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Pancreatic beta cell failure is the central event leading to dia-
betes. Beta cells share many phenotypic traits with neurons, and
proper beta cell function relies on the activation of several neu-
ron-like transcription programs. Regulation of gene expression
by alternative splicing plays a pivotal role in brain, where it
affects neuronal development, function, and disease. The role of
alternative splicing in beta cells remains unclear, but recent data
indicate that splicing alterations modulated by both inflamma-
tion and susceptibility genes for diabetes contribute to beta cell
dysfunction and death. Here we used RNA sequencing to com-
pare the expression of splicing-regulatory RNA-binding pro-
teins in human islets, brain, and other human tissues, and we
identified a cluster of splicing regulators that are expressed in
both beta cells and brain. Four of them, namely Elavl4, Nova2,
Rbox1, and Rbfox2, were selected for subsequent functional
studies in insulin-producing rat INS-1E, human EndoC-�H1
cells, and in primary rat beta cells. Silencing of Elavl4 and Nova2
increased beta cell apoptosis, whereas silencing of Rbfox1 and
Rbfox2 increased insulin content and secretion. Interestingly,
Rbfox1 silencing modulates the splicing of the actin-remodeling
protein gelsolin, increasing gelsolin expression and leading to
faster glucose-induced actin depolymerization and increased
insulin release. Taken together, these findings indicate that beta

cells share common splicing regulators and programs with neu-
rons. These splicing regulators play key roles in insulin release
and beta cell survival, and their dysfunction may contribute to
the loss of functional beta cell mass in diabetes.

Insulin-secreting pancreatic beta cells share many pheno-
typic traits with neurons. Similarities range from an analogous
physiology and function to similar development and gene
expression (1). Beta cells release insulin using a similar exocy-
totic machinery as used by neurons to release neurotransmit-
ters. Indeed, insulin is stored and secreted using scaffolding
proteins and synaptic-like vesicles similar to neuronal cells
(2– 4), and like neurons, beta cells are able to generate action
potentials in response to different stimuli (5). Despite having
different embryonic origins (6, 7), global gene expression and
active chromatin marks of beta cells are closer to neural tissues
than to any other tissue, including other pancreatic cells (8).
Neurons are phylogenetically older than beta cells, and in some
primitive organisms neurons express insulin and regulate cir-
culating glucose levels (9, 10). Taken together, these findings
suggest that beta cells have evolved into specialized insulin-
secretory cells by adopting, at least in part, neuronal transcrip-
tion programs (1). Supporting this hypothesis, both neurons
and beta cells lose the expression of the transcriptional repres-
sor element-1 silencing transcription factor (REST)5 during dif-
ferentiation (11). REST is expressed in most non-neuronal cells
and acts as a master negative regulator of neurogenesis by
repressing a subset of neuron-specific genes that play a pivotal
role in the development of the neuronal phenotype (12). In beta
cells, the absence of REST allows the expressions of transcrip-
tion factors and genes of the exocytotic machinery that are cru-
cial for beta cell differentiation, survival, and secretory function
(11–15).

Understanding how beta cells acquire neuron-like features has
focused mainly on transcription, but it remains unclear whether
beta cells and neurons share similar post-transcriptional
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regulation. Alternative splicing (AS) is a key post-transcrip-
tional mechanism that allows cells to fine-tune their transcrip-
tome and generate proteome diversity to gain functional spe-
cialization. By regulating splice site selection and inclusion of
alternative exons into mature mRNAs, AS enables individual
genes to produce multiple protein isoforms that often display
different properties or functions (16). AS is particularly wide-
spread in the brain, playing a central role in neuronal develop-
ment, complexity, and physiology (17, 18). Indeed, defects in
splicing regulation are associated with a wide spectrum of neu-
ropsychiatric and neurological disorders (19, 20). Neuron splic-
ing programs are controlled by specific RNA-binding proteins
(RBPs) that regulate the splicing of genes involved in key neu-
ronal functions such differentiation, morphology, migration,
electrophysiological activity, and synapse formation (21–23).

Beta cell failure is the central event leading to diabetes.
Although the role of AS in the development of diabetes remains
to be clarified, recent studies from our group indicate that AS
alterations induced by both inflammation and disease suscep-
tibility genes contribute to beta cell dysfunction and death (24 –
26). Furthermore, we found that the “neuron-specific” splicing
factor Nova1 is expressed in beta cells (24) and regulates AS of
genes involved in exocytosis and apoptosis (27).

In this study, we examined the expression of splicing-regula-
tory RBPs in pancreatic islets, brain, and other human tissues
and detected a group of splicing regulators that are preferen-
tially expressed in human islets and brain. We next focused on
four of them, namely Elavl4 (also known as HuD), Nova2,
Rbfox1, and Rbfox2. We confirmed their expression in pancre-
atic beta cells and identified their roles in beta cell function and
survival. The findings obtained suggest that beta cells and neu-
rons share common splicing programs and indicate that defects
in splicing regulation of common brain-beta cells RBPs may
contribute to beta cell dysfunction and death.

Results

Pancreatic Beta Cells Express Neuron-enriched RNA-binding
Proteins—We used a previous RNA sequencing dataset of
human islets (24) and the Illumina BodyMap 2.0 (GEO:
GSE30611) to compare the expression of 118 splicing-regula-
tory RBPs between human islets and 16 other tissues. Some
brain-expressed RBPs clustered together with the five human
islet preparations evaluated, and we identified a group of RBPs
that are relatively highly expressed in both human islets and
brain (Fig. 1A, yellow square). This includes members of the
ELAVL, RBFOX, and NOVA families of splicing-regulatory
RBPs that have been reported previously to regulate key splic-
ing programs in brain (18, 19). The expression of ELAVL4,
NOVA2, RBFOX1, and RBFOX2 was confirmed in human
islets and in the human insulin-producing EndoC-�H1 cell line
by real time qPCR (Fig. 1, B–E). Of note, NOVA2, RBFOX1, and
RBFOX2, but not ELAVL4, were also well expressed in adipose
tissue. To understand the reasons for the similar RBPs gene
expression pattern observed between human islets and brain,
we assessed whether their expression was under the control of
the transcriptional repressor REST. Gene expression of RBPs in
rat INS-1E cells was analyzed after infection with an adenovirus
encoding REST (Fig. 2A). REST overexpression down-regu-

lated the expression of Snap25 (Fig. 2B), a known target of
REST, but it did not modify the expression of Elavl4, Nova2, or
Rbfox2, suggesting that these genes are not targets of REST in
beta cells (Fig. 2, C, D, and F). REST overexpression down-
regulated the expression of Rbfox1 (Fig. 2E), but the finding
that Rbfox1 is expressed in other non-neuronal tissues (Fig. 1D)
argues against a direct transcriptional regulation by REST.
Compensatory cross-regulation between RBP paralogs was
observed for Elavl4 and Nova2. Elavl4 knockdown (KD) by
small interfering RNA (siRNA) increased the levels of paralog
Elavl1 (Fig. 3, A and B). Similar observations were made for
Nova1 expression under Nova2 KD (Fig. 3, C and D). However,
no compensatory cross-regulation between Rbfox1 and Rbfox2
was observed (Fig. 3, E–H).

