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Abstract. The scope of the paper is twofold. We show that for a large class
of measurable vector fields in the sense of N. Weaver (i.e. derivations over the
algebra of Lipschitz functions), called in the paper laminated, the notion of
integral curves may be naturally defined and characterized (when appropriate)
by an ODE. We further show, that for such vector fields the notion of a flow
of the given positive Borel measure similar to the classical one generated by
a smooth vector field (in a space with smooth structure) may be defined in a
reasonable way, so that the measure “flows along” the appropriately understood
integral curves of the given vector field and the classical continuity equation is
satisfied in the weak sense.

1. Introduction

Every sufficiently smooth and bounded vector field V in the Euclidean space
E = R

n is well-known to generate a canonical flow of a given finite Borel measure
µ in E by setting µt := ϕtV#µ, t ∈ R

+, where ϕtV (x) := θ(t), θ standing for the
unique solution to the differential equation

(1.1) θ̇(t) = V (θ(t))

satisfying the initial condition θ(0) = x. Such a flow satisfies the continuity equation

(1.2)
∂µt
∂t

+ div vtµt = 0

in the weak sense in E × R
+, where vt : E → E is some velocity field (of course,

non unique for the given V , but in particular, this equation is satisfied in this case
with vt := V ). The goal of this paper is to try to explain to what extent the
above assertions can be extended to the case when the vector field V can be non
smooth, and even strongly discontinuous, for instance just measurable. Namely,
we are interested to establish whether one can say that a measurable vector field
V defines a reasonable flow of a given measure along the integral curves of V and
satisfying the continuity equation (1.2). Of course, the notion of an integral curve
of V must be now understood in a weaker sense, namely, as absolutely continuous
Carathèodory solutions of (1.1) (i.e. the latter equations must be satisfied a.e. in
R

+). The following simple example shows however that we might not expect this
to be possible for all measurable vector fields, because in fact some of them may
admit no nonconstant integral curves.

Example 1.1. Let K ⊂ [0, 1] be a Cantor set of positive Lebesgue measure (or
just any closed totally disconnected set of positive Lebesgue measure) and let
V (x) := 1K(x). Then there is no absolutely continuous solution to the equa-
tion (1.1) different from constant curves θ(t) ≡ x 6∈ K.
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Looking at the above example from another point of view, one might guess that in
fact to overcome the possible difficulty with the pointwise definition of the integral
curve, it would be helpful to have the right “relaxation” of the notion of a smooth
vector field. The idea of the appropriate weak concept comes from differential
geometry. In fact, a classical smooth vector field can be viewed as a linear operator
over the algebra of smooth functions over E satisfying the Leibniz rule, or, in other
words, the derivation (in this way one customarily identifies the vector field, i.e.
a map V : E → E with the directional derivative along the latter). The correct
weak analogue of this notion can be obtained by substituting smooth functions
with appropriately less smooth ones. Namely, we will view the measurable vector
field as a linear operator mapping Lipschitz functions into measurable ones (with
respect to some measure), satisfying the Leibniz rule and some extra continuity
assumption. This notion has been first introduced in [22] and adapted to metric
measure spaces in [16] (for the detailed treatment of the subject as well as recent
result related to it see also [13, 12]). It is well-known that such vector fields can in
fact be identified with one-dimensional metric currents introduced in [3]. It is the
main goal of this paper to show that for a large class of such measurable vector fields,
the notion of integral curves still makes sense, and the flow of a given measure along
the respective integral curves can be defined in a reasonable way, and in particular,
it satisfies the continuity equation (1.2) with some natural velocity field vt related
to V .

Measurable vector fields and integral curves. The measurable vector fields
(or, equivalently, one-dimensional metric currents) admitting the natural notion of
“integral curves”, called in this paper laminated, are those that can be represented
as integrals of vector fields associated to single absolutely continuous curves in some
possibly σ-finite measure η over the space of curves C(R+;E). As shown in [19, 20],
this class includes normal vector fields, i.e. the weak divergence of which is a signed
Radon measure (in the Euclidean space this is a consequence of representation
results for normal De Rham one-dimensional currents by Smirnov [21]), in which
case there is a finite measure η representing such a vector field. However, the class of
laminated vector fields is strictly larger, although it does not include all measurable
vector fields (in particular, the one from Example 1.1, see Remark A.12). Note
that in view of Proposition A.4 a laminated vector field must have rather particular
structure: namely (at least in a Euclidean space) it corresponds to a vector measure
with the field of directions tangential to its mass measure in the sense of Bouchittè-
Buttazzo-Seppecher [9], which is not the case for generic measurable vector fields
by Remark A.5. Our first main result is Theorem 5.1 which says in particular that
in a Banach space E with Radon-Nikodym property (e.g., in a finite-dimensional
space)

• every laminated vector field X has a pointwise representation as a pair
of a “total variation” measure mX (or, equivalently, the mass measure of
the respective metric current) and a Borel “field of directions”, i.e. a Borel
function V : E → E with ‖V (y)‖ = 1 for mX -a.e. y ∈ E (‖ · ‖ standing for
the norm in E), such that

(Xπ)(y) = 〈V (y), dπ(y)〉, for mX -a.e. y ∈ E

for every π ∈ Lip(E) quasi-differentiable function with bounded derivative
dπ satisfying some rather weak continuity property (the respective class
of functions being denoted by Q1(E)), 〈·, ·〉 standing for the usual duality
pairing between E and its continuous dual; the map V is unique up to
mX -a.e. equality;

• η-a.e. curve θ ∈ C(R+;E) parameterized by arclength is an absolutely con-
tinuous integral curve of X in the sense that when E is strictly convex, then
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θ is a Carathéodory solution of (1.1) with V the above “field of directions”
of X and t ∈ (0, ℓ(θ)), where ℓ(θ) stands for the length of θ; if E is not
strictly convex, then (1.1) has to be substituted by a differential inclusion.

Transportable measures and their flows. Let us describe in very rough and
heuristic terms the notion of flow of a given measure µ by a given laminated vector
fieldX that we propose in this paper. The flow is seen as a movement of an ensemble
of particles, each one moving along some integral curve of X . The movement of
this ensemble is assumed to be given by a measure σ over C(R+;E)×R

+, so that,
intuitively, σ(θ, s) stands for the number of particles which move along the curve
θ ∈ C(R+;E) at time s ∈ R

+. Suppose that we set our timer at t := 0 and observe
the distribution of the particles. Each particle at this instant is moving along some
curve θ ∈ C(R+;E) for some time s ∈ R

+ and hence is observed at the position
β0(θ, s) := θ(s) ∈ E, so that we observe the distribution of particles given by the
measure µ := β0#σ. After time t ∈ R

+ is elapsed (i.e. when our timer shows t),
we observe the measure µt := βt#σ, where βt(θ, s) := θ(s + t) ∈ E. The family
{µt}t∈R+ may be viewed thus as a flow of the measure µ = µ0. In order that each
particle in the flow of the measure µ be flowing along an integral curve of X , one
has to request the projection of the measure σ to the space of curves C(R+;E) to be
absolutely continuous with respect to η. It is worth remarking that our notion of the
measure σ producing the flow is very similar to that of a randomized stopping time
introduced in [18] and recently successfully employed in [6]. A curious feature of this
definition of the flow is its sensibility to equivalent choices of distances in E which
is due to the same sensibility of the notion of “integral curves” to a measurable
vector field; in fact, even for a finite-dimensional normed space different choices of
the norm produce different representations of the same measurable vector field and
hence different flows.

Clearly, there is a very strong non-uniqueness of the constructed flow due to both
non-uniqueness of a measure η representing the given vector field X and also that
of the measure σ producing the flow. Part (but not all) of this non-uniqueness may
be avoided by providing natural constructions of flows for particular subclasses of
vector fields. We do this in Section 7 for so-called cyclic, or divergence free, and
acyclic vector fields separately (it is worth keeping in mind that every vector field
can be represented, though again not uniquely, as a sum of a cyclic one and an
acyclic one).

More important, it is not guaranteed that for the given µ and X (and η repre-
senting X) the flow (i.e. the measure σ producing the latter) in fact exists. When it
exists, we say that µ is transportable by X . One might anyhow easily assume that
each µ is transportable by every laminated vector field X by admitting possibly very
unnatural flows (in particular, such that every measure be not moving at all, that
is, µt = µ for all t ∈ R

+). In order to avoid this we must not consider the measures
η over curves which charge constant curves (those concentrated over singletons).
This produces physically reasonable flows but the transportability of all measures
is sacrificed. In particular, for the measure µ to be transportable by X it has to be
concentrated over the support of X . We show that, given a laminated vector field
X , still a lot of measures are transportable by X , in particular, the negative part
of its weak divergence (if the latter is a finite measure), and its mass measure; and,
moreover, every ν ≪ µ is transportable by X if so is µ (see Proposition 4.2).

Continuity equations. The principal result of this paper regarding flows of trans-
portable measures is Theorem 6.1 which shows in particular that in a Banach space
with Radon-Nikodym property (e.g. in a finite-dimensional normed space), every
flow µt corresponding to X satisfies continuity equation (1.2) in the appropriately
weak sense. Moreover, if the norm in E is strictly convex, then the velocity field vt
is collinear to V , the Borel map pointwise representing X (in fact, vt = V (1 − ϕt)
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where ϕt : E → [0, 1] is some bounded function which may be nonzero due to the
fact that some mass is stopped during the movement).

Note that the results established in this paper may be considered complementary
to superposition principles obtained in [5, sections 7 and 8] and in [2, theorem 12], al-
though they look in the opposite direction: there one considers families of measures
satisfying continuity equation (1.2) and shows that under appropriate conditions
they have to “flow” along the trajectories of some ODE.

The basic notation as well as some useful auxiliary results on metric currents
are reported in Appendix A. Some remarks on the representation of currents by
curves are provided in Appendix A.3. Appendix B contains more or less folkloric
technical results that are only provided for the readers’ convenience as well as to
explain some notation.

2. Notation and preliminaries

2.1. Framework and basic notation. The metric spaces we deal with in the
sequel are always assumed to be complete. Unless explicitly stated otherwise, E will
stand for a complete metric space (our main results, Theorem 5.1 and Theorem 6.1,
are among notable exceptions: there E stands for a Banach space). For aD ⊂ E, we
will denote by D̄ its closure, by ∂D its topological boundary, by 1D its characteristic
function, by H

k the k-dimensional Hausdorff measure and let Dc := E \ D. The
notation Br(x) ⊂ E stands for the open ball of E centered at x ∈ E with radius r >
0. For real numbers α and β we employ the usual brief notation α∨β := max{α, β}
and α ∧ β := min{α, β}. By ēi, i = 1, . . . , n we denote the unit vectors along axis
xi in R

n. The notation L
n stands for the Lebesgue measure in R

n.
If E is a Banach space with norm ‖ · ‖, its dual will be denoted by E′ and

assumed to be equipped by the dual norm ‖ · ‖′, the duality being denoted by
〈·, ·〉 : E×E′ → R. The space E will be also silently identified, if necessary, with its
natural isometric embedding in E′′. A Banach space E is said to be strictly convex,
if so is its unit ball.

2.2. Measures. The Borel σ-algebra of a metric space E will be denoted by B(E).
All the measures over a metric space E we will consider in the sequel are Borel. We
say that a positive measure µ over E is concentrated over D ∈ B(E), if µ(Dc) =
0. Further, all finite positive Borel measures we will be working with are silently
assumed to be tight (i.e. concentrated over a σ-compact set), hence, in fact, Radon,
since E is assumed to be complete. This is true for all finite positive Borel measures
if E is Polish (i.e. complete separable), or, more generally, if the density character
(i.e. the minimum cardinality of a dense subset) of E is an Ulam number (see, e.g.,
proposition 7.2.10 from [8]). Note that it is consistent with the Zermelo-Fraenkel set
theory to assume that the latter holds for every metric space. Anyhow, if µ is a tight
positive finite Borel measure over E then it is concentrated over a closed separable
subspace S ⊂ E (for S one can take, for instance, the support suppµ of µ, or the
closed linear span of suppµ if E is a Banach space and one wants S to be linear),
and hence, in all such situations for the purposes of this paper, up to substituting
E by its separable subspace S we may suppose, without loss of generality, that E is
separable itself. For two measures µ and ν over the same measurable space we use
the standard notation ν ≪ µ to say that ν is absolutely continuous with respect to
µ and ν⊥µ to say that these measures are mutually singular. We say that µ and ν
are equivalent, if µ≪ ν ≪ µ.

If a Borel measure µ over a metric space E can be represented (we customarily
use the term disintegrated) as

µ(B) =

∫

X

µx(B) dν for all B ∈ B(E),
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where ν is a Borel measure over another metric space X and each µx is a Borel
measure over E, the map x ∈ E 7→ µx(B) being ν-measurable for all B ∈ B(E), we
will write µ = ν ⊗ µx, in order to emphasize that the above disintegration formula
may be seen as a generalization of the Fubini theorem for product measures.

2.3. Curves. Curves in a metric space E will always be assumed parameterized
over R

+ and continuous. The space of such curves C(R+;E) is equipped with
uniform convergence over bounded intervals. The latter convergence is provided,
for instance, by the distance

d(u, v) :=

+∞
∑

k=1

1

2k
dk(ux[0, k], vx[0, k])

1 + dk(ux[0, k], vx[0, k])
,

where dk stands for the usual uniform distance in C([0, k];E) and ux[a, b] stands
for the restriction of the curve u ∈ C(R+;E) to the interval [a, b]. In the sequel we
find it suitable to think of the space C([a, b];E) of continuous functions over [a, b]
with values in E (equipped with the usual uniform norm ‖ · ‖∞) as continuously
embedded in C(R+;E) (equipped with the above distance) by the embedding map
ı : C([a, b];E) → C(R+;E) defined by ı(θ)(t) := θ(a ∧ t ∨ b). Note that once E
is separable, then C(R+;E) equipped with the latter distance is separable too (in
fact, once Vk is a dense subset of C([0, k];E), then ∪kı(Vk) is dense in C(R+;E)).

For an absolutely continuous curve θ ∈ C(R+;E) we let

ℓ(θ) =

∫

R+

|θ̇|(t) dt,

where |θ̇|(t) stands for the metric derivative of θ at t ∈ R
+, which exists a.e. in R

+

and is everywhere in the sequel silently assumed to be locally integrable as part of
definition of absolutely continuous curves. Note that if E is a Banach space with
Radon-Nikodym property, then in fact the derivative θ̇(t) is well-defined for a.e.
t ∈ R

+ (with the limit in the definition of the derivative intended in the sense of the

norm), and hence ‖θ̇(t)‖ = |θ̇|(t) for a.e. t ∈ R
+. The value ℓ(θ) is usually referred

to as parametric length of θ. An absolutely continuous curve θ ∈ C(R+;E) will be
called rectifiable, if ℓ(θ) < +∞. For every rectifiable curve θ the sequence {θ(tk)}
for tk → +∞ is Cauchy, since for tk ≤ tj one has

d(θ(tk), θ(tj)) ≤ ℓ(θx[tk, tj ]) = ℓ(θx[0, tk])− ℓ(θx[0, tj]) → 0

as k, j → +∞. Thus the limit

end(θ) := lim
t→+∞

θ(t)

is well defined (we will refer to it as ending point of θ). The starting point start(θ)
is just start(θ) := θ(0). The function et : C(R

+;E) → E is defined by et(θ) := θ(t),
t ∈ R

+. We will say that a rectifiable curve θ is parameterized by arclength, if
|θ̇|(t) = 1 for a.e. t ∈ [0, ℓ(θ)] and |θ̇|(t) = 0 for a.e. t ≥ ℓ(θ) (so that, in particular,
start(θ) = θ(0) and end(θ) = θ(t) for all t ≥ ℓ(θ)).

