
Decay and Scattering of Small Solutions
of Pure Power NLS in R with p > 3

and with a Potential

SCIPIO CUCCAGNA
University of Trieste

VLADIMIR GEORGIEV
University of Pisa

AND

NICOLA VISCIGLIA
University of Pisa

Abstract

We prove decay and scattering of solutions of the nonlinear Schrödinger equation
(NLS) in R with pure power nonlinearity with exponent 3 < p < 5 when the
initial datum is small in † (bounded energy and variance) in the presence of
a linear inhomogeneity represented by a linear potential that is a real-valued
Schwarz function. We assume absence of discrete modes. The proof is analogous
to the one for the translation-invariant equation. In particular, we find appropriate
operators commuting with the linearization. © 2014 Wiley Periodicals, Inc.

1 Introduction
We consider

(1.1) .i@t C4V /uC �jujp�1u D 0 for t � 1, x 2 R; and u.1/ D u0
with 4V WD 4 � V.x/ and 4 WD @2x and � 2 Rnf0g. In this paper we focus
on exponents 3 < p < 5. V is a real-valued Schwartz function and 4V is taken
without eigenvalues.

It is well known that for 2 � p < 5 the initial value problem in (1.1) is globally
well posed in H 1.R/. Our goal is to study the asymptotic behavior of solutions
with initial data u.1/ D u0 of size � in a suitable Sobolev norm, with � sufficiently
small. It is natural to ask whether such solutions are asymptotically free and satisfy

(1.2) ku.t/kL1.R/ � C0t
� 1
2 �;

that is, whether they have the decay rate of the solution to the linear Schrödinger
equation.

We recall some of the results for V D 0. For spatial dimension d , McKean
and Shatah [14] answered positively to our question for 1 C 2

d
< p < 1 C 4

d
:
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The case p � 1 C 4
d

and p < 1 C 4
d�1

for d � 3 was answered positively by
W. Strauss [17], who proved that the zero solution is the only asymptotically free
solution when 1 < p � 1 C 2

d
for d � 2 and when 1 < p � 2 for d D 1 [16].

This result was extended to the case 1 < p � 3 and d D 1 by J. Barab [1], using
an idea of R. Glassey [11].

The exponent p D 1C 2
d

is critical and particularly interesting. The existence
and the form of the scattering operator was obtained by Ozawa [15] for d D 1 and
by Ginibre and Ozawa [10] for d � 2. The completeness of the scattering operator
and the decay estimate were obtained by Hayashi and Naumkin [12]. Complete-
ness of the scattering operator and decay estimate for all solutions, not only for
small ones, for d D 1 and � < 0 were obtained by Deift and Zhou [7]. See also
[4, 5] for earlier references and [8] for a simpler proof. The result was extended
to perturbations of the defocusing cubic NLS for d D 1 in [6]. For the focusing
cubic NLS for d D 1, the pure radiation case, along with other cases reducible to
the pure radiation one by means of Darboux transformations, was treated in [2],
proceeding along the lines of [7].

Our goal in the present paper is to extend the result of McKean and Shatah
[14] to the case V ¤ 0 and d D 1, which to our knowledge is open. For V we
assume the following hypothesis, where we refer to Section 4 for the definition of
the transmission coefficient T .�/.

(H) The potential V is a real-valued Schwartz function such that for the spec-
trum we have �.4V / D .�1; 0�. Furthermore, V is generic; that is, the
transmission coefficient T .�/ satisfies T .0/ D 0.

We denote by†s the Hilbert space defined as the closure of C10 .R/ functions with
respect to the norm

kuk2†s WD kuk
2
H s.R/ C kjxj

suk2
L2.R/:

Our main result is the following:

THEOREM 1.1. Assume that V satisfies (H), s > 1
2

, and p > 3. Then there exist
constants �0 > 0 and C0 > 0 such that for � 2 .0; �0/ and ku.1/k†s � �, the
solution to (1.1) satisfies the decay inequality (1.2) for t � 1. Furthermore, there
exists uC 2 L2.R/ such that

(1.3) lim
t!C1

ku.t/ � eit4uCkL2.R/ D 0:

The hypothesis �.4V / D .�1; 0� is necessary since otherwise for any s > 1
2

there are periodic solutions u.t; x/ D ei�t��.x/ of arbitrarily small †s norm. The
interesting case is for p 2 .3; 5/ since the case p � 5 follows from [9, 19]. The
case V D 0 is due to [14].
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If �.4V / D .�1; 0�, the existence of wave operators intertwining 4V and 4
and of Strichartz and dispersive estimates for eit4V is well known; see [9, 19, 20].
Such estimates are not sufficient to prove Theorem 1.1 even in the case V D 0.

The argument in McKean and Shatah [14] is based on the introduction of ho-
mogeneous PHk.t/ norms, defined by substituting the standard derivative @

@xj
with

operators Jj .t/; see Section 2. The authors [14] prove almost invariance of these
norms and, by a form of the Sobolev embedding theorem, the dispersion (1.2).
Such use of invariant norms goes back to the work on the wave equation by Klain-
erman; see, for example, [13].

The development of a theory of invariant norms in the case of non-translation-
invariant equations such as (1.1) is an important technical problem. Here our main
goal is to adapt the framework of [14] for d D 1 and to introduce appropriate
surrogates jJV .t/js for the operators jJ.t/js; see Section 2.

The operators jJV .t/js are used to define homogeneous spaces PHs
V .t/ that are

then shown to be almost invariant.
The argument is more complicated than in [14] because of the presence of an

additional commutator. But we can show that if 4V is generic in the sense of
hypothesis (H), then the commutator can be treated by a bootstrap argument.

Another complication is that the jJV .t/js do not enjoy Leibniz-rule-type prop-
erties like jJ.t/js , which play a key role in [14]. Nonetheless, we are able to treat
jJV .t/j

s by switching from jJV .t/js to jJ.t/js by using the Leibniz rule for jJ.t/js ,
and by going back to jJV .t/js .

In the part of the argument on the Leibniz rule, an essential role is played by
the observation that k � k PHsV .t/ � k � k PHs.t/ with fixed constants independent of

t when 0 � s < 1
2

. The proof of this equivalence is based on Paley-Littlewood
decompositions associated to phase spaces both of 4 and 4V . We are able to
prove this equivalence when the transmission coefficient T .�/ is such that either
T .0/ D 0 (the generic case) or T .0/ D 1. Notice incidentally that the inclusion of
this nongeneric case at least in this part of the paper is natural, since the fact that
T .0/ D 1 makes 4V more similar to 4 than the case when T .0/ D 0 (recall that
T .0/ D 1 for4).

We now introduce some of the notation used later. Inequalities of type A . B

mean the existence of a constant C > 0 so that A � CB: Similarly, A � B means
A . B and B . A. The standard scalar product in L2 D L2.R/ will be denoted
by h � ; � iL2 . We use the notation Lpx to mean Lp.R/. Lpt .X/ stands for the
Lp norm of functions with values in Banach space X: The homogeneous Sobolev
space PHs.R/ (respectively, perturbed Sobolev space PHs

V .R/) for s � 0 is defined
as the closure of C10 .R/ functions with respect to the norm

k.�4/
s
2f kL2x (respectively, k.�4C V /

s
2f kL2x ).

