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Abstract

Charge and structural relaxation of electronically excited states in embedded systems are
strongly affected by the environment. It is known that the largest part of environment effects
comes from electrostatics. However, polarization can also play a role by tuning the electronic
and geometrical properties of the states, finally modifying the fluorescence. Here we present the
formulation of analytical excited state gradients within a polarizable QM/MM approach, and
their implementation within the ONIOM framework. A time-dependent DFT level of theory
is used in combination with an induced dipole formulation of the polarizable embedding. The
formation and relaxation of the bright excited state of an organic dye (DAPI) intercalated in
a DNA pocket is used to quantify the role played by the mutual polarization between the QM
subsystem and the embedding, and also to investigate the onset of overpolarization, which is
a known limit of the model with potentially detrimental effects. On the one hand, the results
indicate the robustness of the QM-classical interface, and on the other hand, show the non
negligible effect of polarization between DAPI and DNA pocket in determining the fluorescence
properties of the embedded dye.

1 Introduction
The theoretical investigation of photoinduced
processes in molecular systems requires a
proper description of excited state properties
and structures. Accurate wavefunction based
ab initio methods, such as coupled cluster or
complete active space self-consistent field ap-
proaches are computationally very demanding
and therefore still unfeasible for large systems.
The computational limitations become even
more evident when the same molecular sys-
tems are embedded in an environment. Even
if the latter can largely affect the properties
of the electronic states and their energy order-
ing, possibly modifying the mechanisms of the
light-driven process, its ab initio description
cannot be achieved. In those cases, an effec-
tive strategy is to introduce multiscale models,
which combine a selected QM level of theory
with a classical model for the environment.
A good compromise in accuracy and com-
putational cost for the QM level is provided
by time-dependent density functional theory
(TDDFT) whereas both continuum and atom-
istic approaches have been developed to intro-
duce environment effects at a classical level.
In QM/continuum methods the environment
is approximated as a structureless medium de-
scribed through its macroscopic dielectric prop-
erties,1–3 whereas in QM/atomistic approaches
molecular mechanics (MM) force fields are gen-

erally employed.4–6
Many different implementations exist within

hybrid QM/classical methods for describing
electronic excitation processes.7,8 In the case of
MM descriptions, the most common one is to
use an electrostatic embedding where the ex-
citation of the QM subsystem happens in the
presence of a set of fixed charges which repre-
sent the environment atoms. Within this ap-
proach, the theoretical and computational for-
malism is exactly the same as that used for the
isolated molecular system, since the external
fixed charges can be included in the calculations
as additional “nuclei,” and their effects on the
QM system is through one-electron operators
equivalent to those used for describing nuclei-
electrons interactions. This means that also the
extension of the model to excited state deriva-
tives with respect to both geometrical and non-
geometrical parameters is straightforward, as it
does not require any additional environment-
specific term.
When a polarizable embedding is used, in-

stead, the presence of an environment response,
which depends on the QM charge density, intro-
duces new specificities in both the theoretical
formulation and the computational implemen-
tation. Within TDDFT, the most common way
to proceed, known as linear response (LR) for-
mulation, is to introduce an effective response
of the environment to a transition density. Such
a formulation is consistent with linear response
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theories and it can be easily generalized to ex-
cited state analytical gradients. This extension
has been already presented for QM/continuum
models9,10 and for the Effective Fragment Po-
tential (EFP)11 formulation of QM/atomistic
models.12 It has been shown13–16 that the LR
formulation lacks the capability of describing
the relaxation of the environment response with
the excited state density. To overcome this
shortcoming, various models have been intro-
duced that add a state-specific (SS) correction
to the transition energies using either contin-
uum17–19 or atomistic20,21 descriptions of the
environment response. Such corrections have
also been extended to analytical and numerical
derivatives for continuum models10,22,23 show-
ing that the effects on excited state geometries
are generally limited even if the contribution
to the energy is not negligible. As a matter of
fact, we have to note that the SS energy cor-
rection for a relaxed excited state can be large
for continuum models where the whole response
is entirely determined by the charge density of
the selected state. On the contrary, for polar-
izable MM, the SS contribution refers only to
the polarizable part of the response while the
purely electrostatic term is represented by fixed
charges. One can thus expect that for polariz-
able QM/MM the SS effect on geometries will
be even smaller than that observed for contin-
uum models.
In this work, we extend our own implemen-