2.4. Spaces. For a metric space E we denote by Lip(E) (resp. Lipb(E)) the set of
all real-valued Lipschitz maps (resp. all bounded Lipschitz maps), and by Cb(E) the
set of all real-valued bounded continuous maps equipped with the uniform norm.
The notation Lp(E;µ) (resp. Lploc(E;µ)) will stand for the usual Lebesgue space of
(classes of µ-a.e. equal) real valued maps over E integrable (resp. locally integrable)
with power p ∈ [1; +∞) with respect to the positive (possibly σ-finite) Borel measure
µ (or µ-essentially bounded for p = +∞). If (Ω,Σ, µ) is a measure space with some
positive σ-finite measure µ, and E is a Banach space, then L1(Ω, µ;E) stands for
the space of Bochner integrable functions f : Ω → E. By C1(Rn) (resp. C1

0 (R
n)) we

denote as usual the set of continuously differentiable functions (resp. continuously
differentiable with compact support) in R

n.
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For a Banach space E, the function ϕ : E → R is called quasi-differentiable, if
for every x ∈ E there is a functional dϕ(x) ∈ E′ such that

ϕ(θ(t+ ε)) = ϕ(θ(t)) + 〈θ̇(t), dϕ(θ(t))〉ε + o(ε)

as ε→ 0+ whenever θ ∈ C(R+;E) is differentiable at t ∈ R
+\{0} and θ(t) = x. This

notion of differentiability is slightly stronger then Gâteaux one but strictly weaker
than Fréchet one. By Q1(E) we denote then the set of quasi-differentiable functions
ϕ : E → R such that ‖dφ(·)‖′ is uniformly bounded and the map (x, y) 7→ 〈y, dϕ(x)〉
is continuous. Note that Q1(E) ⊂ Lip(E), since for u ∈ Q1(E) one has

|u(y)− u(x)| =
∣

∣

∣

∣

∫ 1

0

d

dt
u((1− t)x + ty) dt

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ 1

0

〈y − x, du((1 − t)x+ ty)〉 dt
∣

∣

∣

∣

≤
∫ 1

0

‖y − x‖ · ‖du((1− t)x+ ty)‖′ dt ≤ C‖y − x‖,

where C > 0 is such that ‖du(z)‖′ ≤ C for all z ∈ E.

2.5. Metric currents. For metric currents we use the notation from [19] which is
taken from [3], except the notation for the mass measure. In particular, Dk(E) =
Lipb(E)×(Lip(E))k stands for the space of metric k-forms, its elements (i.e. k-forms)
being denoted by f dπ, where f ∈ Lipb(E), π ∈ (Lip(E))k, Mk(E) stands for the
space of k-dimensional metric currents, M(T ) stands for the mass of a current T , ∂T
for its boundary andmT stands for the mass measure associated to this current (the
latter is denoted by ‖T ‖ in [3] and mT in [19, 20], but here we introduce a different
notation in order to avoid confusion between mass measures of currents, norms,
and flows of measures). As we assume generally for every finite Borel measures,
we presume by default that the mass measures of the currents are all tight, i.e.
concentrated over σ-compact sets (which is automatically true if E is separable, or,
more generally, when the density character of E is Ulam number). In fact, all the
statements on metric currents from [3] remain valid under this assumption.

We also use the notion of subcurrents from [19]. Namely an S ∈ Mk(E) is called
subcurrent of a T ∈ Mk(E), written S ≤ T , if M(S) +M(T − S) = M(T ). Finally,
the current T ∈ Mk(E) is normal, if ∂T ∈ Mk−1(E), i.e. is still a metric current.

The one-dimensional current associated to a Lipschitz curve θ : [a, b] → E is
denoted by [[θ]], namely,

[[θ]](f dπ) :=

∫ b

a

f(θ(t)) dπ(θ(t))

for every f dπ ∈ D1(E). Recall that M([[θ]]) ≤ ℓ(θ). The sequence of currents
{Tν} ⊂ Mk(E) is said to converge weakly to a T ∈ Mk(E), written Tν ⇀ T , if
Tν(ω) → T (ω) as ν → ∞ for all ω ∈ Dk(E).

3. Vector fields as derivations

In the sequel we will be working with the following notion of a measurable vector
field introduced in [22]. We use it in the form adapted to metric measure spaces
in [16].

Definition 3.1. Let µ be a Borel measure over E. We will call a bounded linear
operator X : Lipb(E) → L∞(E;µ) a µ-vector field (or measurable vector field or
even just vector field when we do not need to mention the underlying measure), if
it satisfies

• (Leibniz rule) X(fg) = fXg + gXf for all {f, g} ⊂ Lipb(X)
• (weak continuity) limkXfk = Xf in the weak∗ sense of L∞(E;µ), i.e.,

whenever limk fk(x) = f(x) for all x ∈ E and supk(‖fk‖∞+Lip fk) < +∞.
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It is worth mentioning that operators over function algebrae satisfying Leibniz
rule are usually called derivations.

As mentioned in Appendix A.2, a µ-vector field X can be extended by locality
to the whole Lip(E) (and we do not change the name for this extension). Further,
by Proposition A.8 there is a one-to-one correspondence between measurable vector
fields and metric currents, namely, every µ-vector field X over E defines a metric
current T ∈ M1(E) by the formula

(3.1) T (f dπ) :=

∫

E

fXπ dµ,

with mT ≤ Cµ and, vice-versa, every T ∈ M1(E) with mT ≤ Cµ defines a unique
µ-vector field X over E such that (3.1) holds. This gives a possibility to identify one-
dimensional metric currents with measurable vector fields, which we will always do
in the sequel. In particular, we may attribute the terminology of currents to vector
fields, e.g. calling the vector field normal, if so is the respective current.

We introduce also the following notion which will be important in what follows.

Definition 3.2. We will say that a current T ∈ M1(E) is represented by a σ-finite
Borel measure η over C(R+;E) without cancelation of mass, if

(3.2)

T (ω) =

∫

C(R+;E)

[[θ]](ω) dη(θ) for all ω ∈ D1(E),

M(T ) =

∫

C(R+;E)

ℓ(θ) dη(θ).

A µ-vector field X over E will be said to be represented by a σ-finite Borel measure
η over C(R+;E), if so is the respective metric current T ∈ M1(E) defined by (3.1).
Such vector fields and currents will be further called laminated.

4. Transportable measures and their flows

Define βt : C(R
+;E)× R

+ → E by the formula

βt(θ, s) := θ(t+ s),

so that in particular β0(θ, s) = θ(s). Consider also the projection

q : (θ, s) ∈ C(R+;E)× R
+ 7→ θ ∈ C(R+;E).

Following the idea presented in the Introduction, we give the following definition.

Definition 4.1. A finite positive Borel measure µ over E will be called trans-
portable by a σ-finite Borel measure η over C(R+;E), through a finite Borel mea-
sure σ over C(R+;E)× R

+, if

(4.1)
β0#σ = µ,

q#σ ≪ η.

We will also say that µ is transportable by η, if there is a σ satisfying (4.1). The
family of measures {µt}t∈R+ defined by

µt := βt#σ,

will then be called the flow of measures corresponding to η.
Further, the measure µ will be called transportable by a laminated measurable

vector field X (or, equivalently, by the respective current T ∈ M1(E)), if there is a σ-
finite Borel measure η over C(R+;E) representing X (resp. T ) without cancelation
of mass, which does not charge constant curves, such that µ is transportable by η.
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Assume that a Borel measure µ over E be transportable by a Borel measure
η over C(R+;E) through a Borel measure σ over C(R+;E) × R

+ (i.e. the latter
satisfies (4.1)). Clearly, with this definition one has µt(E) = µ(E), µ0 = µ and the
family {µt} forms a narrowly continuous curve in the space of finite Borel measures
over E. Further, by disintegration theorem we have

σ = µ⊗ ηx,

where {ηx}x∈E is a family of Borel probability measures over C(R+;E)×R
+, con-

centrated over

β−1
0 (x) := {(θ, s) ∈ C(R+;E)× R

+ : θ(s) = x}.
Setting hx,t := βt#ηx, one has in particular

µt = βt#σ = µ⊗ hx,t,

and for every t ∈ R
+ the map x ∈ E 7→ hx,t is weakly measurable. In other words,

µt(B) :=

∫

E

hx,t(B) dµ(x)

for every Borel B ⊂ E.
We study now the notion of transportability of the measures introduced above.

The following easy statement is valid.

Proposition 4.2. Assume that a Borel measure µ over E be transportable by a
Borel measure η over C(R+;E). Then every finite measure ψ ≪ µ is transportable
by η.

Proof. By the Radon-Nikodym theorem we may write ψ = αµ with a measurable
α : E → R

+. Let σ be a Borel measure over C(R+;E) × R
+ satisfying (4.1). We

define the Borel measure τ over C(R+;E) × R
+ by setting τ := (α ◦ β0)σ. Note

that τ is a σ-finite Borel measure (in fact, finite, if so is ψ), because

(4.2)

∫

β
−1

0
(B)

α ◦ β0 dσ =

∫

B

α dβ0#σ =

∫

B

αdµ = ψ(B)

for every Borel B ⊂ E. Therefore, τ ≪ σ, hence q#τ ≪ q#σ ≪ η. On the other
hand, by construction one has β0#τ = ψ by (4.2). Therefore, ψ is transportable by
η through τ . �

Note that in Definition 4.1 in the notion of transportability by a laminated mea-
surable vector field X it has been requested that a measure η over curves repre-
senting X without cancelation of mass does not charge constant curves (i.e. curves,
the images of which are singletons). If this requirement were dropped, then every
measure µ would be transported by every laminated measurable vector field X . In
fact, let η be an arbitrary σ-finite Borel measure over C(R+;E) representing X
without cancelation of mass, and let f : E → C(R+;E) be defined by f(x)(t) := x
(i.e. f maps a point x ∈ E to the constant curve θ(t) = x). Letting η′ := f#µ we
have that η + η′ still represents the same measurable vector field without cancela-
tion of mass, and µ is transportable by η + η′, say, by a measure σ := η′ ⊗ δ0 over
C(R+;E) × R

+. However, the respective flow is in fact absolutely unreasonable
since one has µt = µ for all t ∈ R

+, which has nothing to do with the vector field in
consideration. Thus we have to sacrifice the possibility to transport all the measures
in order to have reasonable flows. In fact, not all the measures are transportable
by a given measurable vector field as the following statement shows.

Proposition 4.3. If µ is a measure over E transportable by a laminated measurable
vector field X (or, equivalently, by the respective current T ∈ M1(E)), then µ is
concentrated over suppT (i.e. suppµ ⊂ suppT ).
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Proof. Let η be a σ-finite Borel measure over C(R+;E)×R
+ representing T without

cancelation of mass, and not charging constant curves, such that µ is transportable
by η through some measure σ over C(R+;E) × R

+. By Remark A.9, one has
then θ ⊂ suppT in the sense of traces for η-a.e. θ, i.e. θ(t) ∈ suppT for η-a.e.
θ ∈ C(R+;E) and all t ∈ R

+, hence for σ-a.e. (θ, t) ∈ C(R+;E) × R
+. Thus

β0#σ = µ is concentrated over suppT . �

We now give some examples of transportable measures.

Example 4.4. Assume η be a finite measure. Then µ := start#η = e0#η is trans-
portable by η through σ := η ⊗ δ0. In fact,
∫

E

u(x) d(β0#σ)(x) =

∫

E

u(x) dβ0#(η ⊗ δ0)(x)

=

∫

C(R+;E)×R+

u(β0(θ, s)) d(η ⊗ δ0)(θ, s)

=

∫

C(R+;E)×R+

u(θ(s)) d(η ⊗ δ0)(θ, s) =

∫

C(R+;E)

u(θ(0)) dη(θ)

=

∫

E

u(x) d(e0#η)(x) =

∫

E

u(x) dµ(x)

for every Borel function u over E, so that β0#σ = µ, and hence σ satisfies (4.1).
We have now that each ηx is concentrated over

e−1
0 (x)× {0} = {θ ∈ C(R+;E) : θ(0) = x} × {0} ⊂ C(R+;E)× R

+,

and

hx,t(B) = ηx({(θ, s) ∈ C(R+;E)× R
+ : θ(s+ t) ∈ B})

= ηx({θ ∈ C(R+;E) : θ(t) ∈ B} × {0}) = ηx(e
−1
t (B)× {0}).

Finally, one has µt = et#η. In fact,

µt(B) =

∫

E

hx,t(B) dµ(x) =

∫

E

ηx(e
−1
t (B) × {0}) dµ(x)

= (η ⊗ δ0)(e
−1
t (B)× {0}) = η(e−1

t (B)) = (et#η)(B)

for all Borel B ⊂ E.

Another important example is the following one.

Example 4.5. Let η be a σ-finite measure over C(R+;E) such that η-a.e. θ ∈
C(R+;E) is parameterized by arclength, and

∫

C(R+;E)

ℓ(θ) dη(θ) < +∞.

Then the finite measure µ over E defined by

(4.3)

µ := η ⊗ θ#(L
1
x[0, ℓ(θ)]), i.e.

µ(B) =

∫

C(R+;E)

L
1(θ−1(B) ∩ [0, ℓ(θ)]) dη(θ),

for every Borel setB ⊂ E, is transportable by η. In fact, setting σ := η⊗L
1
x[0, ℓ(θ)],

one has

(β0#σ)(B) = σ({(θ, s) ∈ C(R+;E)× R
+ : θ(s) ∈ B})

=

∫

C(R+;E)

L
1(θ−1(B) ∩ [0, ℓ(θ)]) dη(θ) = µ(B)

for every Borel B ⊂ E.
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In particular, if η represents some laminated current T ∈ M1(E) without can-
celation of mass, while η-a.e. θ ∈ C(R+;E) is parameterized by arclength, then
the mass measure mT is transportable by η through σ := η ⊗ L

1
x[0, ℓ(θ)], because

clearly in this case one has µ = mT .
It is worth mentioning that the measure µ defined by (4.3) can be interpreted as

the transport density. This notion is frequently used in the context of the Monge-
Kantorovich optimal transportation problem (i.e. when η and/or T represent the
solution to the latter problem) [1, 10].

Note that the above Example 4.5 provides a measure transportable by a mea-
surable vector field by any measure η representing the latter without cancelation of
mass. In general this is not the case, i.e. if a measure is transportable by a measur-
able vector field, it is not true that it is transportable by all measures η representing
the latter without cancelation of mass as the following example shows.

Example 4.6. If E := R, T := [[[0, 1]]], then the measure µ := δ0 is transportable by
η := δθ with θ := [0, 1] (i.e. θ(t) := t for all t ∈ [0, 1]) by Example 4.4. However, µ
is not transportable by η′ :=

∑∞
k=1 δθk (note that this measure is not finite) with

θk := [1/2k+1, 1/2k] (i.e. θk(t) := (1− t)/2k+1 + t/2k for all t ∈ [0, 1]), while both η
and η′ represent T without cancelation of mass.

We will now give an example of a measure not transportable by a given measure
η over C(R+;E).

