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CLASSICAL SOLUTIONS FOR THE SYSTEM curl v = g, WITH
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Abstract. We consider the boundary value problem associated to the curl
operator, with vanishing Dirichlet boundary conditions. We prove, under mild
regularity of the data of the problem, existence of classical solutions.

1. Introduction

The aim of this paper is to solve, in the classical setting, the first-order boundary
value problem

(1)
curl v = g in Ω,

v = 0 on ∂Ω.

More precisely, we look for solutions which are vector fields v ∈ (C1(Ω) ∩ C0(Ω))3,
where Ω ⊂ R3 is a smooth and bounded domain. The history of this problem is
rather long and strictly connected with that of the solution of the divergence equa-
tion, with the Helmholtz decomposition, and with the analysis of certain topological
properties of the domain. We observe that if such a solution exists and is also two
times differentiable (at least in a weak sense), then necessarily div g = div curl v = 0.
This gives a natural compatibility condition for the datum of the problem. In ad-
dition, if the problem is studied in the whole space, or in the periodic setting (or
in general when no condition is imposed at the boundary), then constructing a
solution is very simple. We nevertheless recall that in general may exist infinite
solutions to (1) and in practical problems, constructing at least one with the re-
quested regularity is enough. By following the classical work of von Helmholtz in
electromagnetism [18], we can directly check that if for x ∈ R3 we define the vector
G(x) by means of the solution in the whole space of ∆G(x) = g(x) namely by using

the Newtonian potential Gj(x) = − 1
4π

∫
R3

gj(y)
|x−y| dy, and if we set A := − curlG,

then (provided that div g = 0)
curlA = g.

It was later recognized the extremely high relevance of this result, when formu-
lated in appropriate function spaces, in the theory of partial differential equations,
especially in connection with classical electromagnetism and fluid mechanics. A
systematic study of space decomposition in the sum of a gradient and the curl of
a vector potential was initiated by Weyl [25]. The reader can find an up-to-date
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reference in Galdi [14, Ch. III], with the relevant applications to the field of math-
ematical fluid mechanics.

On the other hand, the solution of the various curl systems in presence of bound-
ary conditions requires a special treatment, since the problems may impose some
geometric conditions on the domain and the construction requires special tech-
niques. In this respect we recall especially the papers by Borchers and Sohr [9],
von Wahl [24], and Bolik and von Wahl [8], based on representation formulas and
on reduction to appropriate integral equations. We also recall the recent results by
Kozono and Yanagisawa [21], based on the classical theory of Agmon, Douglis, and
Nirenberg and to reduction to a suitable family of boundary value problems.

In this paper we are mainly interested in classical solutions: to find an appropriate
X ⊆ (C(Ω))3 such that, for all g ∈ X , one can construct a solution v of class C1

in the open set Ω, satisfying the homogeneous boundary conditions in the classical
sense of C(Ω). We work in domains star-shaped with respect to a ball, hence the
topology of the domain is very simple, avoiding the pathologies considered in [8]. As
the main point of our paper is to find a suitable subspace of continuous functions,
such that the problem can be solved, this is connected with the limiting theory
(that is in L∞(Ω)) for partial differential equations. We recall that the solution
of elliptic equations with right-hand side in L∞(Ω) does not produce –even for the
Poisson problem– functions with bounded second order derivatives. Nevertheless, it
is well-known that for 2nd order elliptic equations by assuming a Hölder (denoted by
C0,α(Ω)) or even Dini (denoted by CD(Ω)) continuous datum is enough to produce
C2(Ω) solutions. Here, the situation is even more complex, due to the fact that (1)
is not an elliptic systems. In addition, we are not interested in special features
as those exploited by Bourgain and Brezis [10] for the right-hand side in L3(Ω)
concerning whether or note there exists at least a solution in W 1,3(Ω) ∩ L∞(Ω).

Our aim is to exploit a representation formula similar to the one introduced
by Bogovskĭı [7] for the divergence system (see also the review in Galdi [14]), for
which we have recently proved in [6] a similar results of resolvability in the space of
classical solutions. For our purposes is then relevant to use an integral representation
formula, which is on the same lines of that previously introduced by Griesinger [16,
17]. We use classical tools as those developed by Korn [20] for the study of Hölder
continuity (and explained for the Newtonian potential in Gilbarg and Trudinger [15])
and we use fine properties of the Dini continuous functions to determine a class
of right-hand sides producing a C1(Ω) solution. The introduction of the integral
control of the modulus of continuity dates back to Dini [13] for elliptic equations.
Starting from this work it became a sort of classical borderline conditions to have
continuity of second order derivatives for elliptic equations of second order. We
wish to mention that the assumption of Dini continuous data in problems of fluid
mechanics started with the paper of Beirão da Veiga [1]. Therein, considering the
2D Euler equations for incompressible fluids, a unique solution is constructed in the
critical space for the vorticity C(0, T ;CD(Ω)). More recently the same functional
setting have been also employed by Koch [19] and in [5] to analyze properties of the
long-time behavior. In addition, the construction of classical solutions of the Stokes
system with Dini-continuous data has been recently provided in papers by Beirão
da Veiga [2, 3, 4] and this motivates also our analysis of the divergence and curl
operator, since they are some of the building blocks in the theory of mathematical
fluid mechanics.
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We already observed that if curl v = g, then necessarily div g = 0; hence the
main result we prove is the following.