tation of a polarizable QM/MM model based
on induced dipoles24,25 (from now on MMPol),
which we have been developing in the last years,
to allow for the calculation of excited state
gradients, through an analytical formulation.
The implementation makes use of the ONIOM
framework26 to account for all non-electrostatic
contributions to the forces.
The formulation is applied to the study of

the absorption and fluorescence of an organic
dye intercalated in DNA. The comparison of
the newly implemented approach with a stan-
dard QM/MM based on electrostatic embed-
ding shows that the inclusion of mutual polar-
ization between the QM subsystem and the em-
bedding (here a model of a DNA pocket) leads
to significant differences in the excited state ge-

ometries. These differences are finally reflected
in the change of fluorescence upon intercala-
tion. A study of absorption and emission en-
ergies with increasing basis set size is also car-
ried out to probe the range of applicability of
the model, particularly for what concerns the
problem of overpolarization.

2 Theory

2.1 Polarizable QM/MM: in-
duced dipole formulation

In this article a polarizable version of QM/MM
is used, where the classical atoms carry
isotropic polarizabilities in addition to the
fixed charges commonly used in standard non-
polarizable approaches. Within this formalism,
the QM–MM interaction energy displays an
additional term, namely the interaction energy
between the induced dipoles µk at the classical
atoms k and the QM region. As a result, the
Fock or Kohn-Sham operator can be written,
within a self-consistent field (SCF) approach
such as Hartree Fock (HF) or DFT, as:

Fpq = hpq+
∑
i

[〈pi|qi〉−cx〈pq|ii〉]+fxc
pq+V es

pq+V pol
pq

(1)
Here the scaling parameter cx is introduced to
interpolate between pure DFT (cx = 0) and
HF (cx = 1, fxc = 0). The matrix elements
of the DFT exchange-correlation functional are
denoted as fxc

pq and the two-electron coulomb
integrals 〈pi|qi〉 are given in the Dirac nota-
tion. Throughout this paper we will use the
common notation, whereby occupied molecu-
lar orbitals (MOs) are labelled i, j, . . . , virtual
orbitals a, b, . . . and generic orbitals p, q, . . . .
Greek letters (µ, ν, . . . ) are used as indices for
atomic orbitals.
The two terms V es

pq and V pol
pq in eqn. (1) repre-

sent the matrix elements of the MMPol (or in-
duced dipoles) operators, which correspond the
electrostatic and polarization interaction ener-
gies. While V es

pq is a pure one-electron contri-
bution expressed as the product of the MM
charges and the electrostatic potential integrals,
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the second term depends on the QM charge den-
sity, through the induced dipoles on the Npol

polarizable classical atoms. The dipoles are ob-
tained by solving a set of coupled linear equa-
tions yielding the following linear problem:

Tµind = E (2)

where E is the electric field generated on the
polarizable MM atoms by the QM region and
the MM charges, and the Npol ×Npol matrix T
is

T =


α−1

1 T1,2 . . . T1,Npol

T2,1 α−1
2 . . . T2,Npol

...
... . . . ...

TNpol,1 TNpol,2 . . . α−1
Npol

 (3)

In the last equation the diagonal elements are
the inverse of the atomic polarizability tensors,
while Tij are the (damped) dipole interaction
tensors:

T αβij = − δαβ
|~ri − ~rj|3

λ3 + 3
|~ri − ~rj|α|~ri − ~rj|β

|~ri − ~rj|5
λ5

(4)
The damping factors λ3 and λ5 are introduced
to avoid the well known polarization catastrophe
and are functions of the inter-atomic dis-
tance.27–30
The presence of the induced dipoles makes the

MMPol interaction term dependent on the QM
system, which itself contributes to the electric
field that induces the MMPol dipoles. This mu-
tual interaction problem is automatically solved
within the standard SCF iterative strategy.

2.2 Polarizable QM/MM: Linear
Response Formalism

Once the hybrid QM/MMPol method is im-
plemented for the ground state approaches
(DFT, HF), it is straightforward to extend the
scheme to linear response excited state meth-
ods, namely TDDFT, TDHF and CIS. Apply-
ing the Casida formulation, the working equa-
tions one has to deal with are of the type:31

Λ|X,Y〉 = Ω∆|X,Y〉 (5)

where

Λ =

(
A B
B∗ A∗

)
, ∆ =

(
1 0
0 −1

)
(6)

A and B represent the rotation matrices that
couple the occupied and virtual blocks of or-
bitals. (X + Y)n is the transition vector of the
n-th electronic eigenstate of the system, with
corresponding excitation energy Ωn. Within
the QM/MMpol formalism, the A and B ma-
trices explicitly include an environment term:

Aai,bj = δabδij(εa − εi) + 〈ij|ab〉+ fxc
aibj

+VMMPol
iajb − cx〈ia|jb〉 (7)

Bai,bj = 〈ij|ab〉+ fxc
aibj + VMMPol

iajb

−cx〈ia|bj〉 (8)

Here εp is the SCF energy of orbital p, fxc
aibj is

the linear response of the exchange correlation
functional and VMMPol

iajb represents the MMPol
response term. This is only dependent on the
dipoles, as the charges are constant and their
derivatives vanish as a consequence:

VMMPol
iajb = −

∑
k

µind
k [ϕjϕ

∗
b ]·
∫
drϕi(r)ϕ∗

a(r)
(rk − r)

|rk − r|3

(9)
The integral term represents the electric field
due to the transition density ϕi(r)ϕ∗

a(r) com-
puted at the MM atom k, while µind

k [ϕjϕ
∗
b ] is

the induced dipole due to the transition den-
sity ϕj(r)ϕ∗

b(r).

2.3 Analytic gradients of the ex-
cited states

The expressions for the energy derivative of a
QM system represented by its wavefunction Ψ
and the corresponding Hamiltonian H with re-
spect to a generic parameter λ can in general
be written as:

Eλ = 〈Ψ| ∂H
∂λ
|Ψ〉+ 2

〈
∂Ψ

∂λ

∣∣∣∣H |Ψ〉 (10)

The first term is the so-called Hellmann-
Feynman force, while the second term (the
wave function response to the perturbation)
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is the Pulay force.32 With the help of the
chain rule, one can show that for fully varia-
tional energy functionals the Pulay force van-
ishes and only the Hellmann-Feynman term re-
mains. This would also be desirable for the
LR-TDDFT equations above, which are how-
ever non-variational energy functionals. Furche
et al.33 remedied this by starting directly with
a constructed, fully variational Lagrangian L,
having the same stationary points and forces as
the non-variational TDDFT energy functional
G:

G[X,Y,Ω] = 〈X,Y|Λ|X,Y〉−Ω (〈X,Y|∆|X,Y〉)
(11)

This approach was later generalized by Scal-
mani et al.9 for continuum solvation models.
In this article we also follow this approach
and choose an analogous fully variational La-
grangian L[X,Y,Ω,Z,W] for MMPol:

L = G[X,Y,Ω]+
∑
ia

ZiaFia+
∑
pq,p≤q

Wpq(Spq−δpq)

(12)
Here Fpq are matrix elements of the Fock oper-
ator containing the MMPol terms (see (1)), Spq
are elements of the MO overlap matrix and Z
and W are Lagrangian multipliers. Evaluation
of the stationary points of L with respect to the
excitation energy and excitation vectors leads
to the normalization condition for the excita-
tion vectors X,Y and the LR-TDDFT equa-
tions. The newly introduced Lagrangian multi-
pliers, namely the Z-vector Z and the energy-
weighted density W, ensure that the Kohn-
Sham (or Hartree-Fock) equation is satisfied,
and that the MOs are orthonormal.33 The price
for avoiding the calculation of the perturbed
MOs is that now Z and W need to be com-
puted. The working equations to do this follow
directly from the stationary condition of L with
respect to the MO coefficients. Thanks to the
symmetry of W one can derive equations for the
occupied-virtual block that are only depending
on Z, the so-called Z-vector equations:∑

jb

(A+B)ia,jbZjb = C1ai − C2ai (13)

+G+
ai[P

∆
kl ] +G+

ai[P
∆
bc ]

In this equations we use the same notation as in
Scalmani et al.,9 with the unrelaxed difference
density as the occupied-occupied and virtual-
virtual block of P∆ and Zia for the occupied-
virtual block, to indicate its origin in the La-
grangian multiplier Z, namely:

P∆
ij = −1

2

∑
a

[(X + Y )ia(X + Y )ja

+(X − Y )ia(X − Y )ja] (14)

P∆
ab = +

1

2

∑
i

[(X + Y )ia(X + Y )ib]

+(X − Y )ja(X − Y )ib] (15)
Zia = P∆

ia (16)

The expressions of G±
ai and C1ai and C2ai can

be found in Ref. [ 9].
After Z is computed, the energy-weighted

density can be obtained as a function of Z.
Once all Lagrangian multipliers have been eval-
uated, one can write down the analytic gradient
of L, as:

Ωξ = Lξ =
1

2

∑
iajb

[(A+B)ξiajb(X + Y )ia(X + Y )jb

+(A−B)ξiajb(X − Y )ia(X − Y )jb]

+
∑
ia

ZiaF
ξ
ia +

∑
pq,p≤q

WpqS
ξ
pq (17)

Here we use again the short term notation,
where the superscript ξ indicates a derivation
with respect to a generic nuclear coordinate.
This expression can be written in more compact
form, by using an atomic orbitals basis instead
of the MO basis used so far:

Ωξ =
∑
µν

hξµνP
∆
µν +

∑
µν

SξµνWµν (18)

+
∑
µνκλ

〈µν|κλ〉ξΓµνκλ + ωxc,ξ + ωMMPol,ξ

where Γµνκλ is the two-particle density matrix,
its expression can be found in Ref. [ 33]. For-
mally, this equation differs from the analytic
gradient expression of an isolated system only
for the last term. However, the environment
also affects all the densities. The explicit MM-
Pol term in Eq. 18 can be divided into two
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parts:

ωMMPol,ξ =
∑
µν

V MMPol,ξ
µν P∆

µν (19)

+
∑
µνκλ

VMMPol,ξ
µνκλ (X + Y )µν(X + Y )κλ

Equation 20 involves only atomic basis func-
tion derivatives in the case when only deriva-
tives with respect to QM coordinates are con-
sidered. The first term depends on the change
in the one-particle density matrix upon excita-
tion and involves the ground state matrix ele-
ments of the MMPol operator:∑

µν

V MMPol,ξ
µν P∆

µν =
∑
k

µind
k E

∆,ξ
k (20)

+
∑
k,l

[
E∆
k T

−1
kl E

ξ
l

]
+
∑
k,l

[
E∆
k (T−1

kl )ξEl

]
where E∆

k is the change in the electronic field
at the classical atom k corresponding to the
change in the one-particle density matrix. The
MMPol matrix T is only dependent on coordi-
nates of the MM atom and its derivative van-
ishes in case of a differentiation with respect to
QM coordinates. The second term in Eq. 20
arises from the derivative of the (A + B) ma-
trix and is therefore specific of linear response
theory, namely∑

µνκλ

VMMPol,ξ
µνκλ (X + Y )µν(X + Y )κλ =

2
∑
k,l

E
(X+Y ),ξ
k T−1

kl E
(X+Y )
l

+
∑
k,l

E
(X+Y )
k T−1,ξ

kl E
(X+Y )
l (21)

where

E
(X+Y ),ξ
k =

∑
µν

(X + Y )µνE
ξ
k,µν (22)

E
(X+Y )
l =

∑
µν

(X + Y )µνEl,µν (23)

Equation 18 can be finally summed to the
standard DFT contribution to give the expres-
sion for the total energy gradient of each state

n in the presence of a polarizable embedding:

Eξ
n = Eξ

GS + Ωξ
n (24)

The description of the ground state DFT gradi-
ent contribution Eξ

GS is presented in the original
paper on the formulation of analytical energy
gradients within the QM/MMPol scheme.25
The implementation of the analytical deriva-

tives for excited state TDDFT/MMPol has
been performed in a locally modified version of
Gaussian.34 Such implementation makes use of
the ONIOM scheme.26 The advantage of the
implementation within the ONIOM scheme re-
lies on the fact that all non-electrostatic contri-
butions to the forces (bonded and non-bonded
ones) are available, and the additional force
terms generated by the presence of the elec-
trostatic and polarization interactions can be
added independently.

3 A test case
As a test case, we compared the polarizable
embedding scheme presented in the previous
section with a standard electrostatic embed-
ding in determining the structural and spec-
troscopic properties of the doubly protonated
fluorescent stain 4’,6-diamidino-2-phenylindole
(here referred to as DAPI, shown in Fig. 1a)
intercalated in DNA. DAPI is a common flu-
orescent marker for DNA with important ap-
plications as antiparasitic, antibiotic, antiviral,
and anti-cancer drug.35 It is known to interact
with DNA in a non-univocal manner, both by
intercalation and minor groove binding, and to
specifically change its photophysical properties
according to the different environments. In this
test study we will focus on the intercalation and
we will consider the pocket formed by two pairs
of cytosine and guanine (CG) DNA bases con-
nected by the sugar skeleton. This choice has
been based on the fact that intercalation was
proposed for GC-rich DNA.36,37 The interaction
of DAPI with polyd(G-C)2 results in large vis-
ible spectral shifts and enhanced fluorescence.
The total system considered, including DAPI

and the DNA fragment, is neutral: the DAPI
molecule has a net charge of +2, while the par-
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tial charges on the DNA sum to −2. We also
note that the intercalated DAPI is located with
its positively charged amidine groups close to
the phosphate backbones and indole H(N) ori-
ented toward the major groove (see Fig. 1b).