Example 4.7. Let E := R
2 and η := L

1
x[0, 2] ⊗ δθy , where θy(t) := (t ∧ 1, y) for

each y ∈ [0, 2] (with the parameter t ∈ R
+). This measure represents the current

(L2
x[0, 1] × [0, 2]) ∧ ē1 without cancelation of mass. Let A := (0, 1) = θ1(0) (see

figure 4). Then µ := δA is not transportable by η. In fact, suppose the contrary,
i.e. the existence of a measure σ over C(R+;E)×R

+ satisfying (4.1). Representing
σ := η̃ ⊗ λθ, where η̃ := q#σ, we get that η̃ is concentrated over {θy : y ∈ [0, 2]}
(because η̃ ≪ η) and λθ = 0 for all θ 6= θ1 because µ = β0#σ is concentrated over a
singleton A which is the starting point of θ1. This means σ = 0 giving the obvious
contradiction µ = 0.

On the contrary, letting again E := R
2 and

η′ := L
1
x[−1, 1]⊗ δθ′

k
,

where θ′k(t) := (t ∧ 1, k(t ∧ 1)) with the parameter t ∈ R
+, and k ∈ [−1, 1], we

have that η′ represents some normal current T ′ (the one solving the optimal mass
transportation problem of minimizing M(T ) among normal currents T satisfying
∂T = H

1
xI − 2δO, where I stands for the segment with endpoints (1,−1) and

(1, 1)). The latter current is concentrated over the triangle with vertices O, (1,−1)
and (1, 1) and has the field of directions v given by v(x, y) = (x, y/x)/|(x, y/x)| (see
figure 4). Then δO is transportable by η′ by Example 4.4.

Remark 4.8. It is worth remarking that if the finite Borel measure µ is transportable
by a measurable vector field corresponding to a laminated current T , then there is
a normal current S ≤ T , S 6= 0, and a finite Borel measure ν over E such that
∂S = ν− µ̃, where µ̃ is equivalent to µ. In fact, in this case there is a σ-finite Borel
measure η over C(R+;E) representing T without cancelation of mass and a Borel
measure σ over C(R+;E)×R

+ satisfying (4.1). Disintegrating σ = αη⊗ λθ, where
α ∈ L1(C(R+;E), η) and each λθ is a Borel probability measure over R+, define

η̃ :=
α

|α|η = 1{α>0}η, σ̃ := η̃ ⊗ λθ,

S :=

∫

C(R+;E)×R+

[[θx[s,+∞)]] dσ̃(θ, s),
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A O

Figure 1. The measure δA is not transportable, while δO is transportable.

and keeping in mind that η̃ represents the laminated current Tη̃ without cancelation
of mass by Lemma A.15, we get from Lemma A.17 (applied with Tη̃ and σ̃ instead
of T and σ respectively) that S ≤ Tη̃ ≤ T (the latter inequality being due to the
fact that η̃ ≤ η). At last, one has

∂S =

∫

C(R+;E)×R+

(δend(θ) − δθ(s))dσ̃(θ, s)

=

∫

C(R+;E)

δend(θ) dη̃(θ)−
∫

C(R+;E)×R+

δθ(s)dσ̃(θ, s),

but
∫

E

f(x) d(∂S)(x) =

∫

C(R+;E)

f(end(θ)) dη̃(θ) −
∫

C(R+;E)×R+

f(θ(s)) dσ̃(θ, s)

=

∫

E

f(x) d(end#η̃ − β0#σ̃)(x)

for every f ∈ Cb(E), so that ∂S = end#η̃ − β0#σ̃, and it remains to observe that
for µ̃ := β0#σ̃ one has µ̃≪ µ≪ µ̃ as claimed.

Let us illustrate the above Remark 4.8 by the following easy example.

Example 4.9. Let E := R, T = [[[0, 1]]], η := δθ, where θ := [0, 1], and µ =

mT = L
1
x[0, 1]. Set S :=

∫ 1

0 [[[s, 1]]] ds. Clearly, T − S =
∫ 1

0 [[[0, s]]] ds, so that

M(S) ≤
∫ 1

0
(1 − s) ds = 1/2 and analogously M(T − S) ≤ 1/2, which gives M(S) +

M(T − S) ≤ 1 = M(T ), and hence S ≤ T . Further,

∂S =

∫ 1

0

(δ1 − δs) ds = δ1 −
∫ 1

0

δs ds = δ1 − µ,

because
∫

E

f(x) d(∂S)−(x) =

∫ 1

0

f(s) ds =

∫

E

f dµ

for every f ∈ Cb(E).

As a partial converse to the above Remark 4.8 we may claim the following easy
statement.

Proposition 4.10. For a normal current T ∈ M1(E), if there is a normal current
S ≤ T such that µ≪ (∂S)−, then the measure µ is transportable by T .

Proof. Let T and S ≤ T be normal one-dimensional currents. It is enough to show
that (∂S)− is transportable by T and then refer to Proposition 4.2. Let η be a
finite Borel measure over C(R+;E) representing S without cancelation of mass and
concentrated on curves parameterized, say (for the sake of definiteness), over [0, 1]
(i.e. being constant outside of this interval). By Example 4.4, one has that e0#η
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is transportable by η. But since ∂S = e1#η − e0#η, we have (∂S)− ≤ e0#η, and
thus (∂S)− is transportable by η again by Proposition 4.2. Let now η′ be a finite
Borel measure over C(R+;E) representing R := T −S without cancelation of mass.
Then, clearly, η + η′ represents T without cancelation of mass, and since (∂S)− is
transportable by η, it is also transportable by any bigger measure, in particular, by
η + η′, hence is transportable by T , which concludes the proof. �

In a particular case when the metric space E is isometrically embedded in a
strictly convex Banach space with Radon-Nikodym property, we are able to give
the following more precise characterization of transportability condition and the
flow it generates.

Proposition 4.11. Let T ∈ M1(E) be a laminated current, where E is isometrically
embedded into a strictly convex Banach space with Radon-Nikodym property, µ be
a finite Borel measure over E transportable by T through a finite Borel measure σ
over C(R+;E)× R

+ such that
∫

C(R+;E)

ℓ(θ) d(q#σ)(θ) < +∞,

the respective flow of µ being given by the family of measures {µt} with µ0 = µ.
Then there is a γ ∈ L1(E;mT ) such that T xγ is a normal current, and for some
finite Borel measure η over C(R+;E) representing T xγ without cancelation of mass
one has µt = et#η for all t ∈ R

+.

Proof. Since q#σ is absolutely continuous with respect to some measure represent-
ing T without cancelation of mass, then by Lemma A.18 there is a γ ∈ L1(E,mT )
such that for an S ∈ M1(E) defined by (A.9) one has that S is normal and S = T xγ.
Defining ϕ : C(R+;E) × R

+ → C(R+;E) by ϕ(θ, s)(t) := θ(s + t), we have that
η := ϕ#σ represents S without cancelation of mass. Finally,

et#η = et#(ϕ#σ) = (et ◦ ϕ)#σ = βt#σ = µt

concluding the proof. �

Note that the flow µt may be not unique as the following example shows.

Example 4.12. Let E := R
2, η := δθ, where θ is the self-intersecting curve shown in

figure 4.12. The parameterization of θ is such that the point A of self-intersection
is attained at two instants t1 and t2 with t2 > t1. Let σi := η ⊗ δti , i = 1, 2. Then
µ := δA is transportable by η both through σ1 and through σ2, but the flows µt
generated by σ1 and by σ2 move the measure δA along different branches of the
curve θ, namely, in the first case µt = δA1

t
, while in the second case µt = δA2

t
(see

figure 4.12).

A
A2
t

A1
t

Figure 2. Nonuniqueness of the flow of δA in Example 4.12.
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Note that some (but of course not all) of the nonuniqueness of the flows is due to
the fact, that the same curves may be parameterized by several different ways. In
fact, if we reparameterize in some measurable way all the curves of in the support
of the measure η transporting the given measure µ, we will get a new flow of the
same measure. However, as the following easy statement shows, the measure µ will
still remain transportable.

Proposition 4.13. Assume that η be a σ-finite Borel measure on C(R+;E) and
µ be a Borel measure over E transportable by η. Suppose that there exists a Borel
reparameterization map

ψ : C(R+;E)× R
+ → R

+

such that ψ(θ, ·) is surjective, non decreasing and θ(t1) = θ(t2) whenever ψ(θ, t1) =
ψ(θ, t2). Then µ is transportable by g#η where g : C(R+;E) → C(R+;E) is a Borel
map uniquely defined by

(4.4) g(θ)(ψ(θ, t)) = θ(t) for all t ∈ R
+.

Proof. Since ψ(θ, ·) is surjective, there exists a map ψ−1(θ, ·) such that

ψ(θ, ψ−1(θ, t′)) = t′

for all t′ ∈ R
+. The map ψ−1(θ, ·) must be strictly increasing and one can prove

that t′ 7→ θ(ψ−1(t′)) is continuous. Hence (4.4) is satisfied by a unique map
g : C(R+;E) → C(R+;E) defined by g(θ)(t′) = θ(ψ−1(θ, t′)) (note that although
ψ−1 clearly maybe non unique, the map g is unique because θ(t1) = θ(t2) whenever
ψ(θ, t1) = ψ(θ, t2)).

We also define f : C(R+;E)× R
+ → C(R+;E)× R

+ by f(θ, t) = (g(θ), ψ(θ, t)),
so that β0 ◦ f = β0 in view of (4.4). Moreover q ◦ f = g ◦ q since q(f(θ, t)) = g(θ) =
g(q(θ, t)). If µ is transportable by η, then by Definition 4.1 there is a Borel measure
σ over C(R+;E)× R

+ satisfying (4.1). Setting σ′ := f#σ one has

β0#σ
′ = β0#(f#σ) = (β0 ◦ f)#σ = β0#σ = µ

and

q#σ
′ = q#(f#σ) = (q ◦ f)#σ = (g ◦ q)#σ = g#(q#σ) ≪ g#η,

which concludes the proof. �

Remark 4.14. The most natural example of the situation of the above Proposi-
tion 4.13 is given by the arclength reparameterization of curves, i.e. g(θ) standing
for the arclength reparameterization of θ and

ψ(θ, t) :=

{

ℓ(θx[0, t]) if ℓ(θx[0, t]) < ℓ(θ)

ℓ(θ) + t− t̄(θ), otherwise,

where t̄(θ) := inf{t : ℓ(θx[0, t]) = ℓ(θ)}, which is Borel in θ and continuous in t.

Remark 4.15. It is worth mentioning that always when η represents some current
T without cancelation of mass, and a Borel map g : C(R+;E) → C(R+;E) is such
that g(θ) is a reparameterization of θ for η-a.e. θ ∈ C(R+;E), then the measure
g#η represents the same current and also without cancelation of mass.

In view of the above remarks the following immediate corollary to Proposi-
tion 4.13 holds true.

Corollary 4.16. Let µ be transportable by some laminated current T ∈ M1(E).
Then there is a σ-finite Borel measure η representing T without cancelation of mass
and concentrated over arclength parameterized curves in C(R+;E) such that µ is
transportable by η.
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A measure η singled out in Corollary 4.16 is of course not unique (since the
current T may be represented by different measures over curves without cancelation
of mass, and µ may be transportable by several of the latter); nevertheless in most
situations such measures are the most interesting.

5. Representation of currents and vector fields

The following result on representation of laminated currents (and hence also of
measurable vector fields) will be important in the sequel.

Theorem 5.1. Let E be a Banach space, T ∈ M1(E) be a laminated current
represented by a σ-finite Borel measure η over C(R+;E) without cancelation of
mass, such that η-a.e. θ is norm differentiable almost everywhere (in particular,
this holds when E has Radon-Nikodym property since then all absolutely continuous
curves are so). Then there is a Borel function VT : E → E with ‖VT (y)‖ = 1 for
mT -a.e. y ∈ E satisfying

(5.1) T (f dπ) =

∫

E

f(y)〈VT (y), dπ(y)〉 dmT (y),

when (f, π) ∈ L1(E;mT )×Q1(E). Further, for η-a.e. θ ∈ C(R+;E) and a.e. t ∈ R
+

one has

(5.2) θ̇(t) ∈ VT (θ(t))
′′|θ̇|(t)

(where V ′
T is defined by (B.1)), and in particular, when the norm in E is strictly

convex, then

(5.3) θ̇(t) = VT (θ(t))|θ̇|(t).
If, moreover, η-a.e. θ ∈ C(R+;E) are parameterized by arclength, then for η-a.e.

θ ∈ C(R+;E) and a.e. t ∈ [0, ℓ(θ)) one has

(5.4) θ̇(t) ∈ VT (θ(t))
′′,

and in particular, when the norm in E is strictly convex, then

(5.5) θ̇(t) = VT (θ(t)).

Moreover, the claims (5.2) and (5.4) hold for every VT satisfying (5.1).

Remark 5.2. If E is a finite-dimensional normed space, then for every (not neces-
sarily laminated) T ∈ M1(E) a Borel map VT satisfying (5.1) exists by Lemma A.3.
The representation (5.1) together with Proposition A.8 establishes the natural cor-
respondence between one-dimensional metric currents in a Euclidean space, mea-
surable vector fields and vector valued Borel maps. In fact, according to Proposi-
tion A.8 for every T ∈ M1(E) there is a unique measurable vector field XT satisfying

T (f dπ) =

∫

E

f(y)(XTπ)(y) dmT (y)

for all f dπ ∈ D1(E), and so (XTπ)(y) = 〈VT (y), dπ(y)〉 for mT -a.e. y ∈ E. Clearly,
if T is normal, then additionally

divmT
XT = divVTmT

is a signed Borel measure of finite total variation (mind the different meanings of
the two divergence symbols in the above relationship: it is the abstract divergence
operator applied to measurable vector fields on the left-hand side and the usual
distributional divergence on the right-hand side). Note that the map VT satisfy-
ing (5.1) is unique up to mT -a.e. equality by Remark A.2. The above Theorem 5.1
gives therefore just the additional information on every representative of VT in the
class of mT -a.e. equal Borel maps in the case T is laminated, or, equivalently, on
the structure of measures over curves representing the laminated current T .



FLOWS OF MEASURES GENERATED BY VECTOR FIELDS 15

Proof. We may further assume without loss of generality E to be separable (substi-
tuting it, if necessary, with the linear span of suppmT which is separable since mT

is assumed to be tight). Let σ be a finite measure over C(R+;E)× R
+ equivalent

to η ⊗ L
1. Disintegrate the measure η ⊗ L

1 over C(R+;E)× R
+ as

η ⊗ L
1 = µ⊗ τy , where µ := β0#σ,

so that µ is equivalent to β0#(η ⊗ L
1), and τy are σ-finite measures concentrated

over β−1
0 (y) ⊂ C(R+;E)× R

+, and denote

(5.6) V (y) :=

∫

C(R+;E)×R+

θ̇(t) dτy(θ, t) =

∫

β
−1

0
(y)

θ̇(t) dτy(θ, t),

the integrals of functions with values in E here and below being intended in the
sense of Bochner. Note that for µ-a.e. y ∈ E the measure τy does not charge η⊗L

1-
nullsets, and thus for τy-a.e. (θ, t) the derivative θ̇(t) is well defined. Moreover, the

map (θ, t) ∈ C(R+;E) × R
+ 7→ θ̇(t) ∈ E is η ⊗ L

1-a.e. equal to a Borel map by
Lemma B.2, hence τy-measurable, and so is also the map (θ, t) ∈ C(R+;E)×R

+ 7→
|θ̇|(t) ∈ E (say, because |θ̇|(t) = ‖θ̇(t)‖ for a.e. t ∈ R

+), and

(5.7)

∫

E

dµ(y)

∫

C(R+;E)×R+

|θ̇|(t) dτy(θ, t) =
∫

R+

dt

∫

C(R+;E)

|θ̇|(t) dη(θ)

=

∫

C(R+;E)

ℓ(θ) dη(θ) = M(T ),

and hence V (y) is well defined for µ-a.e. y ∈ E.
Let π ∈ Q1(E). Observe that

(5.8)

T (f dπ) =

∫

C(R+;E)

[[θ]](f dπ) dη(θ)

=

∫

C(R+;E)

dη(θ)

∫

R+

f(θ(t))〈θ̇(t), dπ(θ(t))〉 dt.