These norms are used in two cases: functions depending only on x and functions
depending on both t and x.
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2 Definition of jJV .t/js

In this section we assume x 2 Rd with d a generic dimension, and we consider

.i@t C4/u D 0:

Recall that the fundamental solution is given by eit4.x; y/ D
exp i .x�y/

2

4t

.4� it/d=2 for t > 0.
Consider the Fourier transform F and its inverse:

(2.1)

Ff .x/ D .2�/�
d
2

Z
Rd

eix�yf .y/dy;

F�1f .x/ D .2�/�
d
2

Z
Rd

e�ix�yf .y/dy:

We also introduce the dilation operator D.t/ .x/ D .2it /�d=2 .x2t/ and the
multiplier operator M.t/ .x/ D exp.ix2=4t/ .x/: Then we have the following
well-known formula:

eit4
DM.t/D.t/F�1M.t/:

Let g.x/ be a function and denote by g.q/ the multiplier operator g.q/ .x/ WD
g.x/ .x/. We set pj WD i@xj and p D .p1; : : : ; pd /. More generally, set g.p/ WD
F�1g.q/F . The following identity is well-known:

(2.2) eit4g.q/e�it4
DM.t/g.2tp/M.�t /

for any g.x/. With an abuse of notation we will denote the operator g.q/ by g.x/.
Notice that we have

Œi@t C4; eit4g.x/e�it4� D

eit4Œ�4; g.x/�e�it4
C eit4Œ4; g.x/�e�it4

D 0;

so obviously the same commutation rule holds for the right-hand side of (2.2). In
particular, for g.x/ D xj we get on the right-hand side of (2.2) the operators

Jj D 2t i exp
�

ix2

4t

�
@xj exp

�
�

ix2

4t

�
D 2t i@xj C xj ;

and we have

Œi@t C4; Jj � D 0:

We introduce for any s � 0 the following two operators:

jJ.t/js WDM.t/.�t24/
s
2M.�t /;(2.3)

jJV .t/j
s
WDM.t/.�t24V /

s
2M.�t /:(2.4)
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3 Commutative Properties of jJV .t/js

We start the section by establishing some useful commutator relations. In this
section x 2 Rd with d a generic dimension and M.t/ D eijxj2=4t .

LEMMA 3.1. We have the following identities:

Œi@t ;M.t/� D
x2

4t2
M.t/; Œi@t ;M.�t /� D �

x2

4t2
M.�t /:

PROOF. A simple calculation gives

i@tM.t/f �M.t/i@tf D .i@tM.t//f D
x2

4t2
M.t/:

The second relation can be verified similarly. �

Furthermore, we shall prove the following:

LEMMA 3.2. We have

Œ4;M.t/� DM.t/

�
i d
2t
�
x2

4t2
C

ix � r
t

�
;

Œ4;M.�t /� DM.�t /

�
�

i d
2t
�
x2

4t2
�

ix � r
t

�
:

PROOF. For the first relation we have
f D f4M.t/C 2rM.t/ � rf

DM.t/
i d
2t
f �M.t/

x2

4t2
f CM.t/

ix � rf
t

:

The second relation follows by taking complex conjugates. �

From Lemma 3.1 and Lemma 3.2 we get the following

LEMMA 3.3. The following commutator relations hold:

Œi@t C4;M.t/� DM.t/
�

id
2t
C

ix � r
t

�
;

Œi@t C4;M.�t /� DM.�t /
�
�

id
2t
�
x2

2t2
�

ix � r
t

�
:

PROOF. We shall check only the first relation, which follows directly from the
above lemmas and

Œi@t C4;M.t/� D Œi@t ;M.t/�C Œ4;M.t/�: �

LEMMA 3.4. We have

(3.1) Œi@t C4V ; .�t24V /
s
2 � D

is
t
.�t24V /

s
2 :
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PROOF. To prove (3.1) we shall use the fact that .�4V /s=2 and4V commute.
Thus, we have

Œi@t C4V ; .�t24V /
s
2 �f D Œi@t ; .�t24V /

s
2 �f C Œ4V ; .�t

2
4V /

s
2 �f

D i@t ..�t24V /
s
2 /f D

is
t
.�t24V /

s
2f: �

Now we are ready to establish the main commutative property of the operator
jJV .t/j

s with s � 0 defined in (2.4).

PROPOSITION 3.5. We have the relation

(3.2) Œi@t C4V ; jJV .t/js� D its�1M.t/A.s/M.�t /

where
A.s/ WD s.�4V /

s
2 C Œx � r; .�4V /

s
2 �:

PROOF. The proof relies on Lemmas 3.1 through 3.4 and the following commu-
tator equalities:

ŒAB;C � D AŒB;C �C ŒA; C �B; ŒA;BC � D ŒA; B�C C BŒA;C �:

Indeed, we have

Œi@t C4V ; jJV .t/js� D Œi@t C4V ;M.t/.�t24V /
s
2M.�t /�

D Œi@t C4V ;M.t/�.�t24V /
s
2M.�t /

CM.t/Œi@t C4V ; .�t24V /
s
2M.�t /�

D
id
2t
jJV .t/j

s
C

i
t
M.t/x � r.�t24V /

s
2M.�t /

CM.t/Œi@t C4V ; .�t24V /
s
2 �M.�t /

CM.t/.�t24V /
s
2 Œi@t C4V ;M.�t /�

D
id
2t
jJV .t/j

s
C

i
t
M.t/x � r.�t24V /

s
2M.�t /

C
is
t
jJV .t/j

s
CM.t/.�t24V /

s
2M.�t /

�
�

id
2t
�
x2

2t2
�

ix � r
t

�
D

is
t
jJV .t/j

s
C

i
t
M.t/x � r.�t24V /

s
2M.�t /

�
i
t
M.t/.�t24V /

s
2M.�t /x � r �M.t/.�t24V /

s
2
x2

2t2
M.�t /

D
is
t
jJV .t/j

s
C

i
t
M.t/Œx � r; .�t24V /

s
2M.�t /�

�M.t/.�t24V /
s
2
x2

2t2
M.�t /:
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Note that

Œx � r; .�t24V /
s
2M.�t /�

D Œx � r; .�t24V /
s
2 �M.�t /C .�t24V /

s
2 Œx � r;M.�t /�

D Œx � r; .�t24V /
s
2 �M.�t / � .�t24V /

s
2

ix2

2t
M.�t /;(3.3)

and hence we get

Œi@t C4V ; jJV .t/js� D
is
t
jJV .t/j

s
C

i
t
M.t/Œx � r; .�t24V /

s
2 �M.�t /:

The proof of (3.2) is completed. �

In the next lemma we shall assume d D 1.

LEMMA 3.6. Assume d D 1 and let A.s/ be the operator that appears in (3.2)
with s < 2. Then for a fixed constant Cs we have the inequality

(3.4) kA.s/f kL1x � Cskf kL
1
x
:

We postpone the proof of Lemma 3.6 to Section 7.

