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ABSTRACT

BACKGROUND AND PURPOSE: Amyotrophic lateral sclerosis is a progressive motor neuron disorder that involves degeneration of both
upper and lower motor neurons. In patients with amyotrophic lateral sclerosis, pathologic studies and ex vivo high-resolution MR imaging
at ultra-high field strength revealed the co-localization of iron and activated microglia distributed in the deep layers of the primary motor
cortex. The aims of the study were to measure the cortical thickness and evaluate the distribution of iron-related signal changes in the
primary motor cortex of patients with amyotrophic lateral sclerosis as possible in vivo biomarkers of upper motor neuron impairment.

MATERIALS AND METHODS: Twenty-two patients with definite amyotrophic lateral sclerosis and 14 healthy subjects underwent a
high-resolution 2D multiecho gradient-recalled sequence targeted on the primary motor cortex by using a 7T scanner. Image analysis
consisted of the visual evaluation and quantitative measurement of signal intensity and cortical thickness of the primary motor cortex in
patients and controls. Qualitative and quantitative MR imaging parameters were correlated with electrophysiologic and laboratory data
and with clinical scores.

RESULTS: Ultra-high field MR imaging revealed atrophy and signal hypointensity in the deep layers of the primary motor cortex of patients
with amyotrophic lateral sclerosis with a diagnostic accuracy of 71%. Signal hypointensity of the deep layers of the primary motor cortex
correlated with upper motor neuron impairment (r � �0.47; P � .001) and with disease progression rate (r � �0.60; P � .009).

CONCLUSIONS: The combined high spatial resolution and sensitivity to paramagnetic substances of 7T MR imaging demonstrate in vivo
signal changes of the cerebral motor cortex that resemble the distribution of activated microglia within the cortex of patients with
amyotrophic lateral sclerosis. Cortical thinning and signal hypointensity of the deep layers of the primary motor cortex could constitute
a marker of upper motor neuron impairment in patients with amyotrophic lateral sclerosis.

ABBREVIATIONS: ALS � amyotrophic lateral sclerosis; ALSFRS-R � ALS Functional Rating Scale-Revised; DPR � disease progression rate; HS � healthy subjects;
M1 � primary motor cortex; UHF � ultra-high field; UMN � upper motor neuron

Amyotrophic lateral sclerosis (ALS) is a progressive motor

neuron disorder that entails degeneration of both upper and

lower motor neurons,1 producing fasciculation, muscle wasting

and weakness, increased spasticity, and hyperreflexia.

Upper motor neuron (UMN) impairment in ALS can be de-

tected from clinical signs such as brisk reflexes and spasticity;

however, the masking effect of the lower motor neuron involve-

ment that reduces muscle strength and reflexes may make it hard

to reveal clinical evidence of pyramidal involvement. Electro-

physiologic investigations, such as prolongation of central motor

conduction time in motor-evoked potentials in transcranial mag-

netic stimulation, may detect the upper motor neuron involve-

ment, but results are conflicting and these measures are not a

sensitive tool or a useful indicator of disease severity or progno-

sis.2-4 Therefore, a robust in vivo biomarker of UMN impairment,

though desirable,5 is not available.

The hallmark of UMN pathology in ALS is depopulation of the

Betz cells in the motor cortex and axonal loss within the descend-
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ing motor pathway associated with myelin pallor and gliosis of the

corticospinal tracts.6

Conversely, also, characteristic of ALS pathology similar to

that in other neurodegenerative disorders is the occurrence of a

neuroinflammatory reaction, consisting of activated glial cells,

mainly microglia and astrocytes, and T-cells.7 In transgenic

mouse models of mutant SOD1-associated familial ALS, reac-

tive microglial cells and astrocytes actively contribute to the

death of motor neurons.7

Moreover, a significant association between cortical micro-

gliosis and UMN damage has been described by using PET with a

radioligand for microglia.8

Recently, an ex vivo study with Perls’ DAB staining detected

intracellular and extracellular iron deposits in the motor cortex of

patients with ALS. Iron in the form of ferritin is detected in acti-

vated microglia (CD68�) in the middle and deep layers of the

motor cortex, sparing the superficial layers.9

Gradient recalled-echo T2* sequences, which can provide sig-

nal magnitude, phase, and their combination in susceptibility-

weighted imaging,10 are considered the most appropriate tech-

nique to visualize small amounts of uniformly distributed iron,

such as ferritin,11,12 and are the most sensitive sequences for de-

tecting the low signal intensity in the precentral cortex in patients

with ALS.13

The introduction of ultra-high field (UHF) MR imaging

equipment greatly increases the sensitivity to susceptibility phe-

nomena and allows obtaining in vivo spatial resolution of approx-

imately 200 �m, which enables determination of the cortical

layers.14

The aims of our study were to measure the thickness of the

primary motor cortex (M1) and to describe the distribution of the

iron-related signal changes in the M1 of patients with ALS as a

possible in vivo biomarker of UMN impairment by using targeted

high-resolution gradient recalled-echo T2* sequences at UHF.