Theorem 1.1. Let Ω ⊂ R3 bounded and star-shaped with respect to B = B(0, 1).

Let be given g = (g1, g2, g3) ∈ (CD(Ω))3 such that ∂gi(x)
∂xi

exist for i = 1, 2, 3, for all

x ∈ Ω, and with div g = 0. Then, there exists at least a solution v = (v1, v2, v3)
of the curl system (1) with homogeneous Dirichlet boundary conditions, such that
v ∈ (C1(Ω) ∩ C(Ω))3.

To conclude the introduction, we finally recall that the boundary value prob-
lem (1) is a system of first order and in addition that the solution is not unique.
Hence, many of the results valid for the Laplacian (or in general for scalar elliptic
equations of the second order) are not directly applicable.

2. Notation and few basic results

We fix now the notation which will be used throughout the paper. In the sequel
we denote by B = B(0, 1) the unit ball in R3

B(0, 1) :=
{
y ∈ R

3 : |y| < 1
}
,

and Ω ⊂ R3 will be an open and bounded, star-shaped with respect to all points
of B. Whenever we write the representation formulas, we are assuming the above
hypothesis on the open set Ω.

Moreover, let ψ ∈ C∞
0 (R3) such that supp(ψ) ⊂ B(0, 1) and

∫
R3 ψ(y) dy = 1.

Together with the customary Lebesgue spaces (Lp(Ω), ∥ . ∥Lp), in this paper we will
use the notion of Dini continuous functions. We recall that a function f ∈ C(Ω) is
called Dini continuous if its modulus of continuity

ω(f, ρ) := sup{|f(x)− f(y)| with x, y ∈ Ω and |x− y| ≤ ρ},

verifies ∫ diam(Ω)

0

ω(f, ρ)

ρ
dρ < +∞.

The space of Dini continuous functions is denoted by CD(Ω), is a Banach space
when endowed with the norm

∥f∥CD
:= max

x∈Ω
|f(x)|+

∫ diam(Ω)

0

ω(f, ρ)

ρ
dρ,

and it is compactly embedded into the space of uniformly continuous functions
C(Ω).

The classical result due to Dini [13] (which followed on the wake of earlier results
on the convergence of Fourier series [12]) states that if f ∈ CD(Ω), and if Ω is a
smooth domain, then the solution of the Poisson problem

−∆u = f in Ω,

u = 0 on ∂Ω,

is in C2(Ω). The extension to elliptic problems as well as to the boundary regularity
(provided that the domain is smooth enough) seems part of the folklore in the
classical theory of elliptic partial differential equations, see [15, Pb. 4.2]. On the
other hand, it is well-known that the result of continuity of second derivatives of u is
false if f is just in C(Ω). It is also clear that C0,α(Ω) ⊆ CD(Ω) for all 0 < α ≤ 1, if
Ω is regular and bounded, hence the result in the Dini-continuous setting is sharper
than those of Hölder and Schauder in the case of data which are Hölder continuous.
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3. The representation formula

As explained in the introduction, we will prove the existence of a classical so-
lution by means of explicit representation formulas à la Sobolev, as developed by
Bogovskĭı. For the reader’s convenience we recall such formulas in this section and
we take also the occasion to make some remarks on the role of the support of the
involved functions. In particular, as in our forthcoming companion paper on the
divergence equation [6], here we use an approach which is slightly different from
the ones previously employed in the literature and which allows also to treat data
which cannot be approximated by C∞

0 (Ω) functions, as it happened in the Lp(Ω)
(or even Orlicz spaces) cases treated in the existing literature.

The formulas we will use are a variant of the “cubature formulas” developed by
Sobolev [22, 23] (see also the review in Burenkov [11]), which have been adapted
to the context of the curl operator by Griesinger [17]. We also observe that the
representation formulas from [17] are more general that the one we use here, since
they are valid for all space dimensions and for the curl operator as well as for its
adjoint. (Recall also that in three space dimensions curl and its adjoint are the
same, modulo a change of sign). Anyway, in the specific case of R3, the one we are
mostly interested to, the representation formula developed in [17, Theorem 3.2] is
the following

(2) (Rg)k(x) := −ϵijk

∫

R3

zi g
j(x− z)

∫ ∞

1
ψ(x− z + tz) t(t− 1) dtdz,

for k = 1, 2, 3 and where ϵijk is the totally anti-symmetric Ricci tensor such that
the vector product is (v ×w)i = ϵijkvjwk, when written in orthogonal coordinates.
We always use the Einstein convention of summation over repeated indices. The
vector g is intended to be extended by zero outside Ω.