Elavl4 Modulates Beta Cell Death—To elucidate the function
of Elavl4 in pancreatic beta cells, we used siRNAs to knock
down Elavl4 in INS-1E, FACS-purified primary rat beta cells,
and EndoC-�H1 cells (Fig. 4, B, F, and H). Elavl4 KD increased
apoptosis under basal conditions but protected against cyto-
kine-induced apoptosis in the three different cell models stud-
ied (Fig. 4, C, G, and I). Elavl4 KD affected neither glucose-
stimulated insulin secretion nor insulin content (data not
shown). Modulation of beta cell death following Elavl4 KD was
secondary to activation of the mitochondrial pathway of apo-
ptosis, as indicated by changes in the expression of cleaved
caspase-3 and -9 measured by Western blotting (Fig. 4, A, D,
and E). To identify the mechanisms underlying Elavl4 KD-in-
duced apoptosis, we assessed the expression of several apopto-
tic regulators of the Bcl-2 family, as well as markers of endo-
plasmic reticulum stress and oxidative stress, but no changes
were detected (data not shown).

Nova2 KD Increases Basal and Cytokine-induced Cell Death
via the Mitochondrial Pathway of Apoptosis—Nova2 was si-
lenced in INS-1E, EndoC-�H1, and FACS-purified primary
rat beta cells (Fig. 5, A, F, and H). Nova2 KD increased INS-1E
cell apoptosis under basal conditions and sensitized these cells
to cytokine-induced apoptosis (Fig. 5B). This was accompanied
by cleavage of caspase-9 and -3, indicating that cell death is
secondary to the activation of the mitochondrial pathway of
apoptosis (Fig. 5, C–E). Nova2 KD also increased apoptosis in
FACS-purified primary rat beta cells and EndoC-�H1 cells (Fig.
5, G and I). Nova2 KD neither affected glucose-stimulated insu-
lin release nor insulin content in INS-1E cells (data not shown).

Silencing of Rbfox1 and Rbfox2 Increases Insulin Secretion
and Content—Rbfox1 and Rbfox2 were independently silenced
in INS1-E cells (Figs. 6, A and B, and 7A). Rbfox1 silencing did
not affect basal or cytokine-induced apoptosis (data not shown)
but induced a significant increase in insulin release after glu-
cose or glucose plus forskolin stimulation (Fig. 6, C and D).
Interestingly, there was a dose-response relation between the
induced Rbfox1 knockdown by the different siRNAs and the
observed increase in insulin secretion. A similar phenotype was
observed following Rbfox2 KD (Fig. 7B). In addition, increased
KATP-channel independent insulin release was observed in
Rbfox1 KD cells following stimulation with KCl (Fig. 6E). More-
over, insulin cellular content was significantly increased follow-
ing Rbfox1 and Rbfox2 silencing (Figs. 6F and 7C). Insulin
mRNA expression was significantly increased following Rbfox1
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KD by siFOX1#2 (the siRNA inducing more marked Rbfox1
inhibition) but not following KD with the less effective
siFOX1#1 (Fig. 6G). To determine whether the observed
increase in insulin secretion was secondary to increased glucose
metabolism and ATP generation or due to augmented exocy-
tosis, we measured glucose oxidation and mitochondrial func-
tion, and we analyzed calcium currents through patch clamp.

No differences in glucose oxidation were observed between
control and Rbfox1 KD cells (Fig. 6H). In line with this, there
were no differences in mitochondrial function parameters
such as glucose-induced respiration, ATP-linked respiration
(response to oligomycin), and maximal respiration (response to
FCCP following oligomycin), as evaluated by oxygen consumption
rate measurements (Fig. 6I). Calcium currents were evoked by

FIGURE 1. Pancreatic beta cells express neuron-enriched RNA-binding proteins. A, heat map representing the expression of RBPs in human islets and in 16
other human tissues. Gene expression was assessed by RNA-sequencing using a previously published dataset consisting of five different human islets
preparations (24) and the Illumina BodyMap 2.0. Expression values were hierarchically clustered using Gene Pattern modules. Blue and red colors indicate low
and high expressed genes, respectively. RBPs showing high expression in brain and in human islets are highlighted by a yellow square. B–E, mRNA expression
of four RBPs assessed by qRT-PCR in human islets (n � 3), insulin-producing EndoC-�H1 cells (n � 3), and in a panel of normal human tissues (n � 1). B, ELAVL4;
C, NOVA2; D, RBFOX1; and E, RBFOX2.

FIGURE 2. Expression of neuron-enriched RBPs after REST overexpression in INS-1E cells. INS-1E cells were infected with adenovirus overexpressing
Renilla luciferase (AdLuc) or REST (AdREST) for 24 h at m.o.i. of 10 or left untreated (NT, non-treated). Expression of the following was measured by qRT-PCR and
normalized by the housekeeping gene Gapdh: A, REST; B, Snap25; C, Elavl4; D, Nova2; E, Rbfox1; and F, Rbfox2. Results are mean � S.E. of four to six independent
experiments. *, p � 0.05; **, p � 0.01; and ***, p � 0.001 versus AdLuc; paired t test.

FIGURE 3. Compensatory regulation within RBPs families. INS-1E cells were transfected with siCTR or siRNAs targeting different RBPs for 48 h. The expression
of the different RBPs was measured by qRT-PCR and normalized by the housekeeping gene Gapdh. Expression of the following was evaluated after Nova2 KD:
A, Elavl4; B, Elavl1. Expression of Nova2 (C) and Nova1 (D) is shown. Expression of Rbfox1 (E) and Rbfox2 (F) was evaluated after Rbfox1 KD. Expression of Rbfox2
(G) and Rbfox1 (H) was evaluated after Rbfox2 KD. mRNA expression values were normalized by the highest value of each experiment, considered as 1. Results
are from 3 to 5 independent experiments. *, p � 0.05; **, p � 0.01 and ***, p � 0.001 versus siCTR; paired t test.