MATERIALS AND METHODS
Patients and Controls
Twenty-two patients (5 women and 17 men; mean age, 61 � 10

years) with a diagnosis of definite ALS (limb onset) according to

the revised El Escorial diagnostic criteria15 were enrolled (On-line

Table 1). Patients with dementia were excluded by administering

the Mini-Mental State Examination16 and the Frontal Assessment

Battery,17 as short and rapid bedside tests for a screening of cog-

nitive, behavioral, and global executive dysfunction. Clinical his-

tory and standard neurologic and psychiatric assessment were

used to rule out possible neuropsychiatric comorbidities and

other neurodegenerative diseases.

Patients underwent CSF and plasma laboratory analysis to re-

spectively assess concentration of �-amyloid, �, and p-� neuronal

proteins and some peripheral oxidative stress biomarkers such as

advanced oxidation protein products, ferric-reducing ability of

plasma, and thiols.18 Neurophysiologic investigation included

motor-evoked potentials with calculations of central conduction

time, cortical latency, and cortical silent period. Disease severity

was evaluated by using the ALS Functional Rating Scale-Revised

(ALSFRS-R) (range, 0 – 48),19 the Medical Research Council scale

for segmentary muscle strength (range, 0 –130),20 and a compos-

ite semiquantitative arbitrary score of UMN burden (UMN score;

range, 0 –33) (On-line Table 2).8,21,22 Disease duration was ex-

pressed in months from symptom appearance to MR imaging

acquisition, while disease progression rate (DPR) was calculated

according the following formula: (48 � ALSFRS-R)/Disease

Duration.23

Fourteen right-handed healthy subjects (HS), age-matched

with patients (8 women and 6 men; mean age, 58 � 12 years),

were enrolled to compare the cerebral motor cortex morphology

with respect to patients with ALS. HS were volunteers who had no

history of psychiatric and neurologic disorders; their neurologic

examination findings were normal.

All patients and controls gave their informed consent to the

enrollment and diagnostic procedures on the basis of the adher-

ence to an experimental protocol “Clinical Impact of Ultra-High

Field MR Imaging in Neurodegenerative Diseases Diagnosis”

(RF-2009-1546281) approved and funded by Italian Ministry of

Health and cofunded by the Health Service of Tuscany. The study

was approved by the local competent ethics committee.

MR Imaging Acquisition
MR imaging experiments were performed on a 7T MR950

scanner (GE Healthcare, Milwaukee, Wisconsin) equipped with

a 2CH-TX/32CH-RX head coil (Nova Medical, Wilmington,

Massachusetts).

The MR imaging protocol included a high-resolution 2D mul-

tiecho gradient-recalled sequence with TE � 10 ms and 20 ms,

TR � 500 ms, flip angle � 15°, NEX � 2, section thickness � 2

mm, FOV � 112 mm, and in-plane resolution � 250 �m, tar-

geted to the M1, oriented in the axial plane, and covering the

cerebrum from the vertex to the internal capsule. The total acqui-

sition time was 7 minutes 32 seconds.

Image Analysis

Visual Inspection and Subjective Assessment. Two expert neuro-

radiologists (M.Cosottini and I.P.) blinded to the clinical status of

subjects visually evaluated, independently, images on the basis of

morphologic criteria.

The M1 in the precentral gyrus was identified on UHF MR

images for the presence of the “hand knob.”24 The anatomy of the

cerebral motor cortex at the level of the M1 was evaluated on the

basis of accepted cognition sourcing from anatomic atlases25 and

MR imaging studies26,27 and atlases28 at UHF. The normal anat-

omy of the M1 at UHF MR imaging consists of deeper cortical

layers identified as a slight hypointense band immediately subja-

cent to a thinner superficial hyperintense layer. The subcortical

hypointense line corresponding to U-fibers appears smooth, and

the gray-white junction, poorly demarcated (Fig 1A, -B).

When the M1 anatomy differed from such configurations, and

namely the M1 deeper layers were particularly thin23,29 and/or

hypointense9,30 (Fig 1D, -E), images were judged as belonging to

patients with ALS.

Sensitivity, specificity, positive predictive value, negative pre-

dictive value, and diagnostic accuracy in distinguishing patients

and HS were calculated for each reader. Interobserver agreement

was calculated with the Cohen � statistic.
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Differences in UMN scores between correctly diagnosed and

misdiagnosed patients were evaluated by a Mann-Whitney U test.

Quantitative Assessment. For each cerebral hemisphere, thick-

ness and signal intensity of the deeper layers of the M1 were mea-

sured in 4 anatomic regions corresponding to the Penfield’s areas

of foot, leg, hand, and face (Fig 1C, -F).31 Signal intensities were

measured by using oval ROIs of 4 mm2 and were normalized with

respect to those of the superficial cerebral cortex of the left precu-

neus. Measurement of cortical thickness was obtained by tracing,

with an electronic caliper, a line encompassing the deep layer of

the M1. The measurements of signal intensity and cortical thick-

ness for each subject were then averaged to obtain mean values

from both cerebral hemispheres.