(a)

(b)

Figure 1: (a) Structure of DAPI. The dashed
red line shows the bonds chosen to compute the
bond length alternation (BLA) parameter. The
dashed black lines define the fragments used in
the charge distribution analysis. (b) Geometry
of the DAPI intercalated within two GC DNA
base pairs. The dotted lines are used to define
the fragments of the DAPI chosen to carry out
the charge analysis.

Ground state (GS) and excited state (ES) ge-
ometry optimizations were performed for both
the free and the intercalated DAPI; in the
latter case both the polarizable and the elec-
trostatic embedding schemes have been used.
The excited state of interest is the lowest sin-
glet state of the DAPI molecule, character-
ized by a HOMO-LUMO transition (see Fig.
2). For the ES calculations two levels of the-
ory were employed: CIS and TDDFT within
the Tamm-Dancoff approximation (TDA) us-
ing CAM-B3LYP and M06-2X functionals. For
the intercalated system the definition and the
structure of the DNA pocket was taken from
Ref.[ 38] and kept frozen during the optimiza-

Figure 2: Isovalue surfaces of the orbitals con-
tributing mainly to the state of interest.

tion of the DAPI. In the QM/MM calculations
the standard AMBER parameters were used,
as included in the Gaussian program suite,34
for both electrostatic and non-electrostatic con-
tributions. In the QM/MMPol calculations,
the isotropic atomic polarizabilities of Wang et
al.39,40 were employed, and the corresponding
charges were obtained by fitting the electro-
static potential including the induced dipoles,
using our own PolChat tool.41

3.1 Structures and charge distri-
butions

To assess the changes induced by intercala-
tion on ground and excited state geometries of
DAPI, eleven internal C-C bonds (marked in
red in Fig. 1) were chosen. From these bonds
it is possible to define the bond length alter-
nation (BLA), computed as the difference of
the average single- and double-bond lengths.
The BLA is often used as a measure of con-
jugation. Fig. 3 shows the variation of the 11
selected bond lengths upon intercalation of the
ground state DAPI: the structures optimized at
QM/MM and QM/MMPol level are compared
with those optimized for the free molecule.
Both QM/MM and QM/MMPol models pre-

dict a shortening of all the bonds considered
(however limited to 0.012 Å at most), with the
exception of bond 3. The BLA value is there-
fore unaffected (see Tab. 1). This indicates
that, for the present system, the effect of the
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Figure 3: Variation of the selected bond lengths
(Å) for the ground state DAPI upon interca-
lation, using QM/MM and QM/MMPol mod-
els. All values are relative to those of the op-
timized free DAPI. All data are obtained at
CAM-B3LYP/6-31G(d) level. The numbering
of the bonds is reported in Fig. 1a

intercalation on the ground state bond lengths
is very small and no significant differences are
introduced with the inclusion of a polarizable
embedding.
A larger sensitivity to the environment is in-

stead apparent in the central dihedral angle be-
tween the benzene and indole fragments. The
cage effect of the DNA pocket is in fact expected
to restrain the rotational degrees of freedom:
indeed moving from the free molecule to the in-
tercalated one a clear planarization is observed,
which is more pronounced with the polarizable
embedding (see Tab. 1).

Table 1: BLA (Å) and dihedral angle between
the benzene and indole fragments (δ, degrees),
as obtained from the ground- and excited-state
geometry optimizations of the free and the
intercalated DAPI. In the latter case, both
QM/MM and QM/MMPol results are reported.

Free MM MMPol
BLA(GS) 0.0328 0.0328 0.0336
BLA(EX) -0.0049 0.0004 -0.0061
δ(GS) 29 21 15
δ(EX) 12 15 9

The optimization of the excited state of inter-
est, characterized by a strong HOMO-LUMO
transition, was also carried out, employing the

same embedding schemes as for the ground
state. Fig. 4 shows the differences in bond
lengths for the excited state optimized structure
within the DNA pocket, compared to those of
the free DAPI.