4 Spectral Theory for 4V

From now on we shall always work in the space dimension d D 1.
In this section we remind the reader of some classical material needed later. Re-

call that the Jost functions are solutions f˙.x; �/ D e˙i�xm˙.x; �/ of �4V u D
�2u with

lim
x!C1

mC.x; �/ D 1 D lim
x!�1

m�.x; �/:

We set xC WD maxf0; xg, x� WD maxf0;�xg, and hxi WD
p
1C x2: We will

denote by Lp;s the space with norm

(4.1) kukLp;s D khxi
sf kLpx :

The following lemma is well known:

LEMMA 4.1. For V 2 S.R/ we have m˙ 2 C1.R2;C/. There exist constants
C1 D C1.kV kL1;1/ and C2 D C2.kV kL1;2/ such that

jm˙.x; �/ � 1j � C1hx
�
ih�i�1

ˇ̌̌̌Z ˙1
x

hyijV.y/jdy

ˇ̌̌̌
;(4.2)

j@�m˙.x; �/j � C2.1C x
2/:(4.3)

See lemma 1 in [3, p. 130]. The regularity follows by iterating the argument.
The transmission coefficient T .�/ and the reflection coefficients R˙.�/ are de-

fined by the formula

(4.4) T .�/m�.x; �/ D R˙.�/e
˙2i�xm˙.x; �/Cm˙.x;��/:

From [3] and [20] we have the following lemma:
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LEMMA 4.2. For V 2 S.R/ we have T;R˙ 2 C1.R/. Moreover,

jT .�/ � 1j C jR˙.�/j � C h�i
�1 for C D C.kV kL1;1/,(4.5)

jT .�/j2 C jR˙.�/j
2
D 1;(4.6) ˇ̌̌̌

d

d�
T .�/

ˇ̌̌̌
C

ˇ̌̌̌
d

d�
R˙.�/

ˇ̌̌̌
� C for C D C.kV kL1;3/:(4.7)

In particular, (4.6) and (4.7) follow from [3, sec. 3] and (4.5) follows from the-
orem 2.3 in [20].

Set now ‰.x; �/ D T .�/fC.x; �/ for � � 0 and ‰.x; �/ D T .��/f�.x;��/

for � � 0. Then the distorted Fourier transform associated to4V is defined by

(4.8) FV f .�/ D .2�/
� 1
2

Z
R

‰.x; �/f .x/dx;

and we have the inverse formula

(4.9) f .x/ D .2�/�
1
2

Z
R

‰.x; �/FV f .�/d�:

Our first application of this theory is the following lemma:

LEMMA 4.3. Let V 2 S.R/ and �.4V / D .�1; 0�; then for any s > 1
2

there
exists a fixed C such that

(4.10) kf kL1x � Ckf k
1�1=.2s/

L2x
kf k

1=.2s/

PH s
V

:

PROOF. We claim that kf kL1x � c0kFV f kL1x for a fixed c0 D c0.V /. As-
suming the claim, we have

kFV f kL1x � kFV f kL2.j�j��/
p
2�

1
2 C kj�jsFV f kL2.j�j��/kj�j

�s
kL2.j�j��/

�
p
2�

1
2 kf kL2x C Cs�

1
2
�s
kf k PH s

V
with Cs WD

r
2

2s � 1
:

For � D .2�1=2Cskf k PH s
V
/1=skf k

�1=s

L2x
the last two terms are equal and we get

(4.10).
We now prove kf kL1x � c0kFV f kL1x . By (4.9) it suffices to prove j‰.x; �/j �

C0 for fixed C0. It is not restrictive to assume x > 0. Then for � � 0 we get the
bound by ‰.x; �/ D T .�/fC.x; �/ and Lemmas 4.1 and 4.2. Similarly for � < 0

we get a similar bound by

‰.x; �/ D T .��/f�.x;��/ D RC.��/fC.x;��/C fC.x; �/: �
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Consider now a function u.t; x/. By Lemma 4.3 we have for s > 1
2

:

(4.11)
ku.t; �/kL1x � CkM.�t /u.t; �/k

1�1=.2s/

L2x
kM.�t /u.t; �/k

1=.2s/

PH s
V

D
C
p
t
ku.t; � /k

1�1=.2s/

L2x
kjJV .t/j

su.t; � /k
1=.2s/

L2x
:

5 Proof of Theorem 1.1
Using the notation of Proposition 3.5 we have the following equation:

(5.1) .i@t C4V /jJV jsu � its�1M.t/A.s/M.�t /uC �jJV jsF D 0

with F D jujp�1u. Let 0 < s < 2. Then by Strichartz estimates, which follow by
[20], there are fixed C 0s and C such that

(5.2)

kjJV j
sukL1..1;T /;L2x/

� CkjJV j
s.1/ukL2x C C

0
skt

s�1A.s/M.�t /ukL4=3..1;T /;L1x/

C CkjJV j
sF kL1..1;T /;L2x/:

By combining Lemma 3.6, (4.11), and the conservation of charge we get for every
ı > 0 a constant M.ı/ such that

kts�1A.s/M.�t /uk
L
4=3
t L1x

� Cskt
s�1
kukL1x kL4=3t

� Dskt
s� 3

2 k
L
4=3
t
ku.1/k

1�1=.2s/

L2x
kjJV j

suk
1=.2s/

L1t L
2
x

�M.ı/ku.1/kL2x C ıkjJV j
sukL1t L

2
x
;

where we have considered s < 3
4

so that ts�3=2 2 L4=3.1;1/: Inserting this
estimate in (5.2) we conclude

kjJV j
sukL1..1;T /;L2x/ � CkjJV j

su.1/kL2x C Csku.1/kL2x
C CskjJV j

sF kL1..1;T /;L2x/:

We shall use the following result:

LEMMA 5.1. We have

(5.3) kjJV j
sf kL2x � kJ

sf kL2x for 0 � s <
1

2
:

For s 2 .1
2
; 1/ and any " 2 .0; 1

2
/ we have

kjJV j
sf kL2x � Ct

sC"� 1
2

�
kjJ j

1
2
�"f kL2x C kjJ j

sf kL2x

�
;(5.4)

kjJ jsf kL2x � Ct
sC"� 1

2

�
kjJV j

1
2
�"f kL2x C kjJV j

sf kL2x

�
:(5.5)

PROOF. (5.3) is a simple consequence of Corollary 6.7 in the next section,
which states

(5.6) k.�4/
s
2f kL2x � k.�4C V /

s
2f kL2x for 0 < s <

1

2
.
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To prove (5.4) (respectively, (5.5)) we use

k
p
�4V f k

2
L2x
� k
p
�4f k2

L2x
C kVf 2kL1x ;

kVf 2kL1x � kV kLp
0

x
kf k2

L
2p
x

� Ck.�4/
1
4
� ı
2f k2

L2x

for
1

2p
D
1

2
�

�
1

2
� ı

�
D ı

(respectively, the inequalities with 4V and 4 interchanged: this will also use
(5.6)). We thus obtain

k
p
�4V f kL2x � Ck.�4/

1
4
� ı
2 .1C .�4/

1
4
C ı
2 /f kL2x

(respectively, the inequality with4V and4 interchanged). Interpolation with (5.6)
for s D 1

2
� ı yields

k.�4V /
s
2f kL2x � Ck.�4/

1
4
� ı
2 .1C .�4/

s
2
� 1
4
C ı
2 /f kL2x

� C.k.�4/
1
4
� ı
2f kL2x C k.�4/

s
2f kL2x /

(respectively, the inequality with 4V and 4 interchanged). Multiplying this esti-
mate by ts and using again the fact that M.t/ is an L2x bounded operator, we see
that

kjJV j
sf kL2x � C

�
ts�

1
2
Cı
kjJ j

1
2
�ıf kL2x C kjJ j

sf kL2x

�
;

and for " D ı we get (5.4) (respectively, (5.5)). �

By Lemma 5.1 we get

kjJV j
sukL1..1;T /;L2x/ � Csku.1/k†s C CskjJV j

sF kL1..1;T /;L2x/;

since
kjJ jsu.1/kL2x � Cku.1/k†s :

If we can show that for a fixed C for all T

(5.7) kjJV j
sukL1..1;T /;L2x/ � Cku.1/k†s ;

then by (4.11) this will yield (1.2). Then scattering (1.3) will follow from (1.2) by
a standard argument that we do not repeat.