Remark 1. in this paper we consider only the case n = 3, since it is the most
relevant in terms of applications to mathematical fluid mechanics. Nevertheless the
same approach can be easily adapted also to the problem in Ω ⊂ Rn, for n > 3.

It will be useful to rewrite the representation formula (2) as follows

(3) (Rg)k(x) = −ϵijk

∫

Ω
(x− y)i g

j(y)

∫ ∞

1
ψ(y + α(x− y))α(α − 1) dαdy,

by observing that the above integral involves the values of g only over Ω. We can
also use a more compact form by writing

(4) (Rg)k(x) := −ϵijk

∫

Ω
gj(y)Ni(x, y) dy,

where

(5) Ni(x, y) := (x − y)i

∫ ∞

1
ψ(y + α(x− y))α(α − 1) dα.

For the reader’s convenience, we recall also the Bogovskĭı formula defining the
solution of the divergence equation, since the two formulas are strictly connected.
Let be given F : Ω → R such that

∫
Ω F (x) dx = 0, then a solution to the boundary

value problem

(6)
div u = F in Ω,

u = 0 on ∂Ω,
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which we will denote by

u(x) = BF (x),

(where B denotes as usual the Bogovskĭı operator) can be written as follows

(7) (BF )i(x) = ui(x) =

∫

Ω
F (y)Ñi(x, y) dy,

where

(8) Ñi(x, y) := (x − y)i

∫ ∞

1
ψ(y + α(x− y))α2 dα.

From the similarity between the two formulas (4)-(5) and (7)-(8) it is clear that
many results valid for the operatorR can be deduced by corresponding ones already
proved for the operator B.

We make some remarks and state some results without complete proofs, since
some of the results are well-known [16, 17] and detailed proof of some new points
(at least for the companion operator B which is a right inverse of the divergence)
can be found with full details in the forthcoming paper [6].

The first results we have is the following.

Proposition 1. Let be given g ∈ (Lq(Ω))3, for some q > 3. Then, the following
formulas are all equivalent to (2):

(Rg)k(x) = −ϵijk

∫

Ω
(x− y)i g

j(y)

∫ ∞

1
ψ(y + α(x − y))α(α− 1) dαdy,

(Rg)k(x) = −ϵijk

∫

Ω

(x− y)i
|x− y|3

gj(y)

∫ ∞

|x−y|
ψ
(
y + ξ

x− y

|x− y|

)
ξ(ξ − |x− y|) dξdy,

(Rg)k(x) = −ϵijk

∫

Ω

(x− y)i
|x− y|3

gj(y)

∫ ∞

0
ψ
(
y + r

x− y

|x− y|

)
r(r + |x− y|) drdy,

(Rg)k(x) = −ϵijk

∫

x−Ω

xi

|x|3
gj(x− z)

∫ ∞

0
ψ
(
y + r

z

|z|

)
r(r + |z|) drdz,

(Rg)k(x) = −ϵijk

∫

x−supp g

xi

|x|3
gj(x − z)

∫ 1+diam(Ω)

0
ψ
(
y + r

z

|z|

)
r(r + |z|) drdz.

Proof. The equivalence of the integral formulas is simply proved by applying the
formula of a change of variables for integrals. The fact that the formula is well-
defined for g ∈ (Lq(Ω))3 follows from Lemma 3.1 below, which implies that for all
x ∈ Ω it holds N(x, y) ∈ Lp

loc(R
3, dy), for all p < 3. !

Remark 2. The above result shows that for g ∈ (C(Ω))3 ⊂ (L∞(Ω))3 ⊂ (Lq(Ω))3,
for all q ≥ 1 since Ω is bounded, the representation formula can be applied directly
to the vector valued function g itself, and not only through smooth approximating
sequences.

The proof of further properties of the operator R is based on the following two
lemmas.

Lemma 3.1. We can rewrite the functions Ni(x, y) as follows

Ni(x, y) :=
(x− y)i
|x− y|3

∫ ∞

|x−y|
ψ
(
y + ξ

x− y

|x− y|

)
ξ(ξ − |x− y|) dξ ∀x ̸= y, x, y ∈ R

3,
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and then for i = 1, 2, 3

∃C = C(diam(Ω), ∥ψ∥∞) : |Ni(x, y)| ≤
C

|x− y|2
∀x ̸= y, x, y ∈ R

3.

Proof. The proof is based on the observation that the function ψ is bounded and
ψ
(
y + ξ x−y

|x−y|

)
is zero for all ξ ∈ R+ such that ξ > 1 + diam Ω, and therefore the

integral of a continuous function over a compact set is bounded. !

A very basic fact, which has not been highlighted in the literature is that the
following result is valid.

Lemma 3.2. The functions Ni(x, y) for i = 1, 2, 3 are such that

Ni(x, y) ≡ 0 ∀ y ∈ Ω and ∀x ∈ R
3\Ω.

Proof. It is easy to check that if x /∈ Ω and ψ
(
y + ξ x−y

|x−y|

)
̸= 0 holds true for some

ξ > |x− y|, then y /∈ Ω. From this fact the thesis follows directly. !

