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One sentence summary: The role of ERF-VII TFs in higher plants is to coordinate their signature response to 19 

oxygen deficiency, but additional layers of modulation of ERF-VII activity enrich their regulatory range. 20 

 21 

 22 

The Ethylene Response Factor (ERF) family of plant-specific transcription factors (TFs) comprises 23 

a large number of elements with diversified functions in terms of hormone responses, development, 24 

and biotic and abiotic stress responses (Dey and Corina Vlot, 2015; Licausi et al., 2013). Of these, 25 

group VII ERFs form a phylogenetic cluster (Nakano et al., 2006), which is conserved across 26 

angiosperms (Licausi et al., 2011). One universal function attributed to ERF-VII TFs in higher 27 

plants is to coordinate their signature response to oxygen deficiency, which consists in the 28 
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accumulation and enhanced selective translation of a core set of transcripts (Mustroph et al. 2009 29 

and 2010; Branco-Price et al., 2008). These transcripts are responsible for reshaping cell 30 

metabolism for sustained energy production, energy saving, the protection of subcellular 31 

components and the detoxification of harmful anaerobic metabolism products. 32 

The relationship between ERF-VII members from various plant species and their tolerance to low 33 

oxygen (hypoxia) stresses has been widely reported. Different rice types rely on ERF-VII genes to 34 

develop contrasting strategies of underwater growth arrest (Xu et al., 2006) or shoot elongation 35 

(Hattori et al., 2009), which equally ensure stress endurance. ERF-VIIs are exploited to i) convert 36 

the signal arising from ethylene entrapment in submerged tissues into the gibberellin-mediated 37 

regulation of carbohydrate metabolism (Fukao and Bailey-Serres, 2008; Hattori et al., 2011; van 38 

Veen et al., 2013); ii) protect plants from concurrent redox stress; and iii) prepare them for post-39 

submergence dehydration by enhancing ABA sensitivity (Bailey-Serres et al., 2012). Additionally, 40 

the over-expression and stabilization of ERF-VII proteins can enhance hypoxia survival in 41 

Arabidopsis thaliana and barley (Hinz et al., 2010; Licausi et al., 2010a; Gibbs et al., 2011; 42 

Mendiondo et al., 2016). 43 

The molecular mechanisms by which varying oxygen levels regulate the activity of the ERF-VII 44 

factors have been most extensively investigated in Arabidopsis (Fig. 1), where the subfamily is 45 

composed of three highly expressed (AtRAP2.2/2.3/2.12, “RAP-type”) and two hypoxia-inducible 46 

ERF-VII genes (AtHRE1/2, “HRE-type”) (Licausi et al., 2010a). The feed-back repression of 47 

RAP2.12 by the anaerobic transcription factor HRA1 suggests that the ERF-VII activity is tightly 48 

modulated to grant transcriptional flexibility in response to fluctuations in oxygen availability 49 

(Giuntoli et al., 2014). With the noticeable exception of OsSub1A, ERF-VIIs are directly regulated 50 

by oxygen, in that their protein half-life is determined by an oxygen-dependent mechanism of 51 

proteasomal degradation, which prevents their nuclear accumulation in the presence of oxygen 52 

(Gibbs et al., 2011; Licausi et al., 2011). RAP-type factors seem to operate as redundant activators 53 

of the anaerobic response (Bui et al., 2015; Papdi et al., 2015; Gasch et al., 2016). One of them, 54 

RAP2.12, has been shown to be stored at an inactive site (the plasma membrane) under aerobic 55 

conditions and to move to the nucleus after short-term hypoxia (Kosmacz et al., 2015). This 56 

mechanism is believed to ensure plant cells a fast response to oxygen shortages.  57 

Although the direct regulation of the ERF-VIIs by oxygen has been revealed, submergence is a 58 

complex stress and its regulation has not been fully understood. In fact, the flooding response in 59 

plants entails the integration of manifold stimuli, represented by hormone signals, reactive oxygen 60 
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species (ROS) signatures, carbohydrate levels, redox indicators, pH variations and second 61 

messengers. In addition to perceiving changes in oxygen levels, ERF-VIIs are expected to collect 62 

part of such vast signaling network. For instance, the proteasomal turnover of RAP-type AtERF-63 

VIIs has been proposed to be mediated by an additional, oxygen-independent mechanism brought 64 

about by the RING finger E3 ligases SINAT1 and SINAT2 (Welsch et al., 2007; Papdi et al., 2015; 65 

Fig. 1). Since SINAT1/2 are bridged to starvation and autophagy (Qi et al., 2017), perception of low 66 

nutrient conditions, established upon oxygen deprivation, could hypothetically converge on ERF-67 

VII regulation through the SINAT pathway.  68 

An overview of ERF-VII functions has been made by Gibbs et al. (2015). In this update, we 69 

highlight the most recent findings regarding N-terminal modifying mechanisms, DNA binding 70 

properties and protein interactions of the Arabidopsis ERF-VII factors. We also highlight the 71 

perspective that additional layers of regulation, beyond their oxygen sensitivity, might contribute to 72 

expand the range of their physiological functions.  73 

CONVERGENCE OF REGULATORY MECHANISMS AT THE ERF-VII PROTEIN N-74 

TERMINI 75 

Plant cysteine oxidases  76 

Phylogenetic analysis of ERF-VII orthologous proteins in higher plants highlighted the existence of 77 

a highly conserved N-terminal NH2-MCGGAII-COOH sequence (Licausi et al., 2011). Initial 78 

recognition of plant ERF-VII proteins as potential oxygen-sensitive substrates entailed the finding 79 

that this consensus contains a redox-sensitive cysteine, in such a position as to be amenable to 80 

recognition by a specialized proteolytic pathway, known as the Arg-Cys/N-end rule pathway 81 