Recalling that f ∈ Cb(E) and that ‖dπ(y)‖′ ≤ Lipπ, we get
∫

C(R+;E)

dη(θ)

∫

R+

∣

∣

∣
f(θ(t))〈θ̇(t), dπ(θ(t))〉

∣

∣

∣
dt

≤ ‖f‖∞Lipπ

∫

C(R+;E)

dη(θ)

∫

R+

|θ̇|(t) dt

= ‖f‖∞Lipπ

∫

C(R+;E)

ℓ(θ) dη(θ) = ‖f‖∞LipπM(T ) < +∞,

and thus we may change the order of integration in (5.8) obtaining

(5.9)

T (f dπ) =

∫

C(R+;E)×R+

f(θ(t))〈θ̇(t), dπ(θ(t))〉 d(η ⊗ L
1)(θ, t)

=

∫

E

dµ(y)

∫

C(R+;E)×R+

f(θ(t))〈θ̇(t), dπ(θ(t))〉 dτy (θ, t)

=

∫

E

f(y)

〈(

∫

C(R+;E)×R+

θ̇(t) dτy(θ, t)

)

, dπ(y)

〉

dµ(y)

=

∫

E

f(y)〈V (y), dπ(y)〉 dµ(y).

The latter also impliesmT = ‖V ‖µ by Lemma A.1. Denoting VT (y) := V (y)/‖V (y)‖
with the convention 0/0 := 0, we note that VT may be assumed to be Borel up to
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changing it on a set of zero measure mT , that ‖VT (y)‖ = 1 for mT -a.e. y ∈ E
and (5.1) holds. Moreover,

(5.10) ‖V (y)‖ =

∥

∥

∥

∥

∥

∫

C(R+;E)×R+

θ̇(t) dτy(θ, t)

∥

∥

∥

∥

∥

=

∫

C(R+;E)×R+

|θ̇|(t) dτy(θ, t),

for µ-a.e. y ∈ E, in view of (5.7) and the equality
∫

E
‖V (y)‖ dµ(y) = M(T ).

Therefore for such y ∈ E one has

θ̇(t) ∈

(

∫

C(R+;E)×R+ θ̇(s) dτ
y(θ, s)

)′′

∫

C(R+;E)×R+ |θ̇|(s) dτy(θ, s)
|θ̇|(t),

by Lemma B.1 or, in other words,

(5.11) θ̇(t) ∈ V (y)′′

‖V (y)‖ |θ̇|(t) = VT (y)
′′|θ̇|(t)

for τy-a.e. (θ, t) ∈ C(R+;E) × R
+, so that η-a.e. θ ∈ C(R+;E) satisfies (5.2) for

a.e. t ∈ R
+. Note that (5.11) makes sense since for µ-a.e. y ∈ E such that V (y) = 0

one has |θ̇|(t) = 0 for τy-a.e. (θ, t) ∈ C(R+;E)× R
+. Therefore, also

η ⊗ L
1
({

(θ, t) ∈ C(R+;E)× R
+ : V (θ(t)) = 0 but |θ̇|(t) 6= 0

})

= 0

(where by writing |θ̇|(t) 6= 0 for brevity we mean that either |θ̇|(t) is defined and
nonzero, or is undefined). The relationships (5.3), (5.4) and (5.5) are now straight-
forward from (5.11).

It remains to show that (5.4) and (5.2) hold for every VT satisfying (5.1). We

start with (5.4). Suppose that T = ṼT ∧ mT . Then VT (x) = ṼT (x) for mT -a.e.
x ∈ E by Remark A.2. We show that then for η-a.e. θ ∈ C(R+;E) and a.e.

t ∈ [0, ℓ(θ)) the relationship (5.4) is valid with ṼT instead of VT . This is true since
mT = β0#(η ⊗ L

1
x[0, ℓ(θ))), and hence

η ⊗ L
1
x[0, ℓ(θ))({(θ, t) ∈ C(R+;E)× R

+ : VT (θ(t)) 6= ṼT (θ(t))})
= mT ({x ∈ E : VT (x) 6= ṼT (x)}) = 0,

proving the claim.
At last, we show that (5.2) holds for every VT satisfying (5.1). Let g(θ) stand

for the arclength reparameterization of θ, that is g(θ)(t) := θ(ϕθ(t ∧ ℓ(θ))), where
ϕθ(s) := inf{t ∈ R

+ : ψθ(t) = s}, ψθ(t) := ℓ(θx[0, t]). Denoting η′ := g#η, we get
from (5.4) for η′-a.e. γ ∈ C(R+;E) and a.e. t ≤ ℓ(γ), the inclusion

(5.12) γ̇(t) ∈ VT (γ((t)))
′′.

But since for γ = g(θ) one has

γ̇(t) = θ̇(ϕθ(t)) · ϕ̇θ(t) =
θ̇(ϕθ(t))

|θ̇|(ϕθ(t))
,

for a.e. t ≤ ℓ(γ) = ℓ(θ), we get from (5.12) the relationship

θ̇(ϕθ(t))

|θ̇|(ϕθ(t))
∈ VT (θ(ϕθ(t)))

′′.

This means that the set of t ∈ R
+ such that ψ̇θ(t) = |θ̇|(t) 6= 0 and

θ̇(t)

|θ̇|(t)
6∈ VT (θ(t))

′′,

has zero Lebesgue measure (in view of the area formula), which implies (5.2) for
η-a.e. θ ∈ C(R+;E) and a.e. t ∈ R

+ and hence concludes the proof for the case
when η-a.e. θ ∈ C(R+;E) are norm differentiable almost everywhere. �
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It is not difficult to show that when the norm in E is not strictly convex, then the
inclusion in (5.2) (or (5.3)) does not necessarily become an equality, as the following
easy though instructive example shows.

Example 5.3. Equip E := R
2 with the norm ‖·‖1 defined by ‖(x1, x2)‖1 := |x1|+|x2|.

Define ηi, i = 1, 2, by the formulae

η1 := L
1
x[0, 1]⊗ δθx2

, where θx2
(t) := (t ∧ 1, x2) for each x2 ∈ [0, 1],

η2 := L
1
x[0, 1]⊗ δθx1

, where θx1
(t) := (x1, t ∧ 1) for each x1 ∈ [0, 1]

(with the parameter t ∈ R
+). Clearly, Tηi = ēi ∧ L

2
x([0, 1] × [0, 1]), M(Tηi) = 1.

Setting η := η1 + η2, one has T := Tη1 + Tη2 = (ē1 + ē2) ∧ L
2
xQ, thus M(T ) = 2,

and hence Tηi ≤ T and η represents T without cancelation of mass. One has

mT = 2L2
xQ, VT = (ē1 + ē2)/2, and θ̇(t) ∈ V ′′

T for η-a.e. θ and for all t ∈ [0, 1]

(because V ′′
T = {λ1ē1 + λ2ē2 : λi ≥ 0, i = 1, 2} in this case), but θ̇(t) 6= VT .

It is worth remarking however, that if one equips E instead with the usual Eu-
clidean norm, then one would still haveM(Tηi) = 1, butM(T ) =

√
2, hence Tηi 6≤ T ,

i = 1, 2, and, moreover,
∫

C(R+;E)

M([[θ]]) dη = 2 >M(T ),

and thus η does not represent T without cancelation of mass.

A few remarks regarding the above Theorem 5.1 and its proof have to be made.

Remark 5.4. If E is a Banach space and η is just some σ-finite measure over
C(R+;E) concentrated over absolutely continuous almost everywhere norm dif-
ferentiable curves and one has

∥

∥

∥

∥

∥

∫

C(R+;E)×R+

θ̇(t) dτy(θ, t)

∥

∥

∥

∥

∥

=

∫

C(R+;E)×R+

|θ̇|(t) dτy(θ, t)

for µ-a.e. y ∈ E, or, equivalently (by Lemma B.1), with the notation of the proof,

θ̇(t) ∈ V (y)′′

‖V (y)‖ |θ̇|(t)

for τy-a.e. (θ, t) ∈ C(R+;E) × R
+ and for µ-a.e. y ∈ E, then η represents Tη ∈

M1(E) without cancelation of mass. In fact, since

Tη(f dπ) =

∫

E

f(y)〈V (y), dπ(y)〉 dµ(y),

where π ∈ Q1(E), by (5.9) then M(Tη) =
∫

E
‖V (y)‖ dµ(y) in view of Lemma A.1.

Thus

M(Tη) =

∫

E

dµ(y)

∥

∥

∥

∥

∥

∫

C(R+;E)×R+

θ̇(t) dτy(θ, t)

∥

∥

∥

∥

∥

=

∫

E

dµ(y)

∫

C(R+;E)×R+

|θ̇|(t) dτy(θ, t)

=

∫

R+

dt

∫

C(R+;E)

|θ̇|(t) dη(θ) =
∫

C(R+;E)

ℓ(θ) dη(θ),

showing the claim.

Remark 5.5. If under the conditions of the above Theorem 5.1 one has additionally
that η is finite (and thus the current T is normal), and η-a.e. θ is parameterized by
arclength, then

VT (θ(t)) = E(θ̇;β−1
0 (B(E)))(t),
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where E(·; Σ) stands for the conditional expectation with respect to the σ-algebra
Σ. To see this, one recalls that β0#(η ⊗ L

1
x[0, ℓ(θ)]) = mT (Example 4.5) and

calculates
∫

β
−1

0
(e)

E(θ̇;β−1
0 (B(E)))(t) d(η ⊗ L

1
x[0, ℓ(θ)])(θ, t)

=

∫

E

dmT (y)

∫

β
−1

0
(y)

1β−1

0
(B)(θ, t)E(θ̇;β

−1
0 (B(E)))(t) dτ̄y(θ, t)

=

∫

E

1B(y) dmT (y)

∫

β−1

0
(y)

E(θ̇;β−1
0 (B(E)))(t) dτ̄y(θ, t)

=

∫

B

dmT (y)

∫

β
−1

0
(y)

E(θ̇;β−1
0 (B(E)))(t) dτ̄y(θ, t)

for every B ∈ B(E), where τ̄y is a Borel probability measure concentrated over
β−1
0 (y) and satisfying the disintegration identity

η ⊗ L
1
x[0, ℓ(θ)] = mT ⊗ τ̄y.

Keeping in mind that

E(θ̇;β−1
0 (B(E)))(t) = λ(β0(θ, t)) = λ(θ(t))

for some Borel vector function of λ over E, we have that over β−1
0 (y) the latter

conditional expectation depends only on y (and not on θ and t), so that
∫

β
−1

0
(B)

E(θ̇;β−1
0 (B(E)))(t) d(η ⊗ L

1
x[0, ℓ(θ)]) =

∫

B

λ(y)dmT (y).

But on the other hand, by definition of the conditional expectation one has
∫

β
−1

0
(B)

E(θ̇;β−1
0 (B(E)))(t) d(η ⊗ L

1
x[0, ℓ(θ)])(θ, t)

=

∫

B

dmT (y)

∫

β
−1

0
(y)

θ̇(t) dτ̄y(θ, t) =

∫

B

VT (y) dmT (y),

recalling (5.5). Thus λ(y) = VT (y) for mT -a.e. y ∈ E, which is exactly the claim
being proven.

Remark 5.6. It is important to remark that when η-a.e. θ ∈ C(R+;E) is parame-
terized by arclength, then one can assert (5.4) (or, in a particular case, (5.5)) for
η-a.e. θ ∈ C(R+;E) only for a.e. t ∈ [0, ℓ(θ)) but not for a.e. t ∈ R

+ as the following
simple example shows.

Example 5.7. Let E := R
2 and η := L

1
x[0, 2] ⊗ δθy + δθ̄, where θy(t) := (t ∧ 1, y)

for each y ∈ [0, 2] and θ̄(t) := (1, t ∧ 2) (with the parameter t ∈ R
+). This measure

represents the current (L2
x[0, 1]× [0, 2]) ∧ ē1 + (H1

xI) ∧ ē2 without cancelation of
mass, where I stands for the vertical segment with endpoints (1, 0) and (1, 2) (see
figure 5.7). Clearly, one has VT (y) = ē1 for L2-a.e. y ∈ (0, 1)×(0, 2) and VT (y) = ē2
for H1-a.e. y ∈ I. Thus, say, for all y ∈ (1, 2] one has θ̇y(t) = 0 for all t ∈ (1, 2), but
VT (θy(t)) = VT ((1, y)) = ē2 6= 0 for L1-a.e. y ∈ (1, 2], and the measure η of this set
of curves is positive.

6. Flows generated by measurable vector fields

The following theorem gives the characterization of flows of a measure trans-
portable by some measurable vector field (or, equivalently, one-dimensional current)
in a Banach space.
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Figure 3. The situation in Example 5.7

Theorem 6.1. Assume a finite measure µ over a Banach space E be transportable
by a σ-finite measure η concentrated over some separable subset of C(R+;E) consist-
ing of only absolutely continuous curves, through a measure σ over C(R+;E)×R

+

such that η̃ := q#σ satisfies

(6.1)

∫

C(R+;E)

ℓ(θ) dη̃(θ) < +∞,

and η-a.e. θ is norm differentiable almost everywhere (in particular, the latter holds
when E has Radon-Nikodym property since then all absolutely continuous curves
are so). Then the following assertions are valid.

(A) Representing by disintegration σ = µt ⊗ νyt , where µt := βt#σ, so that each
νyt is a probability measure concentrated over

β−1
t (y) = {(θ, s) ∈ C(R+;E)× R

+ : θ(s+ t) = y},

and defining

(6.2) vt(y) :=

∫

C(R+;E)×R+

θ̇(s+ t) dνyt (θ, s) =

∫

β
−1

t (y)

θ̇(s+ t) dνyt (θ, s),

we have that vt is Bochner-integrable with respect to µt for a.e. t ∈ R
+

(and even more, the function v : E × R
+ → E defined by v(t, x) := vt(x) is

Bochner integrable with respect to dt⊗ µt), and the continuity equation

(6.3)
∂µt
∂t

+ div vtµt = 0.

is valid in the weak sense, i.e.

