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Abstract. A Novel Single Loop Pulsating Heat Pipe (SLPHP), with an inner diameter of 2 

mm, filled up with two working fluids (Ethanol and FC-72, Filling Ratio of 60%), is tested in 

Bottom Heated mode varying the heating power and the orientation. The static confinement 

diameter for Ethanol and FC-72, respectively 3.4 mm and 1.7mm, is above and slightly under 

the inner diameter of the tube. This is important for a better understanding of the working 

principle of the device very close to the limit between the Loop Thermosyphon and Pulsating 

Heat Pipe working modes. With respect to previous SLPHP experiments found in the literature, 

such device is designed with two transparent inserts mounted between the evaporator and the 

condenser allowing direct fluid flow visualization. Two highly accurate pressure transducers 

permit local pressure measurements just at the edges of one of the transparent inserts. 

Additionally, three heating elements are controlled independently, so as to vary the heating 

distribution at the evaporator. It is found that peculiar heating distributions promote the 

slug/plug flow motion in a preferential direction, increasing the device overall performance. 

Pressure measurements point out that the pressure drop between the evaporator and the 

condenser are related to the flow pattern. Furthermore, at high heat inputs, the flow regimes 

recorded for the two fluids are very similar, stressing that, when the dynamic effects start to 

play a major role in the system, the device classification between Loop Thermosyphon and 

Pulsating Heat Pipe is not that sharp anymore.  

  

Keywords: Pulsating Heat Pipe, Loop Thermosyphon, Fluid flow Analysis, Local pressure 

measurements. 

 

1. INTRODUCTION  

As modern computer chips and power electronics become more powerful and compact, the need of 

more efficient cooling systems increases day by day. In the present scenario, Pulsating Heat Pipes 

(PHPs) are relatively new wickless two-phase passive heat transfer device that aim at meeting all the 

present and future thermal requirements [1][2]. Although the peculiar advantages of this emergent 

technology, such as its compactness, the possibility to dissipate high heat fluxes and the ability to 
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work also in microgravity conditions, the PHPs governing phenomena are quite unique and not 

completely understood [3].  

Since the Single Loop PHP (SLPHP) can be considered the basic constituent of a multi-turn 

Pulsating Heat Pipes, its full thermo-fluidic characterization is fundamental for the complete 

description of the PHP or Thermosyphon working principles. At present, several studies contribute to 

the SLPHP knowledge [4][5][6][7] but further work is needed to understand the pressure evolution 

within PHPs coupled with the fluid flow visualization. For these main reasons, a novel SLPHP could 

provide vital information when performing simultaneous measurements with different refrigerant 

fluids on visualization of the fluid flow with a high-resolution camera, detection of the fluid 

temperature distribution during operation and the fluid pressure evolution both in the heated and in the 

cooled section. Considering that the inner diameter of the tube of 2 mm is slightly larger than the static 

confinement diameter for the FC-72 of 1.7 mm, the SLPHP can work theoretically as a thermosiphon. 

In static conditions, the FC-72 resides at the bottom of the device due to the gravity assistance and the 

lack of the capillary effects.  

The aim of the work is to provide useful information on the basic phenomena involved, improving 

the PHP understanding. It is intended to demonstrate that a two-phase heat transfer device filled with 

two different fluids, FC-72 and Ethanol, each of them with static confinement diameter slightly under 

and slightly above the critical inner diameter in static conditions, have similar working mode during 

operation. This arise an open point in the literature on the need of more accurate criteria for the 

definition of the limits between Loop Thermosyphons [8] and Pulsating Heat Pipes. Finally, such 

experimental analysis provides accurate information for the validation of PHP numerical codes.  

2. EXPERIMENTAL APPARATUS AND PROCEDURE 

The basic features of the SLPHP are shown in Fig. 1a. The evaporator and the condenser are made of 

copper tubes (Inner diameter 2 mm, Outer diameter 4 mm) in order to minimize the thermal resistance 

between the working fluid and respectively the heat source and heat sink. The loop is completed by 

two transparent vertical tubes (110 mm axial length, 2mm ID,), allowing high-speed visualization of 

the two-phase flow, The loop components are connected by means of brass joints and sealed by 

vacuum epoxy (Henkel Loctite® 9492).  

