
Accelerating linear model predictive control by
constraint removal

Michael Josta, Gabriele Pannocchiab, Martin Mönnigmanna,∗

aAutomatic Control and Systems Theory, Ruhr-Universität Bochum,
Universitätsstraße 150, 44801 Bochum, Germany

bDepartment of Civil and Industrial Engineering, University of Pisa,
Largo Lucio Lazzarino, 2, 56126 Pisa, Italy

Abstract

Model predictive control (MPC) is computationally expensive, because it is
based on solving an optimal control problem in every time step. We show
how to reduce the computational cost of linear discrete-time MPC by detecting
and removing inactive constraints from the optimal control problem. State of
the art MPC implementations detect constraints that are inactive for all times
and all initial conditions and remove these from the underlying optimization
problem. Our approach, in contrast, detects constraints that become inactive
as a function of time. More specifically, we show how to find a bound σ?i for each
constraint i, such that a Lyapunov function value below σ?i implies constraint i is
inactive. Since the bounds σ?i are independent of states and inputs, they can be
determined offline. The proposed approach is easy to implement, requires simple
and affordable preparatory calculations, and it does not depend on the details
of the underlying optimization algorithm. We apply it to two sample MPC
problems of different size. The computational cost can be reduced considerably
in both cases.

Keywords: model predictive control, linear systems, constrained control,
quadratic programming

1. Introduction

Model predictive control (MPC) is a powerful method for the control of con-
strained, multivariable systems. Because MPC requires to solve optimal control
problems online, it is computationally expensive, however. For the common
case of linear systems, linear constraints and quadratic objective functions, the
problem to solve is a Quadratic Program (QP), and the control law implicitly

∗Corresponding author. Tel.: +49 234 32 24060
Email addresses: michael.s.jost@rub.de (Michael Jost),

gabriele.pannocchia@unipi.it (Gabriele Pannocchia), martin.moennigmann@rub.de
(Martin Mönnigmann)

Preprint submitted to European Journal of Control April 12, 2017

defined by the MPC problem is known to be a continuous piecewise affine func-
tion of the state [1]. Unfortunately, an explicit formula for the control law can
only be calculated for very simple problems. Therefore, the online solution of
the QP is usually the only available option for many problems. Tailored algo-
rithms to solve online this specific QP have been developed over the last decades.
For instance, Rao et al. [2] proposed a Riccati recursion based strategy to ef-
ficiently solve the KKT system of a primal-dual interior-point method. Wang
and Boyd showed how early termination of interior-point iterations and suitable
warm-start techniques can be combined to achieve fast MPC computation [3].
Recently several authors investigated the use of Nesterov’s fast gradient method
(see e.g. [4]) and the Alternating Direction Method of Multipliers (see e.g. [5]).

It is the purpose of the paper to present a method that uses, very generally
speaking, the insights into the structure of the state feedback law without ever
determining it. We argue this idea is appealing, because it applies to a much
larger class of problems than those for which the explicit law can actually be
calculated. We briefly summarize some related publications that are also based
on this general idea but use techniques different from the one proposed here.
Ferreau et al. [6] show that the piecewise structure of the explicit control law
can be exploited to accelerate the online computations of MPC.1 Zeilinger et
al. [7] demonstrate how to use a suboptimal approximation of the piecewise-
affine control law to warm-start the online optimization problem and thus speed
up its solution. Pannocchia et al. [8, 9] store the active sets which occur most
frequently and use this information to predict the subsequent active sets.

The approach proposed here is based on removing inactive constraints from
the online optimization problem before solving it, thus reducing the online com-
putational effort. We stress we do not merely remove constraints that are re-
dundant because they are inactive for all times and all initial conditions. While
redundant constraints of this type are captured by the proposed method, a
more considerable reduction of the online computation time results from de-
tecting constraints that become inactive along trajectories of the closed-loop
system as a function of time.

The idea to detect and remove inactive constraints before solving the on-
line optimization problem has first been proposed by the authors in [10, 11].
These first attempts were based on identifying the region of activity of each
constraint, or approximations thereof. In the present paper, we show how to
detect inactive constraints by exploiting the fact that the objective function is
a Lyapunov function for the controlled system under typical assumptions (see
also [12]). The method proposed here differs from the ones in [10, 11, 12] in
several aspects. In contrast to [10, 11] we do not need to calculate regions of
activity or approximations thereof. Instead, we use lower bounds on the objec-
tive function to determine if a constraints is inactive or not. Consequently, the
preparatory calculations required for the presented approach are much simpler

1Let MPC refer to the non-explicit case, i.e. MPC based on repeatedly solving optimization
problems online.

2

than those required in [10, 11]. This allows the application of constraint re-
moval to a broader problem class, including control problems that involve large
systems and require long horizons.

The method proposed in [12] also uses the optimal cost function to remove
inactive constraints. While lower bounds on the optimal cost function are used
here, geometric properties are used in [12]2. In contrast to [12], we here have
to carry out preparatory calculations offline before starting the MPC controller.
However, the proposed criterion used to detect inactive constraints online is
much simpler than the ones used in [10, 11, 12] from a computational point of
view. In fact, only two real numbers have to be compared here, while member-
ship tests and inner products are required in [10, 11] and [12], respectively. In
addition, if a constraint is detected to be inactive with the method proposed
here, it remains inactive for all times. This is in general not the case for the cri-
teria proposed in [10, 11, 12]. Note that we summarize the method from [10, 11]
in Sec. 3.2 in order to be able to compare it to the one proposed here.