(6.4) −
∫

R+

ψ̇(t) dt

∫

E

ϕ(y) dµt(y)−
∫

R+

ψ(t) dt

∫

E

〈vt(y), dϕ(y)〉 dµt(y) = 0

for every ϕ ∈ Q1(E) ∩Cb(E) and ψ ∈ C1
0 (R

+).
(B) If, moreover, η represents some laminated current T ∈ M1(E) without can-

celation of mass, then Theorem 5.1 holds. In particular, if in this case η-a.e.
θ ∈ C(R+;E) is parameterized by arclength, then

(6.5) θ̇(t) ∈ VT (θ(t))
′′

(with the equality θ̇(t) = VT (θ(t)) if E is strictly convex) for η-a.e. θ ∈
C(R+;E) and for a.e. t ∈ [0, ℓ(θ)). If in addition E is strictly convex, then
one has also

(6.6) vt(y) = VT (y)(1− ϕt(y))
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for a.e. t ∈ R
+ and µt-a.e. y ∈ E, where ϕt(y) := νyt (S

y
t ) stands for the

proportion of mass which is stopped at point y after time t,

Syt := {(θ, s) ∈ C(R+;E)× R
+ : θ(s+ t) = y, s+ t ≥ ℓ(θ)}

= {(θ, s) ∈ C(R+;E)× R
+ : θ(s+ t) = y = end(θ)},

and thus, in particular,

(6.7)
∂µt
∂t

+ div VT (1− ϕt)µt = 0

in the weak sense.

It is worth remarking that the construction (6.2) of the vector field vt as the
superposition of the speeds of the relevant curves is quite similar to the construction
of [17, theorem 7]. Note that the term containing ϕt must appear in (6.7) in view
of the Remark 5.6. It is also worth emphasizing that the relationship (6.6) is just
a µt-a.e. equality. For instance, in Example 5.7 with µ := H

1
x({0} × [0, 2]) + δ(1,0)

one gets µt = H
1
x({t ∧ 1} × [0, 2]) + δ(1,t∧2), and, when t > 1, one has vt(x) = ē2

for x = (1, t ∧ 2) and vt(x) = 0 elsewhere.

Proof. We divide the proof in several steps in order to simplify the reading.
Step 1. First we show that (6.2) is a correct definition. To this aim let Nθ ∈ R

+

for a given θ ∈ C(R+;E) stand for the set

Nθ := {s ∈ R
+ : θ̇(s) is undefined}.

Representing by disintegration σ = η̃⊗ λθ with λθ Borel probability measures over
R

+, we get from Lemma 6.2 (applied with µ := λθ, B := Nθ) that λθ(Nθ − t) = 0
for a.e. t ∈ R and η̃-a.e. θ ∈ C(R+;E). Hence, observing that

Nθ − t = {s ∈ R
+ : θ̇(s+ t) is undefined},

we get that

σ
({

(θ, s) ∈ C(R+;E)× R
+ : θ̇(s+ t) is undefined

})

= 0

for a.e. t ∈ R
+, which implies that for such t ∈ R

+ the derivative θ̇(s + t) is well
defined for νyt -a.e. (θ, s) ∈ C(R+;E)×R

+ and µt-a.e. y ∈ E. Further, the function

(θ, s) ∈ C(R+;E)×R
+ 7→ θ̇(s+t) is η̃⊗L

1-a.e. equal to a Borel map by Lemma B.2,
hence νyt -measurable (and automatically separable valued by an assumption on η).

Now the estimate

(6.8)

∫

R+

dt

∫

E

dµt(y)

(

∫

C(R+;E)×R+

|θ̇|(s+ t) dνyt (θ, s)

)

=

∫

C(R+;E)×R+

dσ(θ, s)

∫

R+

|θ̇|(s+ t) dt

=

∫

C(R+;E)×R+

dσ(θ, s)

∫ +∞

s

|θ̇|(τ) dτ

=

∫

C(R+;E)×R+

ℓ(θx[s,+∞)) dσ(θ, s) ≤
∫

C(R+;E)×R+

ℓ(θ) dσ(θ, s)

=

∫

C(R+;E)

ℓ(θ) dη̃(θ) < +∞

shows that the Bochner integral in (6.2) is well defined for a.e. t ∈ R
+ and µt-a.e.

y ∈ E, and, moreover, that for such t one has vt is Bochner-integrable with respect
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to µt for a.e. t ∈ R
+ (and even more, the function v : E × R

+ → E defined by
v(t, x) := vt(x) is Bochner integrable with respect to dt⊗ µt), because

∫

R+

dt

∫

E

‖vt(y)‖ dµt(y)

≤
∫

R+

dt

∫

E

dµt(y)

(

∫

C(R+;E)×R+

|θ̇|(s+ t) dνyt (θ, s)

)

< +∞.

Step 2. We show now the validity of the continuity equation (6.3). Let ϕ ∈
Q1(E) ∩ Cb(E). Since, in the notation of Step 1, for η̃-a.e. θ ∈ C(R+;E) the

equality d
dt
ϕ(θ(t)) = 〈θ̇(t), dϕ(θ(t))〉 is valid for all t ∈ R

+ \ Ñθ where L
1(Ñθ) = 0,

then from Lemma 6.2 (applied with µ := λθ, B := Ñθ) we have that λθ(Ñθ− t) = 0
for a.e. t ∈ R

+ and η̃-a.e. θ ∈ C(R+;E), and thus

σ

({

(θ, s) ∈ C(R+;E)× R
+ :

d

dt
ϕ(θ(s+ t)) 6= 〈θ̇(s+ t), dϕ(θ(s + t))〉

})

= 0

for a.e. t ∈ R
+. Hence, for all such t ∈ R

+ for µt-a.e. y ∈ E one has

νyt

({

(θ, s) ∈ C(R+;E)× R
+ :

d

dt
ϕ(θ(s + t)) 6= 〈θ̇(s+ t), dϕ(θ(s + t))〉

})

= 0,

which implies
∫

C(R+;E)×R+

d

dt
ϕ(θ(s + t)) dσ(θ, s)

=

∫

E

dµt(y)

(

∫

C(R+;E)×R+

d

dt
ϕ(θ(s + t)) dνyt (θ, s)

)

=

∫

E

dµt(y)

(

∫

C(R+;E)×R+

〈θ̇(s+ t), dϕ(θ(s + t))〉 dνyt (θ, s)
)

=

∫

E

dµt(y)

〈(

∫

C(R+;E)×R+

θ̇(s+ t) dνyt (θ, s)

)

, dϕ(y)

〉

=

∫

E

dµt(y) 〈vt(y), dϕ(y)〉 .

Note that the above calculation makes sense since
∣

∣

d
dt
ϕ(θ(s+ t))

∣

∣ ≤ Lipϕ|θ̇|(s+ t),
so that the above integral is defined in view of (6.8). Multiplying the above equation
by ψ(t), integrating over R+ and using integration by parts in dt, we get
∫

R+

ψ(t) dt

∫

E

〈vt(y), dϕ(y)〉 dµt(y) =
∫

R+

ψ(t) dt

∫

C(R+;E)×R+

d

dt
ϕ(θ(s + t)) dσ(θ, s)

=

∫

C(R+;E)×R+

dσ(θ, s)

∫

R+

ψ(t)
d

dt
ϕ(θ(s + t)) dt

= −
∫

C(R+;E)×R+

dσ(θ, s)

∫

R+

ψ̇(t)ϕ(θ(s + t)) dt

= −
∫

R+

ψ̇(t) dt

∫

C(R+;E)×R+

ϕ(θ(s + t)) dσ(θ, s)

= −
∫

R+

ψ̇(t) dt

∫

E

ϕ(x) dµt(y),

so (6.3) (in the sense of (6.4)) is proven.
Step 3. Assume now that η represent some laminated current T without can-

celation of mass. The relationship (6.5) follows from Theorem 5.1. Under the
additional assumption that η-a.e. θ ∈ C(R+;E) is parameterized by arclength, we

have θ̇(t) ∈ VT (θ(t))
′′, and, if E is also strictly convex, then θ̇(t) = VT (θ(t)) for
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η-a.e. θ ∈ C(R+;E) and for a.e. t ∈ [0, ℓ(θ)) by Theorem 5.1. In other words, in
the latter case the set

M := {(θ, τ) ∈ C(R+;E)× R
+ : θ̇(τ) 6= VT (θ(τ)), τ < ℓ(θ)}

satisfies (η ⊗ L
1)(M) = 0. Setting Mθ := {τ ∈ R

+ : (θ, τ) ∈ M}, we have
L

1(Mθ) = 0 for η-a.e. θ ∈ C(R+;E). From Lemma 6.2 applied with µ := λθ,
B :=Mθ we conclude that λθ(Mθ − t) = 0 for a.e. t ∈ R

+ and η-a.e. θ ∈ C(R+;E).
Hence, observing that

Mθ − t = {s ∈ R
+ : θ̇(s+ t) 6= VT (θ(s+ t)), s+ t < ℓ(θ)},

we obtain

(6.9) σ
({

(θ, s) ∈ C(R+;E)× R
+ : θ̇(s+ t) 6= VT (θ(s+ t)), s+ t < ℓ(θ)

})

= 0

for a.e. t ∈ R
+, because σ = η̃ ⊗ λθ with η̃ ≪ η. Now (6.9) implies that θ̇(s+ t) =

VT (θ(s + t)) for νyt -a.e. (θ, s) ∈ C(R+;E) × R
+ such that s + t < ℓ(θ) and µt-a.e.

y ∈ E, for a.e. t ∈ R
+. Thus from (6.2) we get

vt(y) =

∫

(Sy
t )

c

θ̇(s+ t) dνyt (θ, s) =

∫

(Sy
t )

c

VT (θ(s+ t)) dνyt (θ, s)

=

∫

β
−1

t (y)\Sy
t

VT (y) dν
y
t (θ, s) = VT (y)(1 − ϕt(y)),

which shows (6.6) and hence concludes the proof. �

Lemma 6.2. Let B ⊂ R be a Borel set with L
1(B) = 0, and µ be a finite Borel

measure over R. Then µ(B − t) = 0 for a.e. t ∈ R.

Proof. Otherwise there is a Borel set ∆ ⊂ R with L
1(∆) > 0 such that µ(B− t) > 0

for all t ∈ ∆. This implies

I :=

∫

R

1∆(t) dt

∫

R

1B(x+ t) dµ(x) > 0,

but on the other hand by Tonelli theorem on has

I =

∫

R

dµ(x)

∫

R

1∆(t)1B(x+ t) dt =

∫

R

dµ(x)

∫

R

1∆(t)1B−x(t) dt = 0

(since the inner integral vanishes), and this contradiction concludes the proof. �

Remark 6.3. It is worth mentioning that under the conditions of Theorem 6.1(B)
if η-a.e. θ ∈ C(R+;E) is parameterized by arclength, then ‖vt‖µt ≪ mT for a.e.

t ∈ R
+. In fact, if B ⊂ E is such that mT (B) = 0, then (η ⊗ L

1)(M̃) = 0, where

M̃ := {(θ, τ) ∈ C(R+;E)× R
+ : θ(τ) ∈ B, τ < ℓ(θ).}

Thus L
1(M̃θ) = 0, where M̃θ := {τ ∈ R

+ : (θ, τ) ∈ M}, for η-a.e. θ ∈ C(R+;E),

and hence by Lemma 6.2 (applied with λθ, M̃θ instead of µ, B respectively) one

has λθ(M̃θ − t) = 0 for a.e. t ∈ R
+ and η-a.e. θ ∈ C(R+;E), so that

σ
({

(θ, s) ∈ C(R+;E)× R
+ : θ(s+ t) ∈ B, s+ t < ℓ(θ)

})

= 0

for a.e. t ∈ R
+, because σ = η̃ ⊗ λθ with η̃ ≪ η. Now,

∫

B

‖vt(y)‖ dµt(y) ≤
∫

B

dµt(y)

(

∫

C(R+;E)×R+

|θ̇|(s+ t) dνyt (θ, s)

)

=

∫

B

dµt(y)

(

∫

{(θ,s)∈C(R+;E)×R+ : s+t<ℓ(θ)}

dνyt (θ, s)

)

= σ
({

(θ, s) ∈ C(R+;E)× R
+ : θ(s+ t) ∈ B, s+ t < ℓ(θ)

})

= 0

for a.e. t ∈ R
+.
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One has to note that if E is not strictly convex, then our construction may provide
a lot of “unreasonable” flows of a given measure. For instance, in the notation of the
Example 5.3 if µ := H

1
x([0, 1]× {0}), then the flow of µ produced by the measure

η (through σ := η ⊗ δ0, see Example 4.4) is given by µt := H
1
x([0, 1] × {t ∧ 1}),

although T = VT ∧mT with mT = 2L2
xQ, VT = (ē1 + ē2)/2, i.e. this flow is not in

the direction of VT . This does not happen when we equip E with a strictly convex
(say, Euclidean) norm.

7. Canonical flows

We present here two particular constructions of the flow which may be considered
canonical.

7.1. Acyclic vector fields. Consider a measurable vector field corresponding to
an acyclic normal current T ∈ M1(E) (i.e. such that C ∈ M1(E), C ≤ T , ∂C = 0
implies C = 0). In this case there is a finite measure η over C(R+;E) representing
T without cancelation of mass, with (∂T )+ = end#η and (∂T )− = start#η. We
may claim now the following result.

Proposition 7.1. Let µ be a finite measure over E with µ⊥(∂T )+. The following
assertions hold true.

(i) If µ is transportable by η, then there is a normal current S ≤ T with µ
equivalent to (∂S)−. Further, one has that µt is equivalent to et#η̄ for
some η̄ representing S without cancelation of mass.

(ii) If η is concentrated over curves parameterized by arclength (which can al-
ways be assumed without loss of generality) and a.e. differentiable, E is a
strictly convex Banach space, then for any flow µt corresponding to η, if
there is an interval (0, τ) such that µt⊥(∂T )+ = 0 for t ∈ (0, τ), one has

(7.1)
∂µt
∂t

+ div VTµt = 0

in the weak sense over (0, τ).

Proof. To prove (i), recall that by Remark 4.8, if µ is transportable by η, then there
is a normal current S ≤ T such that ∂S = ν − µ̃ with ν equivalent to end#η and µ̃
equivalent to µ. But by assumption on η one has end#η = (∂T )+, hence µ⊥end#η
(by the assumption on µ), and therefore, also µ̃⊥end#η. Hence (∂S)

− = µ̃. Further,
in the notation of the same Remark 4.8 we have that S is represented by a measure
η̄ over C(R+;E) without cancelation of mass, where

η̄(B) := σ̃
({

(θ, s) ⊂ C(R+;E)× R
+ : s ∈ R

+, rs(θ) ∈ B
})

,

where rs(θ)(t) = et(r(θ, s)) = θ(t + s), where r : C(R+;E) × R
+ → C(R+;E) is

defined by r(θ, s)(t) := θ(t+s), and B ⊂ C(R+;E) is an arbitrary Borel set (in other
words, η̄ := r#σ̃). One has thus βt#σ̃ = et#η̄ and recalling that µt is equivalent to
βt#σ̃, one concludes the proof of (i).

Now, under the assumption of (ii) we have that µt⊥end#η for all t ≤ τ . Hence,
for µt-a.e. y ∈ E one has, in the notation of Theorem 6.1(C), that Syt = ∅, which
gives ϕt(y) = 0 for t ≤ τ , which proves (ii). �

7.2. Cyclic vector fields. Consider a flow of a given measure generated by some
cyclic, or, in other words, divergence free vector field, i.e. such that the respective
current T ∈ M1(E) is a cycle, ∂T = 0. According to our definition this means a flow
produced by some measures η over C(R+;E) representing T without cancelation of
mass and concentrated over a set of curves of finite length. This might lead to a
non-natural notion of the flow. For instance, if η-a.e. θ ∈ C(R+;E) is parameterized

by arclength, then |θ̇|(t) = 0 for a t > ℓ(θ), which means that each “particle” moving
along the path θ stops at instant ℓ(θ). Let, for instance, T be a cycle associated to
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the clockwise oriented unit circumference in E = R
2, let µ := δ(−1,0), and observe

that T = Tη with η := δθ1 + δθ2 , θ1 and θ2 being arclength parameterized right
and left semi-circumferences, directed from top to bottom and from bottom to top
respectively. Clearly, δθ2 transports µ through the measure σ := δθ2 ⊗ δ0 (see
Example 4.4), but one has in this situation µt = δ(− cos t,sin t) when t ∈ [0, π/2),
and µt = δ(0,1) when t ≥ π/2, so that the particle stops moving after π/2. On the
contrary, since ∂T = 0 what one naturally expects is that the particle never stops
moving (because there is “no boundary to reach”). It is not difficult however to
assert the existence of such a natural flow, as the following proposition shows. In
particular, in the above example the particle under such flow will endlessly rotate
along the unit circumference.