 

 

 
 

Figure 1. a) Main components of the SLPHP; b) Thermocouple positions; c) Heating elements 

positions 
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Two high-accurate pressure transducers (Keller
®
 PX33, 1 bar Absolute, Accuracy 0.05% FSO), 

mounted just before and after one of the transparent inserts, measure the pressure drop along the 

adiabatic section.  

The condenser section is embedded inside a mini shell and tube heat exchanger, directly connect to a 

thermal bath (Lauda® A300), recirculating water at 20 °C ±1 °C.  

Three heating wires (Thermocoax®, Single core 1Nc Ac), are mounted in the evaporator section, 

providing a wall to fluid heat flux of 6.5 W/cm
2 

at 10 W. The three heaters are controlled 

independently with a Pulse Width Modulation (PWM) control system, so as to vary the heating 

distribution along the heated zone. As shown in Fig. 1c, two heating elements (Heater L and Heater R) 

are positioned just above the 90° curves at the evaporator, in such a way, that by applying different 

power on them, the device is heated-up non-symmetrically with respect to the gravity field, while the 

Heater M is mounted at the center of the evaporator. As already demonstrated [9] for a similar multi-

turn two-phase passive heat transfer device, when heating up the device non-uniformly at the 

evaporator with peculiar heating configurations, a circulation in a preferential direction is established, 

with a subsequent improvement of the overall thermal performance. Twelve T-type thermocouples 

measure the external wall temperature both in the heated and in the cooled region of the single loop 

(see Fig. 1c), while other two thermocouples monitor the environmental temperature during tests.  

A data acquisition system (NI-cRIO-9074®, NI-9264®, NI-9214®, 2xNI-9205®, NI-9217®, NI-

9472®) records the output of the thermocouples (at 10 Hz) and the pressure transducers (at 100 Hz). 

The high-speed camera (Ximea
®
 USB3 XIQ-093, resolution 1280x1024 pixel) is connected to an 

ultra-compact PC (NUC® Board D54250WYB) able to store images up to 100 fps and it is 

synchronized via software with the pressure signals. 

The device is vacuumed by means of an ultra-high vacuum system (Varian
®
 DS42 and TV81-T) 

down to 0.3 mPa and then it is partially filled up with the working fluid with a volumetric ratio of 0.6 

± 0.03 (corresponding to 1.45 ml). Finally, the micro-metering (Upchurch Scientific
®
 UP-P-447) valve 

that connects the SLPHP to the device is closed, guarantying a leak down to 10
-8

 mbar l/s. The fluid 

itself is previously degassed within a secondary tank, by continuous boiling and vacuuming cycles 

[10], in such a way to extract incondensable gases before the filling operation. Ethanol and FC-72 are 

choose as working fluids for their thermodynamic properties and for the fact that their critical diameter 

is very close to the inner diameter of the tube. The device filled up with Ethanol will act as a PHP; 

while with FC-72 will act as a compact loop thermosiphon. 

Finally, a rotating structure was used in order to hold the device and incline it at different pivot 

angles, in order to aid for a faster start-up and promote the stabilization of the circulation. The pivot 

angle is defined and measured, referring to the laboratory fixed reference XYZ of Fig. 1a, as the 

rotation of the device around X-axis, counter-clockwise as seen in the figure.  

3. EXPERIMENTAL RESULTS AND PROCEDURE 

The experimental campaign is carried out in order to point out: 

- the effect of the heating distribution on the overall thermal performance; 

- the operational regimes in terms of fluid motion; 

- the relationship between the pressure drop measurements and the flow patterns observed through 

the transparent insert; 

- the uncertain limit between Loop Thermosyphon and Pulsating Heat Pipe in dynamic conditions 

for fluids whose static confinement diameter value is lightly lower and higher respectively than 

the inner diameter value of the tube. 

- the effect of the pivot angle on the stabilization of the fluid circulation. 

Tests are performed while maintaining the environmental temperature at 20°C ±1°C, inclining the 

device at four different pivot angles (vertical, 30°, 60° and 90°). The heating power is increased 

providing a global heating power levels of 1 W, 3 W, 6 W, 12 W and 18 W. For all the above levels, 

except 1 W, different heating configurations are tested: the heating power is split among the three 

heaters, to vary the heating distribution during tests. Pseudo-steady state conditions can be reached in 
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approximately 3 minutes, due to the low thermal inertia of the system. Nevertheless, all the heating 

configuration tested are kept constant for 15 minutes, to ensure that the device reaches the pseudo-

steady state conditions for all the cases tested. A video sequence (20 seconds at 100 fps) is recorded 

during each tested combination of heat input power, pivot angle and working fluid. The video 

acquisition starts 13 minutes after each heat input power variation in order to wait for the pseudo-

steady state conditions. The equivalent thermal resistance (Req) is evaluated as follows (Eq.1):  