The problem class is stated concisely in Sec. 2. Main results are presented
in Sec. 3 and applied to two examples in Sec. 4. Conclusions and an outlook
are presented in Sec. 5.

2. Problem statement

We consider linear discrete-time state-space systems

x(t+ 1) = Ax(t) +Bu(t), (1)

with state variables x(t) ∈ Rn, input variables u(t) ∈ Rm and stabilizable pairs
A ∈ Rn×n, B ∈ Rn×m. Assume (1) is subject to the constraints

x(t) ∈ X ⊂ Rn, u(t) ∈ U ⊂ Rm,

for all t, where U and X are compact full dimensional polytopes that contain
the origin in their interiors. We regulate system (1) to the origin by solving the
optimal control problem, on a receding horizon, given the current state x:

min
X,U

lf (x(N)) +
N−1∑
i=0

l(x(i), u(i))

s. t. x(k + 1) = Ax(k) +Bu(k), k = 0, . . . ,N − 1,
x(k) ∈ X ⊂ Rn, k = 0, . . . ,N − 1,
u(k) ∈ U ⊂ Rm, k = 0, . . . ,N − 1,
x(0) = x,
x(N) ∈ Xf ,

(2)

2More precisely, we show in [12] that the optimal input sequence for the successor state
lies in an ellipsoid which is defined by the current state alone. This ellipsoid implies a bound
on the norm of the optimal input sequence which can be used to detect inactive constraints,
however.

3

where X = (x′(1), . . . ,x′(N))′, U = (u′(0), . . . ,u′(N − 1))′, l(x, u) = 1
2x
′Qx +

1
2u
′Ru with R ∈ Rm×m, R � 0, Q ∈ Rn×n, Q � 0, and lf (x) = 1

2x
′ P x with

P ∈ Rn×n, P � 0 solution to the algebraic Riccati equation:

P = Q+A′PA−A′PB(B′PB +R)−1B′PA (3)

The terminal set Xf ⊂ X ⊂ Rn is assumed to be full dimensional, polyhedral,
and to contain the origin in its interior. Furthermore, Xf is assumed to be
positively invariant for the unconstrained closed-loop system x(t + 1) = (A +
BK)x(t) and constraint admissible, i.e.

(A+BK)x ∈ Xf , Kx ∈ U, for all x ∈ Xf , (4)

where K = −(B′PB + R)−1B′PA is the unconstrained LQR gain associated
with (3). A set Xf with these properties can be calculated with the approach
proposed in [13].

By eliminating the state variables the optimal control problem (2) can be
stated in the compact form

min
U

V (x, U)

s. t. GU − Ex ≤ w,
P(x)

with V (x, U) = 1
2x
′Y x + x′FU + 1

2U
′HU and Y ∈ Rn×n, F ∈ Rn×mN , H ∈

RmN×mN , H � 0, G ∈ Rq×mN , w ∈ Rq, E ∈ Rq×n, where q denotes the
number of constraints [1]. Since H is positive definite, V (x, U) is a strictly
convex function of U for any fixed x. The constraints define a convex polytope
in U for any fixed x. Consequently, P(x) has a unique solution if there exists
any U that respects the constraints. Let X ⊆ X be the set of states such that
P(x) has a solution. We refer by U? : X → UN to the optimal solution of P(x)
and by V ? : X → R to the corresponding optimal value function. Formally,

U?(x) = arg min
U

V (x, U)

s. t. GU − Ex ≤ w,
(5)

and V ?(x) = V (x, U?(x)). Let u? : X → U denote the first m elements of
the optimal U?(x). Applying u?(x) results in the predicted successor state
x+ = Ax+Bu?(x).

For later use we note that the solution of the optimization problem min
U

V (x, U),

i.e. P(x) without constraints, is given by

U?(x) = −H−1F ′x, (6)

which immediately follows from the optimality conditions. Finally, we note that
the constraints of P(x) define a convex polytope in the combined space of states
and inputs

P̂ =
{

(U, x) ∈ RmN × Rn |GU − Ex ≤ w
}
, (7)

which is full dimensional, bounded and contains the origin in its interior if the
assumptions on X and U hold.

4

2.1. Notation and preliminaries

For any matrix M ∈ Rq×t, let M i and MW be the row vector and sub-
matrix of row vectors indicated by i ∈ {1, . . . , q} and the ordered subset W ⊆
{1, . . . , q}, respectively. Let κ (M) = λmax(M)

λmin(M) denote the condition number of

any quadratic positive definite matrix M , where λmax(M) and λmin(M) refer
to the largest and smallest eigenvalue of M , respectively.