Proposition 7.2. Let η represent some cycle T ∈ M1(E), ∂T = 0 without cancela-
tion of mass and concentrated over arcwise parameterized curves of unit length (i.e.
parameterized with unit speed over [0, 1] and stopping definitely at t = 1). Then
there is a Borel measure η̂ over C(R;E) (equipped with the topology of uniform
convergence over bounded intervals) concentrated over Lip1(R;E) such that

(a) π1
#η̂ = η, where πk : C(R;E) → C(R+;E) is the map defined by πk(θ)(t) :=

θ(t ∧ k), t ∈ R
+,

(b) g±#η̂ = η̂, where g± : C(R;E) → C(R;E) are the shift maps defined by

g±(θ)(t) := θ(t± 1),
(c) for η̂-a.e. θ ∈ C(R;E) one has θ(R) ⊂ suppT ,
(d) πk#η̂ represents the current kT without cancelation of mass,

(e) η̂-a.e. θ ∈ C(R;E) never stops, namely, it has a.e. constant unit velocity.

If µ is transportable by η through a measure σ = η̃⊗λθ over C(R+;E)×R
+ with

η̃ := q#σ ≪ η, η̃ = αη for some α ∈ L1(C(R+;E), η), then µ is transportable by η̂
through

σ̂ := ((α ◦ π1)η̂)⊗ λπ1(θ).

If E is a strictly convex Banach space, and η-a.e. curve is a.e. differentiable, then
the respective flow µ̂t := βt#σ̂ satisfies

(7.2)
∂µ̂t
∂t

+ div VT µ̂t = 0,

in the weak sense and

(7.3) θ̇(t) = VT (θ(t)),

for a.e. t ∈ R
+ and η̂-a.e. θ ∈ C(R+;E).

Proof. Existence of the measure η̂ with properties (a)–(c) is just proposition 4.2
from [20], property (d) is remark 4.3 from the same paper, and, finally, (e) follows
from (a) and the fact that η-a.e. θ ∈ C(R+, E) is parameterized with unit speed
over [0, 1] stopping definitely at t = 1. Thus (7.3) follows from (d) combined with
Theorem 5.1.

To show that µ is transportable by η̂ through σ̂, we note that q#σ̂ = (α ◦ π1)η̂
and recalling (a), we get

∫

C(R+;E)

(α ◦ π1)(θ) dη̂(θ) =

∫

C(R+;E)

α(θ) d(π1
#η̂)(θ) =

∫

C(R+;E)

α(θ) dη(θ) ≤ +∞,
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because a ∈ L1(C(R+;E), η). Thus α ◦ π1 ∈ L1(C(R+;E), η), and hence q#σ̂ ≪ η̂.
We calculate now β0#σ̂. For every f ∈ Cb(E) one has

∫

E

f(x) d(β0#σ̂)(x) =

∫

C(R+;E)×R+

f(θ(s)) dσ̂(θ, s)

=

∫

C(R+;E)

α(π1(θ)) dη̂(θ)

∫

R+

f(θ(s)) dλπ1(θ)(s)

=

∫

C(R+;E)

α(θ) d(π1
# η̂)(θ)

∫

R+

f(θ(s)) dλθ(s),

the latter relationship being due to the change of variables and the fact that
((π1)−1(θ))(s) = θ(s) for s ∈ [0, 1] and that λθ are concentrated over [0, 1]. Thus,
recalling (a), we get

∫

E

f(x) d(β0#σ̂)(x) =

∫

C(R+;E)

α(θ) dη(θ)

∫

R+

f(θ(s)) dλθ(s)

=

∫

C(R+;E)×R+

f(θ(s)) dσ(θ, s) =

∫

E

f(x) d(β0#σ)(x)

=

∫

E

f(x) dµ(x),

because µ is transportable through σ. Therefore, β0#σ̂ = µ, and thus µ is trans-
portable also through σ̂.

It remains to show (7.2). To this aim observe that

µ̂t = βt#σ̂ = βt#σ̂
k,

where k ∈ N is any natural number satisfying k ≥ ⌈t⌉+ 1, and

σ̂k :=
(

((α ◦ π1) ◦ πk
)

πk#η̂)⊗ λπ1(θ) = ((α ◦ π1)πk#η̂)⊗ λπ1(θ)

(the latter equality being due to the fact that π1(πk(θ)) = π1(θ) for all θ ∈
C(R+;E)). In particular, this means that µ = µ̂0 is transportable by πk#η̂ through

σ̂k. Let now τ > 0 be arbitrary and k := ⌈t⌉ + 1. Recalling (d) we get (7.2) for
t ∈ (0, τ) with the help of Theorem 6.1(C) (note that ϕt ≡ 0, because πk#η̂-a.e.

curve does not stop definitely). But since τ > 0 is arbitrary, we get (7.2) for t ∈ R
+

thus concluding the proof. �
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Appendix A. Metric currents and measurable vector fields

A.1. Metric currents, mass measures and fields of directions. We provide
some results on the representation of an arbitrary current T ∈ M1(E) in a Banach
space E in the form

(A.1) T (f dπ) =

∫

E

f(x)〈V (x), dπ(x)〉 dµ(x)

for some Borel measure µ and some Borel map V : E → E, ‖V ‖ ∈ L1(E;µ), where
π ∈ Q1(E). If such a representation exists, we will write (as it is usual in the
context of de Rham currents) T = V ∧ µ. Of course such a representation is not
unique; for instance 2V ∧µ/2 gives the same current. The map V can be viewed as
representing the “field of directions” of the current.

Lemma A.1. Let E be a Banach space endowed with the norm ‖ · ‖, and T =
V ∧ µ ∈ M1(E). Then mT = ‖V (x)‖µ. In particular, if µ = mT , then ‖V (x)‖ = 1
for mT -a.e. x ∈ E.
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Remark A.2. It follows from the above Lemma A.1 that for a given µ the map
V providing the representation (A.1) is unique up to µ-a.e. equality. In fact, if

V ∧ µ = Ṽ ∧ µ, then (V − Ṽ ) ∧ µ = 0, and hence one has
∫

E
‖V − Ṽ ‖ dµ = 0.

Proof. Since for π ∈ Q1(E) one has ‖dπ(x)‖′ ≤ Lipπ for all x ∈ E, the representa-
tion (A.1) implies

(A.2) |T (f dπ)| ≤
∫

E

|f(x)|·‖dπ(x)‖′·‖V (x)‖ dµ(x) ≤ Lipπ

∫

E

|f(x)|·‖V (x)‖ dµ(x)

for π ∈ Q1(E). We may assume without loss of generality E to be separable (if not,
just substitute it with the linear span of the closure of a σ-compact set on which mT

is concentrated). Now, as shown in [14], if π ∈ Lipb(E) with E separable Banach
space, then there is a sequence πk ∈ Q1(E)∩Cb(E) with Lipπk ≤ Lipπ converging
to π pointwise as k → ∞, so that limk T (f dπk) = T (f dπ). This provides (A.2)
for all π ∈ Lipb(E). At last, if π ∈ Lip(E), then denoting πk := (−k) ∧ π ∨ k, we
have πk ∈ Lipb(E) with Lipπk ≤ Lipπ, and limk πk(x) = π(x) for every x ∈ E,
and therefore limk T (f dπk) = T (f dπ), which means that (A.2) holds for every
f dπ ∈ D1(E), thus implying mT ≤ ‖V ‖µ by the definition of the mass measure.

To prove the opposite inequality, note that since µ is a tight measure, it is
concentrated on some separable set S ⊂ E. By lemma 6.10.16 of [8] the set V (S)
is separable (since V is Borel), and thus we may choose a countable dense subset
{αj} ⊂ V (S). For a given ε > 0 let

Ei := {x ∈ S : ‖V (x)− αi‖ ≤ ε}
D1 := E1, Di := Ei \ ∪i−1

j=1Di.

We have that the function Vε : E → E defined by Vε(x) :=
∑

i αi1Di
(x) is Borel and

‖V (x) − Vε(x)‖ ≤ ε for µ-a.e. x ∈ E. Let now aj ∈ E′ be such that ‖aj‖′ = 1 and
〈αj , aj〉 = ‖αj‖, and set aε(x) :=

∑

i ai1Di
(x), so that aε : E → E′ is Borel with

‖aε(x)‖′ = 1 and 〈Vε(x), aε(x)〉 = ‖Vε(x)‖ for µ-a.e. x ∈ E. Let also πi : E → R

stand for the linear functional πi(x) := 〈x, ai〉 (so that Lipπi = 1). Then for every
Borel B ⊂ E one gets the estimate

mT (B) ≥
∑

i

T (1e1Di
dπi) =

∫

B

〈V (x), aε〉 dµ(x)

≥
∫

B

〈Vε(x), aε〉 dµ(x) −
∫

E

‖V (x) − Vε(x)‖ · ‖aε(x)‖′ dµ(x)

≥
∫

B

‖Vε(x)‖ dµ(x) − εµ(E).

Sending ε→ 0+, we get

mT (B) ≥
∫

B

‖V (x)‖ dµ(x)

which concludes the proof since B ⊂ E is arbitrary. �

Lemma A.3. Let E be a finite-dimensional normed space endowed with the norm
‖·‖, and T ∈ M1(E). Then T = VT ∧mT for some Borel map VT : E → E satisfying
‖VT (x)‖ = 1 for mT -a.e. x ∈ E.

Proof. The representation of T in the form (A.1) with VT ∈ L∞(E;mT ) is due to
theorem 1.3 from [23] for the case mT ≪ L

n. To prove it for the general case. let
Tk ∈ M1(E) be such that Tk ⇀ T , mTk

⇀ mT as k → +∞, and mTk
≪ L

n for
all k ∈ N (such a sequence is constructed, say, by convolutions of T with smooth
approximate identity, like e.g. in Step 1 of the proof of lemma C.1 from [19]; note
that there one only proves that Tk ⇀ T , M(Tk) → M(T ), and then mTk

⇀ mT is
lemma A.3 from [20]). Then Tk = Vk ∧mTk

for some Borel Vk : E → E satisfying
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‖Vk(x)‖ = 1 for mTk
-a.e. x ∈ E. Up to a subsequence (not relabeled) we have

that the sequence of vector measures {VkmTk
} over E is weakly convergent to some

vector measure in E of finite total variation. Denoting the latter limit measure
by V µ for some positive Borel measure µ and some Borel V : E → R

n satisfying
‖V (x)‖ = 1 for µ-a.e. x ∈ E, we get for f dπ ∈ D1(E) and π ∈ C1(E) ∩ Lip(E) the
relationship

T (f dπ) = lim
k
Tk(f dπ) =

∫

E

f(x)〈V (x), dπ(x)〉 dµ(x),

so that T = V ∧ µ, and hence mT = ‖V ‖µ by Lemma A.1. It suffices now to set
VT (x) := V (x)/‖V (x)‖ (with the convention 0/0 := 0). �

We find it worth providing here a rather particular property of laminated currents
regarding the representation (A.1), which, although is not used elsewhere in the
paper, is useful to get the clear idea of how different they are from generic metric
currents. We will state it in a particular case E = R

n a Euclidean space. Recall
the following definition of a tangent space with respect to a finite positive Borel
measure µ over Rn introduced in [9] and further studied in [11]. Denote by Xµ the
set of vector valued Borel functions V : E → E such that |V | ∈ L1

loc(E;µ) and the
distributional divergence divV µ defined as

〈ϕ, div V µ〉 :=
∫

Rn

∇ϕ · V dµ, ϕ ∈ C∞
0 (E),

is a finite signed Radon measure over E. Then the tangent space Qµ to a measure
µ at each point x ∈ R

n is defined as the µ-essential union of {V (x) : V ∈ Xµ}, i.e.
Qµ : R

n → 2R
n

is the unique µ-measurable closed valued multifunction such that

(i) if V ∈ Xµ, then V (x) ∈ Qµ(x) for µ-a.e. x ∈ R
n, and

(ii) it is minimal among all such multifunctions with respect to the inclusion
µ-a.e. i.e. if P : Rn → 2R

n

is another µ-measurable closed valued multi-
function such that when V ∈ Xµ, then V (x) ∈ P (x) for µ-a.e. x ∈ R

n, then
necessarily Qµ(x) ⊂ P (x) for µ-a.e. x ∈ R

n.

Proposition A.4. If E = R
n is Euclidean space, then for every laminated current

T ∈ M1(E) the representation T = VT ∧mT implies VT (y) ∈ QmT
(y) for mT -a.e.

y ∈ E.

Remark A.5. Note that the representation T = VT ∧mT with VT tangent to mT is
not true for a generic (not necessarily laminated) current T : in fact, for the current
from Remark A.12 one has QmT

(y) = {0} for mT -a.e. y ∈ E = R, and hence the
existence of such a representation would give T = 0 which is obviously not the case.

Proof. Let us show that VT (y) ∈ QmT
(y) for mT -a.e. y ∈ E. In fact, this is clearly

true if T is normal, since in this case

〈divVTmT , ϕ〉 =
∫

E

∇ϕ · VT dmT = T (1 dϕ) = ∂T (ϕ), ϕ ∈ C∞
0 (E),

so that |〈divV µ, ϕ〉| ≤ M(∂T ) · ‖ϕ‖∞, which in other words means VT ∈ XmT
.

Now passing to the general case of a laminated current T , let Bk ⊂ C(R+;E)
be an increasing sequence of Borel sets, Bk ր C(R+;E), such that the measures
ηk := ηxBk

be finite. Clearly, one has that Tk := Tηk are represented by ηk without
cancelation of mass, are normal (because ηk are finite), and Tk ≤ Tk+1 ≤ T for every
k ∈ N, and M(T − Tk) → 0 as k → ∞ (because ℓ(·)η is a finite measure). Thus
by Lemma A.6 one has Tk = V ∧ λkmT = λkV ∧mT for some λk ∈ L∞(E;mT ),
0 ≤ λk ≤ 1, and, moreover, the sequence of functions λk is pointwise nondecreasing,
λk ր 1 as k → ∞. As already proven, one has then λk(y)VT (y) ∈ QmT

(y) for mT -
a.e. y ∈ E. Since for each such y ∈ E there is a j ∈ N such that λk(y) ≥ λj(y) > 0,
we have VT (y) ∈ QmT

(y) as claimed. �
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The following auxiliary statement, which is of certain interest by itself, has been
used in the above proof.

Lemma A.6. If E is a strictly convex finite-dimensional normed space, T = V ∧
mT ∈ M1(E), S ∈ M1(E) with S ≤ T , then there is a λ ∈ L∞(E;mT ) with
0 ≤ λ(x) ≤ 1 for mT -a.e. x ∈ E, such that mS = λmT and S = V ∧mS = V ∧λmT .