-0.020	

-0.015	

-0.010	

-0.005	

0.000	

0.005	

0.010	
1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	

MM	

MMPol	

Figure 4: Variation of the selected 11 bond
lengths (Å) for the excited state DAPI upon
intercalation, using QM/MM and QM/MMPol
models. All values are relative to those of the
optimized free DAPI. All data are obtained at
TDA-CAM-B3LYP/6-31G(d) level. The num-
bering of the bonds is reported in Fig. 1a.

As observed for the ground state, also in the
excited state the intercalation leads to a general
shortening of the bonds (with the exception of
bonds 1 and 3) but this time the differences are
larger. The effect of the inclusion of the polar-
ization is also more evident here than it was in
the ground state. Indeed, not negligible differ-
ences between polarizable and non-polarizable
embeddings appear, for instance in the exter-
nal bond 1 and the internal bonds 4–7. The
BLA reflects these differences, as an increase
with respect to the free geometry is predicted in
QM/MM, oppositely to QM/MMPol (see Tab.
1). Moreover, the excited state optimizations
lead to a planarization for both the free and
the intercalated DAPI (see Tab. 1), which is
largest in the polarizable embedding.
The change in the conjugation path upon ex-

citation is summarized in Fig. 5. It is evident
from the alternating pattern of the first eight
bond lengths that the single (double) bonds
tend to become shorter (longer), with a con-
sequent increase in conjugation. This is con-
firmed by the lower BLA values in the excited
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0.06	

0.08	
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Figure 5: Difference between ground and ex-
cited state structures for the free and the inter-
calated DAPI. In the latter case both electro-
static (MM) and polarizable embeddings (MM-
Pol) are shown. All data are obtained at CAM-
B3LYP/6-31G(d) level. The numbering of the
bonds is reported in Fig. 1a.

state, and in the consistently more planar struc-
tures as shown in Tab. 1. We also remark that
the bond length variation predicted with the
polarizable embedding is larger than within the
non polarizable QM/MM.
To better understand the structural rear-

rangement upon excitation, we also analyzed
the charge redistribution by partitioning the
DAPI into four different fragments and carrying
out a Mulliken charge analysis both at ground-
and excited-state optimized structures. The
fragments considered are the two protonated
amidine moieties (groups 1 and 4), the ben-
zene ring (group 2), and the indole fragment
(group 3) (see Fig. 1). The results obtained
at (TDA)CAM-B3LYP/6-31G(d) level are re-
ported in Fig. 6 (data for the other functional
and CIS are reported in the Supporting Infor-
mation). In the free molecule in its ground
state, the positive charge is mainly localized
on the external amidine groups (1 and 4) as
expected, and this distribution is only slightly
affected by the intercalation.
Upon excitation, a significant redistribution

of the density within the DAPI is observed:
the (negative) charge moves from the indole to
the external groups, reducing the charge differ-
ence between them. This charge-transfer pic-
ture is significantly reduced when the system

0	

0.2	

0.4	

0.6	

0.8	

1	
Free	
MM	
MMPol	

-0.2	

-0.1	

0	

0.1	

0.2	

0.3	

Frag	1	 Frag	2	 Frag	3	 Frag	4	

(a)	

(b)	

Figure 6: (a) Ground state charge distribution
(in a.u.) localized on the four fragments as ob-
tained for the free molecule and the intercalated
one with the electrostatic and the polarizable
embedding; (b) differences between fragment
charges in the excited and ground state. In all
cases the geometries are those obtained for the
selected electronic state and the selected model.
The numbering of the fragments is reported in
Fig. 1a.

is intercalated within a non-polarizable embed-
ding (MM) while it remains almost unchanged
if the embedding can polarize (MMPol). This is
indeed an interesting difference that is related
to the structural differences induced upon ex-
citation for both the free and the intercalated
DAPI.
The atomistic nature of our model also al-

lows a detailed analysis of the role played by
each single component of the environment. To
do that we have analyzed the interaction ener-
gies of DAPI with the four DNA moieties sep-
arately: cytosine (C) and guanine (G) bases,
phosphate groups (P) and sugars (S). Their ef-
fect have been partitioned into a ground state
interaction term (between the MMPol distribu-
tions and the DAPI ground state density) and
the two response terms to the electronic excita-
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tion, namely the term entering in the TDDFT
matrices (term 1) and the state-specific correc-
tion (term 2). The results are reported in Tab.
2. We first observe that the phosphate groups

Table 2: QM/MMPol interaction energies
(kcal/mol) between DAPI and selected DNA
moieties. The geometry is the QM/MMPol ex-
cited state optimized one. The ground-state
contribution due only to polarization is shown
in brackets.