For an arbitrary but fixed state x we call a point U ∈ RmN feasible for
P(x), if the pair (x, U) fulfills the constraints in P(x). We call the quadratic
program P(x) feasible if there exists at least one feasible U for the given x. The
i−th constraint in P(x) is called inactive at the optimum U?(x), if GiU?(x) <
wi + Eix, and active if GiU?(x) = wi + Eix. The index sets of active and
inactive constraints for a state x ∈ X are denoted by

A(x) =
{
i ∈ Q

∣∣GiU?(x) = wi + Eix
}
,

I(x) =
{
i ∈ Q

∣∣GiU?(x) < wi + Eix
}
,

(8)

respectively, where Q = {1, . . . , q}. Bemporad et al. [1] showed that U? : X →
UN introduced in (5) is a continuous piecewise affine function. More precisely,
there exist nP gains K̄i ∈ RmN×n, biases b̄i ∈ RmN and polytopes Pi such that

U?(x) =


K̄1 x+ b̄1 if x ∈ P1,

...
...

K̄nP x+ b̄nP if x ∈ PnP

(9)

is continuous and ∪i=1,...,nPPi = X and int(Pi) ∩ int(Pj) = ∅ for all i 6= j.
We refer to calculations that are carried out before the runtime of the model

predictive controller as offline calculations, and to calculations that are neces-
sary during runtime as online calculations.

Given the considered MPC problem (2), the following results hold true.

Proposition 1. There exist strictly positive constants a1, a2, a3 such that
x ∈ X implies

(i) a1‖x‖22 ≤ V ?(x) ≤ a2‖x‖22,
(ii) V ?(x+)− V ?(x) ≤ −a3‖x‖22,

i.e. the optimal value function V ?(x) is a Lyapunov function for the closed-loop
system (1).

We omit a proof of this statement and refer the reader to the literature
(see [14, §2.5.3.1, p. 142], [14, Prop. 2.17, p. 119] for a rigorous proof; see
also [15]). Note that exponential stability of the closed-loop system follows
from Proposition 1 (see [14, Thm. 2.24, p. 123] for a proof for the particular
choices of Xf and P).

5

3. Constraint removal in linear model predictive control

It is the central idea of the proposed method to remove constraints that are
inactive at the optimal solution from the quadratic program P(x) before solving
it. We show below that the number of active constraints is a nonincreasing func-
tion of time for the controlled system. Consequently, more and more constraints
can be dropped as the controller drives the system towards the origin.

We state the reduced optimal control problem more precisely in Sec. 3.1 and
show that it has the same solution as the original problem P(x). In Sections 3.2
and 3.3 we describe two methods for the detection of inactive constraints.

3.1. Reduced optimal control problem

Let x ∈ X be arbitrary and assume we know that some constraints in P(x)
are inactive at the optimum before having solved P(x). Proposition 2 states
that these constraints are irrelevant for the optimal solution and can be removed
from P(x).

Proposition 2. Let x ∈ X be arbitrary and let Ĩ ⊆ I(x) be an arbitrary subset
of the inactive constraints. Consider the reduced optimization problem

min
Û

V (x, Û)

s. t. GQ\ĨÛ − EQ\Ĩx ≤ wQ\Ĩ .
P̂(x)

Then P̂(x) has a unique solution, which we denote by Û?(x). This solution is
equal to the solution obtained from P(x), i.e. Û?(x) = U?(x) and V (x, Û?(x)) =
V (x, U?(x)) = V ?(x).

Proof. Assume Û?(x) 6= U?(x) and show a contradiction results. Since the

feasible region of problem P̂(x) is a superset of that of P(x), it follows that

U?(x) is a feasible point for P̂(x). Since P̂(x) is a strictly convex QP, there
holds:

V (x, Û?(x)) < V (x, U?(x)) (10)

Given that Ĩ ⊆ I(x), it follows that

GĨU?(x)− EĨx < wĨ . (11)

Since both Û?(x) and U?(x) are feasible points of P̂, we have

GQ\ĨU?(x)− EQ\Ĩx ≤ wQ\Ĩ , GQ\ĨÛ?(x)− EQ\Ĩx ≤ wQ\Ĩ . (12)

Now define d = Û?(x)−U?(x). By convexity of V (x, ·) and (10) it follows that

V (x, U?(x) + αd) ≤ (1− α)V (x, U?(x)) + αV (x, Û?(x))

= V (x, U?(x))− α
(
V (x, U?(x))− V (x, Û?(x))

)
< V (x, U?(x)). (13)

6

for any α ∈ (0, 1]. From (11) and (12), there exists some α? ∈ (0, 1] such that

GQ(U?(x) + α?d)− EQx ≤ wQ. (14)

From (13) and (14), it follows that U?(x) is not the solution to problem P(x),
which completes the proof. �

3.2. Constraint removal based on regions of activity

In this section we show how to use the so-called regions of activity [10] to
detect inactive constraints. The region of activity Gi is defined as the subset of
X in which the constraint i is active, i.e. Gi = {x ∈ X | i ∈ A(x)}, or equivalently

Gi = {x ∈ X |GiU?(x)− Eix = wi}. (15)

By definition of the region of activity we have

i ∈ A(x) if and only if x ∈ Gi. (16)

An example is shown in Fig. 1a.
Assuming the regions of activity have been calculated offline, we can use

them online to detect which constraints are active respectively inactive by test-
ing whether x ∈ Gi for all i ∈ Q for the current x. If we identify and remove
all inactive constraints, a reduced quadratic program P̂(x) with only equality
constraints remains, which is considerably simpler to solve than the general
case P̂(x) (see e.g. [17, p. 164, Sec. 5.1.4.2]).