(NERP) for proteasomal degradation (Gibbs et al., 2011; Licausi et al., 2011). A sequence of 82 

orderly reactions involves ERF-VII proteins (Box 1). Mature ERF-VII proteins expose an N-83 

terminal cysteine (Cys2), which functions as a degradation signature (“N-degron”) targeting these 84 

proteins to the 26S proteasome, upon sequential recruitment of arginyl transferase and E3 ubiquitin 85 

ligase enzymes (Bachmair et al., 1986; Varshavsky 2011). In Arabidopsis, the latter enzymatic 86 

functions are represented by ATE1/2 and PRT6 proteins, respectively (Fig. 1). 87 

The existence of a conserved oxygen-dependent N-degron on the ERF-VII factors represents a 88 

promising link between cellular oxygen levels and those coordinated transcriptional adjustments 89 

that constitute the hallmark of plant hypoxic responses. Despite this, only recently has light been 90 

shed on the mechanism by which the Arg-Cys/N-end rule is initiated in response to oxygen. A 91 
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family of plant-specific metalloproteins, named plant cysteine oxidases (PCOs), has been found to 92 

be related to Cys2 oxidation in ERF-VII proteins. PCOs encompass five members in Arabidopsis, 93 

two of which (PCO1/2) are part of the core response to low oxygen (Mustroph et al., 2009 and 94 

2010). Genetic dissection of the Arg-Cys/N-end rule pathway has demonstrated that PCO1/2 act 95 

upstream of ATE1/2 and PRT6 to redundantly repress anaerobic gene induction under hypoxia. In 96 

line with this, individual over-expression of either gene determines lower tolerance to submergence 97 

(Weits et al., 2014). In the plant, PCO enzymes impact on ERF-VII protein levels, in that the 98 

stability of AtRAP2.12 correlates negatively with PCO1/2 expression (Weits et al., 2014). In 99 

addition, in vitro evidence suggests that PCOs influence ERF-VII in vivo turnover by direct Cys2 100 

oxidation. Purified recombinant PCO enzymes consume molecular oxygen in the presence of either 101 

L-Cys or synthetic peptides corresponding to AtRAP2.12 N-terminus (Weits et al., 2014), and 102 

catalyze the reaction of N-terminal Cys to Cys-sulfinic acid (CysO2) (White et al., 2017). A 103 

recombinant plant ATE1 enzyme can also conjugate arginine to a synthetic NH2-CGGAIISDFI-104 

COOH peptide, derived from the AtRAP2.12 N-terminus, only in the presence of both PCO and 105 

oxygen. This thus provides proof for the gneeration of an active oxygen-sensitive N-degron on such 106 

substrates (White et al., 2017).  107 

These milestone studies lay the foundation for a model of plant O2-sensor switch in vivo. Plant 108 

PCOs qualify as the first cysteinyl dioxygenase enzymes discovered, since before that date only 109 

bacterial and mammalian cysteine dioxygenases (CDOs) had been known, which promote free L-110 

Cys conversion, contributing to its homeostasis to prevent cytotoxicity (Dominy et al., 2006; Ye et 111 

al., 2007). In animals, the existence of enzymatic activities mediating N-terminal cysteine oxidation 112 

is debated (Kwon et al., 2002; Hu et al., 2005). Therefore, the recent findings regarding PCOs have 113 

opened a fascinating perspective on the diversification of the Arg/N-end rule pathway among 114 

kingdoms. Despite the connection established between cysteine oxidation and N-terminal protein 115 

arginylation (Hu et al., 2005), knowledge regarding the targets of the specialized Arg-Cys/NERP 116 

branch in mammals is limited to the RGS4/5 proteins (Lee et al., 2005), regulating cardiac G-117 

protein signaling (Lee et al., 2012), and to the proapoptotic protein BRCA1 (Piatkov et al., 2012). 118 

Unlike plants, no target of this pathway has been associated with hypoxic responses, which instead 119 

rely on an unrelated, albeit functionally parallel, mechanism regulating the oxygen-sensitive TF 120 

HIFα (Jaakkola et al., 2001). It is tempting to speculate that the specific evolution of an enzymatic 121 

control point for cysteine oxidation in the plant kingdom, represented by PCOs, enabled plants to 122 

couple the N-end rule with oxygen sensing. 123 
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Cysteine oxidases are non-heme iron-dependent oxygenases, which make use of a coordinated iron 124 

ion to activate oxygen during catalysis, forming a putative Fe(III)-superoxo intermediate (White 125 

and Flashman, 2016). Given this enzymatic requirement, PCOs qualify as a potential convergence 126 

point between iron and low oxygen signaling. There is a partial overlap in the transcriptional 127 

adjustments between low Fe and hypoxia, possibly as a consequence of a higher energy demand, 128 

due to a compensatory increase in iron uptake, which enhances the mitochondrial activity (López-129 

Millán et al., 2000; Vigani, 2012). Hypoxia also stimulates the expression of Fe deficiency genes, 130 

with the involvement of the ethylene-responsive TFs EIN3/EIL1 (García et al., 2014; Lucena et al., 131 

2015). In turn, it has further been shown that ethylene-mediated iron homeostasis involves 132 

EIN3/EIL1 interaction with the subunit Med25 of Mediator (a large multiprotein complex that 133 

bridges cis-element-bound TFs and the basal transcriptional machinery; Dolan and Chapple, 2017) 134 

(Yang et al., 2014). In the human body, the oxygen-sensing pathway contributes to iron 135 

homeostasis and deficiency responses with the action of HIF prolyl hydroxylase (P4Hs) enzymes 136 

(Salahudeen and Bruick, 2009; Anderson et al., 2013; Siegert et al., 2015). P4Hs are non-heme Fe- 137 

and 2-OG-dependent oxygenases that work as sensors for oxygen in metazoans, in the same way as 138 

the phylogenetically unrelated PCOs do in plants. While a role in iron responses has been proposed 139 

for plant P4H homologs (Vigani et al., 2013), no connection has yet been proposed between these 140 

processes and PCOs. Given the impaired metal uptake capability by waterlogged root systems 141 

(Martínez-Cuenca et al., 2015), a mechanism might have been evolved in plants to integrate the 142 

perception of hypoxia with intracellular metal ion homeostasis. Hypothetically, PCO activity could 143 

be regulated through metal ion switching at its active site, thereby providing a proxy for the 144 

intracellular Fe status, which has been proposed as being estimated from its balance with other 145 

transition metal ions (Kobayashi and Nishizawa, 2014).   146 

PCOs also represent a potential node in the interplay between O2 signaling and ROS homeostasis. 147 

In mammalian cells, ROS, produced during hypoxia by the malfunctioning of Complex III at the 148 

mETC, indirectly impact on HIFα stability, by inhibiting the activity of P4Hs (Chandel et al., 2000; 149 