By combining Lemma 5.1 with lemma 2.3 in [12], which states that

kjJ j .jujp�1u/kL2x � Ckuk
p�1

L1x
kjJ jukL2x for 0 �  < 2 and p � 3;

we have
kjJV j

s.jujp�1u/kL1..1;t/;L2x/

� C
ht 0isC"� 12 .kjJ j 12�".jujp�1u/kL2x C kJ s.jujp�1u/kL2x /L1.1;t/

� C 0
ht 0isC"� 12 kukp�1

L1x
.kjJ j

1
2
�"ukL2x C kjJ j

sukL2x /

L1.1;t/

� C 0
ht 0isC"� 12 kukp�1

L1x
.kjJV j

1
2
�"ukL2x C kjJ j

sukL2x /

L1.1;t/

:
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Again by Lemma 5.1 we can continue the estimate as follows:

� � � � C 0
ht 0i2sC2"�1kukp�1

L1x

�
kjJV j

1
2
�"ukL2x C kjJV j

sukL2x

�
L1.1;t/

� C 0
Z t

1

ht 0i2.sC"/�
pC1
2

�
kuk2s�1

L2x
kjJV j

sukL2x

�p�1
2s

�
�
kjJV j

1
2
�"ukL2x C kjJV j

sukL2x

�
dt 0

where in the last line we used (4.11).
Since p > 3 we can choose s > 1

2
and " > 0 such that pC1

2
� 2s � 2" > 1.

Then

kjJV j
s.jujp�1u/kL1tL

2
x
�

Csku.1/k
.p�1/ 2s�1

2s

L2x
kjJV j

suk
p�1
2s

L1t L
2
x

�
kjJV j

1
2
�"ukL1t L

2
x
C kjJV j

sukL1t L
2
x

�
on any interval .1; t/ with a constant Cs independent of t . Notice that the norm
kjJV j

1=2�"ukL1t L
2
x

can be bounded in terms of the other norms using interpola-
tion; hence the proof of (5.7) follows by a standard continuity argument provided
that we fix the constant �0 > 0 in the statement of Theorem 1.1 sufficiently small.

6 Equivalence of Homogeneous Sobolev Norms
Along this section the functions m˙.x; �/, f˙.x; �/, T .�/, and R˙.�/ are the

ones defined in Section 4. Also, the norm kV kLp;q is the one defined in the
same section. We consider for an appropriate cutoff ' 2 C10 .RC; Œ0; 1�/ a Paley-
Littlewood partition of unity

1 D
X
j2Z

'.t2�j /; t > 0:

Then for any s 2 R we have

k.�4V /
s
2f k2

L2
�

X
j2Z

22js
˝
'
�
2�j

p
�4V

�
f; f

˛
L2x

�

X
j2Z

22js
'�2�jp�4V �f 2L2x :

We have the following result:

LEMMA 6.1. Let V be a real valued Schwartz function such that �.4V / D .�1; 0�
and T .0/ is equal to 0 or 1. Then for any pair of integer numbers j; k 2 Z with
k � j and for any f 2 S.R/ such that

(6.1) supp yf .�/ � fj�j � 2kg;

the following inequality holds for CV D C.kV kL1;3/:

(6.2) h'
�
2�j

p
�4V

�
f; f iL2x � CV 2

�jk�j j
kf k2

L2x
:
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PROOF. For '.j� j/ WD �2 .j� j/ we have˝
'
�
2�j

p
�4V

�
f; f

˛
L2x
D Aj .f /C Bj .f /;

Aj .f / WD �2
�2j

˝
 
�
2�j

p
�4V

�
f; @2xf

˛
L2x
;

Bj .f / WD 2
�2j

˝
 
�
2�j

p
�4V

�
f; Vf

˛
L2x
:

It is straightforward that

(6.3)
jAj .f /j D 2

�2j
ˇ̌˝
 
�
2�j

p
�4V

�
f; @2xf

˛
L2x

ˇ̌
� 2�2j

 �2�jp�4V �f L2xk@2xf kL2x � C22k�2j kf k2L2x :
Notice that this constant C depends on the cutoff ' but not on V . This follows
from the fact that the distorted Fourier transform (4.8) is an isometry.

The next lemma in conjunction with (6.3) will complete the proof of Lemma
6.1.

LEMMA 6.2. Assume the hypothesis of Lemma 6.1. Then there exists a fixed C D
C.kV kL1;3/ such that jBj .f /j � C2�jk�j jkf k2

L2x
.

PROOF. The first step in the proof is the following representation formula:

LEMMA 6.3. We have

(6.4)

. .2�j
p
�4V /f /.x/

D �
1

2�

Z
R

d�  .2�j �/

�

�
T .�/mC.x; �/

Z
y<x

m�.y; �/e
i�.x�y/f .y/dy

C T .��/m�.x;��/

Z
y>x

mC.y;��/e
i�.x�y/f .y/dy

�
:

PROOF. We recall the limiting absorption principle:

(6.5)
g.�4V /.x; y/ D

Z 1
0

g.�/Ea:c:.d�/.x; y/;

Ea:c:.d�/.x; y/ D
1

2� i
�
RC
�4V

.x; y; �/ �R��4V .x; y; �/
�
d�;

where for � > 0 and x < y (for x > y exchange x and y in the right-hand side)

(6.6) R˙�4V .x; y; �/ D
f�.x;˙

p
�/fC.y;˙

p
�/

w.˙
p
�/

for the Wronskian

(6.7) w.�/ WD .@xfC/.x; �/f�.x; �/ � fC.x; �/@xf�.x; �/:
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Then for x < y (for x > y exchange x and y in the right-hand side)

g.�4V /.x; y/ D

Z 1
0

�g.�2/

�
f�.x; �/fC.y; �/

w.�/
�
f�.x;��/fC.y;��/

w.��/

�
d�

� i

D �
1

2�

Z
R

T .�/g.�2/f�.x; �/fC.y; �/d�;

where we used the formula 1
T.�/
D

w.�/
2i� ; see [3, p. 144]. Therefore, making also a

change of variable, we get

(6.8)

g.�4V /f .x/

D �
1

2�

Z
R

d� g.�2/

�
T .�/fC.x; �/

Z x

�1

f�.y; �/f .y/dy

C T .��/f�.x;��/

Z 1
x

fC.y;��/f .y/dy

�
:

For g.�/ D  .2�j
p
�/ and f˙.x; �/ D e˙ix�m˙.x; �/ we get Lemma 6.3. �

We continue with the proof of Lemma 6.2 by writing

Bj .f / D B
.1/
j .f /C B

.2/
j .f /

with

(6.9)

B
.1/
j .f /

WD �
1

2�
2�2j

Z
R

dx V.x/f .x/

�

Z
R

d�  .2�j �/

�
T .�/mC.x; �/

Z
y<x

.m�.y; �/ � 1/e
i�.x�y/f .y/dy

C T .��/m�.x;��/

Z
y>x

.mC.y;��/ � 1/e
i�.x�y/f .y/dy

�

and

(6.10)

B
.2/
j .f / WD �

1

2�
2�2j

Z
R

dx V.x/f .x/

�

Z
R

d�  .2�j �/

�
T .�/mC.x; �/

Z
y<x

ei�.x�y/f .y/dy

C T .��/m�.x;��/

Z
y>x

ei�.x�y/f .y/dy

�
:
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LEMMA 6.4. Assume that f , j , and k are as in Lemma 6.1. Let V be a real-valued
Schwartz function such that �.4V / D .�1; 0�. We do not impose other hypothe-
ses on V . Then, for fixed C D C.kV kL1;3/, we have jB.1/j .f /j � C2k�j kf k2

L2x
.

PROOF. The inequality follows from the following:

(6.11)
ˇ̌
B
.1/
j .f /

ˇ̌
� C2�j khxi3V kL1xkf k

2
L1x
� C 02k�j kf k2

L2x
;

with C D C.kV kL1;3/, and where we used the Bernstein inequality

(6.12) kf kL1x . 2
k
2 kf kL2x :

To prove the first inequality in (6.11), observe that the second line of (6.9) can
be bounded by C hxi3kf kL1x with C D C.kV kL1;1/ by using the following esti-
mates, which follow from (4.2):Z x

�1

jm�.y; �/ � 1jjf .y/jdy . kf kL1x

�Z x^0

�1

hyi�2 dy C

Z x_0

0

hyidy

�
. hxi2kf kL1x

and

jmC.x; �/j . hxi:

Proceeding as above, the fourth line of (6.9) can be bounded by C hxi3kf kL1x
with C D C.kV kL1;1/ using estimates likeZ 1

x

jmC.y;��/ � 1jjf .y/jdy . kf kL1x

�Z 1
x_0

hyi�2 dy C

Z 0

x^0

hyidy

�
. hxi2kf kL1x

and

jm�.x; �/j . hxi:

This proves (6.11) and so also Lemma 6.4. �

LEMMA 6.5. In addition to the hypotheses of Lemma 6.4, let us assume now that
either T .0/ D 0 or T .0/ D 1. Then we have jB.2/j .f /j � C2k�j kf k2

L2x
for fixed

C D C.kV kL1;3/.
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PROOF. We use (4.4) and substitute

(6.13) T .��/m�.x;��/ D RC.��/e
�2i�xmC.x;��/CmC.x; �/:

We then write

B
.2/
j .f / D �

1

2�
2�2j

Z
R

dx V.x/f .x/

�

Z
R

d�  .2�j �/

�
T .�/mC.x; �/

Z
y<x

ei�.x�y/f .y/dy

CmC.x; �/

Z
y>x

ei�.x�y/f .y/dy

CRC.��/mC.x;��/

Z
y>x

e�i�.xCy/f .y/dy

�
:

Notice that Lemma 6.1 is elementary for jk � j j � �0 for any preassigned �0 > 1.
So we will focus only on the case k� j > �0 with a fixed sufficiently large �0. We
write

(6.14)
 .2�j �/

Z
y>x

ei�.x�y/f .y/dy D  .2�j �/ei�x

p
2� yf .��/‚ …„ ƒZ

R

e�i�yf .y/dy;

� .2�j �/

Z
y<x

ei�.x�y/f .y/dy D � .2�j �/

Z
y<x

ei�.x�y/f .y/dy;

because  .2�j �/ yf .��/ � 0 for jj � kj > �0 and �0 sufficiently large.
By (6.14) we can write

B
.2/
j .f / D �

1

2�
2�2j

Z
R

dx V.x/f .x/

�

Z
R

d�  .2�j �/

�
.T .�/ � 1/mC.x; �/

Z
y<x

ei�.x�y/f .y/dy

CRC.��/mC.x;��/

Z
y>x

e�i�.xCy/f .y/dy

�
:
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We rewrite the above as

(6.15)

B
.2/

j
.f /

D �
1

2�
2�2j

Z
R

dx V.x/f .x/

�

Z
R

d�  .2�j �/

�
ŒT .�/� 1�RC.��/�mC.x; �/

Z
y<x

ei�.x�y/f .y/dy

�RC.��/
�
e�i�xmC.x;��/� e

i�xmC.x; �/
� Z
y<x

e�i�yf .y/dy

CRC.��/mC.x;��/e
�i�x

Z
R

e�i�yf .y/dy

�
:

The last factor is
p
2� yf .��/ D 0 on the support of  .2�j �/ as after (6.14). So

the last line in (6.15) cancels out.
We now focus on the terms originating from the fourth line of (6.15). We will

set fx.t/ WD f .t C x/ and Hfx.�/ WD
R 0
�1

e�i�yf .y C x/dy: We have

Hg.�/ D

Z 0

�1

e�i�yg.y/dy D

Z
R

y�.�1;0�.�� � �/yg.�/d� D y�.�1;0� � yg.��/;

where here and below we use definition (2.1) of the Fourier transform.
We also have the relation y�.�1;0�.�/ D �i.2�/�1=2.� � i0/�1 [18, chap. 3,

p. 206] and take into account the definition of the Fourier transform there. By the
Sokhotskyi-Plemelj formula, .� � i0/�1 D P:V:1

�
C i�ı.�/. Then

(6.16)

Hg.�/ D y�.�1;0� � yg.�/ D .2�/
� 1
2 .� yg.��/ � iHg.��//;

Hg.�/´ lim
�!0C

Z
j��� j��

yg.�/

� � �
d�:

By Lemma 4.1 we get

(6.17)

je�i�xmC.x;��/ � e
i�xmC.x; �/j

� je�2i�x
� 1j jmC.x; �/j C jmC.x;��/ �mC.x; �/j

� .C1 C C2/hxi
2
j� j;

where the first term in the second line can be bounded by using (4.2) and the second
term in the second line can be bounded using the mean value theorem and (4.3),
and where Cj D C.kV kL1;j /.