The following lemma summarizes the relation of the regions of activity Gi to
the polytopes Pj of the explicit solution (9).

Lemma 3. Let i ∈ Q. The region of activity Gi defined in (15) is the union
of a finite number of the polytopes Pk from (9), i.e. there exists a set Ki ⊆
{1, · · · ,nP} such that

Gi =
⋃
k∈Ki

Pk. (17)

Proof. We prove the claim by constructing Ki. The sets of active and inactive
constraints are constant on the interior of a polytope Pi, i.e. we have A(x) =
A(x̄) and I(x) = I(x̄) for any x, x̄ ∈ Pi [1, 18]. It is therefore meaningful to
denote the set of constraints that are active (resp. inactive) on the interior of
Pi by Ai (resp. Ii). The index set Ki is then given by

Ki = {j ∈ {1, · · · ,nP} |i ∈ Aj } ,

which proves the claim. �

The union of a finite number of polytopes is in general not convex and not
connected. Fig. 1a shows an example of a non-convex region of activity. Due
to nonconvexity, it is in general computationally expensive to check whether

7

x1

x2
{2, 3, 4, 5} {2, 3, 4} {2, 3} {2}

∅

{7} {7, 8} {7, 8, 9} {7, 8, 9, 10}

G4

(a)

x1

x2

Ĝ4

(b)

x1

x2
R2\Ĝ4

(c)

Figure 1: (a) Region of activity for a double integrator example. G4 (yellow) is the union
of all polytopes in which constraint 4 is active. Note G4 is not convex. (b) The convex hull

Ĝ4 (cyan) is a convex outer approximation of the region of activity G4. (c) Constraint 4 is

inactive for all states x 6∈ Ĝ4 (cf. Lemma 4).

x ∈ Gi. We overcome this problem by using convex outer approximations Ĝi of
the regions of activity Gi. This was first suggested in [10, 11]. The equivalence
(16) no longer holds for convex outer approximations Ĝi ⊃ Gi but has to be
replaced by

i ∈ A(x) implies x ∈ Ĝi.
This implication can be used as follows.

Proposition 4. Let x ∈ X be arbitrary, let i ∈ Q be an arbitrary constraint and
let Gi be as in (15). Consider any outer approximation Ĝi ⊃ Gi of the region of
activity Gi. Then

x 6∈ Ĝi implies i ∈ I(x),

i.e. constraint i is inactive at the optimal solution to P(x).

Proof. Proposition 4 can be shown by contradiction. Assume there exists an
x 6∈ Ĝi such that i ∈ A(x). According to (16) i ∈ A(x) implies x ∈ Gi. From
Ĝi ⊃ Gi we infer x ∈ Ĝi, which is a contradiction. �

Proposition 4, which is illustrated in Fig. 1, can be used to identify inactive
constraints online by testing whether x ∈ Ĝi for all i ∈ Q. These set membership
tests can be carried out efficiently for convex outer approximations Ĝi [11]. We
use ellipsoidal and hyperrectangular convex outer approximations of the regions
of activity in Sec. 4.

3.3. Constraint removal based on precalculated bounds on the optimal value
function

This section presents a method for the detection of inactive constraints that
does not require to determine the regions of activity Gi or any approximations
Ĝi. Essentially, we show a constraint i ∈ Q is inactive, whenever the optimal
value function V ?(x) of P(x) drops below a certain bound σ?i , where σ?i does
not depend on x and therefore may be calculated offline. If the optimal value

8

function V ?(x) of P(x) is a Lyapunov function for the controlled system, V ?(x)
strictly decreases along any trajectory, and therefore constraint i remains in-
active once the optimal value function dropped below σ?i while solving P(x)
online.

We first introduce the bounds σ?i informally and state their properties more
precisely below. Consider an arbitrary i ∈ Q and choose x ∈ X such that
i ∈ A(x), i.e. let x be such that constraint i is active at the optimal solution of
P(x). Let Q\i be short for the set difference Q\{i}. If constraint i is active, we
can turn it into an equality constraint in P(x), consequently the QP

min
U

V (x, U)

s. t. GQ\iU − EQ\ix ≤ wQ\i,
GiU − Eix = wi,

(18)

has the same unique solution as P(x) in this case. If we pose the same optimiza-
tion problem as (18) but minimize with respect to both x and U , we obtain a
number that is a lower bound for V (x, U?(x)) on Gi. We call this bound σ?i :

σ?i := min
x, U

V (x, U)

s. t. GQ\iU − EQ\ix ≤ wQ\i,
GiU − Eix = wi,

x ∈ X .

(19)

Note that (19) may be infeasible. This case occurs if constraint i is not active
in P(x) for any x ∈ X , for example, because other constraints than i are more
restrictive (see e.g. [19, Sec. 4.1.1, p. 128] or [20, Def. 5, p. 492] on redundant
constraints). It proves useful to formally extend the definition of σ?i in (19) by

σ?i :=∞ if (19) is infeasible. (20)

Before showing how to use the bounds σ?i to detect inactive constraints, we
summarize some properties of (19) in Lemma 5.

Lemma 5. Let i ∈ Q be arbitrary and consider the QP (19). The following
statements hold:

(i) If QP (19) is feasible, it has a unique solution.