Bell et al., 2007). It would therefore be interesting to investigate whether a similar mechanism acted 150 

on the functionally equivalent PCO enzymes. 151 

N-terminal cysteine modifications 152 

Cys2 in ERF-VII TFs is a regulatory cysteine (Formenko et al., 2010; Couturier et al., 2013). Its 153 

thiol group is highly susceptible to oxidation (Reddie and Carrol, 2008) by oxygen, ROS and RNS 154 

(reactive nitrogen species), it can be used in a variety of redox reactions (Giles et al., 2003), and can 155 
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undergo additional enzymatic modifications, such as S-acylation and N-acetylation (Polevoda and 156 

Sherman, 2003). Therefore, Cys2 has the potential to accept diversified signaling pathways, 157 

promoting the integration of manifold stimuli, and might have been selected accordingly (Marino 158 

and Gladyshev, 2010). 159 

Low H2O2 concentrations, compatible with the signaling range, promote Cys oxidation to Cys-160 

sulfenic acid (CysO) (Schieber and Chandel, 2014). CysO can be reverted to thiolate by disulfide 161 

reductases, thioredoxin and glutaredoxin, or act as an intermediate for disulfide bond formation 162 

(Poole, 2015). Instead, higher H2O2 levels, generated under ROS stress, can push oxidation to Cys–163 

sulfinic (CysO2) or irreversibly further to Cys-sulfonic forms (CysO3) (Schieber and Chandel, 2014; 164 

Fig. 1). Once viewed as a transient species in disulfide bond production, CysO has been found to be 165 

significant for catalysis and protein functionality (Gupta and Carrol, 2014). Thiol-disulfide 166 

transitions, on the other hand, are frequently associated with redox regulation in plants. For 167 

instance, intra- or intermolecular Cys-Cys formation is believed to determine the nuclear 168 

localization of the redox TF HSFA8 in response to H2O2 (Giesguth et al., 2015). Despite the fact 169 

that redox-sensitive non-clustered cysteines have been identified and examined in plant 170 

transcription factors before (Schmidt and Schippers, 2015), they have never been found to belong to 171 

MC-proteins. The fact that the conversion of a synthetic RAP2.12-derived peptide released CysO2 172 

as the sole reaction product in vitro (White et al., 2017) does not rule out that additional, 173 

biologically significant, oxo-species may be formed by the ERF-VII N-termini in the cellular 174 

environment and contribute to their half-life, localization, or function.   175 

In the case of the mammalian GTPase-activating proteins RGS4/5, a non-enzymatic S-nitrosylation 176 

reaction has been proposed to precede Cys2 oxidation. The biological chemistry of S-177 

nitrosocysteine has not yet been fully clarified (Gould et al., 2013). Although in vitro PCO can 178 

process Cys2 in the absence of NO, i.e. without previous S-nitrosylation (White et al., 2017), a role 179 

for NO in the degradation of the ERF-VIIs has been observed in vivo. In fact, NO has been shown 180 

to promote an N-end rule pathway-dependent proteolysis of full-length ERF-VII factors, as well as 181 

artificial ERF-VII-derived Arg-Cys/NERP substrates (MC-GUS, UBI-C-GUS) in Arabidopsis and 182 

barley (Gibbs et al., 2014; Vicente et al., 2017). However, the mechanism connecting NO to ERF-183 

VII stability still needs to be revealed (Gibbs et al., 2015) (Fig. 1). 184 

Exposure of an amino-terminal Cys is a requisite for implementing N-end rule reactions. Thus even 185 

prior to Cys2 modification, regulation of the N-terminal methionine cleavage could represent a 186 

general mechanism affecting MC-protein stability. Human MetAP2 activity responds to the 187 
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cytosolic redox state through the thioredoxin-dependent conversion of a Cys228-Cys448 disulfide 188 

bond (Chiu et al., 2014). Such evidence provides a potential link between cellular ROS content and, 189 

ultimately, the availability of MC-proteins for N-end rule pathway-mediated degradation. 190 

The functions of ERF-VII Cys2 might be extended by the covalent attachment of lipid moieties 191 

(lipidation). This process has emerged as a major regulatory mechanism in a variety of subcellular 192 

responses in animals, yeast and, more recently, plants. In fact, the conjugation of a hydrophobic 193 

moiety can have a strong impact on the structure, interaction and, primarily, membrane targeting of 194 

soluble proteins (Aicart-Ramos et al., 2011; Hemsey, 2015). Cysteines can establish dynamic 195 

thioesther bonds with fatty acids (S-acylation), by the action of endomembrane-associated protein 196 

S-acyltransferase (PAT) and palmitoyl thioesterase enzymes (Hang and Linder, 2011). 197 

Cys2 palmitoylation has been demonstrated for human RGS proteins (De Vries et al., 1996). Cys2 198 

mutation does not affect RGS4 direct association with phospholipid bilayers (Srinivasa et al., 1998), 199 

which is in fact due to the folding of its N-terminus in an alpha-helical structure (Bernstein et al., 200 

2000). However, Cys2 palmitoylation is crucial for RGS4 and RGS16 activity, possibly by 201 

affecting their affinity for Gα target subunits (Druey et al., 1999; Tu et al., 1999). 202 

AtRAP2.12 has been found to reside at the plasma membrane in aerobic leaf cells (Fig. 1), unless its 203 

N-terminal domain is ablated (Licausi et al., 2011; Giuntoli et al., 2017). In turn, ERF-VII 204 

association with the plasma membrane is believed to depend on acyl-CoA binding proteins 205 

(ACBPs), according to the observed interaction between members of the two families (Li and Chye, 206 

2004; Li et al., 2008; Licausi et al., 2011). During hypoxia, AtRAP2.12 is quickly displaced from 207 

the plasma membrane towards the nucleus (Kosmacz et al., 2015). Given that the regulation of fatty 208 

acid profiles has been associated with hypoxic stress (Klinkenberg et al., 2004; Xie et al., 2015a; 209 