In fact, Lemma 3.2 implies that the homogeneous Dirichlet boundary conditions
are satisfied for any function for which (2) makes sense.

Immediate corollaries of the above two lemmas, are the following propositions

Proposition 2. If g ∈ (Lq(Ω))3, for some q > 3, then Rg(x) is well defined for all
x ∈ R3 and moreover

(Rg)(x) ≡ 0 ∀x ∈ R
3\Ω.

In particular, we have that Rg(x) = 0 for all x ∈ ∂Ω.

Proposition 3. If g ∈ (Lq(Ω))3, for some q > 3, then

|Rg(x)| ≤ c∥g∥Lq(Ω) ∀x ∈ R
3,

where c depends only on ψ, diam(Ω), and q.

Proposition 4. If g ∈ (C∞
0 (Ω))3, then Rg ∈ (C∞

0 (Ω))3.

This latter result is readily obtained by differentiating under the integral sign, see
also Griesinger [16, 17] and Borchers and Sohr [9], since under the above hypotheses
all the calculations are completely justified.

Moreover we have also the following result

Proposition 5. Let g ∈ (Lq(Ω))3, for some q > 3. Then, Rg ∈ (C(Ω))3, with
Rg|∂Ω = 0.

Proof. The proof is obtained by approximating in Lq(Ω) the vector g with a se-
quence {gm}m∈N ⊂ (C∞

0 (Ω))3 and by observing that the resulting sequence of vec-
tors {Rgm}m∈N belongs to ⊂ (C∞

0 (Ω))3 and it converges uniformly, as m → +∞,
to the vector field Rg, in the whole space R3. !

3.1. On the validity of the representation. Once we have shown that Rg van-
ishes at the boundary, it is relevant now to show that the operator R represents
a right inverse of the curl operator. The proof we give here is different from that
provided in [17, 16], where the Lp-approach is based on a non-continuous truncation
of the kernel and on the analysis of the surface integral deriving from integration
by parts.

In this section the open set Ω is star-shaped with respect to B(0, 1). We show
now that the formula of representation provides a solution to the curl equation.
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This follows by using a very classical tool (introduced by Korn [20]) of truncating
in a smooth way the singularity of the kernel. Then, we show that we can work
on smooth functions, and only at the end we pass to the limit, proving properties
which can be derived by the uniform convergence of the approximating sequence.

To this end, let be given a monotone non-decreasing η ∈ C1(R+) such that

η(s) =

{
0 for s ∈ [0, 1],

1 for s ∈ [2,+∞[,

and |η′(s)| ≤ 2 for all s ∈ R+.
Then, let us fix x ∈ Ω and let be given 0 < ϵ < dist(x, ∂Ω). We start considering

the representation formula for g ∈ (C∞
0 (Ω))3 and we define the operator Rϵ (which

is the “ϵ-regularized” version of the operatorR), obtained by truncating in a smooth
way the kernel Ni(x, y) near its singularity at x = y:

(Rϵg)k(x) := −ϵijk

∫

Ω
(x− y)i g

j(y)

∫ ∞

1
ψ(y + α(x− y))α(α− 1) η

( |x− y|

ϵ

)
dαdy.

This approximation allows us to freely perform all needed manipulations, since all
terms in the above integral are smooth and bounded over Ω. Before performing the
various derivatives we observe that the following crucial identity is valid.

Lemma 3.3. By evaluating the partial derivatives we get, for all j = 1, 2, 3

(9)

∂

∂xj
ψ(y + α(x− y)) = ∂jψ(y + α(x− y))α,

and

∂

∂yj
ψ(y + α(x − y)) = ∂jψ(y + α(x − y)) (1− α),

where, to simplify the notation, here and in the sequel we use the symbol ∂jψ to
denote the derivative with respect to the j-th argument of the function ψ that is

∂jψ(y + α(x− y)) := ∂jψ |y+α(x−y).

Then, for any fixed x, y ∈ Ω, x ̸= y and for all i, j = 1, 2, 3 it follows

∂xj
Ni(x, y) = (xi − yi)

∫ ∞

1
∂jψ(y + α(x − y))α(α− 1) dα − ∂yj

Ni(x, y).

Proof. Since |y + α(x − y)| ≥ 1 for α ≥ (1 + |y|)/|x − y| the integrand is bounded
on a compact subset of R and we can differentiate under the sign of integral. By
using Lemma 3.3 we obtain by direct calculations the proof. !

We now show the following result.

Proposition 6. Let be given a scalar ψ ∈ C∞
0 (R3) such that

∫
R3 ψ(y) dy = 1 and

suppψ ⊂ B(0, 1). Let be given g ∈ (C(Ω))3 with div g ∈ Lq(Ω), for some q > 3.
Then,

lim
ϵ→0

curl(Rϵg)(x) = g(x) + B[div g] ∀x ∈ Ω,

where B is the Bogovskĭı operator, which gives a solution of the divergence equation
with zero boundary conditions and which is defined by formula (7).