(ii) If (19) is feasible, then 0 < σ?i <∞.

(iii) If (19) is infeasible, then constraint i is always inactive in P(x), or equiv-
alently i ∈ I(x) for all x ∈ X .

Proof. (i) The claim follows from Proposition 1 on P(x), which can be seen as
follows. The cost function of P(x) can be rewritten as

V (x, U) =
1

2

(
x′ U ′

)(Y F
F ′ H

)(
x
U

)
. (21)

9

According to Proposition 1, there exists an a1 > 0 such that V ?(x) ≥ a1‖x‖22
for all x ∈ X . Together with V ?(x) = V (x, U?(x)) this implies V (x, U?(x)) > 0
for all x ∈ X\ {0}. Because V (x, U?(x)) ≤ V (x, U) by definition of U?(x), we
also have V (x, U) > 0 for all x ∈ X\{0} and all feasible U , or equivalently for
all (U, x) ∈ P̂ with x 6= 0, where P̂ is as defined in (7). Therefore, V (x, U) is
positive definite on a full dimensional polytope that contains the origin (i.e. on
P̂). This implies the matrix in (21) is positive definite. Since the constraints
define a convex polytope, the claim holds.

(ii) We already established that the cost function in (19) is positive definite.
Consequently, σ?i ≥ 0, and it remains to show σ?i 6= 0. We assume there exists
an i ∈ {1, . . . , q} such that σ?i = 0 in (19) and show that a contradiction results.
From (21) we infer that σ?i = 0 implies (U, x) = (0, 0). By assumption, however,

(U, x) = (0, 0) lies in the interior of P̂. According to the definition of P̂ in (7)
x ∈ int(P̂) implies none of the constraints GjU − Ejx ≤ wj , j = 1, . . . , q are
active at the point (U, x) = (0, 0). Equivalently, GjU −Ejx−wj < 0 holds for
all j = 1, . . . , q. This contradicts the equality constraint GiU − Eix = wi in
(19), however.

(iii) Since (19) is infeasible, there exists no (U, x) ∈ RmN × X such that
GQ\iU −EQ\ix ≤ wQ\i and GiU −Eix = wi. In particular (U?(x), x) does not
fulfill GQ\iU? − EQ\ix ≤ wQ\i and GiU?(x) − Eix = wi for any x ∈ X . This
implies GiU?(x) − Eix < wi for all x ∈ X , which in turn implies i ∈ I(x) for
all x ∈ X according to the definition of I(x) in (8). �

The bounds σ?i can be used as follows to detect inactive constraints.

Proposition 6. Let i ∈ Q and x ∈ X be arbitrary, and let σ?i be defined as
in (19) and (20). If V ?(x) < σ?i , then constraint i is inactive at the optimal
solution to P(x), i.e. i ∈ I(x).

Proof. We consider the cases σ?i = ∞ and σ?i < ∞ separately. If σ?i = ∞ we
have i ∈ I(x) for any x ∈ X according to Lemma 5. The case σ?i < ∞ can be
proven by contradiction. Assume the claim does not hold, i.e. there exists an
x ∈ X such that V ?(x) < σ?i and i 6∈ I(x), or equivalently

V ?(x) < σ?i and i ∈ A(x), (22)

where we used A(x) ∪ I(x) = Q and I(x) ∩ A(x) = ∅, which follows from (8).
From (22) we infer that (U?(x), x) satisfies GQ\iU?(x) − EQ\ix ≤ wQ\i and
GiU?(x)−Eix = wi, which implies (U?(x), x) is a feasible point for (19). Since
(x, U?(x)) is feasible but not necessarily an optimal point for (19), we have
σ?i ≤ V (x, U?(x)), which contradicts the assumption V ?(x) < σ?i . �

The proof of Prop. 6 assumes P(x) has been solved and U?(x) is known.
Once P(x) has been solved for a particular x ∈ X , the sets A(x) and I(x) are
known, therefore there is no need to apply Prop. 6 to detect inactive constraints.
If we combine Prop. 6 with the Lyapunov property of V ?(x), however, we can
infer a constraint i to remain inactive for all t once V ?(x) dropped below σ?i .

10

Consequently, it can be removed from P(x). This is stated more precisely in the
following corollary.

Corollary 7. Consider the optimization problem P(x(t0)) at time step t0 with
state x(t0) ∈ X . Let i ∈ Q be arbitrary, and let σ?i be defined as in (19) and
(20). Then

V ?(x(t0)) < σ?i implies i ∈ I(x(t)) for all t ≥ t0,

i.e. constraint i is inactive along the trajectory of the controlled system for all
t ≥ t0.

Proof. According to Proposition 1 (ii), V ?(x) is nonincreasing along any tra-
jectory of the closed-loop system. Together with V ?(x(t0)) < σ?i this yields
V ?(x(t)) < σ?i for all t ≥ t0 for the closed-loop system. Proposition 6 implies
i ∈ I(x(t)) for all t ≥ t0 for the closed-loop system. �

Both Prop. 4 and Cor. 7 provide criteria for detecting inactive constraints in
P(x). The criterion from Cor. 7 is computationally simpler, since it only requires
comparing two real numbers for each constraint. In contrast, a set membership
test has to be carried out in Prop. 4 for each constraint. Moreover, the criterion
from Cor. 7 needs only be carried out for each i ∈ Q, until constraint i ∈ Q
is detected to be inactive for the first time. In contrast, a constraint that is
detected to be inactive with Prop. 4 at time tk does in general not remain
inactive for all t ≥ tk. This difference is obvious from the examples presented
in Sec. 4.