Role of Neuron-enriched RNA-binding Proteins in Beta Cells

FEBRUARY 24, 2017 • VOLUME 292 • NUMBER 8 JOURNAL OF BIOLOGICAL CHEMISTRY 3469

 at U
N

IV
E

R
SIT

A
 D

E
G

L
I ST

U
D

I D
I PISA

 on N
ovem

ber 24, 2017
http://w

w
w

.jbc.org/
D

ow
nloaded from

 

http://www.jbc.org/


depolarizing the cell membrane from a resting potential of �70
mV to voltages ranging from �50 to �50 mV, and the data
obtained were analyzed for charge (Q). Rbfox1 KD cells showed a
tendency to increase charge (Fig. 6, J and K). These findings suggest
that mild electrophysiological alterations may underlie Rbfox1 KD,
but its contribution to the observed phenotype is unclear.

Rbfox1 Regulates Alternative Splicing of Key Genes Control-
ling Insulin Secretion—To identify Rbfox target genes that
might affect insulin release, we re-analyzed a previously pub-

lished dataset that identified 1,059 Rbfox-regulated AS events
in mouse brain (28). Pathway enrichment analysis using IPA
(Ingenuity Systems) and DAVID (david.abcc.ncifcrf.gov) soft-
ware showed that Rbfox-regulated transcripts in brain are
enriched in pathways that can affect insulin secretion in beta
cells, including cytoskeleton organization, vesicle-mediated
transport, and calcium signaling. Three AS events regulated by
Rbfox proteins in brain were selected for evaluation in beta cells
(Fig. 8). Using two independent siRNAs, we confirmed Rbfox1-

FIGURE 4. Elavl4 modulates pancreatic beta cells death. INS-1E cells (A–E), FACS-purified primary rat beta cells (F and G), and EndoC-�H1 cells (H and I) were
transfected with siCTR or independent siRNAs targeting Elavl4 for 48 h and then exposed to the pro-inflammatory cytokines IL-1� � IFN-�. Cytokine exposure
was 24 h for INS-1E cells and 48 h for primary rat beta cells and EndoC-�H1 cells. A, two representative Western blottings showing Elavl4, cleaved caspase-9 and
-3, and �-tubulin (used as loading control) after Elavl4 knockdown in INS-1E cells. B, Western blotting densitometric measurements of Elavl4. C, apoptosis in
INS-1E cells was evaluated by propidium iodide staining. D, Western blotting densitometric measurements of cleaved caspase-9; E, cleaved caspase-3. F, mRNA
expression of Elavl4 in FACS-purified primary rat beta cells measured by qRT-PCR and normalized by the housekeeping gene Gapdh; G, apoptosis evaluated by
propidium iodide staining. H, protein expression of ELAVL4 and �-tubulin (used as loading control) in EndoC-�H1 cells measured by Western blotting. One
representative Western blotting and the densitometric measurements are shown. I, apoptosis in EndoC-�H1 cells evaluated by propidium iodide staining.
mRNA and protein expression values were normalized by the highest value of each experiment, considered as 1. Results are mean � S.E. of three to five
independent experiments. *, p � 0.05, **, p � 0.01, and ***, p � 0.001 versus untreated siCTR; #, p � 0.05 and ##, p � 0.001, versus cytokine-treated siCTR; paired t test.
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dependent splicing modulation for the actin-remodeling pro-
tein gelsolin (Gsn) and the voltage-gated calcium channel 1C
(Cacna1c) (Fig. 8, A and C). Splicing modulation of the insulin
receptor (Insr), however, was observed only with one siRNA
(Fig. 8B). Interestingly, Rbfox1 KD reduced the inclusion of a
frameshift cassette exon in Gsn, reducing the expression of an
isoform predicted to be a target for nonsense-mediated mRNA
decay (Fig. 8A).

Rbfox1 KD-induced Insulin Secretion Is Mediated by the
Actin Remodeling Protein Gelsolin—Gelsolin is a calcium-acti-
vated actin-severing protein that plays a positive role in insulin
secretion. Gelsolin mediates glucose-dependent actin cytoskel-
eton depolymerization and interacts with the t-SNARE protein
syntaxin 4, facilitating the trafficking, docking, and fusion of
insulin granules (29, 30). To evaluate the role of gelsolin in the
observed increase in insulin release following Rbfox1 KD, we
knocked down in parallel both Rbfox1 and gelsolin in INS-1E
cells (Fig. 9). The observed alternative splicing shift follow-
ing Rbfox1 KD was associated with an increase in gelsolin

mRNA expression (Fig. 9B), probably secondary to the de-
crease in the nonsense-mediated mRNA decay-targeted iso-
form observed in Fig. 8A. Knockdown of gelsolin was asso-
ciated with increased Rbfox1 expression (Fig. 9A), indicating
a cross-regulation between both genes. Double KD of Rbfox1
and gelsolin prevented the increase in insulin secretion
detected after Rbfox1 KD alone (Fig. 9C), indicating that the
observed phenotype is probably secondary to alterations in
cytoskeleton remodeling.

Rbfox1 KD Accelerates Actin Depolymerization Kinetics after
Glucose Stimulation—To study whether Rbfox1 KD indeed
affects cytoskeleton organization, we evaluated the dynamics of
depolymerization of actin filaments following stimulation with
glucose using confocal and fluorescence microscopy. Rbfox1
KD did not induce major differences in actin cytoskeleton
organization in cells maintained at 0 mM glucose (Fig. 10A, left
panel), but Rbfox1 KD cells showed less actin stress fibers
(F-actin) after stimulation with 17 mM glucose when com-
pared with control cells (Fig. 10A, right panel). Actin depoly-

FIGURE 5. Nova2 knockdown increases apoptosis in pancreatic beta cells. INS-1E cells (A–E), FACS-purified primary rat beta cells (F and G), and EndoC-�H1
cells (H and I) were transfected with siCTR or independent siRNAs targeting Nova2 for 48 h and then exposed to the pro-inflammatory cytokines IL-1� � IFN-�.
Cytokine exposure was 24 h for INS-1E cells and 48 h for primary rat beta cells and EndoC-�H1 cells. A, protein expression of Nova2 and �-tubulin (used as
loading control) in INS-1E cells was measured by Western blotting. One representative blot and densitometric measurements are shown. Apoptosis in INS-1E
cells was evaluated by propidium iodide staining (B) and by Western blotting for cleaved caspase-9 and cleaved caspase-3 (C). Densitometric measurements
of cleaved caspase-9 (D) and 3 (E) are shown. mRNA expression of Nova2 in FACS-purified primary rat beta cells was measured by qRT-PCR and normalized by
the housekeeping gene Gapdh (F), and apoptosis was evaluated by propidium iodide staining (G). Protein expression of NOVA2 and �-tubulin (used as
loading control) in EndoC-�H1 was measured by Western blotting (H). One representative blot and the densitometric measurements are shown.
Apoptosis in EndoC-�H1 cells was evaluated by propidium iodide staining (I). mRNA and protein expression values were normalized by the highest
value of each experiment, considered as 1. Results are mean � S.E. of three to four independent experiments. *, p � 0.05; **, p � 0.01; and ***, p � 0.001
versus untreated siCTR; #, p � 0.05; ##, p � 0.01; and ###, p � 0.001 versus cytokine-treated siCTR. A and E–H, paired t test. B, D, and E, paired t test with
Bonferroni’s correction.