Xie et al., 2015b), the evidence available can be the basis of a speculative model of hypoxia 210 

sensing, in which the dynamic acylation state of the ERF-VII TFs collects indirect low oxygen 211 

signals to regulate their intracellular trafficking and activity.  212 

 213 

LATEST INSIGHTS INTO THE TRANSCRIPTION FACTOR PROPERTIES OF THE 214 

ERF-VIIs 215 

Long-standing efforts have focused the quest for DNA regulatory elements that enable plants to 216 

coordinate the activation of low-oxygen responsive promoters, under the assumption that co-217 
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expressed promoters should share common features, thus mediating their recognition by the 218 

transcriptional machinery (Rombauts et al., 2003).  219 

In vitro DNA binding assays associate ERF family members with GCC-box motifs (5’-AGCCGCC-220 

3’) (Ohme-Takagi and Shinshi, 1995; Hao et al., 1998), which have been traced out in many genes 221 

induced by ethylene, pathogenesis, wounding, or jasmonate (Brown et al., 2003; Zarei et al., 2011). 222 

However, the fact that GCC-boxes have not been recognized as part of the anaerobic response 223 

promoter element (known as ARE; Olive et al., 1990) raised the question as to whether group VII 224 

ERFs had a different DNA binding affinity. AtRAP2.2 was isolated as an interactor of the unrelated 225 

5’-ATCTA-3’ motif, claimed to contain the minimum determinant for ERF-VII DNA binding 226 

(Welsch et al., 2007). Although present in the 5’-upstream sequence of many anaerobic genes 227 

(Licausi et al., 2010b), evidence presented by Gasch et a. (2016) indicates that this motif is not 228 

likely to be responsible for their activation by the anaerobic TFs. 229 

A promising candidate as a functional anaerobic promoter element in plants was recently revealed. 230 

Phylogenetically related core anaerobic genes from 25 species were compared, and clustering of the 231 

detected DNA motif patterns resulted in nine conserved consensus sequences (Gasch et al., 2016). 232 

Of these, a 12 bp-long bipartite motif composed of GC- and GT-rich halves was validated as a 233 

regulator of the anaerobic targets LBD41 and PCO1 from Arabidopsis and named Hypoxia 234 

Responsive Promoter Element (HRPE) (Fig. 1). The resemblance of HRPE to the previously 235 

annotated ARE sequence from maize, and the demonstration that RAP-type ERF-VIIs were able to 236 

bind a synthetic ARE promoter, suggest that an actual connection point has been found between the 237 

long-sought after plant hypoxia response element and the ethylene responsive factors.     238 

Two of the other conserved motif clusters matched known regulatory elements, namely the ABA-239 

responsive element (ABRE) and the GCC-box. The detection of ABRE, which harbours a G-box 240 

element, complies with previous reports on the involvement of G-box binding bZIP factors in the 241 

regulation of the ADH promoter (McKendree and Ferl, 1992; Meier and Gruissem, 1994; de 242 

Bruxelles et al., 1996). The enrichment of core anaerobic promoters with GCC-boxes also suggests 243 

that the ERF-VII factors retained the ability to bind this canonical motif. The experimental reports 244 

on the relationship between ERF-VIIs and GCC-boxes are not all in agreement. A direct interaction 245 

was identified between AtRAP2.3 and a GCC-box-containing promoter region of the ABI5 gene 246 

(Gibbs et al., 2014), and RAP2.3 was able to transactivate a synthetic promoter containing tandem 247 

GCC-box copies from HOOKLESS1 (Marín-de la Rosa et al., 2014). However, a yeast-1-hybrid 248 

experiment failed to detect an interaction between AtRAP2.2 and a prey construct composed of 249 
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tandem copies of a GCC-box, when flanking nucleotides from the Arabidopsis PDF1.2 promoter 250 

were included (Ou et al., 2011). Finally, the binding of AtHRE2 to a synthetic GCC-box probe was 251 

shown to occur in vitro by Lee et al. (2015).  252 

The mechanism of ERF-VII interaction with HRPE still awaits an experimental description. Unlike 253 

RAP-type proteins, HRE1 and HRE2 have not proven capable of activating natural anaerobic 254 

promoters (Bui et al., 2015). Their inability to associate with HRPE (Gasch et al., 2016) points to a 255 

deficiency in DNA binding by either HRE1 or HRE2, despite the presence of a fully conserved 256 

AP2/ERF domain (Nakano et al., 2006). This would imply more specific needs for HRPE 257 

recognition than those provided by this well-characterized DNA-binding domain. In other words, 258 

additional protein domains, exclusively present on RAP-type ERF-VIIs, might be necessary for the 259 

interaction with HRPE. One hypothesis is that the AP2/ERF domain might contact the GC-rich 260 

region of HRPE (Yang et al., 2009), whereas neighboring amino-acids would mediate the 261 

interaction with the GT portion. 262 

Specific DNA-binding properties might underlie the functional diversification reported for the 263 

Arabidopsis ERF-VII factors under hypoxia. Here, HREs are needed to sustain anaerobic gene 264 

expression, but are not essential for the initiation of transcriptional responses (Licausi et al., 2010a). 265 

Rather than associating with target promoters, HREs may contribute a transcriptional activation 266 

function to - still unresolved - protein complexes that form after a primary, RAP-type dependent, 267 

response to low oxygen. In fact, HREs share a conserved C-terminal hydrophobic motif with the 268 

other ERF-VII factors, called CMVII-8 (Van Veen et al., 2014). CMVII-8 is sufficient to confer 269 

transactivation properties, when fused to a GAL4 DNA-binding domain (Bui et al., 2015) or 270 

evaluated inside native AtRAP2.2/12 proteins (Licausi et al., 2011). Thus, ERF-VIIs generally 271 

qualify as activators. 272 

The isolation of RAP2.12 as a partner of the Med25 subunit of the Mediator complex suggests that 273 

the recruitment of RNA polymerase II by the ERF-VIIs occurs through their interaction with 274 

particular Mediator (Med) proteins (Ou et al., 2011). The degree of specialization of Med proteins, 275 

in terms of TF interaction preferences, is assumed to be low, because of the limited number of Med 276 

subunits encoded by the proteome (the approximate proportion in Arabidopsis is 30 as agaist more 277 

than 1500 TFs). However, the observation that individual mutated subunits produce particular – 278 

although pleiotropic – phenotypes implies the existence of specific functions (Samanta and Thakur, 279 