    
 ̅   ̅ 

 ̇   
                                                                          (1) 

Where:  ̇    is the global heating power, which is the sum of the power of the three heaters: the 

Heater L ( ̇  , Heater M   ̇   and Heater R   ̇  , as pointed out in the Eq. 2: 

 ̇     ̇   ̇   ̇                                                                (2) 

Since each of the three heating elements, independently controlled, can provide a different heating 

power and for each of them two temperatures are measured as shown in fig. 1b, the averaged Te is 

calculated as pointed out in the Eq. 3: 

 ̅  
  ̇

    ̇
           

  ̇

    ̇
           

  ̇

    ̇
                                      (3) 

 ̅  is the time average of TC9 and TC10 when pseudo-steady state conditions are reached. 

A first test campaign is performed with Ethanol, with the device vertically oriented in Bottom 

Heated Mode, i.e. with the evaporator section below the condenser. For each heating configurations 

tested the overall temporal evolution of the temperatures and of the pressure recorded in the 

transparent section are shown in Fig. 2. Only 1 W is not sufficient to activate a self-sustained two-

phase flow within the loop: the temperatures at the evaporator increases, while the pressure, close to 

the saturation pressure of ethanol at 20°C, exhibits a flat trend. When increasing the power at 3 W 

(Configuration 3a in Fig. 2a), the pressure signal points out some peaks, while the temperatures starts 

to decrease. In such period, the heating power activates a self-sustained two-phase flow motion, 

improving the heat transfer between the heated and the cooled sections of the device. However, at 3 W 

only partial start-ups are detectable: periods in which the two-phase flow oscillates between the heated 

and the cooled section are alternating with stop-over periods, where the fluid does not move, thus 

hindering the heat exchange. This is valid for all the configurations tested with a global heating input 

of 3 W (from 3a to 3e in Fig. 2a), independently from the heating configuration. When the total 

heating power of 6 W is provided to the heater M only (Configuration 6a) a full start-up is detected: 

after a sudden peak of pressure at the evaporator, the temperatures in the heated zone decrease 

abruptly to 35 °C.  

a) b) 

 
 

 

Figure 2. a) Temperatures and pressure evolution for Ethanol in vertical position;  

b) Heating configurations sequence 

Configuration HEATER A [W] HEATER B [W] HEATER C [W]

1 0 1 0

3a 0 3 0

3b 1 1 1

3c 0 1 2

3d 0 1,5 1,5

3e 1,5 1,5 0

6a 0 6 0

6b 2 2 2

6c 1 2 3

6d 0 3 3

6e 3 3 0

12a 0 12 0

12b 4 4 4

12c 2 4 6

12d 0 6 6

12e 6 6 0

18a 9 9 0

18b 0 9 9

18c 4 6 8

18d 6 6 6
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This results in an improvement of the device thermal performance: the equivalent thermal 

resistance (Req) decreases down to 1 K/W, as observable in figure 4a. Interestingly, during the 

configuration 6a, a circulation of the two-phase flow that spontaneously follow a preferential direction 

was observed through the two transparent sections. The fluid visualization in Fig. 3 shows that an 

annular flow in the left transparent section flows continuously upwards from the evaporator to the 

condenser, while a slug/plug flow that preferentially falls from the condenser is detectable in the right 

transparent insert. Therefore, the TC10 and the TC11 show a higher value than the TC8 and the TC9, 

since the hot fluid from the evaporator is pushed preferentially through the left side of the loop. This 

circulation is obtained for the heating configurations 6a and 6b. Such two-phase flow motion in a 

preferential direction, ,improves the overall performance by continuously refreshing the hot section 

with a fluid flow that comes from the condenser with a lower temperature.  

a) Clockwise motion c) Temperature and pressure 

 
 

 

b) Anti-Clockwise motion d) Test sequence with direction color coding 

 

 

 