Role of Neuron-enriched RNA-binding Proteins in Beta Cells

FEBRUARY 24, 2017 • VOLUME 292 • NUMBER 8 JOURNAL OF BIOLOGICAL CHEMISTRY 3471

 at U
N

IV
E

R
SIT

A
 D

E
G

L
I ST

U
D

I D
I PISA

 on N
ovem

ber 24, 2017
http://w

w
w

.jbc.org/
D

ow
nloaded from

 

http://www.jbc.org/


merization was quantified by calculating the ratio between
filamentous and globular actin (F/G-actin). Rbfox1-KD cells
displayed a faster glucose-induced actin depolymerization
when compared with control cells (Fig. 10, B and C). These
differences were more pronounced with siFOX1#2, the
siRNA inducing higher levels of Rbfox1 KD and a more
extreme phenotype, and were prevented by gelsolin silencing
(Fig. 10, A–C). These findings indicate that the observed
increase in insulin secretion following Rbfox KD is secondary

to increased gelsolin expression and consequent enhanced actin
depolymerization.

Discussion

Beta cells and neurons share many similarities in gene tran-
scription, but whether both cell types present similar AS regu-
lation remains an open question. We presently show that some
neuron-enriched splicing regulators are also expressed in pan-
creatic beta cells where they play a major role in regulating beta
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cell survival and function. Our data analysis identified a cluster
of RBPs that are expressed in both brain and in human islets.
This cluster includes members of the Elavl, Nova, and Rbfox
families, which have been implicated in neuronal physiology
and disease (28, 31–35). We found that Elavl4 and Nova2 are
required for beta cell survival, and their depletion leads to acti-
vation of the intrinsic pathway of apoptosis. In contrast, Rbfox1
and Rbfox2 mostly regulate beta cell function, affecting the insulin
secretory capacity but without impact on beta cell viability.

Elavl4 has been implicated in several aspects of mRNA turn-
over and function, including AS, stability, and translation.
Elavl4 acts as a master regulator of neurogenesis, regulating
neuronal survival, function, and plasticity (34, 36 –38). In pan-
creatic beta cells Elavl4 has been shown to regulate insulin
translation (39), autophagy (40), and lipid synthesis (41). Here
we show that Elavl4 also regulates cell survival in beta cells.
Intriguingly, Elavl4 silencing increases basal apoptosis but
protects against cytokine-induced apoptosis in the three differ-

FIGURE 6. Rbfox1 knockdown increases insulin secretion. INS-1E was transfected with siCTR or three independent siRNAs against Rbfox1 (siFOX1#1,
siFOX1#2, and siFOX1#3) for 48 h. A, mRNA expression of Rbfox1 measured by qRT-PCR and normalized by the housekeeping gene Gapdh. B, protein expression
of Rbfox1 and �-tubulin (used as loading control) measured by Western blotting. One representative blot and the densitometric measurements are shown. C,
insulin secretion following Rbfox1 KD evaluated by ELISA after 30 min of incubation with 1.7 mM glucose, 17 mM glucose, or 17 mM glucose plus forskolin (20
�M). D, scatter plots showing individual insulin secretion experiments shown in C. Individual paired experiments are indicated by the same color. E, insulin
secretion after 30 min of incubation with 1.7 mM glucose or 1.7 mM glucose plus 30 mM KCl. Insulin secretion values are expressed as fold increase as compared
with siCTR exposed to 1.7 mM glucose. F, insulin content fold increase as compared with siCTR. G, mRNA expression of Ins2 measured by qRT-PCR and
normalized by the housekeeping gene Gapdh. H, glucose metabolism following exposure to 1.7 or 17 mM glucose after Rbfox1 KD. Values are expressed as fold
increase as compared with siCTR exposed to 1.7 mM glucose. I, oxygen consumption rates (OCR) relative to basal (1.7 mM glucose) following sequential
stimulation with glucose (17 mM), oligomycin (5 �M), FCCP (4 �M), and rotenone (1 �M). J and K, electrophysiological characterization of voltage-gated Ca2�

channels following Rbfox1 KD. J, example trace of currents evoked by a depolarization from �70 to 0 mV in a single siFOX1#2- (lower trace) or siCTR (upper
trace)-transfected cells. K, charge (Q)-voltage (V) relationship in siFOX1#2- (black squares) and siCTR (white circles)-transfected cells. Charge is measured as the
area enclosed by the curve in J. mRNA and protein expression values were normalized by the highest value of each experiment, considered as 1. Results are
mean � S.E. of three to eight independent experiments (A–I). K, results are mean � S.E. of 17–20 cells. A, B, F, G, I, and K: *, p � 0.05; **, p � 0.01, and ***, p � 0.001
versus siCTR. C and D: ***, p � 0.001 versus siCTR exposed to 1.7 mM glucose; #, p � 0.05, and ###, p � 0.001 versus siCTR exposed to 17 mM glucose; &, p � 0.05;
&&, p � 0.01, and &&&, p � 0.001 versus siCTR exposed to 17 mM glucose plus forskolin. F, ***, p � 0.001 versus siCTR exposed to 1.7 mM glucose; ###, p � 0.001
versus siCTR exposed to 30 mM KCl. A, B, F, G, I, and K: paired t test. C–E and H, paired t test with Bonferroni’s correction.