2015). Med25 has emerged as a master regulator in plants (Kazan, 2017), involved in hormone 280 
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signaling, iron homeostasis, flowering regulation and abiotic stress responses. Whether or not it 281 

plays a role in hypoxic responses still needs to be investigated.   282 

 283 

EXPANDING ROLES OF ERF-VII FAMILY FACTORS  284 

Growing evidence supports ERF-VII involvement in transcriptional adjustments that go beyond the 285 

activation of a set of conserved hypoxia-responsive genes (Mustroph et al., 2010). The recent 286 

literature links these proteins to developmental processes controlled by ABA, ethylene and 287 

gibberellin, to abiotic stress tolerance and resistance to fungal attack. Participation of the ERF-VII 288 

in some of these physiological phenomena might in principle be enabled by the existence of 289 

hypoxic microenvironments in plant tissues. On the other hand, ERF-VII functionality seems to be 290 

expanded through additional, low oxygen-independent, mechanisms which subtract these TFs from 291 

aerobic degradation and confer them condition-, tissue- or cell-specific stability, expression and 292 

activity. 293 

ERF-VII involvement in ROS- and NO-dependent responses 294 

ERF-VIIs can impact on plant responses under various abiotic and biotic stress conditions with 295 

oxidative stress components. In Arabidopsis, RAP-type ERF-VIIs participate in oxidative and 296 

osmotic stress tolerance (Papdi et al., 2015), AtRAP2.2 expression is positively correlated with plant 297 

resistance to the necrotrophic fungus Botrytis cinerea (Zhao et al., 2012), and AtHRE2 contributes 298 

to salinity and osmotic stress tolerance (Park et al., 2011). Ectopic expression of ERF-VII 299 

homologous sequences in several plant species triggers protective responses against dehydration, 300 

salt, mannitol, heavy metals, heat, as well as against a wide range of tested pathogens (reviewed in 301 

Gibbs et al., 2015). Constitutive ERF-VII gene expression relates to more sustained activation of 302 

ROS scavenging reactions, and, conversely, mutations inside the gene family lead to elevated ROS 303 

under stress. Therefore, prompt and sustained ROS scavenging is believed to account for the 304 

positive impact of ERF-VII over-expression in those conditions entailing oxidative stress (Ogawa et 305 

al., 2005; Tang et al., 2005; Park et al., 2011; Yao et al., 2017; Vicente et al., 2017). 306 

ROS production is enhanced under low oxygen conditions (Steffens et al., 2013). Thus, the same 307 

protective mechanisms can act as an integral part of the ERF-VII dependent response strategy to 308 

hypoxia. Improved ROS management has been associated with superior submergence tolerance in 309 

maize and Brachypodion distachyon (Campbell et al., 2015; Rivera-Contreras et al., 2016), while 310 
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the activation of antioxidant responses in the post-hypoxic phase is crucial for survival in 311 

Arabidopsis (Paradiso et al., 2016; Yuan et al., 2017). Interestingly, a target of RAP-type ERF-VIIs, 312 

namely HYPOXIA RESPONSIVE UNIVERSAL STRESS PROTEIN1 (HRU1), has been shown to 313 

coordinate oxygen sensing by PCO/RAP2.12 with H2O2 production by NADPH oxidases, 314 

indicating that there is a network connecting diverse signaling pathways downstream of ERF-VII 315 

targets (Gonzali et al. 2015). At the same time, ERF-VII involvement in the regulation of stress 316 

responses occurring under oxygen-replete conditions implies that the post-translational system 317 

controlling their stability depending on oxygen is intertwined with additional regulatory 318 

mechanisms. The Arg-Cys/NERP has recently been proved to promote Arabidopsis and barley 319 

tolerance to salinity, drought and heat (multiple abiotic stresses sharing an oxidative stress 320 

component) through ERF-VIIs. It has been proposed that, during salinity, ERF-VII proteins become 321 

stabilized following a decline in nitrate reductase activity and subsequent decrease in NO levels 322 

(Vicente et al., 2017).  323 

NO is an elusive gaseous signal involved in a range of plant stress and developmental responses, 324 

including hypoxia (Pucciariello and Perata, 2017). Reports regarding the influence of nitric oxide 325 

on a plant’s ability to cope with hypoxia are controversial (Perazzolli et al., 2004; Gupta and 326 

Igamberdiev, 2016; Mira et al., 2016; Peng et al., 2016), making it hard to draw conclusions 327 

regarding the impact of the described regulation under hypoxia. However, ERF-VII behaviour as 328 

novel NO sensors has made it possible to connect them to the physiology of this gaseous signal. NO 329 

levels have been manipulated in prt6 and in combinatorial prt6erfvii mutants, in order to reveal the 330 

ability of stabilized ERF-VII factors to mediate specific responses. It has been found that 331 

germination, inhibited hypocotyl elongation in the dark and stomatal closure responses are 332 

promoted by NO as a result of the degradation of the constitutively expressed ERF-VIIs (Gibbs et 333 

al., 2014). Detailed examination of the NO-dependent release of seed dormancy has shown that a 334 

repressor of germination, ABI5, is directly targeted by the ERF-VII (Gibbs et al., 2014). This further 335 

qualifies ERF-VIIs as novel players in the antagonistic interplay between ABA and NO during 336 

germination, which has already been found to converge on ABI5 through S-nitrosylation of a 337 

regulatory moiety that facilitates its proteasomal degradation (Albertos et al., 2015). Another 338 

investigated process, prone to NO regulation, is the repression of the apical hook opening during 339 

seedling skotomorphogenesis. In this case, all subfamily members have been found to be active 340 

(Abbas et al., 2015), suggesting that the involvement of HRE-type factors in the control of other 341 

physiological responses might be restrained by specific regulatory mechanisms.  342 

ERF-VII in plant-pathogen interactions 343 
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Genetic approaches have recently highlighted the participation of group VII ERFs in responding to 344 

biotrophic pathogens and to the necrotroph B. cinerea. The mechanisms enabling ERF-VII 345 

stabilization and operation in both phenomena have not been revealed yet. In the case of the 346 

tumorigenic pathogens Plasmodiophora brassicae, Meloydogyne japonica and Agrobacterium 347 

tumefaciens, infection has been observed to upregulate fermentative genes, along with a significant 348 

proportion of ERF-VII and Arg-Cys/NERP targets (Gravot et al., 2016). In addition, root gall 349 

formation, caused by the protist P. brassicae in the secondary infection phase, is enhanced by ERF-350 