Proposition 1 implies that V ?(x)→ 0 as t→∞. Since we have σ?i > 0 for all
i, every constraint will turn inactive at some point along any trajectory of the
closed-loop system. As a consequence, the number of constraints goes to zero
until only the unconstrained optimization problem remains. This is summarized
in the following remark for ease of reference.

Remark 8. Consider the reduced optimization problem P̃(x(t)) at time step t
with state x(t), and let Ĩ(x(t)) result from applying Prop. 6 to all i ∈ Q. Then

the number of constraints |Q\Ĩ(x(t))| in P̂(x) is a nonincreasing function of t
and goes to zero along any trajectory of the closed-loop system as t→∞.

We conclude Sec. 3.3 with an illustration of the bounds σ?i in Figure 2. A
geometric interpretation of the constraints in (18) is required for this purpose.
The equality constraint in (18) defines the linear subspace

Hi =

{(
U
x

)
∈ RmN+n

∣∣∣∣(Gi − Ei)(U
x

)
= wi

}
.

Similarly, the constraints GQ\iU − EQ\ix ≤ wQ\i define the polytope

PQ\i =

{(
U
x

)
∈ RmN+n

∣∣∣∣(GQ\i − EQ\i)(U
x

)
≤ wQ\i

}
.

11

x

U
Hi ∩ PQ\i

V (x, U)

PQ\i

Hi

(a)

x

U

V (x, U)

0

0

σi

(b)

x

U

V (x, U)

0

0
x0 x1 x2

x3

(c)

Figure 2: Geometric interpretation of σ?
i and the detection of inactive constraints described

in Cor. 7. The figure sketches a hypothetical system with n = 1 and mN = 1. See the end of
Sec. 3.2 for an explanation.

Algorithm 1 MPC algorithm with constraint removal. Summary of calcula-
tions to find the control law for the successor state x+ = Ax+Bu?(x).

1: Input: x+, V ?(x), R = Q\Ĩ(x), σ?i , i ∈ R.
2: Set Ĩ(t) = ∅.
3: for all i ∈ R do
4: if V ?(x) < σ?i then
5: Constraint i is inactive at state x+: Ĩ ← Ĩ ∪ {i}.
6: end if
7: end for
8: Remove inactive constraints: R ← R\Ĩ.
9: if R = ∅ then

10: QP is unconstrained and the solution is U?(x+) = −H−1F ′x+.
11: else
12: Solve reduced QP P̃(x+) with constraint set R for U?(x+).
13: end if
14: Output: U?(x+), V ?(x+), R.

Figure 2a illustrates Hi, PQ\i and their intersection Hi ∩ PQ\i (highlighted in
red) for a hypothetical example. The bound σ?i results from optimizing V (x, U)
on Hi ∩ PQ\i. Corollary 7 essentially states that constraint i is inactive on the
sublevel-set {(U, x)|V (x, U) < σ?i }, which is illustrated in Fig. 2b. Since V ?(x)
is a Lyapunov function and therefore nonincreasing, this sublevel-set is positive
invariant for the controlled system (cf. Fig. 2c).

4. Examples

We apply the approach presented in this paper to two examples summarized
in Table 1. More detailed descriptions of the systems are given in Appendix A.
For both examples we used the maximal constraint admissible set as terminal
set Xf , which we construct with the approach presented in [13]. We compare
the computation times required to solve the full quadratic program P(x) and

12

the reduced quadratic program P̂(x), where several different methods are used

to detect the inactive constraints removed from P̂(x). Specifically, we compare
the following MPC implementations:

• full-QP: P(x) without any reduction.

• ell-QP: Inactive constraints are detected with Prop. 4, and the reduced
quadratic program P̂(x) is solved. The outer approximations Ĝi of the
regions of activity are ellipsoids [11].

• hyp-QP: Same as ell-QP, but the outer approximations Ĝi of the regions
of activity are hyperrectangles [11].

• lyap-QP: Inactive constraints are detected with Cor. 7, and the reduced
QP P̂(x) is solved.

We randomly chose feasible initial conditions for both examples and calculated
trajectories of the closed-loop system until |x(t)| ≤ 10−3 in all cases. The
number of initial conditions and the number of solved QPs are given in Tab. 1.

The results of the simulations are shown in Fig. 3 in terms of the cumulative
distribution function (cdf) hcdf(tMPC), where tMPC is the time required to find

the control action by solving P(x) or P̂(x), respectively. The cdf hcdf(t) equals
the fraction of cases in which U?(x) was found in computational time t or less.
We stress all reported times include the computational times required to detect
inactive constraints where applicable. More precisely, times reported for ell-QP
and hyp-QP include the computational times required to test whether x ∈ Ĝi
for all i ∈ Q, to set up the reduced QP P̂(x), and to solve it. Times reported
for lyap-QP include the computational times required to carry out the tests
V ?(x) < σ?i for all i ∈ R, to set up the reduced QP P̂(x), and to solve it.