FIGURE 7. Rbfox2 knockdown increases insulin secretion and content. INS-1E cells were transfected with siCTR or siFOX2#1 siRNA for 48 h. A, mRNA
expression of Rbfox2 measured by qRT-PCR and normalized by the housekeeping gene Gapdh. mRNA expression values were normalized by the highest value
of each experiment, considered as 1. B, insulin secretion evaluated by ELISA after 30 min of incubation with 1.7 mM glucose, 17 mM glucose, or 17 mM glucose
plus forskolin (20 �M) following Rbfox2 KD. Values are expressed as fold increase as compared with siCTR exposed to 1.7 mM glucose. Individual paired
experiments are indicated by the same color. C, insulin content was evaluated by ELISA. A and C: *, p � 0.05, and ***, p � 0.001 versus siCTR; paired t test. B: ###,
p � 0.001 versus siCTR exposed to 17 mM glucose, and &&, p � 0.01 versus siCTR exposed to 17 mM glucose plus forskolin; paired t test with Bonferroni’s
correction.

FIGURE 8. Rbfox1 regulates the alternative splicing of key genes related to pancreatic beta cell function. A–C, representative images of agarose gels
showing that Rbfox1 controls alternative splicing of gelsolin (Gsn) (A), insulin receptor (Insr) (B), and voltage-gated calcium channel 1C (Cacna1c) (C) in INS-1E
cells. The percentage of inclusion/exclusion of each exon was quantified by densitometry and is shown under the respective gels. Results are mean � S.E. of five
to ten independent experiments. *, p � 0.05, and **, p � 0.01 versus siCTR; paired t test.
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ent models studied. This suggests that Elavl4 may regulate dif-
ferent transcripts and pathways depending on the functional
state of the beta cells. Supporting this hypothesis, previous find-
ings indicate that pro-inflammatory cytokines induce changes
in the expression of key gene networks for beta cell function and
phenotype (42– 44) that may be altered by Elavl4 KD. Never-
theless, additional experiments are required to clarify the
mechanisms underlying Elavl4 KD.

Nova proteins have been extensively studied in brain where
they regulate splicing networks involved in survival, migration,
synaptic function, and axon guidance (45– 48). We have previ-
ously shown that Nova1 controls beta cell function and survival
by regulating genes involved in exocytosis, apoptosis, insulin
receptor signaling, splicing, and transcription (27). Here we
provide additional data showing that Nova2 depletion impairs
beta cell survival but not insulin secretion. Increased apoptosis
by Nova2 KD may be secondary to up-regulation of the
FoxO3A transcription factor and pro-apoptotic protein Bim, as
observed previously in Nova1 KD (27). The absence of insulin
secretion defects may be explained by differences in targets
genes between the Nova paralogs. Alternatively, this may be
related to the observed Nova1 up-regulation upon Nova2
silencing, revealing a compensatory mechanism that could
decrease physiological perturbations due to changes in splicing
pathways. Reciprocal compensatory regulation between RBP

paralogs has been previously observed in the Nova and other
RBP families (49, 50).

Rbfox1 and Rbfox2 are splicing regulators preferentially
expressed in neurons and skeletal muscle and, as shown here,
are also found in pancreatic beta cells. In brain, Rbfox proteins
regulate a wide range of developmental and synaptic functions.
Studies in knock-out mice and in human neural stem cells
showed that Rbfox1 regulates neuronal development and excit-
ability (32, 51), whereas Rbfox2 affects neuron migration in the
cerebellum (52). In addition, mutations in Rbfox1 are found in
patients with epilepsy, spinocerebellar ataxia, and autism spec-
trum disorders (53–56). In skeletal muscle, the absence of
Rbfox1 leads to abnormal myofibrillar structure and impaired
muscle function (57). Our data indicate that Rbfox proteins also
play an important role in regulating insulin exocytosis in beta
cells. Proper beta cell function relies on efficient insulin storage
and secretion in response to increased blood glucose levels.
Glucose-stimulated insulin secretion is modulated by a number
of factors, including glucose metabolism, calcium signaling,
and cytoskeleton remodeling (58 – 61). We observed that both
Rbfox1 and Rbfox2 silencing increase insulin secretion and
content. The similar phenotype observed for Rbfox1 and
Rbfox2 KD suggests that both RBPs regulate overlapping sets of
transcripts in beta cells. This is in agreement with previous
studies showing that Rbfox proteins bind to the same
UGCAUG motif due to the presence of a common RNA bind-
ing domain (28, 32, 62). Functional analysis of the role of Rbfox
proteins in beta cells (present data) indicates that Rbfox deple-
tion increases the insulin secretory capacity by affecting actin
depolymerization kinetics following glucose stimulation. Thus,
Rbfox1 regulates the splicing of the actin remodeling protein
gelsolin, modulating the expression of a non-productive iso-
form and thus affecting overall gelsolin expression. Inhibition
of gelsolin expression prevented the Rbfox1 KD-induced insu-
lin secretion increase and actin cytoskeleton alterations. Gelso-
lin enhances insulin secretion by mediating glucose-depen-
dent actin cytoskeleton remodeling and by interacting with
t-SNARE proteins, thus favoring insulin granule exocytosis (29,
30). In line with the present findings, Rbfox1 targets in brain
and muscle are enriched in genes involved in cytoskeleton orga-
nization and actin filament-based processes (28, 57). We can-
not exclude, however, that other Rbfox targets (such as calcium
channels) also contribute to the observed phenotype.

In conclusion, these data indicate that pancreatic beta cells
express neuron-enriched RBPs that control beta cell function
and survival, suggesting that neurons and beta cells share com-
mon splicing regulatory programs. Splicing programs pro-
vide a highly interconnected regulatory layer to control gene
expression and promote cell specialization in differentiated
tissues. These findings provide a better understanding on
how AS regulates beta cell survival and function, and they
point the way to identify the role for AS in beta cell dysfunc-
tion in diabetes.

Experimental Procedures

RNA-sequencing Data Visualization—To analyze the expres-
sion pattern of splicing factors in human islets and in 16 other
human tissues, we used a previously published RNA-sequencing

FIGURE 9. Gelsolin silencing prevents the insulin secretion increase pro-
duced by Rbfox1 knockdown. INS-1E cells were transfected with siCTR,
siFOX1#2, siGSN, or siFOX1#2 � siGSN for 48 h. mRNA expression of Rbfox1
(A) and gelsolin (B) was measured by qRT-PCR and normalized by the house-
keeping gene Gapdh. mRNA expression values were normalized by the high-
est value of each experiment, considered as 1. C, insulin secretion was evalu-
ated by ELISA after 30 min of incubation with 1.7 mM glucose, 17 mM glucose,
or 17 mM glucose plus forskolin (20 �M). Values are expressed as fold increase
as compared with siCTR exposed to 1.7 mM glucose. Results are mean � S.E. of
six independent experiments. A and B, *, p � 0.05; **, p � 0.01, and ***, p �
0.001 versus siCTR; paired t test. C, ###, p � 0.001 versus siCTR exposed to 17
mM glucose; &&, p � 0.01 versus siCTR exposed to 17 mM glucose plus forsko-
lin; and **, p � 0.01 as indicated by bars. Paired t test with Bonferroni’s
correction.
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dataset (24) and the Illumina BodyMap 2.0 dataset (GEO:
GSE30611). A list of human splicing factors was manually curated
by combining the SpliceAid-F database (63) with other RBPs that
have been described in the literature or in other databases as splic-
ing regulators. Log transformed reads per kb/million mapped
reads (RPKM) gene expression values were used to generate a two-
way hierarchical clustering heat map using Gene Pattern modules
(64) with default parameters (not centered, not normalized).