By (6.17) and by jRC.��/j � C h�i�1 with C D C.kV kL1;1/, which follows
from (4.5), the terms originating from the fourth line of (6.15) can be bounded by
a constant C D C.kV kL1;2/ times

(6.18) 2�2j kf kL1x

Z
R

dxjV.x/jhxi2
Z
R

d� j .2�j �/j j� jh�i�1jH yfx.�/j:
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By jj � kj > �0, by yfx.�/ D e�i�x yf .�/, and by (6.16), we get

 .2�j �/jH yfx.�/j D  .2
�j �/jH yfx.�/j:

We have then the upper bound

j(6.18)j � 2�2j kf kL1x kV kL1;2
Z

j� j�2j

d�
j� j

h�i2

Z
j�j�2k

j yf .�/j

j� � �j
d�

� 2�j kf kL1x kV kL1;2

Z
j�j�2k

j yf .�/jd�L2x

� C 02
k
2
�j
kf kL1x kf k � C2

k�j
kf k2

L2x

where we used j� � �j � j� j and where C D C.kV kL1;2/.
Now we consider the contribution from the third line of (6.15). We assume

(6.19) T .0/ � 1 �RC.0/ D 0:

(6.19) occurs if T .0/ D 1 (thenR˙.0/ D 0 by the identity (4.6)) and in the generic
case T .0/ D 0 (whenR˙.0/ D �1, see [3, p. 147], as can be seen by setting � D 0
in (4.4)). By (6.19) and (4.7) for the bound near � D 0 and by (4.5) for the bound
away from 0, we get

jT .�/ � 1 �RC.��/j � C
j� j

h�i2
with C D C.kV kL1;3/:

Then, by a similar argument to that for the fourth line of (6.15) we see that the
contribution is bounded by C2k�j kf k2

L2x
with C D C.kV kL1;3/. �

Lemmas 6.4 and 6.5 together yield Lemma 6.2. �

The proof of Lemma 6.1 follows by combining (6.3) with Lemma 6.2. �

We remark that if T .0/ D 2a
1Ca2

with a ¤ 0, then RC.0/ D 1�a2

1Ca2
; see, for

instance, [19, p. 512]. Then the right-hand side of (6.19) equals 2 a�1
1Ca2

¤ 0 for
a ¤ 1, and our proof of Lemma 6.5 breaks down.

We have proved (6.2) for k � j . The next lemma shows that (6.2) also continues
to hold for k > j .

LEMMA 6.6. Let V be a real-valued Schwartz function with �.4V / D .�1; 0�

and with T .0/ equal to 0 or 1. For any integer numbers j; k 2 Z with k > j and
for any f 2 S.R/ satisfying (6.1), inequality (6.2) holds for a CV of the same type.

PROOF. The proof is similar to that of Lemma 6.1.
We have f De'.2�kp�4/f for somee' 2 C10 .RC; Œ0; 1�/, and we have˝
'
�
2�j

p
�4V

�
f; f iL2x D �2

�2k
˝
'
�
2�j

p
�4V

�
f;4 

�
2�k
p
�4

�
f
˛
L2x
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with �2 .�/ De'.�/. Then we have˝
'
�
2�j

p
�4V

�
f; f

˛
L2x
D �2�2k

˝
4V '

�
2�j

p
�4V

�
f; 

�
2�k
p
�4

�
f
˛
L2x

� 2�2k
˝
V'
�
2�j

p
�4V

�
f; 

�
2�k
p
�4

�
f
˛
L2x
:

It is straightforward that, for a constant C independent of V ,

(6.20) 2�2k
ˇ̌˝
4V '

�
2�j

p
�4V

�
f; 

�
2�k
p
�4

�
f
˛
L2x

ˇ̌
� C22j�2kkf k2

L2x
:

In what follows we prove the following for C D C.kV kL1;3/, which with (6.20)
yields Lemma 6.6:

(6.21) 2�2k
ˇ̌˝
V'
�
2�j

p
�4V

�
f; 

�
2�k
p
�4

�
f
˛
L2x

ˇ̌
� C2j�kkf k2

L2x
:

Denote by K.x; y/ the integral kernel of '.2�j
p
�4V /. Then, setting g.�/ D

'.2�j
p
�/, from (6.8) we get

K.x; y/ � �x>y.x; y/

Z
R

'.2�j �/mC.x; �/m�.y; �/T .�/e
i�.x�y/

C �x<y.x; y/

Z
R

'.2�j �/m�.x;��/mC.y;��/T .��/ e
i�.x�y/d�

with �x?y.x; y/ D 1 for x ? y and �x?y.x; y/ D 0 for x 7 y. Then the bound

(6.20) is obtained, for ‰.x/ D  .
p
�4

2k
/f , by bounding

(6.22)

2�2k
Z
R

dx ‰.x/V .x/

Z
R

d� '.2�j �/

�

�
T .�/mC.x; �/

Z
y<x

m�.y; �/e
i�.x�y/f .y/dy

C T .��/m�.x;��/

Z
y>x

mC.y;��/e
i�.x�y/f .y/dy

�
:

We split (6.22) as I1 C I2 where

(6.23)

I1 WD 2
�2k

Z
R

dx ‰.x/V .x/

Z
R

d� '.2�j �/

�

�
T .�/mC.x; �/

Z
y<x

.m�.y; �/ � 1/e
i�.x�y/f .y/dy

C T .��/m�.x;��/

Z
y>x

.mC.y;��/ � 1/e
i�.x�y/f .y/dy

�
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and

(6.24)

I2 WD 2
�2k

Z
R

dx ‰.x/V .x/

Z
R

d� '.2�j �/

�

�
T .�/mC.x; �/

Z
y<x

ei�.x�y/f .y/dy

C T .��/m�.x;��/

Z
y>x

ei�.x�y/f .y/dy

�
:

We start with I1 and show for C D C.kV kL1;3/ that

(6.25) jI1j � C2
j�k
kf k2

L2x
:

To prove (6.25) we focus for definiteness on the second line of (6.23) (the con-
tribution from the third can be treated similarly). Then we have

2�2k
Z
R

dxj‰.x/V.x/j

Z
R

d� j'.2�j �/jsecond line of (6.23)j

. 2�2k
Z
R

dxj‰.x/V.x/jhxi

�

Z
j� j�2j

d�

�Z 0^x

�1

hyi�2jf .y/jdy C

Z x_0

0

hyijf .y/jdy

�

� C 02j�2kk‰kL1x kf kL1x � C
002j�kk 

�
2�k

p
�4V

�
f kL2xkf kL2x

� C2j�kkf k2
L2x

with constants C.kV kL1;3/ and where we used Bernstein inequality (6.12).
We turn now to I2 and show for C D C.kV kL1;3/

(6.26) jI2j � C2
j�k
kf k2

L2x
:

We substitute (6.13) to get

I2 D 2
�2k

Z
R

dx ‰.x/V .x/

�

Z
R

d� '.2�j �/

�
.T .�/ � 1/mC.x; �/

Z
y<x

ei�.x�y/f .y/dy

CRC.��/mC.x;��/

Z
y>x

e�i�.xCy/f .y/dy

�
:
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We rewrite, proceeding as for (6.15),

(6.27)

I2 D 2
�2k

Z
R

dx‰.x/V.x/

�

Z
R

d� '.2�j �/

�
.T .�/� 1�RC.��//mC.x; �/

Z
y<x

ei�.x�y/f .y/dy

�RC.��/
�
e�i�xmC.x;��/� e

i�xmC.x; �/
� Z
y<x

e�i�yf .y/dy

�
:

Then proceeding as in Lemma 6.5 we get for C D C.kV kL1;3/

jI2j � C2
�2k
k‰kL1x

Z
R

dxjV.x/jhxi2
Z
d� j'.2�j �/j

j� j

h�i2
jH yfx.�/j

with H yfx.�/ WD
R 0
�1

e�i�yf .y C x/dy as before. From now on we focus only
on k � j > �0 and we get

jI2j � C12
�2k
k‰kL1x kV kL1;2

Z
j� j�2j

d�
j� j

h�i2

Z
j�j�2k

j yf .�/j

j� � �j
d�

� C22
2j�2k

k‰kL1x 2
�k

Z
j�j�2k

j yf .�/jd�

� C32
2j�2k

kf kL2x2
�k
2

 �2�kp�4�f 
L1x
� C22j�2kkf k2

L2x
;

where the constants are C.kV kL1;3/. This completes the proof of (6.26) which,
along with (6.25), yields (6.21) and completes the proof of Lemma 6.6. �

From Lemma 6.6 and Lemma 6.1 we arrive at the following crucial result.