Consider the results for the double integrator example in Fig. 3a first. Lyap-
QP is faster than all other approaches by an order of magnitude for about 85%
of all cases (leftmost shoulder of the purple curve in Fig. 3a). Lyap-QP is faster
in these cases, because it detects the QP to be unconstrained. This implies no
QP solver is required at all, because the optimal solution is given by (6), cf. line
10 in Algorithm 1. Lyap-QP is always faster than full-QP, ell-QP is faster than
full-QP in about 95% of all cases, but slower in the remaining 5%. Hyp-QP and
full-QP result in very similar cumulative distribution functions. Note that lyap-
QP is faster than hyp-QP and ell-QP for times smaller than about 4.5 · 10−3s.
For tMPC larger than 4.5 · 10−3s lyap-QP is still faster, but the difference is
negligible.

Example n m N q #x0 # QPs solved
Double integrator 2 1 2 62 7,500 1,376,233

MIMO system 10 3 30 898 6,800 1,127,679

Table 1: Summary of the examples.

13

tMPC in s

h
c
d
f(
t M

P
C
)

ell-QP
hyp-QP
lyap-QP
full-QP

0 2 4 6 8 10
×10−3

0

0.2

0.4

0.6

0.8

1

(a) Double Integrator
tMPC in s

h
c
d
f(
t M

P
C
)

ell-QP
hyp-QP
lyap-QP
full-QP

0 0.05 0.1 0.15 0.2 0.25
0

0.2

0.4

0.6

0.8

1

(b) MIMO System

Figure 3: Cumulative distribution functions (cdf) of the computation times. The leftmost
shoulder of the purple curve is at 5.8 · 10−5s and 2.0 · 10−4s in (a) and (b), respectively.

x
(t
)

u
(t
)

c(
t)

t in s
0 1 2 3 4 5 6
0
20
40
60

-1

0

1

-1

0

1

(a) Double Integrator

x
(t
)

u
(t
)

c(
t)

t in s
0 20 40 60 80 100
0

400

800

-1

0

1
-10

0

10

(b) MIMO System

Figure 4: States xi(t), i = 1, . . . , n, inputs ui(t), i = 1, . . . ,m and the number of constraints
c(t) along the closed-loop trajectories for a random initial state. Black, red, green and ma-
genta curves in the subfigures for c(t) correspond to full-QP, ell-QP, hyp-QP and lyap-QP,
respectively.

Consider the results of the MIMO system presented in Fig. 3b next. About
55% of the QPs are detected to be unconstrained by lyap-QP. The solution can
be obtained from (6) and therefore is found in less than 2.0 · 10−4s (leftmost
shoulder of the purple curve in Fig. 3b). More importantly, in about 95% of the
QPs the control law can be found faster with lyap-QP than in the best case with
ell-QP, hyp-QP and full-QP. Lyap-QP leads by far to the best performance in
this sense.

Figure 4 shows the state variables xi(t), i = 1, . . . , n, the input variables
ui(t), i = 1, . . . ,m and the number of constraints c(t) along the trajectory for a
random initial point for both examples. Clearly, lyap-QP, hyp-QP and ell-QP
are able to reduce the number of constraints in both cases.

According to Remark 8 the number of constraints for lyap-QP is nonincreas-
ing along a trajectory of the closed-loop system. This is corroborated in Fig. 4
(magenta curves in a and b). Recall that a constraint which is detected to be
inactive in lyap-QP will remain inactive, and thus the number of constraints
goes to zero along the trajectory of the closed-loop system. This is not the
case for ell-QP and hyp-QP: Even if the system state has reached the origin

14

the quadratic program to be solved is not detected to be unconstrained (cf. red
curve for ell-QP, green curve for hyp-QP in Fig. 4a and b).

5. Conclusion

We proposed and analyzed a simple method for accelerating MPC for lin-
ear systems, linear constraints and quadratic objective functions. Essentially,
we remove inactive constraints in the online MPC problem in every time step
before solving it. Constraints can be detected to be inactive based on bounds
on the MPC objective function. Because these bounds are independent of the
current state, they can be calculated offline, i.e. once before actually starting the
MPC controller (see Sec. 3.3). For an MPC problem with q constraints, q convex
quadratic programs need to be solved offline (see (18)). Since each of these QPs
belongs to the same complexity class as the online MPC problem P(x) itself,
the preparatory calculations are not a limitation. The additional operations
required at runtime of the MPC controller are computationally inexpensive and
they are clearly outweighed by the savings (see Sec. 4). The proposed method
outperforms earlier ones that also used constraint removal, but identified inac-
tive constraints with different techniques.

Future research will address the detection of inactive constraints under the
presence of disturbances or plant-model mismatch, and the extension to nonlin-
ear MPC.

Acknowledgment

Support by the Deutsche Forschungsgemeinschaft (DFG) under grant MO
1086/11-1 is gratefully acknowledged.

Appendix A. Details on the examples

Double Integrator [20]. We consider the double integrator system that results
from discretizing ÿ = u with zero-order hold (ZOH) and a sample time of Ts =
0.05s. State and input constraints are −5 ≤ x1(t) ≤ 5, −0.5 ≤ x2(t) ≤ 0.5 and
−1 ≤ u(t) ≤ 1; and R = 1, Q = diag(1, 10−3).