Ground state Excitation
Total Pol. Term 1 Term 2

C -52.1 -1.8 -0.5 -0.1
G -87.9 -2.8 -1.0 -0.2
P -298.4 -2.2 -0.2 -0.0
S 207.9 -0.2 -0.5 -0.1

play a major role in stabilizing the ground state
energy: this is expected considering their high
negative net charge. The DNA base pairs also
contribute to stabilize the intercalated system,
while the effect of sugar fragments is repulsive.
When we move to the two terms which deter-
mine the response to the transition, a similar
behavior is found: the effect of the phosphate
groups almost disappears and that of guanine
contributes twice with respect to cytosine bases
(which is equivalent to sugars). These effects,
when summed up, are those which determine
the large difference found in the fluorescence
shift for MM and MMPol. This simple analysis
clearly shows that the response of the environ-
ment to the electronic transition behaves very
differently from pure electrostatics.

3.2 Absorption and fluorescence
energies

The optimized structures of ground and excited
states allowed us to calculate and compare ab-
sorption and fluorescence emission energies of
free and intercalated DAPI.
For QM/MMPol, the transition energies have

been corrected so to account for the state-
specific relaxation of the response of the em-
bedding using the same formalism presented in
ref. [ 20,21] Note that such state-specific cor-

rection is only applied to the energies, and not
to the calculation of the gradients. While this is
of little importance in the present study, as the
effect is small (see Tables S7-S8 in the Support-
ing Information), a state-specific formulation of
MMPol is available and we are currently work-
ing on implementing it in the gradients.
In this analysis, we also explore the impact

of the choice of basis set. This was done, on
the one hand, to inspect the convergence of the
results to the infinite basis limit, and on the
other hand to probe the range of applicabil-
ity of the polarizable QM/MM model, partic-
ularly for what concerns the detrimental effects
of a possible overpolarization. Within the MM
atoms, an effective remedy to overpolarization
is included through the Thole scaling functions
for the dipole-dipole interactions (which is also
used in our implementation). What, however
remains is the possibility of the QM and MMPol
subsystems to overpolarize. This is an intrin-
sic flaw of the model approximation and can-
not be eliminated all together, although damp-
ing schemes have been proposed to mitigate the
problem.42,43 By increasing the size of the ba-
sis set, particularly including diffuse functions,
one artificially increases the interaction range
between QM and classical moieties, therefore
becoming prone to overpolarization.
In Fig. 7 the absorption and fluorescence en-

ergies are presented for a collection of basis sets,
ranging from the double-zeta 6-31G to a triple-
zeta with diffuse and polarizable functions, 6-
311++G(3df,3pd). The absorption and emis-
sion energies were computed using the same
structure optimized at the ground or excited
state at CAM-B3LYP/6-31G(d) level. The red
line, instead, refers to the emission energies
where the excited state geometries were opti-
mized with each different basis set.
The results show that, for this system, over-

polarization does not seem to be an issue, nei-
ther for single-point calculations nor for geom-
etry optimizations. The absorption and emis-
sion excitation energies behave regularly with
increasing basis set size, and no strong increase
of the QM-MM interaction energy is observed.
We also note that an increase in the number of
core basis functions has a limited influence on
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Figure 7: Absorption and fluorescence ener-
gies (in eV) for QM/MMPol with CAM-B3LYP
and different basis sets. The QM/MMPol
(CAM-B3LYP/6-31G(d)) ground state opti-
mized structure was used for the absorption
and the corresponding excited state optimized
structure for the fluorescence. The crosses cor-
respond to the fluorescence energy calculated at
the excited state structure optimized using each
selected basis set. All data have been obtained
including the state-specific correction.