Culture of Rat INS-1E Cells, FACS-purified Primary Rat Beta
Cells, Human EndoC-�H1 Cells, and Human Islets—Rat insu-
lin-producing INS-1E cells, kindly provided by Dr. C. Wollheim
(University of Geneva, Geneva, Switzerland), were cultured in
RPMI 1640 GlutaMAX-I medium (Invitrogen) as described
previously (65).

Primary beta cells were obtained from male Wistar rats
(Charles River Laboratories, Brussels, Belgium). Rats were

FIGURE 10. Rbfox1 knockdown accelerates actin depolymerization dynamics after glucose stimulation, a phenomenon prevented by gelsolin silenc-
ing. A, confocal microscopy images of actin cytoskeleton in INS-1E cells following incubation at 0 or 17 mM glucose during 10 min. Cells were transfected with
siCTR, siFOX1#1, siFOX1#2, or siFOX1#2 � siGSN for 48 h. B and C, quantification of actin depolymerization following glucose stimulation by the F/G ratio in
INS-1E cells. Atto 550-phalloidin (red) staining actin filaments and DNase I-Alexa 488 (green) staining globular actin were used to quantify the emitted
fluorescence, and calculation of the ratio is shown in C. ###, p � 0.001 versus siCTR exposed to 17 mM glucose during 5 min; &&&, p � 0.001 versus siCTR exposed
to 17 mM glucose during 10 min; @@@, p � 0.001 versus siCTR exposed to 17 mM glucose during 15 min; *, p � 0.05; **, p � 0.01, and ***, p � 0.001 as indicated
by bars. Paired t test with Bonferroni’s correction. Scale bars, 10 �m (A) and 20 �m (B).
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housed and used according to the guidelines of the Belgian Reg-
ulations for Animal Care, with the approval by the local Ethical
Committee. Pancreatic islets were isolated by collagenase
digestion, handpicked, and dissociated into single cells by
mechanical and enzymatic dispersion, and beta cells were puri-
fied by FACS sorting as described previously (66). Purified beta
cells were cultured in Ham’s F-10 medium containing 10 mM

glucose, 2 mM GlutaMAX, 0.5% BSA, 50 �M isobutylmethylx-
anthine, 50 units/ml penicillin and 50 �g/ml streptomycin, and
5% heat-inactivated fetal bovine serum (FBS, Gibco Life Tech-
nologies, Inc.).

Human insulin-producing EndoC-�H1 cells, kindly pro-
vided by Dr. R. Sharfmann (Institut Cochin, Université Paris
Descartes, Paris, France), were grown on plates coated with
Matrigel/fibronectin (100 and 2 �g/ml, respectively, Sigma),
and cultured in DMEM as described previously (67, 68).

Human islets from eight non-diabetic donors were isolated
in Pisa, Italy, using collagenase digestion and density gradient
purification (69). The donors (four men and four women) were
age 64 � 18 years and had a body mass index of 26 � 2 kg/m2.
Cause of death was cardiovascular disease in four cases, trauma
in two cases, cerebral hemorrhage in one case, and post-anoxic
encephalopathy in one case. Beta cell purity, as evaluated by
immunofluorescence for insulin using a specific anti-insulin
antibody, was 56 � 7% (Table 1). Islets were cultured at 6.1
mmol/liter glucose as described previously (24, 70).

Cell Treatment—INS-1E and EndoC-�H1 cells were exposed
to the following cytokine concentrations, based on previous
dose-response experiments performed by our group (65, 68):
recombinant human IL-1� (R&D Systems, Abingdon, UK) 10
units/ml for INS-1E cells or primary rat beta cells and 50
units/ml for EndoC-�H1 cells; recombinant rat IFN-� (R&D
Systems) 100 or 500 units/ml for INS-1E cells or primary rat
beta cells, respectively; and human IFN-� (PeproTech, London,
UK) 1000 units/ml for EndoC-�H1 cells. Lower cytokine con-
centrations and shorter time intervals were used in INS-1E and
FACS-purified rat beta cells experiments because rat beta cells
are more sensitive to cytokine-induced damage than human
beta cells (71).

Infection with Recombinant Adenoviruses—To overexpress
REST in INS-1E cells, we used a recombinant adenovirus con-

taining the full-length cDNA of human REST kindly provided
by Dr. F. Allagnant (University of Lausanne, Lausanne, Switzer-
land) (13). After 48 h of pre-culture, INS-1E cells were infected
with the recombinant adenovirus encoding REST or with a con-
trol adenovirus encoding Renilla luciferase (72). Cells were
infected for 24 h at 37 °C at an m.o.i. of 10 and collected for
mRNA extraction.

RNA Interference—The small interfering RNAs (siRNAs, Life
Technologies, Inc.) targeting rat and human genes used in this
study are described in Table 2. Allstar Negative Control siRNA
(siCTR) (Qiagen) was used as negative control in all experi-
ments. This siCTR does not affect beta cell gene expression,
function, or viability (73). Transient transfection was per-
formed using 30 nM siRNA and Lipofectamine RNAiMAX lipid
reagent (Invitrogen-Life Technologies, Inc.) as described previ-
ously (73). After 16 h of transfection, cells were cultured for a
48-h recovery period before exposure to cytokines.