COROLLARY 6.7. For 0 � s < 1
2

and for any f 2 C10 .R/ we have

k.�4/
s
2f kL2x � k.�4C V /

s
2f kL2x :

PROOF. The proof of & is as follows (that of . is similar): We have

k.�4C V /
s
2f k2

L2x

�

X
j;k;l2Z

22js
�
'

�p
�4V

2j

�
'

�p
�4

2k

�
f; '

�p
�4V

2j

�
'

�p
�4

2l

�
f

�
L2x

� C
X

j;k;l2Z

22js2�
1
2
jj�kj� 1

2
jj�lj

'�
p
�4

2k

�
f


L2x

k'

�p
�4

2l

�
f kL2x

� C 0
X
k2Z

22ks
'�
p
�4

2k

�
f

2
L2x

� C 0k.�4/
s
2f k2

L2x
:
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Here we have used Young’s inequality and, for a fixed C ,

2�ls
X
j;k

22js2�
1
2
jj�kj� 1

2
jj�lj2�ks

D 2�ls
X
j

22js2�
1
2
jj�lj

�
2
j
2

X
k�j

2�ks�
k
2 C 2�

j
2

X
k�j�1

2
k
2
�ks

�
� 2�ls

X
j

22js2�
1
2
jj�lj2�js

D 2
l
2
�ls

X
j�l

2js�
1
2
j
C 2�

l
2
�ls

X
j�l�1

2jsC
1
2
j
� C: �

Remark 6.8. The proof of Corollary 6.7 also continues to hold when from hypoth-
esis (H) we drop the requirement that �.4V / D .�1; 0�, but for f we require
additionally hf; �iL2 D 0 for all eigenfunctions � of4V .

7 Proof of Lemma 3.6
LEMMA 7.1. For V1 D 2V C x d

dx
V , for A.s/ the operator in (3.2), and for

0 < s < 2 we have for a constant c.s/

(7.1) A.s/ D c.s/

Z 1
0

�
s
2 .� �4V /

�1V1.� �4V /
�1 d�:

PROOF. Set S WD x@x . Recall the formula

.�4V /
s
2 D c.s/.�4V /

Z 1
0

�
s
2
�1.� �4V /

�1 d�

for 0 < s < 2 and Œc.s/��1 D
R1
0 �

s
2
�1.� C 1/�1d� . Then

(7.2) A.s/ D s.�4V /
s
2 C c.s/

Z 1
0

�
s
2
�1ŒS;�4V .� �4V /

�1�d�:

We have

ŒS;�4V .� �4V /
�1�

D ŒS;�4V �.� �4V /
�1
�4V ŒS; .� �4V /

�1�

D ŒS;�4V �.� �4V /
�1
C4V .� �4V /

�1ŒS;�4V �.� �4V /
�1

and also

ŒS;�4V � D ŒS;�4�C ŒS; V � D 24C SV D 2.4� V /C V1 D 24V C V1:
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Then we get

ŒS;�4V .� �4V /
�1�

D 24V .� �4V /
�1
C 242V .� �4V /

�2

C V1.� �4V /
�1
C4V .� �4V /

�1V1.� �4V /
�1

D 2�4V .� �4V /
�2
C �.� �4V /

�1V1.� �4V /
�1:

(7.3)

Inserting this into (7.2) we get

A.s/ D s.�4V /
s
2 C 2c.s/

Z 1
0

�
s
24V .� �4V /

�2 d�

C c.s/

Z 1
0

�
s
2 .� �4V /

�1V1.� �4V /
�1 d�:

(7.4)

Then (7.1) follows from the fact that the first line of the right-hand side is 0: for
y > 0 we have, integrating by parts,

�2c.s/y

Z 1
0

�
s
2 .�Cy/�2d� D �2c.s/y

s

2

Z 1
0

�
s
2
�1.�Cy/�1d� D �sy

s
2 : �

LEMMA 7.2. Given hypothesis (H) there is a fixed C D C.kV kL1;1/ such that for
any f 2 S.R/ and at any x 2 R we have

(7.5) jŒ.� �4V /
�1f �.x/j � C h�i�

1
2

Z
R

e�
p
� jx�yj

hyijf .y/jdy:

PROOF. Consider the Wronskian w.
p
�/ defined in (6.7). Recall that, since

V 2 S.R/, we have w.
p
�/ > 0 for � > 0 and w.

p
�/ �

p
� as � ! C1. The

hypothesis that T .0/ D 0 implies that w.0/ > 0.
We have

Œ.� �4V /
�1f �.x/ D

Z x

�1

mC.x;
p
�/m�.y;

p
�/

w.
p
�/

e�
p
� jx�yjf .y/dy

C

Z C1
x

mC.y;
p
�/m�.x;

p
�/

w.
p
�/

e�
p
� jx�yjf .y/dy:

We will use 0 < w�1.
p
�/ < C1h�i

�1=2 for a fixed C1 D C.kV kL1;1/. Inequality
(7.5) follows in elementary fashion by the following inequalities, where C2 D
C.kV kL1;1/ is a fixed sufficiently large number:

� for x � 0 we have jmC.x;
p
�/m�.y;

p
�/j � C2hyi,

� for x � 0 we have jm�.x;
p
�/mC.y;

p
�/j�RC.y � x/ � C2hxi �

C2hyi,
� for x < 0 we have jmC.x;

p
�/m�.y;

p
�/j�RC.x � y/ � C2hxi �

C2hyi,
� for x < 0 we have jm�.x;

p
�/mC.y;

p
�/j � C2hyi. �
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LEMMA 7.3. Under hypothesis (H) there is a fixed C such that

(7.6) k.� �4V /�1V1.� �4V /�1f kL1x �

C

�
kV kL1;2 C

 ddxV

L1;3

�
��1h�i�1kf


L1x

:

PROOF. We can factorize V1 D hxi�2V2 with V2 2 L1.R/. We have

k.� �4V /
�1V1.� �4V /

�1f kL1x �

k.� �4V /
�1
hxi�1kL1x!L1xkV2kL1xkhxi

�1.� �4V /
�1
kL1x !L

1
x
:

and

k.� �4V /
�1
h � i
�1f kL1x � C h�i

� 1
2 ke�

p
� j�j
� .h � ijh � i�1f . � /j/kL1x

� C 0��
1
2 h�i�

1
2 kf kL1x :

The following bound with the same C 0 follows by duality:

khxi�1.� �4V /
�1f kL1x � C

0��
1
2 h�i�

1
2 kf kL1x :

Finally, by V2 D hxi2.2V CxV 0/ it follows that kV2kL1 . kV kL1;2Ck ddxV kL1;3 :
This yields inequality (7.6). �

PROOF OF LEMMA 3.6. Inequality kA.s/f kL1x � Ckf kL1x for fixed C > 0

follows by Lemmas 7.1 and 7.3, which justify the following inequalities:

kA.s/f kL1x � c.s/

Z 1
0

�
s
2 k.� �4V /

�1V1.� �4V /
�1f kL1x d�

� C 0kf kL1x

Z 1
0

�
s
2
�1
h�i�1d� � Ckf kL1x

where the integral converges if 0 < s < 2 and whereC D C.s; kV kL1;2 ; kV
0kL1;3/.

