3H), 1.17 (d, J = 

6.9 Hz, 6H). This set of signals was attributed to the formation of a solvato-complex [(η6-p-

cymene)RuCl2(Solv)], S [4]. 

 

4.3.3. Stability studies: compound 2. Red-brown solution (0-7 h), yellow-brown solution (7-72 h). Data 

are reported in Table 4 while NMR detected species are shown in Scheme 4. 2. 1H NMR (DMSO-

d6:D2O 9:1): δ/ppm = 5.90 (s, 1H), 5.74 (d, J = 5.5 Hz, 2H), 5.47 (d, J = 5.8 Hz, 2H), 2.77 (hept, J = 

6.7 Hz, 1H), 2.42 (s, 3H), 2.11 (s, 3H), 2.04 (s, 3H), 1.25 (d, J = 6.9 Hz, 6H). 

 

4.3.4. Stability studies: compound 3. Yellow-brown solution. Data are reported in Table 5 while NMR 

detected species are shown in Scheme 5. 3. 1H NMR (DMSO-d6:D2O 9:1): δ/ppm = 5.55 (d, J = 5.9 Hz, 

2H), 5.29 (d, J = 5.9 Hz, 2H), 5.09 (s, 1H*), 2.70 (hept, J = 6.7 Hz, 1H), 1.83 (s, 6H), 1.21 (d, J = 6.9 

Hz, 6H). *H/D exchange with the solvent lowers the integral value. Acac-derivative. 1H NMR 

(DMSO-d6:D2O 9:1): δ/ppm = 1.75 + 1.72 (s, 6H). Other species. 1H NMR (DMSO-d6:D2O 9:1): 

δ/ppm = 5.24 (d), 5.02 (d), 2.33 (m), 2.21 (m), 2.05 (m), 1.97 (s), 1.08-1.02 (m). 

 



 
 

19 

 

 

4.4. X-ray crystallography. 

Crystal data and collection details for 2 are reported in Table 6. Data were recorded on a Bruker APEX 

II diffractometer equipped with a PHOTON100 detector using Mo–Kα radiation. Data were corrected 

for Lorentz polarization and absorption effects (empirical absorption correction SADABS) [44]. The 

structures were solved by direct methods and refined by full-matrix least-squares based on all data 

using F2 [45]. Hydrogen atoms were fixed at calculated positions and refined by a riding model. All 

non-hydrogen atoms were refined with anisotropic displacement parameters. 

 

Table 6.  

Crystal data and measurement details for 2. 

 

Formula C18H21ClO4Ru 

FW 437.87 

T, K 
100(2) 

λ,  Å 0.71073 

Crystal system Triclinic 

Space group P  

a, Å 7.0011(6) 

b, Å 9.5431(8) 

c, Å 14.1615(12) 

α,° 109.268(2) 

β,° 98.744(2) 

γ,° 95.998(2) 

Cell Volume, Å3 870.57(13) 

Z 2 

Dc, g·cm-3
 1.670 

µ, mm−1 1.072 

F(000) 444 

Crystal size, mm 0.15 x 0.13 x 0.09 

θ limits,° 1.554-26.997 

Reflections collected 11305 

Independent reflections 3768 [Rint = 0.0413] 

Data / restraints /parameters 3768 / 0 / 222 

Goodness on fit on F2 1.125 

R1 (I > 2σ(I)) 0.0403 

wR2 (all data) 0.0736 

Largest diff. peak and hole, e Å-3 1.030 / –1.232 
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