VII stabilization (Gravot et al., 2016). Switching on the hypoxic metabolism, downstream of the 351 

ERF-VIIs, may benefit gall-forming pathogens (Gravot et al., 2016). 352 

During Arabidopsis interaction with B. cinerea, instead, RAP2.2 participates in plant defense 353 

downstream of ethylene signaling (Zhao et al., 2012), along with its partner Med25 (Ou et al., 2011; 354 

Fig. 2A). Since the occurrence of hypoxia during such a pathogen attack has been ruled out  (Zhao 355 

et al., 2012), a few scenarios can be put forward to explain the postulated impairment of RAP2.2 356 

degradation. In principle, factors affecting the activity of Arg-Cys/NERP components can modify 357 

the stability of the ERF-VII proteins independently of oxygen. During infection, PCO enzymes may 358 

be sensitive to different signals, such as the redox status, ROS and NO generation, and the 359 

availability of micronutrients, as discussed previously. In such case, lower PCO activity under B. 360 

cinerea attack could explain why RAP2.2 over-expression was not sufficient to upregulate 361 

pathogenic markers in the absence of fungal infection (Zhao et al., 2012). PRT6 activity might also 362 

change in specific conditions; the synthetic R-GUS substrate could be used to visualize the PRT6 363 

activity pattern in vivo during pathogen attack (Garzón et al., 2007). 364 

Several ERF transcription factors promote the integration of intracellular stimuli (Müller and 365 

Munné-Bosch, 2015). RAP2.2 involvement in pathogen responses downstream of ethylene suggests 366 

that ERF-VIIs might have emerged as bridging elements of low oxygen- and immune responses 367 

(Zhao et al., 2012). In fact, the setup of defense mechanisms is particularly appropriate in flooded 368 

plants, in which infection can be facilitated by the extent of submergence and post-submergence 369 

injury events. Submergence-triggered immunity has been observed in Arabidopsis, and ascribed to 370 

one of the submergence-inducible WRKY TFs, WRKY22 (Hsu et al., 2013). Interestingly, the 371 

observed transcriptional responses caused by constitutive WRKY22 expression are very similar to 372 

the transcriptome-level changes triggered by AtRAP2.12 stabilization under fully aerated conditions 373 

(Giuntoli et al., 2017). In this case, the removal of the oxygen-sensitive N-terminal domain and 374 

over-expression of the resulting RAP2.12 protein leads to the activation of defense markers (WRKY 375 

and pathogenesis-related genes), components of salicylic acid and ABA metabolism and ROS-376 
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responsive genes, supporting the hypothesis of pathway convergence. A defense network involving 377 

ERF-VII proteins might also include mitogen-activated kinases (MPKs) and the TF WRKY33. 378 

MPK3/6 act in retrograde signaling following mitochondrial ROS stress during hypoxia (Chang et 379 

al., 2012) and activate ERF6 (a hub of immunity, ROS and hormone responses; Huang et al., 2016) 380 

upon B. cinerea attack or ROS treatment (Meng et al., 2013). WRKY33 contributes to Arabidopsis 381 

resistance to B. cinerea (Liu et al., 2015) and submergence tolerance (Hwang et al., 2011). 382 

Novel protein interactions of the ERF-VII factors 383 

The previous examples indicate that, when subtracted from proteolytic degradation, the ERF-VII 384 

transcription factors can promote the activation of specific responses (e.g. to hypoxia, oxidative 385 

stresses, darkness, or pathogens). It would seem that specificity is achieved by the regulation of 386 

particular, only partially overlapping, subsets of target genes. Selection of different protein partners 387 

and recruitment in distinct multiprotein complexes could modulate ERF-VII activity. This has been 388 

illustrated by a few recent studies. 389 

AtRAP2.3 and AtRAP2.12 associate with DELLA proteins (Marín-de la Rosa et al., 2014). 390 

DELLAs were known to prevent ethylene-induced gene expression by sequestering the 391 

transcriptional activator EIN3 (An et al., 2012). In this case, the interplay between GA signaling 392 

and ethylene is enriched by sequestration of RAP-type ERFs, shown to be downstream targets of 393 

the EIN3/EIL TFs (Hinz et al., 2010; Zhao et al., 2012). This interaction helps prevent premature 394 

apical hook opening in etiolated seedlings (Fig. 2B). Since association with the DELLA protein 395 

GAI involves the N-terminal half of RAP2.3, including its AP2/ERF DNA binding domain, it has 396 

been suggested that DELLAs regulate ERF-VII activity by hindering DNA binding, specifically to 397 

GCC-box containing ethylene- and GA-target promoters (Marín-de la Rosa et al., 2014). DELLAs 398 

may also mask the oxygen-sensitive ERF-VII domain, in such a way that the TFs would be exposed 399 

to the N-end rule pathway only in the presence of GA. Whether or not the protected ERF-VIIs are 400 

then available for association with other DNA motifs, i.e. not the GCC-box, requires further 401 

experimentation. This example suggests that ERF-VII abundance and promoter preferences might 402 

be reshaped in different physiological pathways, upon specific partner selection. 403 

RAP2.2 has been revealed to be part of a PP2C-SNRK3 complex that promotes ABA insensitivity 404 

(Lumba et al., 2014; Fig. 2C). This notable study demonstrates that ERF-VII functions can be tuned 405 

by post-translational modifications (e.g. RAP2.2 phosphorylation by SNRK3) and partner selection. 406 
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Specifically, the interaction of RAP2.2 with the SNRK3.15/22 isoforms enables it to mediate 407 

negative ABA responses, acquiring an opposite function to that observed by Gibbs et al. (2015). 408 

Finally, specificity in promoter targeting can be achieved by the constitution of different 409 

transcriptional complexes. RAP2.12 and RAP2.3 interact with BRAHMA (BRM; Vicente et al., 410 

2017), a SWI/SNF chromatin-remodeling ATPase that, among other functions, represses ABA 411 

responses. BRM and RAP2.3 share a GCC-box binding site on the ABI5 promoter. It has been 412 

proposed that, during salinity, the interplay between BRM and the stress-stabilized ERF-VIIs 413 

balances ABA-responsive gene expression through opposite functionalities (Fig. 2D). 414 