Assessment of Cell Viability—The percentage of apoptotic,
necrotic, and viable cells was determined by fluorescence
microscopy after 15 min of incubation with the DNA-binding
dyes propidium iodide (5 mg/ml) and Hoechst 33342 (10
mg/ml) (Sigma). A minimum of 600 cells was counted for each
experimental condition by two independent observers, one of
them unaware of the sample identity. The agreement between
researchers was �90%. Apoptosis was further confirmed in
some experiments by cleavage of caspase-3 and -9 by Western
blotting (see below).

mRNA Extraction, RT-PCR, and qRT-PCR—Poly(A)�-RNA
was isolated from INS-1E cells, primary rat �-cells, EndoC-�H1
cells, and human islets using the Dynabeads mRNA DIRECT kit
(Invitrogen) and reverse-transcribed as described previously
(74). cDNAs from 14 normal human tissues (adipose, brain,
colon, heart, kidney, liver, lung, lymph node, pancreas, skeletal
muscle, small intestine, spleen, stomach, and testes) were
obtained from BioChain Laboratories (San Francisco, CA).
The real time PCR amplification reaction was performed
using SYBR Green (Bio-Rad, Nazareth Eke, Belgium) and
compared with a standard curve as described (75). Expres-
sion values were corrected for the housekeeping genes glyc-
eraldehyde-3-phosphate dehydrogenase (Gapdh) for rat
beta cells or �-actin for human cells. Expression of these
housekeeping genes is not modified under the present exper-
imental conditions (70). The primers used in this study are
detailed in Table 3.

Insulin Secretion—To assess insulin secretion, INS-1E cells
were pre-incubated for 1 h in glucose-free RPMI 1640 Gluta
MAX-I medium (Life Technologies, Inc.) followed by incuba-
tion with Krebs-Ringer solution for 30 min. Cells were then
exposed to 1.7, 17, or 17 mM glucose plus 20 �M forskolin or to
30 mM KCl during 30 min. Insulin release and insulin content
were measured using the rat insulin ELISA kit (Mercodia,
Uppsala, Sweden) in cell-free supernatants and acid/etha-
nol-extracted cell lysates, respectively. Results were normal-
ized by total protein content, determined by the Bradford
dye method.

Glucose Oxidation—D-[U-14C]Glucose (specific activity, 300
mCi/mM; concentration, 1 mCi/ml (PerkinElmer Life Sciences)
was used to assess glucose oxidation in control and Rbfox1 KD

TABLE 1
Characteristics of the organ donors and human islet preparations
used for RNA-sequencing and independent confirmation
The abbreviations used are as follows: F, female; M, male; BMI, body mass index;
CVD, cardiovascular disease; CH, cerebral hemorrhage; PAE, post-anoxic enceph-
alopathy. Purity indicates the percentage of beta cells in the human islet prepara-
tions as determined by immunostaining for insulin.

Gender Age BMI Cause of death Purity

years kg/m2 %
Islets for

RNA-sequencing
ID1 F 77 24 Trauma 45
ID2 F 46 23 CVD 60
ID3 F 79 28 Trauma 61
ID4 M 36 26 CVD 62
ID5 M 77 25 CVD 62

Islets for qPCR
ID6 F 75 29 CVD 49
ID7 M 79 25 CH 48
ID8 M 44 28 PAE 59
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cells exposed to different glucose concentrations as described
(76). The rate of glucose oxidation was expressed as pmol/105

cells�120 min�1 and normalized by the glucose oxidation
observed in control cells under low glucose concentrations.

Mitochondrial Respiration—Oxygen consumption rates
were measured by the XFp Extracellular Flux Analyzer (Sea-
horse Bioscience, North Billerica, MA). INS-1E cells were pre-
incubated for 1 h in assay medium containing 1.7 mM glucose at
37 °C in air after which respiration was measured following
sequential injections of 17 mM glucose, 5 �M oligomycin, 4 �M

FCCP, and 1 �M rotenone as described (77).
Electrophysiological Measurements—Experiments were con-

ducted on single INS-1E cells. Patch pipettes were pulled from
borosilicate glass capillaries and then coated with sticky wax
(Kemdent, Wiltshire, UK) and fire-polished. Patch pipettes had
a resistance of 3– 6 megohms when filled with the pipette
solution specified below. All recordings were conducted at
32–34 °C using an EPC-9 patch clamp amplifier and Pulse soft-
ware version 8.80 (HEKA Electronics, Lambrecht, Germany)

without visualization of the transfected cells. Standard whole-
cell configurations of the patch clamp technique were used, and
Ca2� currents were evoked by depolarizing the cell membrane
from a resting potential of �70 mV to voltages ranging from
�50 to �50 mV (78). Standard extracellular solution consisted
of the following (in mM): 118 NaCl, 20 tetraethylammonium
chloride (to block K� currents), 5.6 KCl, 2.6 CaCl2, 1.2 MgCl2, 5
glucose, and 5 HEPES (pH 7.4 using NaOH), and the pipette
solution consisted of the following (in mM): 125 cesium gluta-
mate, 10 NaCl, 10 CsCl, 1 MgCl2, 0.05 EGTA, 3 Mg-ATP, 5
HEPES (pH 7.15 using CsOH) and 0.1 cAMP. To exclude any
depolarization-induced Na� currents from the analysis, charge
(Q) was measured 1.4 ms after the onset until the end of the
depolarization.

Actin Filaments Immunofluorescence—INS-1E cells were
cultured on glass slides coated with Matrigel-fibronectin (100
and 2 �g/ml, respectively; Sigma) and transfected with control
or Rbfox1 siRNAs for 48 h. Following the same protocol used to
analyze insulin secretion, cells were incubated for 1 h in

TABLE 2
Sequences of siRNAs used to knock down gene/protein expression

Gene Species Name Supplier Sequence

None siCTR All-stars Negative control siRNA Qiagen, Venlo, The Netherlands Not provided
Elavl4 Rattus norvegicus siELAVL4#1 silencer select siRNAi Invitrogen, Paisley, UK 5� GAGGCAUUGGUGAAAUCGAATT 3�

5� UUCGAUUUCACCAAUGCUCCC 3�
Elavl4 R. norvegicus siELAVL4#2 silencer select siRNAi Invitrogen, Paisley, UK 5� GAUUCAGGCUGGACAAUUUTT 3�

5� AAAUUGUCCAGCCUGAAUCTT 3�
Nova2 R. norvegicus siNOVA2#1 stealth select siRNAi Invitrogen, Paisley, UK 5� AGGUCCGAGAAAUCCCUCAAGCGAU 3�

5� AUCGCUUGAGGGAUUUCUCGGACCU 3�
Nova2 R. norvegicus siNOVA2#1 stealth select siRNAi Invitrogen, Paisley, UK 5� CGGGAGCCACCAUCAAGCUAUCUAA 3�

5� UUAGAUAGCUUGAUGGUGGCUCCCG 3�
Rbfox1 R. norvegicus siFOX1#1 silencer select siRNAi Invitrogen, Pasley, UK 5� GAUUUGGUUUCGUAACUUUTT 3�

5� AAAGUUACGAAACCAAAUCCC 3�
Rbfox1 R. norvegicus siFOX1#2 silencer select siRNAi Invitrogen, Paisley, UK 5� CGAGGUUAAUAAUGCGACATT 3�

5� UGUCGCAUUAUUAACCUCGAT 3�
Rbfox1 R. norvegicus siFOX1#3 silencer select siRNAi Invitrogen, Paisley, UK 5� GCGGUGUUGUUACCAGGATT 3�

5� UCCUGGUAAACAACACCGCCA 3�
Rbfox2 R. norvegicus siFOX2#1 silencer select siRNAi Invitrogen, Paisley, UK 5� AGAAGAUGGUCACACCAUATT

5� UAUGGUGUGACCAUCUUCUTG 3�
Gsn R. norvegicus siGSN FlexiTube siRNA Qiagen, Hilden, Germany 5� CAUCACUGUCGUUAGGCAATT 3�

5� UUGCCUAACGACAGUGAUGGG 3�
ELAVL4 Homo sapiens siELAVL4#1h silencer select siRNAi Invitrogen, Paisley, UK 5� CAAUUACCAUUGAUGGAUTT 3�

5� AUUCCAUCAAUGGUAAUUGGG 3�
NOVA2 H. sapiens siNOVA2#1h stealth select siRNAi Invitrogen, Paisley, UK 5� GACAGAGCCAAGCAGGCCAAGCUGA 3�

5� UCAGCUUGGCCUGCUUGGCUCUGUC 3�
NOVA2 H. sapiens siNOVA2#2h stealth select siRNAi Invitrogen, Paisley, UK 5� UGCUGGCCAUCAGCACGGCGCUUAA 3�

5� UUAAGCGCCGUGCUGAUGGCCAGCA 3�

TABLE 3
Primers sequences used for real time and splicing analyses
The abbreviations used are as follows: qRT, primers used for real time qRT-PCR; SPL, primers used to analyze splicing variants.

Target gene Application Forward (5�–3�) Reverse (5�–3�)

Rat
Gapdh qRT AGTTCAACGGCACAGTCAAG TACTCAGCACCAGCATCACC
Elavl4 qRT CCAAAGGATGCAGAGAAAGC GGGAAGGCCACTAACGTACA
Nova2 qRT CTCAATCATCGGCAAAGGTG GGCTCTGTCGGGGTTCATC
Rbfox1 qRT GGGCGAGGAGGGGAAGGGAG GTGCGCACTGTAGCAGGCCA
Rbfox2 qRT GCAAATGGCTGGAAGTTAAGC CATTGCCTAGGGACACATCA
Rest qRT TGAAAAGTCCGTCAAAGCAG GCACATCCATCTCTTTCACCT
Elavl1 qRT TGACAAACGGTCTGAAGCAG CCTGAATCTCTGTGCCTGGT
Nova1 qRT GGAGCAGTCAGGGGCTTGGG TGAGACAGCTGCCACTCTGTGGA
Ins2 qRT TGACCAGCTACAGTCGGAAA GTTGCAGTAGTTCTCCAGTTGG
Gsn qRT CTTTGTTTGGAAAGGCAAGC GGGGTACTGCATCTTGGAGA
Cacna1c SPL AGTGATCCCTGGAATGTTTTTG AGGACTTGATGAAGGTCCACAG
Insr SPL TGCACAACGTGGTTTTTGTT TCTCTTCTGGGGAGTCCTGA
Gsn SPL ATGGCTCCGTATTGCTCCT AACTTCTCCACACGCCAGAT

Human
ACTB qRT GCGCGGCTACAGCTTCA CTTAATGTCACGCACGATTTCC
ELAVL4 qRT GCTACCCAGGTCCACTTCAC GGATGTTCATTCCCACAAGG
NOVA2 qRT CCATCAAGCTCTCCAAGTCC GGGATTTCTCGGACCTTCTC
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glucose-free RPMI 1640 GlutaMAX-I medium followed by
30-min incubation in glucose-free Krebs-Ringer solution. Cells
were then exposed to 17 mM glucose at different time points (5,
10, and 15 min) and immediately after fixed in 4% paraformal-
dehyde for 10 min. The cells were then washed with PBS and
permeabilized in Triton X-100 0.25% for 3 min. Slides were
then blocked using 3% BSA and incubated at room temperature
in sequential order with deoxyribonuclease I-Alexa Fluor 488
conjugate (Life Technologies, Inc.) and Atto 550-phalloidin
(Sigma) to specifically stain G-actin (globular) and F-actin (fil-
aments), respectively. Nuclei were stained with Hoechst 33342.
Cells were visualized under a Zeiss Axiovert 200 inverted fluo-
rescence microscope (Carl Zeiss, Zaventem, Belgium) at 	40.
Images were acquired and processed using the AxioVision
LE64 software (Carl Zeiss). For F/G actin quantification, all
samples were processed together to avoid changes in the image
intensity. Exposure was locked to 100 ms to obtain all acquisi-
tions under the same conditions. ImageJ software was used to
measure the pixel intensity of both channels using the whole
field of every image. These intensities were used to calculate the
F/G actin ratio.

Confocal Imaging—Cells samples were observed under a
Zeiss LSM780 inverted confocal microscope using 	40/1.1
water objective. Z-stacks of images were acquired sequentially
and processed using Zen2010 software (Carl Zeiss).

Western Blotting—For Western blotting, cells were washed
with cold PBS and lysed using Laemmli Sample Buffer. Total
protein was extracted and resolved by 8 –12% SDS-PAGE,
transferred to a nitrocellulose membrane, and immunoblotted
with the specific antibodies for the protein of interest (Table 4)
as described (79). Protein signal was visualized using chemilu-
minescence Supersignal (Pierce). ChemiDoc MP system and
Image Lab software version 4.1 (Bio-Rad, Perth, UK) were used
for image acquisition and densitometric analysis of the blots.
The software allows automatic exposure optimization, ensur-
ing the best use of the dynamic range. Saturation or overexpo-
sure is avoided by overriding the images that displayed pixels
in red. Densitometric values were corrected by the house-
keeping protein �-tubulin as loading control, after back-
ground subtraction.

Statistical Analysis—Data are showed as means � S.E. or as
independent data points. Significant differences between
experimental conditions were assessed by a paired Student’s t
test. In case of multiple t test comparisons, the Bonferroni cor-
rection was applied as indicated (80). p values � 0.05 were con-
sidered statistically significant.
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