We prove Proposition 6 under an additional hypothesis, which is mostly inter-
esting for our purposes.
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Theorem 3.4. Let be given a scalar ψ ∈ C∞
0 (R3) such that

∫
R3 ψ(y) dy = 1 and

suppψ ⊂ B(0, 1). Let be given g ∈ (C(Ω))3 such that ∂gi(x)
∂xi

exist for i = 1, 2, 3 and
div g = 0. Then,

lim
ϵ→0

curl(Rϵg)(x) = g(x) ∀x ∈ Ω.

Proof of Theorem 3.4. The proof is obtained by explicitly taking the curl of the
representation formula for Rg in (3) in its regularized form Rϵg. We obtain then

[curl(Rϵg)]i(x)

= −ϵijkϵklm
∂

∂xj

∫

Ω
(x− y)l g

m(y)

∫ ∞

1
ψ(y + α(x − y))α(α− 1) η

( |x− y|

ϵ

)
dαdy

= (δimδjl − δilδjm)×

×
[ ∫

Ω
(x − y)l g

m(y)

∫ ∞

1
∂jψ(y + α(x − y))α2(α− 1) η

( |x− y|

ϵ

)
dαdy

+

∫

Ω
δjl g

m(y)

∫ ∞

1
ψ(y + α(x− y))α(α − 1) η

( |x− y|

ϵ

)
dαdy

+

∫

Ω
(x− y)l g

m(y)

∫ ∞

1
ψ(y + α(x − y))α(α − 1) η′

( |x− y|

ϵ

)(x − y)j
ϵ|x− y|

dαdy
]
,

=: A+B + C.

Let us first consider the term A, which can be written more explicitly as follows:

A =

∫

Ω
(x− y)j g

i(y)

∫ ∞

1
∂jψ(y + α(x − y))α2(α− 1) η

( |x− y|

ϵ

)
dαdy

−

∫

Ω
(x− y)i g

j(y)

∫ ∞

1
∂jψ(y + α(x − y))α2(α− 1) η

( |x− y|

ϵ

)
dαdy,

=: A1 +A2.

Observe now that

A1 =

∫

Ω
gi(y)

∫ ∞

1

[ d

dα
ψ(y + α(x − y))

]
α2(α− 1) η

( |x− y|

ϵ

)
dαdy,

hence, integrating by parts with respect to α, we obtain

A1 =

∫

Ω
gi(y)ψ(y + α(x − y))α2(α − 1)

∣∣∣
α=+∞

α=1
η
( |x− y|

ϵ

)
dαdy

−

∫

Ω
gi(y)

∫ ∞

1
ψ(y + α(x− y))

[ d

dα
α2(α− 1)

]
η
( |x− y|

ϵ

)
dαdy,

and the boundary term vanishes identically.
Concerning A2 we observe that we can use (9) to interchange the derivative with

respect to the x variables into one in the y variables, to write (after integration by
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parts and again dropping the boundary terms which vanish)

A2 =

∫

Ω
(x− y)i g

j(y)

∫ ∞

1

∂

∂yj
ψ(y + α(x− y))α2 η

( |x− y|

ϵ

)
dαdy

= −

∫

Ω
(x− y)i

∂gj(y)

∂yj

∫ ∞

1
ψ(y + α(x− y))α2 η

( |x− y|

ϵ

)
dαdy

+

∫

Ω
δij g

j(y)

∫ ∞

1
ψ(y + α(x− y))α2 η

( |x− y|

ϵ

)
dαdy

+

∫

Ω
(x − y)i g

j(y)

∫ ∞

1
ψ(y + α(x − y))α2 η′

( |x− y|

ϵ

) (x− y)j
ϵ|x− y|

dαdy.

Hence, we obtain that

A2 = −

∫

Ω
(x− y)i

(
div g(y)

) ∫ ∞

1
ψ(y + α(x − y))α2 η

( |x− y|

ϵ

)
dαdy

+

∫

Ω
gi(y)

∫ ∞

1
ψ(y + α(x − y))α2 η

( |x− y|

ϵ

)
dαdy

+

∫

Ω
gj(y)

(x− y)i(x− y)j
ϵ|x− y|

∫ ∞

1
ψ(y + α(x − y))α2 η′

( |x− y|

ϵ

)
dα

dy

ϵ
.

Then, adding together the two formulas, we finally proved that

A = A1 +A2

= −2

∫

Ω
gi(y)

∫ ∞

1
ψ(y + α(x− y))α(α − 1) η

( |x− y|

ϵ

)
dαdy

+

∫

Ω
(x− y)i div g(y)

∫ ∞

1
ψ(y + α(x− y))α2 η

( |x− y|

ϵ

)
dαdy

+

∫

Ω
gj(y)

(x− y)i(x− y)j
ϵ|x− y|

∫ ∞

1
ψ(y + α(x− y))α2 η′

( |x− y|

ϵ

)
dα

dy

ϵ
.