Figure 3. Flow direction: a) clockwise circulation, green color in table d); b) Anti-clockwise, blue 

color in table d); c) temperatures and pressure in the condenser at 6 W and 12 W.  
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Therefore, the Req is every time close to 1 K/W. It is worthwhile to note that such circulation is 

achieved even when the system is heated up with a symmetrical configuration. This could be 

explained because the SLPHP is very sensitive to small hydraulic non-symmetries and to the higher 

thermal inertia of the components in the right side, such as the two stainless steel pressure transducers 

with a mass of 240 g each one. After switching from configuration 6b to 6c, the flow circulation 

reverses quickly visible from the increase of the temperature from TC8 and TC9. Now the annular 

flow that pushes upwards the fluid from the evaporator to the condenser is visible through the 

transparent section on the right side, while a slug/plug that goes preferentially from the evaporator to 

the condenser in the left one, as “anti-clockwise motion” (highlighted in the blue rectangular shape in 

Fig.3). This sudden variation of the circulation direction is due to the peculiar distribution of heating 

power provided by the configuration 6c: the local heating power provided to the Heater R is higher 

than the power dissipated by the Heater L and M. Therefore, the fluid is pushed preferentially through 

the right channel, changing the overall circulation direction. Therefore, the TC8 and the TC9 

temperatures are for such configuration higher than the TC10 and the TC11. The Anti-Clockwise 

circulation is also observable during tests performed with the Configuration 6d: since the Heater L is 

off, the fluid is not pushed through the left side of the loop to the condenser. Changing from the 

Configuration 6d to the Configuration 6e, the fluid returns to move almost instantaneously following a 

Clock-wise orientation. During Configuration 6d, the Heater R is off, and therefore the fluid is not 

able to be pushed through the right side of the loop to the condenser. Interestingly, for such global 

heating power level of 6 W, the fluid motion is extremely sensitive to the peculiar heating distribution 

provided: a variation of the circulation direction is easily reachable providing a proper local heating 

power distribution in the heated region.  

Increasing the global heating power from 6 W to 12 W (from the Configuration 12a to the 

Configuration 12e), the two-phase flow follows every time a “Clock-wise” direction, independently 

from the peculiar heating configuration at the evaporator. The TC10 and the TC11 are in fact every 

time higher than the TC9 and TC8 (Fig.4) and the annular flow that pushes continuously the fluid from 

the heated to the cooled region is always visible in the left transparent section. This could happen 

because, when increasing the global heat power input to dissipate, the fluid is pushed more vigorously 

from the heated to the cooled section of the device. The more heating power is provided, the higher the 

void fraction in the up header and the higher quantity of fluid in the down-comer. It is more difficult 

for the vapor expansion to contrast liquid column head and momentum. Therefore, once the circulation 

is established in the loop in a preferential direction for such heating power input, such inertial effect 

“dampens” the effect of the peculiar heating distribution provided at the evaporator, maintaining its 

direction for all the configurations tested.  

Increasing further the global heating power from 12 W to 18 W, the temperatures at the evaporator 

increase abruptly, synonym of a thermal crisis (dry-out). The tests will be stopped as soon as the 

temperatures at the evaporator will reach 90°C in order to preserve the hardware integrity. At 18 W, in 

vertical position, the system is not able to switch the fluid flow direction between the different 

configurations tested. As soon as the configuration 18a is provided, the flow starts to oscillate without 

a preferential direction. The configuration 18a, being in contrast with respect to the “Clock-wise 

circulation” achieved for all the previous Configurations tested with a global heating power of 12 W, 

starts initially to push the fluid from the right section. Nevertheless, it is not able to change completely 

the fluid circulation: the two-phase flow starts to oscillate, and both the two transparent inserts are 

characterized by an oscillating semi-annular flow. At high heating powers, any attempt to force a flow 

reversal by changing the heating distribution, when a net flow circulation is already established, fails 

due to the combination of inertial effect and phase distribution. Therefore, only flow instabilities are 

detectable, that establish an oscillating flow, thus decreasing abruptly the overall performance. 

Therefore, the Req increases when a global heating power of 18 W is provided to the device (Fig.4a). 
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a) Ethanol, Vertical b) Additional test up to 18 W 

  
 

Figure 4. a) Equivalent Thermal Resistance for all the heating distribution tested for long test with 

Ehanol in vertical position and b) Test performed providing to the device up to 18 W solely at the 

heater M. 