Proof. Since S ≤ T , then mS + mT−S = mT , and in particular, mS ≤ mT (re-
mark 3.5 from [19]), and hence there is a λ ∈ L∞(E;mT ) with 0 ≤ λ(x) ≤ 1 for
mT -a.e. x ∈ E, such that mS = λmT and mT−S = (1− λ)mT . By Lemma A.3 one
has S = VS ∧ λmT = λVS ∧mT , with ‖VS(x)‖ = 1 for λmT -a.e. x ∈ E, and

T − S = VT−S ∧ (1− λ)mT = (1− λ)VT−S ∧mT ,

with ‖VT−S(x)‖ = 1 for (1− λ)mT -a.e. x ∈ E. On the other hand,

T − S = (V − λVS) ∧mT ,

so that V −λVS = (1−λ)VT−S . Thus, for mT -a.e. x ∈ E such that λ(x) 6= 0 either
λ(x) = 1, which implies VS(x) = V (x), or 0 < λ(x) < 1, which implies

‖V (x) − λVS(x)‖ = 1− λ(x) = ‖(V (x)‖ − ‖λ(x)VS(x))‖,
which is only possible (recalling that ‖V (x)‖ = ‖VS(x)‖ = 1) when VS(x) = V (x),
concluding the proof. �

Remark A.7. It is easy to observe from the proof of the above Lemma A.6, that
its statement is true in a generic metric space E, if one know a priori that both
S = VS ∧mS and T − S = VT−S ∧mT−S for some Borel maps VS and VT−S .

A.2. Remarks on measurable vector fields. We mention the following easy
properties of measurable vector fields.

(1) (change of measure) If ψ ≪ µ, then a µ-vector field is also a ψ-vector field
(because L∞(E;µ) ⊂ L∞(E;ψ) with continuous embedding; to prove weak

continuity one just observes that for each v ∈ L1(E;ψ) one has v dψ
dµ

∈
L1(E;µ), where dψ

dµ
stands for the respective Radon-Nikodym derivative).

(2) (locality) If f(x) = const for µ-a.e. x ∈ A ⊂ E, then (Xf)(x) = 0 for
µ-a.e. x ∈ A, if X is a µ-vector field (lemma 13.4 of [16]). In particular, if
f(x) = g(x) for µ-a.e. x ∈ A, then (Xf)(x) = (Xg)(x) for µ-a.e. x ∈ A.

(3) (bounds) One has |(Xf)(x)| ≤ CLip f for µ-a.e. x ∈ E (with C > 0 depend-
ing on X). Moreover, thanks to the locality property X can be uniquely
extended to the whole Lip(E) (we will further slightly abuse the notation
denoting this extension by the same letter X) with such a bound (theo-
rem 2.15 from [12]). This extension satisfies weak continuity property in the
form limkXfk = Xf in the weak∗ sense of L∞(E;µ) whenever limk fk = f
pointwise and with Lipfk uniformly bounded. In fact, for a fixed z ∈ E,
denoting f r := infBr(z) f ∨ f ∧ supBr(z) f for an f ∈ Lip(E), we get f = f r

over Br(z), and hence, for an arbitrary g ∈ L1(E;µ) one has
∫

E

gXfk dµ =

∫

E

g1Br(z)Xf
r
k dµ+

∫

E

g1Br(z)cXfk dµ,

∫

E

gXf dµ =

∫

E

g1Br(z)Xf
r dµ+

∫

E

g1Br(z)cXf dµ,

so that the claim follows from the estimates
∣

∣

∣

∣

∫

E

g1Br(z)cXfk dµ

∣

∣

∣

∣

≤
∫

Br(z)c
|g| dµ→ 0 as r → +∞ uniformly in k,

∣

∣

∣

∣

∫

E

g1Br(z)cXf dµ

∣

∣

∣

∣

≤
∫

Br(z)c
|g| dµ→ 0 as r → +∞
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and from the fact that now f rk are uniformly bounded in k (with a bound
depending only on f(z), on the bound on the Lipschitz constants of fk, and
on r), and hence limk

∫

E
g1Br(z)Xf

r
k dµ =

∫

E
g1Br(z)Xf

r dµ.

We now show the relationship between measurable vector fields and metric cur-
rents.

Proposition A.8. Every µ-vector field X over E defines a metric current T ∈
M1(E) by the formula

(A.3) T (f dπ) :=

∫

E

fXπ dµ,

with mT ≤ Cµ. Vice-versa, for every metric current T ∈ M1(E) with mT ≤ Cµ
there is a unique µ-vector field X over E such that (A.3) holds.

Proof. One immediately verifies that if X is a µ-vector field, then T defined by (A.3)
is a one-dimensional metric current, and

|T (f dπ)| := CLipπ

∫

E

|f | dµ,

so that mT ≤ Cµ. On the other hand, if T ∈ M1(E), then for every π ∈ Lipb(E)
define XTπ ∈ L∞(E;mT ) by the relationship

∫

E

fXTπ dmT := T (f dπ)

for every f ∈ L1(E;mT ). It is immediate to verify that XT is a mT -derivation. If
µ 6= mT , then mT ≪ µ implies by Radon-Nykodym theorem mT = αµ for some
Borel α : E → R

+. Letting Xπ := αXTπ, we get
∫

E

f Xπ dµ =

∫

E

f α(XTπ) dµ =

∫

E

fXTπ dmT = T (f dπ),

and since this is valid for every f ∈ L1(E;µ), hence for every f ∈ L1(E;mT ), then
Xπ ∈ L∞(E;µ). The uniqueness of the vector field X follows from the immediate
observation that

∫

E
fXπ dµ = 0 for every f ∈ L1(E;µ) means Xπ = 0 for every

π ∈ Lip(E), hence X = 0. �

Note that if one decides to use the language of measurable vector fields instead of
that of currents, then the notion of the boundary of a current has to be substituted
by the equivalent one of the divergence of a µ-vector field X defined as a linear
continuous functional over Lipb(E) (equipped with the norm ‖u‖Lip := ‖u‖∞ +
Lipu) by the formula

(A.4) 〈f, divµX〉 :=
∫

E

Xf dµ = T (1 df) = ∂T (f),

where f ∈ Lipb(E), T ∈ M1(E), and 〈·, ·〉 stands for the duality between Lipb(E)
and its continuous dual. If X is normal, then in fact the above defined divergence
is a signed Radon measure of finite total variation |divµX |(E) ≤ M(∂T ), and hence
the definition (A.4) may be extended to f ∈ Cb(E), and 〈·, ·〉 may be interpreted
as the standard duality between Cb(E) and the space of signed Radon measure
of finite total variation. In the case E = R

n and µ the Lebesgue measure, when
V : Rn → R

n is a bounded measurable map (i.e. a finite-dimensional vector field in
the classical sense), and X is defined as the classical directional derivative along V ,
i.e. Xf := V · ∇f for smooth functions f , then div µX is identified with the usual
distributional divergence of V .
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A.3. Representation of currents by measures over curves. The following
remarks are worth being made.

Remark A.9. If a nonnegative σ-finite Borel measure η over C(R+;E) is such that

(A.5) T (ω) =

∫

C(R+;E)

[[θ]](ω) dη(θ) for all ω ∈ D1(E),

which we commonly write as T = Tη, then

(A.6) M(T ) ≤
∫

C(R+;E)

M([[θ]]) dη(θ) ≤
∫

C(R+;E)

ℓ(θ) dη(θ).

In fact,

|T (f dπ)| ≤
∫

C(R+;E)

(

Lipπ

∫

E

|f | dm[[θ]]

)

dη(θ),

which gives for a Borel set B ⊂ E the inequality

(A.7) mT (B) ≤
∫

C(R+;E)

m[[θ]](B) dη(θ),

and hence in particular (A.6) (plugging B := E). The inequality in (A.6) may even-
tually be strict, as seen even on the trivial example of θ1 being any rectifiable curve
parameterized, say, over [0, 1], and θ2(t) := θ1(1 − t), so that T = 0 satisfies (A.5)
with η := δθ1 + δθ2 .

However, if η represents T ∈ M1(E) without cancelation of mass, then the in-
equalities in (A.6) become equalities,

M(T ) =

∫

C(R+;E)

M([[θ]]) dη(θ) =

∫

C(R+;E)

ℓ(θ) dη(θ),

and hence in particular

(A.8) mT (B) =

∫

C(R+;E)

m[[θ]](B) dη(θ) =

∫

C(R+;E)

dη(θ)

∫

θ−1(B)

|θ̇|(t) dt,

for every Borel B ⊂ E (because the equality holds when B = E).
An easy consequence of the latter is that η-a.e. nonconstant θ ∈ C(R+;E) belong

to the support of T , i.e. θ ⊂ suppT (in the sense of traces). In particular, note
that then every measure η representing T ∈ M1(E) without cancelation of mass just
under our assumption on tightness of mT is necessarily tight since it is concentrated
on a separable space C(R+; suppT ) (recalling that a tight measure is concentrated
over its support and the latter is separable).

The following statement combining the results from [19, 20] extending the repre-
sentation theorems from [21] for currents over a Euclidean space to metric currents,
shows is particular that every normal current is laminated (although, of course,
there are laminated currents which are not normal).

Proposition A.10. The current T ∈ M1(E) is normal, if and only if it is repre-
sented by some finite Borel measure η over C(R+;E) without cancelation of mass.

Proof. The “only if” part (i.e. the existence of a finite Borel measure η representing
T without cancelation of mass) is corollary 3.3 of [20], while the “if” part follows
from theorem 4.2 from [19]. �

Remark A.11. The representation of laminated (or even normal) current by some
measure over curves is of course not unique: for instance, the current [[[0, 1]]] (in R)
is represented both by the measure δθ1 + δθ2 and by δθ1◦θ2 , where θ1 := [0, 1/2],
θ2 := [1/2, 1] and θ1◦θ2 stands for the usual composition of curves, i.e. θ1◦θ2 = [0, 1].
However, if T ∈ M1(E) is an acyclic normal current, i.e. C ≤ T with ∂C = 0 implies
C = 0, then there is a representation of T by a finite Borel measure η over C(R+;E)
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which may be considered canonical, namely η-a.e. θ ∈ C(R+;E) is an injective curve
stopping definitely at t = 1 (hence in particular may be considered without loss of
generality to be parameterized over [0, 1]), and e1#η = (∂T )+, e0#η = (∂T )−,
where ei(θ) := θ(i) (theorem 5.1 from [19]).

Remark A.12. Not every T ∈ M1(E) can be represented by a σ-finite Borel measure
η over C(R+;E), and hence the class of laminated currents does not coincide with
M1(E). In the context of classical Whitney flat chains in a Euclidean space the
example of a flat chain which is not laminated in the sense of Definition 3.2 has been
provided in [10]. We consider here its analogue in the setting of metric currents. Let
as in Example 1.1 K ⊂ [0, 1] be a Cantor set of positive Lebesgue measure (actually
every closed totally disconnected set of positive Lebesgue measure will suit) and
define the current T ∈ M1(R) by setting

T (f dπ) :=

∫

K

f(x) dπ(x).

Clearly, T 6= 0 and supp T ⊂ K. On the other hand, T cannot be represented
by any σ-finite Borel measure η over C(R+;E), because otherwise η-a.e. θ would
be supported over K by (A.8), and hence would be constant (its trace being a
singleton) implying [[θ]] = 0, which would give T = 0 by (A.5).

Remark A.13. It is worth mentioning that the representation (3.2) does not really
depend on the distance in E, but rather on the lengths of the curves it generates.
In fact, if the distances d1 and d2 over E have the same geodesic distance d (this
means in particular, that the lengths of every absolutely continuous curve θ for all
the these distances coincide, and hence will be denoted by ℓ(θ)), and η represents
T ∈ M1(E1) without cancelation of mass, then it also represents the same current
but viewed as T ∈ M1(E2) without cancelation of mass, where E1, E2 and E stand
for E equipped with distances d1, d2 and d respectively. In fact,

d1(start(θ), end(θ)) ≤ ℓ(θ)

for every absolutely continuous curve θ, which implies d ≥ d1, and hence M(T ) ≥
M1(T ), where M1, M2 and M stand for the masses in M1(E1), M1(E2) and M1(E)
respectively. But then

M(T ) ≤
∫

C(R+;E)

ℓ(θ) dη(θ) = M1(T ) ≤ M(T ),

the first inequality being valid in view of (A.6), and hence all the above inequalities
are in fact equalities. Thus, also

M2(T ) =

∫

C(R+;E)

ℓ(θ) dη(θ),

and hence η represents T in M1(E2) without cancelation of mass.

Remark A.14. If η represents Tη without cancelation of mass and 0 ≤ η̃ ≤ η, then η̃
represents Tη̃ also without cancelation of mass. In fact, one has that T −Tη̃ = Tη−η̃
and hence by Remark A.9, one gets

M(Tη̃) ≤
∫

C(R+;E)

ℓ(θ) dη̃(θ),

M(Tη−η̃) ≤
∫

C(R+;E)

ℓ(θ) d(η − η̃)(θ), so that

M(T ) ≤ M(Tη̃) +M(T − Tη̃) = M(Tη̃) +M(Tη−η̃)

≤
∫

C(R+;E)

ℓ(θ) dη(θ) = M(T ),

which means that the all the inequalities above are in fact equalities.
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We provide also the following lemmata on measures over curves representing
some currents without cancelation of mass.

Lemma A.15. Suppose that η be a σ-finite Borel measure over C(R+;E) which
represents some laminated current T ∈ M1(E) without cancelation of mass, and η̃
be another σ-finite Borel measure over C(R+;E) having η̃ ≪ η and

∫

C(R+;E)

ℓ(θ) dη̃(θ) < +∞.

Then η̃ represents Tη̃ without cancelation of mass.

Proof. One has η̃ = αη for some α ∈ L1(C(R+;E), η), α ≥ 0. The statement is
clear when α is a simple (i.e. finite-valued) function. In fact, denoting ᾱ to be
the norm of α in L∞(C(R+;E), η), we have that η̃ ≤ ᾱη, while the latter measure
represents Tᾱη = ᾱTη without cancelation of mass, hence η̃ represents Tη̃ ≤ Tᾱη
without cancelation of mass by Remark A.14.

If α is generic, we approximate it as a supremum of simple functions αk, con-
verging to α in L1(C(R+;E), η) as k → ∞. Then for every ω = f dπ ∈ D1(E) one
has

Tαkη(ω)− Tαη(ω) =

∫

C(R+;E)

[[θ]](ω) (α(θ) − αk(θ)) dη(θ),

and therefore

M(Tαkη − Tαη) ≤
∫

C(R+;E)

ℓ(θ) (α(θ) − αk(θ)) dη(θ),

the latter integral vanishing as k → ∞ by Beppo Levi theorem. Hence Tαkη →
Tαη = Tη̃ in mass as k → ∞, and in particular

M(Tη̃) = lim
k

M(Tαkη) = lim
k

∫

C(R+;E)

ℓ(θ)αk(θ) dη(θ) =

∫

C(R+;E)

ℓ(θ)α(θ) dη(θ)

=

∫

C(R+;E)

ℓ(θ) dη̃(θ)

again by Beppo Levi theorem, showing the statement. �

Lemma A.16. Let E be isometrically embedded into a strictly convex Banach space
with Radon-Nikodym property. Under conditions of Lemma A.15 one has then that
Tη̃ = T xγ for some γ ∈ L1(E,mT ) (and with mTη̃

= γmT ).