Let us now consider the term B. We have

B = (δimδjl − δilδjm)

∫

Ω
δjl g

m(y)

∫ ∞

1
ψ(y + α(x − y))α(α − 1) η

( |x− y|

ϵ

)
dαdy,

and we observe that since δjlδjl = 3, it follows that

B =3

∫

Ω
gi(y)

∫ ∞

1
ψ(y + α(x − y))α(α− 1) η

( |x− y|

ϵ

)
dαdy

−

∫

Ω
δil g

l(y)

∫ ∞

1
ψ(y + α(x − y))α(α− 1) η

( |x− y|

ϵ

)
dαdy

=2

∫

Ω
gi(y)

∫ ∞

1
ψ(y + α(x − y))α(α− 1) η

( |x− y|

ϵ

)
dαdy.
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Concerning the term C we can rewrite it as follows

C = (δimδjl − δilδjm)×

×

∫

Ω
(x− y)l g

m(y)
(x− y)j
ϵ|x− y|

∫ ∞

1
ψ(y + α(x − y))α(α− 1) η′

( |x− y|

ϵ

)
dαdy

=

∫

Ω

(x− y)j(x− y)j
ϵ|x− y|

gi(y)

∫ ∞

1
ψ(y + α(x − y))α(α− 1) η′

( |x− y|

ϵ

)
dαdy

−

∫

Ω

(x− y)i(x− y)j
ϵ|x− y|

gj(y)

∫ ∞

1
ψ(y + α(x− y))α(α − 1) η′

( |x− y|

ϵ

)
dαdy

=

∫

Ω

|x− y|

ϵ
gi(y)

∫ ∞

1
ψ(y + α(x − y))α(α − 1) η′

( |x− y|

ϵ

)
dαdy

−

∫

Ω

(x− y)i(x− y)j
ϵ|x− y|

gj(y)

∫ ∞

1
ψ(y + α(x− y))α(α − 1) η′

( |x− y|

ϵ

)
dαdy.

Then, adding together A + B + C from the resulting formulas, and by using that
div g = 0, we finally obtain

[curl(Rϵg)]i(x)

=

∫

Ω

|x− y|

ϵ
gi(y) η′

( |x− y|

ϵ

)∫ ∞

1
ψ(y + α(x − y))α2 dαdy

−

∫

Ω

|x− y|

ϵ
gi(y) η′

( |x− y|

ϵ

)∫ ∞

1
ψ(y + α(x− y))α dαdy

+

∫

Ω

(x− y)i(x− y)j
ϵ|x− y|

gj(y) η′
( |x− y|

ϵ

) ∫ ∞

1
ψ(y + α(x − y))α dαdy,

=: Sϵ
1(x) + Sϵ

2(x) + Sϵ
3(x).

We now take the limit as ϵ → 0+ and we start with the term Sϵ
1(x), for which we

make the change of variables α = ξ
|x−y| to obtain

Sϵ
1(x) =

∫

Ω
gi(y) η′

( |x− y|

ϵ

) ∫ ∞

|x−y|
ψ
(
y + ξ

x− y

|x− y|

) ξ2

|x− y|2
dξ

dy

ϵ
.

Then, with the further change of variables r = ξ − |x− y| we obtain

Sϵ
1(x) =

∫

1<|x−y|<2
gi(y) η′

( |x− y|

ϵ

) ∫ ∞

0
ψ
(
x+ r

x− y

|x − y|

) (r + |x− y|)2

|x− y|2
dr

dy

ϵ
.

If we set z = x−y
ϵ

, then

Sϵ
1(x) =

∫

1<|z|<2
gi(x− ϵz) η′(z)

∫ ∞

0
ψ
(
x+ r

z

|z|

) (r + ϵ2|z|)2

ϵ2|z|2
dr
ϵ3dz

ϵ

=

∫

1<|z|<2
gi(x− ϵz) η′(z)

∫ ∞

0
ψ
(
x+ r

z

|z|

) (r + ϵ|z|)2

|z|2
drdz,

and, by using the continuity of g, we get (by the dominated convergence theorem)
that the latter integral converges, as ϵ→ 0, in such a way that

lim
ϵ→0

Sϵ
1(x) = gi(x)

∫

1<|z|<2

η′(z)

|z|2

∫ ∞

0
ψ
(
x+ r

z

|z|

)
r2 drdz.
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Finally, by introducing the radial ρ = |z| and angular u = z/|z| coordinates respec-
tively one gets

∫

1<|z|<2

η′(z)

|z|2

∫ ∞

0
ψ
(
x+ r

z

|z|

)
r2 drdz

=

∫ 2

1
η′(ρ) dρ

∫

S2

du

∫ ∞

0
ψ(x+ ru) r2 dr = (η(2)− η(1))

∫

R3

ψ(w) dw = 1.

Therefore,

lim
ϵ→0

Sϵ
1(x) = (η(2)− η(1)) gi(x)

∫

R3

ψ(w) dw = gi(x).

With the same changes of variables we also get

Sϵ
2(x) = −ϵ

∫

1<|z|<2
gi(x− ϵz)

η′(z)

|z|

∫ ∞

0
ψ
(
x+ r

z

|z|

)
(r + ϵ|z|) drdz = O(ϵ),

Sϵ
3(x) = ϵ

∫

1<|z|<2
gi(x− ϵz)

η′(z)zizj
|z|3

∫ ∞

0
ψ
(
x+ r

z

|z|

)
(r + ϵ|z|) drdz = O(ϵ),

ending the proof. !