 

a) 

 

b) 

 
 

Figure 5. a) Temperatures and pressure evolution and b) Equivalent Thermal Resistance for all the 

heating distribution, test sequence with FC-72, 30° pivot angle 
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In order to check whether such thermal crisis is related to the relatively high power level, an 

additional test is performed, in which 18 W are dissipated solely from the Heater M (Fig. 4b), after the 

initiation of a self-sustained fluid flow circulation.  

The maximum temperatures reached with 18 W are approximately 40°C. The heat exchange is also 

stable: the temporal evolution of the temperatures during such test reside in a narrow range of 

temperatures after the start-up, and a fluid circulation in a preferential direction is detectable through 

the transparent inserts. These results point out that the thermal crisis is not strictly related to the 

relatively high-power level but on the thermal history.  

Similar results were obtained testing the device filled with FC-72 in vertical position, where 

already at 12 W, the system is not able to change the fluid flow direction between the 12d and 12e 

tested configurations resulting in a sudden increase of temperature and stop of the experiment.  

Furthermore, testing the device filled with FC-72 fluid at a pivot angle of 30° for all the 

configurations from Fig. 2b, reveals that the pivot angle indeed helps to stabilize the fluid circulation, 

thus improving the overall performance (Fig. 5). From 6 W up to 18 W, the Req is every time close to 1 

K/W.  

 

a) d) 

 

 

b) 

 
c) 

 
 

Figure 6. Visualization and pressure drop synchronization of: a) the images taken with high speed 

camera, b) pressure measurements at the evaporator (red line) and at the condenser (blue line) and c) 

the pressure drop calculated; d) flow pattern map. 

 

Fig. 6d resumes all the flow motions observed for all the pivot angles and fluids tested in a visually 

intuitive but also complete manner. 

FC-72 working fluid has shown better thermal performances over the Ethanol since is it has a 

prompter start up reaching wider heat transfer capability range. The low boiling point of this liquid 

ensures the heat discharge to the condenser at low temperatures. An increase in pivot angle improves 

the flow conditions and broadens the operative range of the device for both fluids. This is due to the 

significant gravitational assistance and the particular geometry: the evaporator section is no longer 

horizontal, thus circulation is promoted also by applying power at the middle heater. Once the 

circulation is activated the performance of the system is very similar for both fluids reaching 
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temperatures in the range from 35 to 45 degrees for 12W and 18 W. The inertia of the fluid in this 

mode is so strong that the system is not sensitive at sudden changes neither to the distribution of the 

heat input. The fluid is rotating preferentially counter-clockwise because the configurations had been 

selected to promote the circulation in a preferential direction. 

In Fig 6.d the legend is explained as: 

“ “ no symbol = untested heating power level;  

“-“ = no fluid motion in the transparent tube; 

“S” = start-up, shut down (unstable): flow may be stratified or weakly oscillating, with partial 

activation or deactivation of at least one heated section visible from the temperature readings; 

“O” = oscillating (stable): a strong movement of fluid oscillating back and forth; 

“C” = circulating (stable): a strong movement of fluid in one specific preferential direction; 

“D” = dry-out: when excessive heat power input causes a thermal crisis in at least one evaporator 

section. 

A synchronization between the images recorded in the transparent section and the pressure signals 

is performed and highlighted in Fig. 6.b. If a slug/plug flow is oscillating in the transparent section, the 

relationship between the fluid flow motion and the pressure measurements is clearly observable: when 

the two-phase flow is coming from the condenser section, the pressure decreases suddenly (sometimes 

of more than 500 Pa in less than 0.3 seconds) both at the evaporator and at the condenser. 

Nevertheless, when the flow is pushed from the heated to the cooled region during such flow reversal, 

a sudden increase of pressure is measured both at the evaporator and at the condenser.  

It is observed that the peaks of pressure are more pronounced closer to the evaporator due to the 

expansions of the vapor bubbles, while at the condenser are smoother (Fig 6.b).  

The pressure drop is also calculated, simply subtracting the pressure at the evaporator to the 

pressure measured at the condenser (Fig. 6c). The pressure difference is characterized by some peaks 

when fluid flow accelerations are detectable through the transparent section. Nevertheless, the static 

pressure difference depends on three main terms [11], as shown in Eq. 4: 

                                                                   (4) 

where             are relatively the friction, acceleration and static head terms. The hydrostatic 

pressure is dependent by the void fraction along the tube in which the pressure measurements are 

performed, that continuously change in time during PHP operations and it is also dependent by the 

peculiar flow pattern observed. Further analysis is needed to calculate the magnitude of the three 

components in Eq. 4.  