Proof. Since the statement is stable with respect to isometric embeddings of the
metric space E, we may assume E to be a strictly convex Banach space with Radon-
Nikodym property. The proof will be provided in several steps.

Step 1. Assume η̃ ≤ η. Then Tη̃ ≤ Tη = T . Hence, minding that both Tη̃
and T − Tη̃ = Tη−η̃ are laminated currents represented by η̃ and η − η̃ respectively
without cancelation of mass by Remark A.14, and hence satisfying the conditions
of Remark A.7 in view of Theorem 5.1, we apply the latter Remark A.7 to get the
existence of a β ∈ L1(E,mT ), with 0 ≤ β ≤ 1, such that S = T xβ.

Step 2. Assume that η̃ = αη, where α ∈ L1(C(R+;E), η) is a simple function,
i.e. there is a finite partition P := {Bk} of η-almost all C(R+;E) consisting of
Borel subsets Bj ⊂ C(R+;E) such that α is a nonnegative constant αj over each
Bj . Then Tη̃(ω) =

∑

k αkSk(ω), where

Sk(ω) :=

∫

C(R+;E)

[[θ]](ω) d

(

1

αk
η̃xBk

)

(θ)

for every ω ∈ D1(E). Applying the result of Step 1 to each Sk, we get the existence
of βk ∈ L1(E,mT ) satisfying 0 ≤ βk ≤ 1, such that Sk = T xβk, and hence S = T xγ
with γ :=

∑

k αkβk.
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The following observation regarding this construction is important. Let η̃′ = α′η,
where α′ ∈ L1(C(R+;E), η) is a simple function with α′ ≤ α. Then Tη̃′ = T xγ′

with γ′ ≤ γ. In fact, there is a finite partition Q := {Bk} of η-almost all C(R+;E)
consisting of Borel subsets Bj ⊂ C(R+;E) such that both α and α′ are constant
over each Bj . Denote for brevity α′

j := α′
xBj , we get Tη̃′(ω) =

∑

k α
′
kS

′
k(ω), where

S′
k(ω) :=

∫

C(R+;E)

[[θ]](ω) d

(

1

α′
k

η̃′xBk

)

(θ) =

∫

C(R+;E)

[[θ]](ω) d (ηxBk) (θ)

=

∫

C(R+;E)

[[θ]](ω) d

(

1

αk
η̃xBk

)

(θ) = Sk(ω) = T xβk(ω)

for every ω ∈ D1(E). Thus, Tη̃′ = T xγ′ with γ :=
∑

k α
′
kβk, which implies γ′ ≤ γ

because α′
k ≤ αk for all k.

Step 3. Consider now the general case η̃ = αη with an arbitrary nonnegative
α ∈ L1(C(R+;E), η). Letting αk ∈ L1(C(R+;E), η) be a nondecreasing sequence
of simple functions with αk ≤ α and αk ր α pointwise, we get as in the proof of
Lemma A.15 that Tαkη → Tαη = Tη̃ in mass as k → ∞. But according to the result
of Step 2, one has Tαkη = T xγk for some nonnegative γk ∈ L1(E,mT ), with γk
pointwise nondecreasing sequence. Clearly, one has also Tαkη ≤ Tαη = Tη̃, so that
in particular,

∫

E

γk dmT = M(Tαkη) ≤ M(Tη̃) < +∞.

Denoting γ := supk γk, by Beppo Levi theorem we get M(Tαkη) =
∫

E
γk dmT →

∫

E
γ dmT as k → +∞, but since limkM(Tαkη) = M(Tη̃), we get M(Tη̃) =

∫

E
γ dmT .

Finally, limk Tαkη(f dπ) = limk T (γkf dπ) = T (γf dπ) for all f dπ ∈ D1(E), because
γkf → γf in L1(E,mT ), and hence Tη̃ = T xγ, proving the claim. �

Finally, the lemmata below provide a construction we use in analyzing the trans-
portability condition.

Lemma A.17. Let σ be a σ-finite Borel measure over C(R+;E) × R
+ such that

q#σ represents some laminated current T ∈ M1(E) without cancelation of mass.
Then for S ∈ M1(E) defined by

(A.9) S :=

∫

C(R+;E)×R+

[[θx[s,+∞)]] dσ(θ, s)

one has S ≤ T and

(A.10) M(S) =

∫

C(R+;E)×R+

ℓ(θx[s,+∞)) dσ(θ, s).

Proof. Letting R :=
∫

C(R+;E)×R+ [[θx[0, s]]] dσ(θ, s), we get

S +R =

∫

C(R+;E)×R+

[[θ]] dσ(θ, s) =

∫

C(R+;E)

[[θ]] d(q#σ)(θ) = T,

and

M(S) ≤
∫

C(R+;E)×R+

ℓ(θx[s,+∞)) dσ(θ, s),

M(R) ≤
∫

C(R+;E)×R+

ℓ(θx[0, s]) dσ(θ, s),

so that

M(S) +M(R) ≤
∫

C(R+;E)×R+

ℓ(θ) dσ(θ, s) =

∫

C(R+;E)

ℓ(θ) d(q#σ)(θ) = M(T ),

which concludes the proof. �
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Lemma A.18. Let E be isometrically embedded in a strictly convex Banach space
with Radon-Nikodym property and T ∈ M1(E) be a laminated current represented
by some σ-finite Borel measure η over C(R+;E) without cancelation of mass, and
σ be a finite Borel measure over C(R+;E)× R

+ such that q#σ ≪ η and
∫

C(R+;E)

ℓ(θ) d(q#σ)(θ) < +∞.

Then for an S ∈ M1(E) defined by (A.9) one has that S is a normal current, (A.10)
is valid and S = T xγ for some γ ∈ L1(E,αmT ).

Proof. For the sake of brevity denote η̃ := q#σ. By Lemma A.15 this measure
represents Tη̃ without cancelation of mass and by Lemma A.16 one has Tη̃ = T xα
for some α ∈ L1(E,mT ). Lemma A.17 says then that S ≤ Tη̃ and is a normal current
and (A.10) holds. By Lemma A.6 we get then S = Tη̃xβ for some β ∈ L∞(E,mT ),
with 0 ≤ β ≤ 1, and to conclude the proof it is enough to set γ := αβ. �

Appendix B. Some auxiliary statements

In this section E stands for an arbitrary Banach space.

B.1. Duality of Banach spaces. For a v ∈ E we set

(B.1) v′ := {ξ ∈ E′ : 〈v, ξ〉 = ‖v‖ · ‖ξ‖′} .
Of course, v′ 6= ∅ and 0′ = E′. Clearly, v ∈ v′′, where v′′ := (v′)′. But if E is strictly
convex, then u ∈ v′′, u ∈ E implies u = λv for some λ ∈ R

+. In fact, otherwise
there is a ξ ∈ v′ ⊂ E′, with, say, ‖ξ‖′ = 1 such that u ∈ ξ′, and thus ξ ∈ u′. The
claim follows then from theorem 2 from [15]. Thus for a strictly convex space E
one has v′′ ∩ E = {λv : λ ∈ R

+}.
The following easy statement identifying the equality cases in the Jensen inequal-

ity is valid.

Lemma B.1. Let f ∈ L1(Ω, µ;E), where (Ω,Σ, µ) is a measure space with some
positive σ-finite measure µ. If

(B.2)

∥

∥

∥

∥

∫

Ω

f(x) dµ(x)

∥

∥

∥

∥

=

∫

Ω

‖f(x)‖ dµ(x),

then either f = 0 or

f(x) ∈
(∫

Ω f(y) dµ(y)
)′′

∫

Ω
‖f(y)‖ dµ(y) ‖f(x)‖

for µ-a.e. x ∈ E. In particular, if E is strictly convex, then (B.2) implies either
f(x) = 0 or

f(x) =

∫

Ω
f(y) dµ(y)

∫

Ω ‖f(y)‖ dµ(y) ‖f(x)‖

for µ-a.e. x ∈ E.

Proof. We first consider the case when µ = P a probability measure. For every

ξ ∈
(∫

Ω
f(y) dP(y)

)′
one has

(B.3)

∫

Ω

〈f(y), ξ〉 dP(y) =
〈
∫

Ω

f(y) dP(y), ξ

〉

=

∥

∥

∥

∥

∫

Ω

f(y) dP(y)

∥

∥

∥

∥

· ‖ξ‖′

=

(
∫

Ω

‖f(y)‖ dP(y)
)

· ‖ξ‖′,

the latter equality being due to (B.2). But since 〈f(x), ξ〉 ≤ ‖f(x)‖ · ‖ξ‖′ then
〈f(x), ξ〉 = ‖f(x)‖ · ‖ξ‖′ for P-a.e. x ∈ E (since otherwise (B.3) would become a
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strict inequality), which shows

(B.4) f(x) ∈
(
∫

Ω

f(y) dP(y)

)′′

for P-a.e. x ∈ E. In the general case assuming f 6= 0 and letting

P :=
‖f‖ dµ

∫

Ω ‖f(y)‖ dµ(y) ,

it suffices to refer to apply (B.4) with f/‖f‖ instead of f . �

B.2. Differentiability of curves in Banach spaces. The curve θ ∈ C(R+;E)

is called weakly (resp. norm) differentiable at t ∈ R
+, if there is a map θ̇ : R+ → E

satisfying

(B.5) lim
h→0

1

h

(

θ(t+ h)− θ(t)− θ̇(t)h
)

= 0

in the sense of weak (resp. strong, i.e. norm) convergence.
The following more or less folkloric assertions hold true.

Lemma B.2. If a curve θ ∈ C(R+;E) is weakly differentiable at a.e. t ∈ R
+,

then θ̇ : R+ → E is a.e. equal to a Borel function, and, moreover, locally Bochner
integrable (resp. Bochner integrable) when θ is absolutely continuous (resp. recti-
fiable). Moreover, if S ⊂ E is some closed separable linear subspace of E, and
B ⊂ C(R+;S) is a Borel set of curves weakly differentiable almost everywhere, and

η is a Borel measure concentrated on B, then the map (θ, t) : B × R
+ 7→ θ̇(t) is

η⊗L
1-a.e. equal to a Borel map, and, moreover, is Bochner integrable with respect

to η ⊗ L
1 over B × K, K ⊂ R

+ an arbitrary compact set (resp. B × R
+) when

η-a.e. θ is absolutely continuous and θ 7→ ℓ(θxK) is η-integrable (resp. rectifiable
and θ 7→ ℓ(θ) is η-integrable).

Proof. For the second part of the statement, we observe that every function (θ, t) ∈
B × R

+ 7→ 〈θ̇(t), ψ〉 ∈ R for every ψ ∈ E′, is is equal for all θ ∈ B and a.e. t ∈ R
+

(hence for η ⊗ L
1-a.e. (θ, t) ∈ B × R

+) to a Borel map gψ(θ, t) := lim supk k〈θ(t +
1/k)−θ(t), ψ〉, and hence the map (θ, t) : B×R

+ 7→ θ̇(t) is η⊗L
1-weakly measurable.

But since for all θ ∈ B one has θ̇(t) ∈ S whenever defined, i.e. almost everywhere
(because S is also weakly closed), and S is separable, then this map is also strongly

measurable as claimed. Minding that clearly ‖θ̇(t)‖ ≤ |θ̇|(t) for a.e. t ∈ R
+ and

every θ ∈ B (in fact, it is not difficult to prove that the equality holds, but we do
not need it), we have also the claimed Bochner integrability under the respective
absolute continuity conditions of η-a.e. θ ∈ B.

The first part follows from the second one by choosing B := {θ}, η := δθ the
Dirac measure concentrated on θ, and S ⊂ E any closed separable linear subspace
containing θ(R+) (which exists because the latter set is separable). �

Lemma B.3. If θ ∈ C(R+;E) is weakly differentiable a.e. and the weak derivative

θ̇ is locally Bochner integrable, then θ is also norm differentiable a.e. In particular,
every absolutely continuous function θ ∈ C(R+;E) is weakly differentiable a.e. if
and only if it is norm differentiable a.e.

Proof. Observe that

〈θ(b)− θ(a), ψ〉 =
∫ b

a

〈

θ̇(τ), ψ
〉

dτ =

〈

∫ b

a

θ̇(τ) dτ, ψ

〉
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for every ψ ∈ E′ and hence θ(b) − θ(a) =
∫ b

a
θ̇(τ) dτ for every pair {a, b} ∈ R

+.
Thus

∥

∥

∥

∥

θ(t+ s)− θ(t)

s
− θ̇(t)

∥

∥

∥

∥

=

∥

∥

∥

∥

1

s

∫ t+s

t

(θ̇(τ) − θ̇(t)) dτ

∥

∥

∥

∥

≤ 1

|s|

∫

B|s|(τ)

∥

∥

∥
θ̇(τ) − θ̇(t)

∥

∥

∥
dτ → 0

as s → 0 whenever τ ∈ R
+ is a Lebesgue point of θ̇ (by proposition 5.3 of [7] a.e.

point is so), concluding the proof. �

We remark for the sake of completeness, that in case when E is a dual of some
Banach space, one can define the notion of weak∗ differentiability of the curve
θ : R+ → E by requiring the limit in (B.5) to be intended in the weak∗ sense. In
this case the first part of Lemma B.3 remains valid (with the obvious modification,
i.e. substituting “weak∗” instead of “weak”), while the second part is not: in fact, as
shown in [4], every absolutely continuous curve in a dual of a separable Banach space
is weak∗ differentiable almost everywhere (and the norm of the weak∗ derivative co-
incides a.e. with the metric derivative), but clearly might be not norm differentiable
unless E has Radon-Nikodym property; therefore, the weak∗ derivative is not nec-
essarily measurable in the strong sense, and hence first part of Lemma B.2 also fails.
The problem is that weak∗ derivative is just weakly∗ measurable, but might fail to
be separable valued.
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In Séminaire de Probabilités, XII (Univ. Strasbourg, Strasbourg, 1976/1977), volume 649 of
Lecture Notes in Math., pages 411–423. Springer, Berlin, 1978.

[19] E. Paolini and E. Stepanov. Decomposition of acyclic normal currents in a metric space. J.
Funct. Anal., 263(11):3358–3390, 2012.

[20] E. Paolini and E. Stepanov. Structure of metric cycles and normal one-dimensional currents.
J. Funct. Anal., 264(3):1269–1295, 2013.

[21] S.K. Smirnov. Decomposition of solenoidal vector charges into elementary solenoids and the
structure of normal one-dimensional currents. St. Petersburg Math. J., 5(4):841–867, 1994.

[22] N. Weaver. Lipschitz algebras and derivations. II. Exterior differentiation. J. Funct. Anal.,
178(1):64–112, 2000.

[23] M. Williams. Metric currents, differentiable structures, and Carnot groups. Ann. Scuola
Norm. Sup. Pisa Cl. Sci. (5), 11(2):259–302, 2012.

Dipartimento di Matematica “U. Dini”, Università di Firenze, viale Morgagni 67/A,
50134 Firenze, Italy.

St.Petersburg Branch of the Steklov Mathematical Institute of the Russian Acad-
emy of Sciences, Fontanka 27, 191023 St.Petersburg, Russia and Department of Math-
ematical Physics, Faculty of Mathematics and Mechanics, St. Petersburg State Uni-
versity, Universitetskij pr. 28, Old Peterhof, 198504 St.Petersburg, Russia and ITMO
University, Russia

E-mail address: stepanov.eugene@gmail.com