the excitation energy, while additional polar-
izable or diffuse functions in the valence have
a large effect (for instance compare results for
6-311G and 6-31G(3df,3pd)). This is an ex-
pected result, as an accurate description of the
core electrons results in a better overall energy
of the system, but excitations are mainly de-
pendent on valence orbitals. We also tested the
Dunning basis sets, where overpolarization oc-
curred only for the augmented quadruple zeta
basis set (aug-cc-pVQZ). We also note that the
effect of the basis set on the geometry is rather
limited if a basis set including polarization func-
tions is used (see the comparison of the two sets
of fluorescence data).
The same basis set analysis has been re-

peated for the free and the QM/MM interca-
lated DAPI. The results are summarized in fig.8
where we report the shift in both absorption
and emission energies due to the intercalation
as obtained with the polarizable and the elec-

trostatic embedding.
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Figure 8: Shift of absorption (upper graph) and
fluorescence energies (lower graph), in eV, upon
intercalation, using QM/MMPol and QM/MM
approaches with TDA/CAM-B3LYP and differ-
ent basis sets. The MMPol-Frozen data refer to
a model where any MMPol response to the exci-
tation is switched off, as detailed in the text. In
all calculations the ground and excited state ge-
ometries are those optimized at QM/MM(Pol)
level using (TDA)CAM-B3LYP/6-31G(d)

The data reported shows that in both models
the intercalation leads to a red shift of absorp-
tion and fluorescence. Moreover, the effect of
the basis set is rather limited and it becomes
negligible if at least one diffuse and one polar-
ization functions are used. When comparing
the electrostatic and the polarizable embedding
schemes, it appears that the sensitivity to the
basis set is more evident in the latter.
The most relevant result, however, is the red

shift observed in the emission (ca. 0.1 eV) when
the polarizable embedding scheme is used, com-
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pared to the electrostatic one. On the other
hand, the differences in the shifts for the ab-
sorption energies are almost negligible (between
0.05 and 0.07 eV). At this stage, the compari-
son with experiments is extremely difficult as
a much more extensive analysis of the system,
in particular including a correct sampling of the
DNA structure and of the solvent configuration,
should be done. This kind of analysis is beyond
the scope of the paper, however we can note
that the inclusion of polarization tends to in-
crease the Stokes shift from 0.41 to 0.47 eV,
which is somewhat closer to the experimental
value of 0.68 eV.
We also note that the MMPol description

leads to a general increase of the transition
dipole moment at the excited state geometry
with respect to the free DAPI (data reported
in Table S10 of the SI). The increase is of the
order of 4–5% while the QM/MM description
gives a decrease of the order of 2–3%. To bet-
ter understand the origin of these differences we
have computed another set of data, obtained by
switching off any MMPol response to the tran-
sition. Namely, we have neglected the VMMPol

ia,jb

term of eq. 9 from the TDDFT matrices. These
data are reported in fig. 8, labeled “MMPol–
frozen”. It is interesting to note that for small
basis sets the MMPol–frozen and MM values
are very similar, but they start to diverge as
soon as the basis set becomes flexible enough.
All these results indicate that the polarizable

embedding has a larger effect in the excited
than in the ground state and that using a non-
responsive embedding could prevent a complete
relaxation of the excited state.

4 Summary
We have presented the formulation and the im-
plementation of the excited state analytical gra-
dients within a polarizable TDDFT/MM model
based on induced dipoles. The theoretical for-
mulation has been based on a variational for-
mulation of the TDDFT approach and the im-
plementation has been carried out within the
ONIOM formulation available in the Gaussian
suite of codes. As a test case we have pre-

sented the application to the absorption and
fluorescence properties of a well-known fluores-
cent marker for DNA, DAPI, intercalated in
a GC-pocket. Despite its simplicity, this test
has provided interesting results. First, the di-
rect comparison between the electrostatic and
the polarizable embeddings has shown that non
negligible effects due to the environment po-
larization are evident in the excited state ge-
ometries and, as a result, in the emission ener-
gies. Moreover, it has shown that detrimental
overpolarization effects between the quantum
system and the classical polarizable embedding
start to play a role only with very large ba-
sis sets, including many diffuse functions (e.g.,
aug-cc-pVQZ and larger). This result is in prin-
ciple dependent on the system chosen. How-
ever, the combination of oppositely charged QM
molecule and classical embedding tested here
should represent a challenging case: the results
obtained for both excited state geometry opti-
mizations and fluorescence energies clearly indi-
cate that even rather extended basis sets can be
used in combination with polarizable QM/MM.
Of course these findings have to be confirmed
by further studies on different molecular probes
and different types of environments. However
it is clear that atomistic models able to include
polarization represent a very effective strategy
to study photo-induced processes in complex
biosystems.

Supporting Information Available:
Cartesian coordinates of optimized ground and
excited state of free and intercalated DAPI at
CAM-B3LYP level; list of relevant geometri-
cal parameters optimized with different func-
tionals; charge distribution analysis; absorption
and emission energies and transition dipole mo-
ments. This material is available free of charge
via the Internet at http://pubs.acs.org/.
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