10

1234567890

35th UIT Heat Transfer Conference (UIT2017) IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 923 (2017) 012022  doi :10.1088/1742-6596/923/1/012022

a) b) 

  
c) d) 

 
 

 

Figure 7. Pressure recorded just after the heated section (red line) and just before the cooled region 

(blue line) a) slug/plug flow; b) annular flow and Pressure drop measurements (green line) c) slug/plug 

flow; d) annular flow. 

For instance, having the possibility to test the device in microgravity by means of parabolic flights, the 

hydrostatic pressure is not more present. The acceleration term may be estimated from the liquid 

velocity calculated by post-processing of the images recorded in the transparent section. In this way, it 

may be theoretically possible to calculate the pressure related to the skin friction, and to correlate it 

with respect to the peculiar flow pattern observed.  

In the case of an annular flow, it is hard to find a relationship between the pressure measurements and 

the images recorded by the high-speed camera. In fact, it is difficult to track the annular flow evolution 

solely with the high-speed camera, since there are no liquid menisci to track as in the slug/plug flow 

case. The static head is nearly zero because the very small quantity of fluid in the tube, while the vapor 

acceleration term plays a major role. However, some aspects regarding the fluid-dynamic of the 

annular flow can be seen looking at the pressure signals during tests. The pressures measured when an 

annular flow pattern is shown in figure. 7b and 7d (pressure drop) are completely different with 

respect to the slug/plug flow case (Fig. 7a and Fig. 7c respectively). The oscillations have a higher 

frequency in time for the annular flow.  

4. CONCLUSIONS 

A Novel Single Loop Pulsating Heat Pipe, filled up with pure ethanol or FC-72 (Volumetric Filling 

Ratio = 60%) with an inner diameter value of 2 mm is tested with different heating power distribution 

and tilting angles. Three heating elements, mounted in strategic points of the evaporator, are controlled 

independently, in such a way to heat up the device varying the heating distribution. Furthermore, two 

highly accurate pressure transducers measure the pressure just at the edges of one of the transparent 

inserts.  

Results point out that peculiar heating configurations stabilize the two-phase flow motion in a 

preferential direction, thus improving the overall performance and it was demonstrated that two fluids, 

FC-72 and Ethanol, with diameter respectively slightly below and above the critical value, behave 

respectively as a thermosiphon or as a PHP in static conditions, but show similar working modes 
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during dynamic operation. Moreover, an increase in inclination, improves the flow conditions and 

broadens the operative range of the device for both fluids. 

The pressure measurements recorded just after the heated and before the cooled section highlights 

that the pressure evolution is strictly dependent on the flow pattern observed. Qualitatively, each flow 

pattern always exhibits a pressure difference that can be correlated to fluid velocity and acceleration, 

static head terms, void fraction, fluid density and friction. When a slug/plug flow is observed through 

the transparent section between the two pressure transducers, the difference of pressure reaches 1.5 

kPa and the pressure oscillations exhibit a lower frequency. When annular flow is detected, the 

pressure variations between the heated and the cooled section are less than the slug/plug flow case, but 

with higher frequency.  

Such high speed visualization coupled with the highly accurate pressure measurements performed 

in this work, regarding the liquid film evolution, could provide useful information for updating and 

validating the actual lumped parameters models [12][13] and the emerging Computational Fluid 

Dynamic simulations on PHPs [14][15]. 

5. NOMENCLATURE 

FC-72 Perfluoro-hexane 

Heater-L  the heater on the Left side 

Heater-M  the heater in the Middle, central position 

Heater-R  the heater on the Right side 

PEVA Fluid Pressure measured close to the evaporator 

PCOND Fluid Pressure measured close to the condenser 

PHP Pulsating Heat Pipe 

pivot angle the device rotation angle around its X-axis, counter-clockwise 

Q’L power of the Left heater 

Q’M power of the Median heater 

Q’R power of the Right heater 

Q’TOT total power of the three heaters 

Req  equivalent thermal resistance 

SLPHP Single Loop Pulsating Heat Pipe 

Tc  average temperature at the Condenser 

Te  average temperature at the Evaporator 

TCenv  environment thermocouple or temperature 

TCN  thermocouple number N (0≤N≤11) or its recorded temperature 

P total pressure difference 

Pf friction pressure difference 

Pa acceleration pressure difference 

Pg static gravitational pressure difference 
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