 415 

CONCLUDING REMARKS 416 

Knowledge of the role of ERF-VIIs has increased significantly over the last decade. A perspective 417 

is emerging, in which a diversified set of mechanisms can influence ERF-VII expression, 418 

availability and activity in order to specify their functions in a wider network of physiological 419 

pathways activated by stress and hormones. However, important questions need to be addressed, 420 

before a more detailed picture of ERF-VII regulation is gained (see Outstanding Questions Box). 421 

The most recent observations suggest novel mechanisms enriching the role of ERF-VIIs in the 422 

hypoxic response and connecting it to additional physiological, developmental and stress-related 423 

processes.  424 

 425 

FIGURE LEGENDS 426 

Figure 1. Overview of the regulation of group-VII ERF factor stability in Arabidopsis. The stability of plant 427 

ERF-VII proteins is controlled by intracellular O2 and NO levels, by means of the Arg-Cys/N-end rule 428 

pathway (NERP). The N-terminal cysteine (Cys), exposed upon methionine cleavage by MAP (methionine 429 

aminopeptidase) enzymes, is susceptible to oxidation. Arginyl transferase (ATE) enzymes conjugate 430 

oxidized cysteine (*Cys) to arginine (Arg), which in turn recruits the Arg-specific N-recognin PRT6 (Garzón 431 

et al., 2007), an N-end rule pathway-specialized E3 ubiquitin ligase which labels the substrate for 432 

degradation through the 26S proteasome (see Box 1 for additional details of the pathway). Cys oxidation can 433 

be promoted by specific thiol oxygenases called plant cysteine oxidases (PCOs): in the presence of oxygen, 434 

PCOs convert Cys into Cys-sulfinic acid, which acts as an ATE substrate (White et al., 2016). Therefore, 435 

PCOs target ERF-VII proteins to the proteasome in an oxygen-dependent fashion. Besides oxygen, nitric 436 
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oxide (NO) also promotes ERF-VII turnover via the Arg-Cys/NERP, through a still-undetermined Cys-437 

dependent mechanism (Vicente et al., 2017; Gibbs et al., 2014). Finally, although N-terminal Cys reactivity 438 

to hydrogen peroxide (H2O2) has not been assessed in ERF-VII proteins, *Cys forms generated in relation to 439 

H2O2 concentration (García-Santamarina et al., 2014) could in principle play a role in the pathway, by either 440 

working as an alternative ATE substrate or interfering with Cys-sulfinic acid catalysis. Plasma membrane 441 

localization has been observed for RAP2.3 (Abbas et al., 2015) and RAP2.12 (Giuntoli et al., 2017; Kosmacz 442 

et al., 2015). As the latter has been found to be associated with peripheral membrane proteins belonging to 443 

the ACBP (Acyl-CoA Binding Protein) family, it has been proposed that this interaction is useful to maintain 444 

an inactive pool of RAP2.12 factor at the plasma membrane (Licausi et al., 2011). ERF-VIIs have a primary 445 

role as master activators of the hypoxic metabolism. ERF-VII transcription factors (represented in this figure 446 

by the five subfamily members from A. thaliana, AtRAP2.2/2.3/2.12 and AtHRE1/2) exert direct control on 447 

the hypoxia-inducible expression of plant anaerobic genes by binding an HRPE (Hypoxia Response 448 

Promoter Element) motif present in their promoters (e.g. ADH, PDC, LBD41, HRE1 and HRE2, and HRA1) 449 

(Gasch et al., 2016). The hypoxia-inducible factors HRE1 and HRE2 are further controlled at the post-450 

transcriptional level through the Arg-Cys/NERP (Gibbs et al., 2011). During hypoxic regulation, HRA1 acts 451 

as a feed-back repressor of anaerobic gene expression, by interaction with RAP2.12 (Giuntoli et al., 2014). 452 

The SINAT pathway, which is an N-end rule pathway-independent proteolysis, is also shown. RAP2.12 can 453 

be ubiquitinated by the E3 ligases SINAT1/2 (Papdi et al., 2015). These proteins modulate the autophagy 454 

pathway and thereby enhance Arabidopsis tolerance to nutrient starvation (Qi et al., 2017). In fact, autophagy 455 

responses are also activated during hypoxia and contribute to plant submergence tolerance (Chen et al., 2015 456 

and 2017). This evidence suggests that an additional tier of regulation might connect the ERF-VIIs to 457 

submergence responses, through the SINAT factors. Solid lines refer to experimentally established reactions 458 

or relationships, dashed lines to hypothetical relationships drawn from observed regulation, and dotted lines 459 

depict hypothetical reactions.     460 

Figure 2. Additional roles of ERF-VIIs through interaction with distinct protein partners. A, resistance to 461 

necrotrophic fungi (Zhao et al., 2012). After B. cinerea infection, ethylene accumulation leads to RAP2.2 462 

gene induction downstream of the EIN2-EIN3/EIL ethylene signaling cascade. RAP2.2 activates the 463 

resistance genes PDF1.2 and ChiB, by interaction with its partner Med25 (Ou et al., 2011), and contributes 464 

positively to Arabidopsis resistance to fungal attack. B, RAP2.3 is a positive regulator of apical hook 465 

development in Arabidopsis seedlings and its action is counteracted by interacting DELLA proteins (Marín-466 

de la Rosa et al., 2014). In etiolated seedlings, RAP2.3 gene expression is promoted by dark-induced 467 

ethylene production, while low levels of DELLA proteins prevent RAP2.3 functional restriction. Therefore, 468 

RAP2.3 participates in the interplay between ethylene and GA, which regulates apical hook formation 469 

(Abbas et al., 2013), by hindering premature hook opening under darkness. C, during germination, RAP2.2 is 470 

as a negative regulator of ABA responses (Lumba et al., 2012). This function has been associated with 471 

RAP2.2 phosphorylation, following its interaction with an SNRK3 kinase complex that mediates ABA 472 
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insensitivity. D, ERF-VII stabilization enhances plant tolerance to multiple abiotic stresses (Vicente et al., 473 