�

Bibliography
[1] Barab, J. E. Nonexistence of asymptotic free solutions for a nonlinear equation. J. Math. Phys.

25 (1984), no. 11, 3270–3273. doi:10.1063/1.526074
[2] Deift, P.; Park, J. Long-time asymptotics for solutions of the NLS equation with a delta po-

tential and even initial data. Int. Math. Res. Not. IMRN 2011 (2011), no. 24, 5505–5624.
doi:10.1007/s11005-010-0458-5

[3] Deift, P.; Trubowitz, E. Inverse scattering on the line. Comm. Pure Appl. Math. 32 (1979), no. 2,
121–251. doi:10.1002/cpa.3160320202

[4] Deift, P.; Zhou, X. A steepest descent method for oscillatory Riemann-Hilbert problems.
Asymptotics for the MKdV equation. Ann. of Math. (2) 137 (1993), no. 2, 295–368.
doi:10.2307/2946540

[5] Deift, P.; Zhou, X. Long-time behavior of the non-focusing nonlinear Schrödinger equation.
A case study. New Series: Lectures in Mathematical Sciences, 5. University of Tokyo, Tokyo,
1994.

http://dx.doi.org/doi:10.1063/1.526074
http://dx.doi.org/doi:10.1007/s11005-010-0458-5
http://dx.doi.org/doi:10.1002/cpa.3160320202
http://dx.doi.org/doi:10.2307/2946540


980 S. CUCCAGNA, V. GEORGIEV, AND N. VISCIGLIA

[6] Deift, P.; Zhou, X. Perturbation theory for infinite-dimensional integrable systems on the line.
A case study. Acta Math. 188 (2002), no. 2, 163–262. doi:10.1007/BF02392683

[7] Deift, P.; Zhou, X. Long-time asymptotics for solutions of the NLS equation with initial
data in a weighted Sobolev space. Comm. Pure Appl. Math. 56 (2003), no. 8, 1029–1077.
doi:10.1002/cpa.3034

[8] Dieng, M.; McLaughlin, K. D. T.-R. Long-time asymptotics for the NLS equation via @ meth-
ods. Preprint, 2008. arXiv:0805.2807 [math.AP]

[9] Galtabiar, A.; Yajima, K. Lp boundedness of wave operators for one dimensional Schrödinger
operators. J. Math. Sci. Univ. Tokyo 7 (2000), no. 2, 221–240.

[10] Ginibre, J.; Ozawa, T. Long range scattering for nonlinear Schrödinger and Hartree equa-
tions in space dimension n � 2. Comm. Math. Phys. 151 (1993), no. 3, 619–645.
doi:10.1007/BF02097031

[11] Glassey, R. T. On the asymptotic behavior of nonlinear wave equations. Trans. Amer. Math.
Soc. 182 (1973), 187–200. doi:10.2307/1996529

[12] Hayashi, N.; Naumkin, P. Asymptotics for large time of solutions to the nonlinear Schrödinger
and Hartree equations. Amer. J. Math. 120 (1998), no. 2, 369–389. doi:10.1353/ajm.1998.0011

[13] Klainerman, S. Remarks on the global Sobolev inequalities in the Minkowski space RnC1.
Comm. Pure Appl. Math. 40 (1987), no. 1, 111–117. doi:10.1002/cpa.3160400105

[14] McKean, H. P.; Shatah, J. The nonlinear Schrödinger equation and the nonlinear heat equa-
tion reduction to linear form. Comm. Pure Appl. Math. 44 (1991), no. 8–9, 1067–1080.
doi:10.1002/cpa.3160440817

[15] Ozawa, T. Long range scattering for nonlinear Schrödinger equations in one space dimension.
Comm. Math. Phys. 139 (1991), no. 3, 479–493. doi:10.1007/BF02101876

[16] Strauss, W. Nonlinear scattering theory. Scattering theory in mathematical physics. Proceed-
ings of the NATO Advanced Study Institute, (Denver, 1973), 53–78. NATO Advanced Science
Institutes, Volume C9. Reidel, Dordrecht, 1974.

[17] Strauss, W. A. Nonlinear scattering theory at low energy: sequel. J. Funct. Anal. 43 (1981),
no. 3, 281–293. doi:10.1016/0022-1236(81)90019-7

[18] Taylor, M. E. Partial differential equations. Texts in Applied Mathematics, 23. Springer, New
York, 1996.

[19] Weder, R. The Wk;p-continuity of the Schrödinger wave operators on the line. Comm. Math.
Phys. 208 (1999), no. 2, 507–520. doi:10.1007/s002200050767

[20] Weder, R.Lp�L Pp estimates for the Schrödinger equation on the line and inverse scattering for
the nonlinear Schrödinger equation with a potential. J. Funct. Anal. 170 (2000), no. 1, 37–68.
doi:10.1006/jfan.1999.3507

http://dx.doi.org/doi:10.1007/BF02392683
http://dx.doi.org/doi:10.1002/cpa.3034
http://arxiv.org/abs/0805.2807
http://dx.doi.org/doi:10.1007/BF02097031
http://dx.doi.org/doi:10.2307/1996529
http://dx.doi.org/doi:10.1353/ajm.1998.0011
http://dx.doi.org/doi:10.1002/cpa.3160400105
http://dx.doi.org/doi:10.1002/cpa.3160440817
http://dx.doi.org/doi:10.1007/BF02101876
http://dx.doi.org/doi:10.1016/0022-1236(81)90019-7
http://dx.doi.org/doi:10.1007/s002200050767
http://dx.doi.org/doi:10.1006/jfan.1999.3507


DECAY AND SCATTERING OF SMALL SOLUTIONS OF NLS 981

SCIPIO CUCCAGNA
Department of Mathematics

and Geosciences
University of Trieste
via Valerio 12/1
34127 Trieste TS
ITALY
E-mail: scuccagna@units.it

NICOLA VISCIGLIA
Department of Mathematics
University of Pisa
Largo B. Pontecorvo 5
56127 Pisa PI
ITALY
E-mail: viscigli@dm.unipi.it

VLADIMIR GEORGIEV
Department of Mathematics
University of Pisa
Largo B. Pontecorvo 5
56127 Pisa PI
ITALY
E-mail: georgiev@dm.unipi.it

Received April 2012.

mailto:scuccagna@units.it
mailto:viscigli@dm.unipi.it
mailto:georgiev@dm.unipi.it

	1. Introduction
	2. Definition of |J_V(t)|s
	3. Commutative Properties of |J_V(t)|s
	4. Spectral Theory for _V
	5. Proof of Theorem 1.1
	6. Equivalence of Homogeneous Sobolev Norms
	7. Proof of Lemma 3.6
	Bibliography