4. On the regularity of the solutions

In this section we prove the main result of this paper, namely the existence of a
classical solution to the curl system (1), under the assumption that g ∈ (CD(Ω))3.

We first recall the following result, which is proved in Griesinger [17, Thm. 3.5],
and which follows directly by inspection of the kernel N(x, y)

Lemma 4.1. There exist functions Kij and Gij for any i, j = 1, 2, 3 such that

∂xj
Ni(x, y) = Kij(x, x− y) +Gij(x, y),

where Kij(x, ·) is a Calderòn-Zygmund singular kernel and Gij is a weakly singular
kernel in the sense that, if one sets

kij(x, z) ≡ |z|3Kij(x, z),

there exist constants c = c(ψ) and M = M(ψ, diam Ω) such that:

(1) kij(x, tz) = kij(x, z) ∀x ∈ Ω, ∀ z ̸= 0, ∀ t > 0;
(2) ∥kij(x, z)∥L∞(Ω×S2) is finite;
(3)

∫
|z|=1 kij(x, z) dz = 0 ∀x ∈ Ω;

(4) |Gij(x, y)| ≤ c (diam Ω)2|x− y|−2;
(5) |∂xj

Ni(x, y)| ≤ M |x− y|−3 ∀x ∈ Ω ∀ y ∈ R3\{x}.

The whole Lp-theory for the operator R follows then by using the above esti-
mates within the framework of singular integrals. We will not use that theory, but
nevertheless we need to use the above estimates to control the growth of the kernel
Ni(x, y), as x gets close to y.

As usual in classical potential theory, writing an explicit representation formula
for the first order derivatives of the vector field Rg is a main technical fact. We
will obtain it through a limit of the derivatives of Rϵg. To this end we start by
differentiating Rϵg, which is smooth. We first extend g by zero in R3\Ω We thus
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obtain

(Rg)k(x) = −ϵijk

∫

Ω
gj(y)Ni(x, y) η

( |x− y|

ϵ

)
dy

= −ϵijk

∫

BR

gj(y)Ni(x, y) η
( |x− y|

ϵ

)
dy,

where BR is a ball of radius R > 0 large enough such that Ω ⊂⊂ BR. By the
previous results (especially Lemma 3.3) it follows that

∂xm
(Rϵg)k(x) = −ϵijk

∫

BR

gj(y)∂xm

[
Ni(x, y) η

(
|x− y|

ϵ

)]
dy

= −ϵijk

∫

BR

[
gj(y)− gj(x)

]
∂xm

[
Ni(x, y) η

(
|x− y|

ϵ

)]
dy

− ϵijkg
j(x)

∫

BR

∂xm

[
Ni(x, y) η

(
|x− y|

ϵ

)]
dy

= ϵijk

∫

BR

[
gj(y)− gj(x)

]
∂xm

[
Ni(x, y) η

(
|x− y|

ϵ

)]
dy

− ϵijkg
j(x)

∫

BR

η

(
|x− y|

ϵ

)
(xi − yi)

∫ ∞

1
∂mψ(y + α(x− y))α(α − 1) dα dy

+ ϵijkg
j(x)

∫

BR

∂ym

[
Ni(x, y) η

(
|x− y|

ϵ

)]
dy.

Since when ϵ < dist(∂BR,Ω), then η
(

|x−y|
ϵ

)
= 1, by the Gauss-Green formula the

last integral in the above formula is equal to

ϵijkg
j(x)

∫

∂BR

Ni(x, y)νj(y) dσy.

The previous computation suggests to put forward a conjecture about the limit
as ϵ goes to zero, which will be proved in the next theorem, that is the main result
of the paper. From the theorem below, by recalling Proposition 5, it will follow
directly Theorem 1.1.

Theorem 4.2. Let Ω ⊂ R3 be a bounded open set, star-shaped with respect to
the closed unit ball B centered at the origin and let R > 0 large enough to get
Ω ⊂⊂ B(0, R). Furthermore, let ψ ∈ C∞

0 (R3) be such that
∫
R3 ψ(x) dx = 1, and

suppψ ⊂ B(0, 1). Let be given g ∈ (C0
D(Ω))3 such that ∂gi(x)

∂xi
exist for i = 1, 2, 3,

for all x ∈ Ω, and div g = 0.
Let the functions vkm(x) for k,m = 1, 2, 3 be defined as follows:

vkm(x) := −ϵijk

[∫

BR

[
gj(y)− gj(x)

]
∂xm

Ni(x, y) dy

+ gj(x)

∫

BR

(xi − yi)

∫ ∞

1
∂mψ(y + α(x− y))α(α − 1) dα dy

− gj(x)

∫

∂BR

Ni(x, y)νm(y)dσy

]

.