2017). During salinity, decreased NO biosynthesis due to NR enzyme impairment has been proposed to lead 474 

to ERF-VII protein stabilization in the presence of oxygen. The beneficial effects of the ERF-VIIs on plant 475 

tolerance to salinity is antagonized by its interacting partner BRM, possibly due to competition for the same 476 

cis-element on the target gene promoters (Vincente et al., 2017). EIN2, Ethylene-insensitive 2; EIN3, 477 

Ethylene-insensitive 2; EIL, EIN3-like; Med25, Mediator subunit 25; DELLA, GRAS-domain family 478 

proteins (GAI, RGA, RGLs); PP2C, Protein phosphatase 2C; SnRK3, SNF1-related protein kinase 3; NR, 479 

nitrate reductases; NO, nitric oxide; BRM, BRAHMA ATPase. 480 
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ADVANCES 

• N-terminal cysteine oxidation of ERF-VII proteins 
is enzymatically controlled by specific cysteinyl 
dioxygenases, the PCO family enzymes, as a pre-
requisite for substrate protein processing via the 
Arg-Cys/N-end rule pathway. 

• ERF-VII bind anaerobic gene promoters through 
a novel cis-acting element, HRPE, which is 
different from the canonical GCC-box element 
recognized by other AP-2 domain-containing 
ethylene response factors. 

• The first ERF-VII partner proteins have been 
identified and are involved in transcription 
(Med25, BRM), hormone signaling (GAI, PP2C), 
and proteolysis (SINAT2). The investigation of 
these interactions broadens the perspective of 
ERF-VII regulation beyond their direct 
dependence upon O2 availability. 
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OUTSTANDING QUESTIONS 

• Which signals and mechanisms (e.g. metal ion 
switching and ROS) regulate PCOs activity 
beyond intracellular oxygen tension? 

• Can ROS and RNS impact on ERF-VII stability 
through the Arg/Cys-N-end rule pathway? 

• Regarding the Arg-Cys/N-end rule pathway, is 
the development of an enzymatic control point 
for Cys2 oxidation a particular feature of plant 
evolution? 

• Which mechanism shuttles AtRAP2.12 to the 
plasma membrane when cells are normally 
aerated and what mediates its release to the 
nucleus upon hypoxia? 

• Do different protein-protein interactions 
determine ERF-VII specificity in stress and 
hormone response regulatory modules? 

• What is the pattern of promoter occupancy by 
the ERF-VIIs at the genome-wide level? 

• How is ERF-VII activity regulated by 
posttranslational modifications (e.g. 
phosphorylation, acylation, glycosylation and 
sumoylation) different from Cys2 oxidation? 

 www.plantphysiol.orgon January 22, 2018 - Published by Downloaded from 
Copyright © 2017 American Society of Plant Biologists. All rights reserved.

http://www.plantphysiol.org


BOX 1. ERF-VII Factors as N-end Rule Substrates 

Group-VII ERFs were the first plant substrates of 
the Arg/N-end rule pathway (NERP) to be 
discovered. The NERP is a proteolytic system that 
promotes the turnover of proteins containing N-
terminal sequences (N-degrons) that work as 
degradation signals (Bachmair et al., 1986). 
Substrate proteins are degraded through the 
proteasome, following polyubiquitination by 
specific N-degron-recognizing E3 ubiquitin ligases 
(N-recognins). Primary destabilizing residues are 
directly targeted by E3 ligases. They consist in 
basic or bulky hydrophobic residues (Arg/NERP; 
Varshavski, 2011), acetylated residues (Ac/NERP; 
Hwang et al., 2010), and proline (Pro/NERP; Chen 
et al., 2017). Secondary and tertiary destabilizing 
residues, instead, can be converted into primary 
ones upon enzymatic modifications, such as N-
terminal deamidation (Gln, Asn), arginylation (Glu, 
Asp, *Cys), acetylation (Gly, Ala, Ser, Thr, Val, Cys), 
or oxidation (Cys). Therefore, the NERP assumes a 
hierarchical architecture, which is conserved 
across eukaryotes (Tasaki et al., 2012). 
 
ERF-VII proteins enter the Arg/NERP upon co-
translational Met cleavage, enabled by the small 
side chain of the neighboring Cys2, which 
matches the substrate specificity of methionine 
aminopeptidases (MAPs; Xiao et al., 2010). 
Exposed Cys behave as tertiary destabilizing 
residues, being converted into oxidized cysteine 
(*Cys, secondary destabilizing residue) in the 
presence of oxidizing agents, such as O2, NO, and  
hypothetically, ROS (Fig. 1). Chemical similarity  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
between acidic residues and *Cys underlies its 
recognition by plant arginyl transferases (ATE1/2,  
in Arabidopsis; Graciet et al., 2009), triggering Arg 
conjugation and subsequent targeting by the 
Arg-specific E3 ligase PRT6 (Proteolysis 6; Garzón 
et al., 2007). Therefore, Cys2 oxidation provides a 
link between oxygen and NERP regulation, in 
plants as well as in animals (Hu et al., 2005). 
 
Direct Cys-dependent ERF-VII regulation by the 
proteasome was first shown in heterologous 
rabbit reticulocyte lysate assays (Gibbs et al., 
2011). In vivo, the amenability of ERF-VII proteins 
to Arg-Cys/NERP regulation has been mainly 
investigated by the expression of reporter 
substrates or HA-tagged ERF-VIIs. MC-ERF-VII-HA 
over-expressors have been used for 
immunological detection, to display protein 
dynamics (1) under hypoxia and post-stress re-
oxygenation, (2) in the prt6 mutant (Gibbs et al., 
2011), and (3) after NO manipulation by chemical 
treatments or genetic impairment of NO 
biosynthesis (Gibbs et al., 2014). Alternatively, the 
impact of these conditions on ERF-VII stability has 
been shown by means of MC-GUS and UBI-C-GUS 
histochemical reporters (Vincente et al., 2017; 
Gibbs et al., 2014). MC-GUS consists in a 
translational fusion between an ERF-VII-derived 
Cys-N-degron and the β-glucuronidase reporter, 
UBI-C-GUS in a ubiquitin-Cys reporter fusion, from 
which an N-terminal Cys-reporter is generated by 
ubiquitin-specific endoproteases (Garzón et al., 
2007). 
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