This example is taken from [20]. The optimization problem is well-conditioned
with κ (H) = 1.15.

Multi-Input Multi-Output system [12]. We consider the state space system re-
sulting from discretizing the continuous-time transfer function

G(s) =


−5s+1

36s2+6s+1
0.5

8s+1 0

0 0.1(−10s+1)
s(8s+1)

−0.1
(64s2+6s+1)s

−2s+1
12s2+3s+1 0 2(−5s+1)

16s2+2s+1

 , (A.1)

with ZOH and Ts = 1s. State space matrices are given in [21]. The state and
input constraints are −10 ≤ xi(t) ≤ 10 for i ∈

(
1, . . . ,10

)
, −1 ≤ uj(t) ≤ 1

15

for j ∈
(
1, . . . ,3

)
, respectively. The weighting matrices are Q = In×n and

R = 0.25Im×m. We reparameterize the input variables using a stabilizing LQR
controller as proposed in [22] to obtain a well-conditioned optimization problem
with κ (H) = 2.51.

References

[1] A. Bemporad, M. Morari, V. Dua, E. Pistikopoulos, The explicit linear
quadratic regulator for constrained systems, Automatica 38 (2002) 3 – 20.

[2] C. V. Rao, S. J. Wright, J. B. Rawlings, Application of interior-point meth-
ods to model predictive control, J. Optim. Theor. Applic. 99 (1998) 723–
757.

[3] Y. Wang, S. Boyd, Fast model predictive control using online optimization,
IEEE Trans. Contr. Syst. Techn. 18 (2) (2010) 267–278.

[4] S. Richter, C. N. Jones, M. Morari, Computational complexity certification
for real-time mpc with input constraints based on the fast gradient method,
IEEE Trans. Auto. Contr. 57 (6) (2012) 1391–1403.

[5] B. O’Donoghue, G. Stathopoulos, , S. Boyd, A splitting method for optimal
control, IEEE Trans. Contr. Syst. Techn. 21 (6) (2013) 2432–2442.

[6] H. Ferreau, H. Bock, M. Diehl, An online active set strategy to overcome the
limitations of explicit MPC, International Journal of Robust and Nonlinear
Control 18 (2008) 816–830.

[7] M. Zeilinger, C. Jones, M. Morari, Real-Time Suboptimal Model Predictive
Control Using a Combination of Explicit MPC and Online Optimization,
IEEE Transactions on Automatic Control 56 (7) (2011) 1524–1534.

[8] G. Pannocchia, S. Wright, J. Rawlings, Partial enumeration MPC: Robust
stability results and application to an unstable CSTR, Journal of Process
Control 21 (10) (2011) 1459–1466.

[9] G. Pannocchia, J. B. Rawlings, S. J. Wright, Fast, large-scale model pre-
dictive control by partial enumeration, Automatica 43 (2007) 852–860.

[10] M. Jost, M. Mönnigmann, Accelerating online MPC with partial explicit
information and linear storage complexity in the number of constraints, in:
Proceedings of the European Control Conference 2013, Zurich, Switzerland,
2013, pp. 35–40.

[11] M. Jost, M. Mönnigmann, Accelerating model predictive control by online
constraint removal, in: Proceedings of the Conference on Decision and
Control 2013, Florence, Italy, 2013, pp. 5764–5769.

16

[12] M. Jost, G. Pannocchia, M. Mönnigmann, Online constraint removal: ac-
celerating MPC with a Lyapunov function, Automatica 57 (2015) 164–169.
doi:10.1016/j.automatica.2015.04.014.

[13] E. G. Gilbert, K. Tin Tan, Linear systems with state and control con-
straints: The theory and application of maximal output admissible sets,
IEEE Transactions on Automatic Control 36 (9) (1991) 1008–1020.

[14] J. B. Rawlings, D. Q. Mayne, Model Predictive Control: Theory and De-
sign, 1st Edition, Nob Hill Publishing, Madison, Wisconsin, USA, 2009.

[15] D. Mayne, James B. Rawlings, Christopher V. Rao, Pierre O. M. Scokaert,
Constrained model predictive control: Stability and optimality, Automatica
36 (2000) 789 – 814.

[16] J. Nocedal, S. J. Wright, Numerical Optimization, 2nd Edition, Springer
Verlag, 2006.

[17] P. E. Gill, W. Murray, M. H. Wright, Practical Optimization, Elsevier,
2007.

[18] A. Gupta, S. Bhartiya, P. Nataraj, A novel approach to multiparametric
quadratic programming, Automatica 47 (9) (2011) 2112 – 2117.

[19] S. Boyd, L. Vandenberghe, Convex Optimization, Cambridge University
Press, 2009.

[20] P. Tøndel, T. A. Johansen, A. Bemporad, An algorithm for multi-
parametric quadratic programming and explicit MPC solutions, Automat-
ica 39 (2003) 489 – 497.

[21] M. Jost, M. Mönnigmann, Minimal state space representation of an exam-
ple system for online model predictive control, Tech. rep., Ruhr-Universität
Bochum (2014).

[22] J. A. Rossiter, B. Kouvaritakis, M. J. Rice, A numerically robust state-
space approach to stable-predictive control stratigies, Automatica 34 (1998)
65–73.

17