Then:

1) vkm(x) is well-defined for all x ∈ Ω;
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2) ∂(Rϵg)k(x)
∂xm

converges uniformly to vkm(x) on any compact Ω′ ⊂⊂ Ω;

3) ∂(Rg)k(x)
∂xm

≡ vkm(x) in Ω;

4) Rg ∈ (C1(Ω))3.

Proof. The proof of the above result are based on the accurate analysis of the various
integrals, for fixed k,m = 1, 2, 3. In particular, many of the calculations are very
close to those used in the analysis of the divergence equation in [6], and hence we
sketch the main points, without giving full details.

To prove 1), fix any x ∈ Ω. Remark that, after its extension by zero outside Ω,
g still belongs to (L∞(R3))3. Then, for any ϵ < dist(x, ∂ Ω), one has

∫

BR

∣∣gj(y)− gj(x)
∣∣ |∂xm

Ni(x, y)| dy

=

∫

B(x,ϵ)

∣∣gj(y)− gj(x)
∣∣ |∂xm

Ni(x, y)| dy

+

∫

{|x−y|≥ϵ}∩BR

∣∣gj(y)− gj(x)
∣∣ |∂xm

Ni(x, y)| dy,

=: D + E.

Since B(x, ϵ) ⊂ Ω, it follows that, for all y ∈ Ω with y ̸= x,

D ≤

∫

B(x,ϵ)

∣∣gj(y)− gj(x)
∣∣

|y − x|
|y − x| |∂xm

Ni(x, y)| dy

≤

∫

B(x,ϵ)

ω(g, |y − x|)

|y − x|

M

|y − x|n−1
dy,

where ω(g, ρ) is the modulus of continuity of g in Ω. By introducing the radial and
angular coordinates, we obtain

D ≤ 4πM

∫ ϵ

0

ω(g, ρ)

ρ
dρ,

and, by the hypothesis that g is Dini continuous, the integral is finite.
Furthermore, since both g and ∂xm

Ni(x, y) are bounded on {|x − y| ≥ ϵ}, the
term E is finite as well.

Finally, since ∂mψ ∈ C∞
0 (Rn) and supp ∂mψ ⊂ B(0, 1), it follows that

(10)

∫

Ω
(xi − yi)

∫ ∞

1
∂mψ(y + α(x− y))α(1 − α) dα dy,

is the value of the same representation formula (2) corresponding to the bounded
function gj ≡ 1, evaluated by using ∂mψ ∈ C∞

0 (R3) instead of ψ. We observe that
since supp ∂mψ ⊂ B, the properties proved in Proposition 5 are still valid. Hence,
by the previous results, also the integral (10) is globally bounded, and statement 1)
follows.
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To prove 2), fix any Ω′ ⊂⊂ Ω. Thus, for all x ∈ Ω′ and ϵ > 0 such that
2ϵ < dist(Ω′, ∂Ω), it follows that

|∂xm
(Rϵg)i(x)− vkm|

≤

∫

B(x,2ϵ)
|gj(x) − gj(y)| |∂xm

Ni(x, y)| dy

+

∫

B(x,2ϵ)
|gj(y)− gj(x)| |Ni(x, y)| η

′

(
|x− y|

ϵ

)
|xm − ym|

|x− y|

dy

ϵ

+

∫

B(x,2ϵ)
|gj(x)| |xi − yi|

∫ ∞

1
|∂mψ(y + α(x− y))|α(α − 1) dα dy

=: F +G+H.

By the definition of modulus of continuity it follows that

F ≤ M

∫

B(x,2ϵ)

|gj(x) − gj(y)|

|y − x|3
dy ≤ 4πM

∫

ρ<2ϵ

ω(g, ρ)

ρ
dρ.

By the Dini continuity of g –and the consequent absolute continuity of the integral
of the modulus of continuity– the last term vanishes as ϵ goes to zero, independently
of x ∈ Ω′.

The second term G is estimated in the same way since by the properties of ψ
and η it follows that

G ≤

∫ 2ϵ

ϵ

ω(g, ρ)

ρ
dρ,

and, again by the absolute continuity of the integral, the term G vanishes as ϵ goes
to zero, independently of x ∈ Ω′.

Finally, by using ∂jψ instead of ψ as in the previous proofs, it follows that for
any q > 3 and suitable constants c′, c′′

|H | ≤ c′ max
Ω

|gj(x)|

∥∥∥∥η
(
|x− y|

ϵ

)
− 1

∥∥∥∥
Lq(Ω)

≤ c′′
∥∥∥∥η

(
|x− y|

ϵ

)
− 1

∥∥∥∥
Lq(B(x, diam Ω))

Since the latter norm vanishes as ϵ goes to zero, for any q > 3, and independently
of x ∈ Ω, point 2) follows.

By the classical theorem on a converging sequence of functions whose derivatives
converge uniformly, it follows 3), while 4) follows since Rϵg ∈ C∞(R3). !

Remark 3. By a change of variables one can easily consider the case in which Ω is
star-shaped with respect to a ball of positive radius r, but not necessarily centered
at the origin.
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