Quantitative data of cortical thickness and the signal intensity

of the M1 were compared between patients and HS by using a

Mann-Whitney U test. In the group of patients, the relationship

between morphometric parameters (mean values of cortical

thickness and signal intensity) and clinical scores (ALSFRS-R,

Medical Research Council scale, disease duration, and DPR) and

the electrophysiologic (central conduction time, cortical latency,

cortical silent period) and laboratory (ferric reducing ability of

plasma, advanced oxidation protein products, plasma thiols) data

was evaluated by the Spearman rank correlation coefficient. Cor-

tical thickness and signal intensity of the M1 for each Penfield’s

area of hand, leg, and foot were correlated to the correspondent

UMN score by using the Spearman rank correlation coefficient.

Using the median of DPR as a cutoff, we divided patients on

the basis of the progression rate into 2 groups: “faster” and

“slower.” A Mann-Whitney U test was applied to investigate dif-

ferences in morphometric parameters between the 2 groups.

RESULTS
Four patients and 1 healthy control subject were excluded from

the analysis due to the presence of severe motion artifacts.

FIG 1. Normal anatomy. In vivo UHF high-resolution gradient recalled-echo T2* sequence acquisition of the pre- and postcentral gyri (A) and
its schematic representation (B) in healthy subjects. The postcentral gyrus resembles the classic ex vivo UHF MR imaging appearance of the
unimodal sensory cortices: a low signal intensity tier corresponding to heavily myelinated intracortical layer IV (external band of Baillarger)
(arrows) and a subcortical hypointensity (arrowheads) corresponding to arcuate U-fibers demarcating the gray-white matter junction.56 The
cortical ribbon of M1 (bracket) as the functional counterpart of Brodmann area 435 is thicker than S157because it is agranular36 and contains the
giant Betz pyramidal cells. The superficial hyperintense layer in MR imaging (dots) is due to the lightly myelinated superficial layers relative to
the more heavily myelinated deep layers.58 M1 does not have an intermediate sharp hypointense line as in S1 but shows a more widespread slight
hypointensity of the deeper cortical layer corresponding to its astriate myeloarchitecture.59,60 The deeper layers of M1 are not easily distin-
guished from the underlying white matter due to the heavily myelinated M1 cortex.32,58 ALS features. UHF high-resolution gradient recalled-
echo T2* sequence acquisition of the pre- and postcentral gyri in a patient with ALS (D) and the corresponding schematic view (E). Beneath a
preserved superficial cortical layer (dots), the deep layers in M1 are thinner and more hypointense (bracket) than those in healthy subjects and
show an inconstant track appearance. The M1 signal hypointensity in ALS could be due to paramagnetic effects of the iron-containing microglia
within the deep motor cortex. The method adopted for quantitative measurement of signal intensity and thickness in a healthy subject (C) and
in patients with ALS (F) is reported. Quantitative assessments of the deep layers of M1 are obtained by drawing an oval ROI within them for the
signal intensity measurement and a line with an electronic caliper for the thickness quantification.
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In the remaining 18 patients, the mean values were 40 � 5 for

ALSFRS-R, 9 � 10 for the UMN score, 118 � 13 for the Medical

Research Council scale, 16 � 12 for disease duration, and 0.68 �

0.47 for DPR.

Visual Inspection and Subjective Assessment
At visual inspection, reader 1 detected hypointensity and thinning

of the deeper layers of the M1 in 12 of 18 patients with ALS and in

3 of 13 HS. Sensitivity, specificity, positive predictive value, neg-

ative predictive value, and diagnostic accuracy in distinguishing

patients and HS on the basis of morphologic criteria were 67%,

77%, 80%, 63%, and 71%, respectively.

Reader 2 detected hypointensity and thinning of the deeper

layers of the M1 in 9 of 18 patients with ALS and in zero of 13 HS.

Sensitivity, specificity, positive predictive value, negative predic-

tive value, and diagnostic accuracy in distinguishing patients and

HS on the basis of morphologic criteria were 50%, 100%, 100%,

59%, and 71%, respectively.

The Interobserver agreement was good (0.61, Cohen �

statistic).

On the basis of both readings, the UMN score was significantly

higher (P � .003 and P � .028, respectively) in correctly diag-

nosed patients (13 � 10 and 14 � 10, respectively) than in mis-

diagnosed ones (1 � 1 and 4 � 8, respectively) (On-line Fig 1A, -B

and On-line Tables 3– 6).

Also, the DPR was higher on the basis of both readings (P �

.019 and P � .066, respectively) in correctly diagnosed patients

(0.85 � 0.48 and 0.87 � 0.49, respectively) than in misdiagnosed

ones (0.33 � 0.20 and 0.48 � 0.38, respectively).

Quantitative Assessment
Cortical thickness was significantly (P � .001) lower in patients

(mean value � 1.5 mm) than in HS (mean value � 2 mm)

(On-line Fig 1C) and showed a moderate correlation with the

UMN score (r � �0.59; P � .001) (Fig 2A). Cortical thickness

had a weaker correlation with DPR (r � �0.47; P � .051) and

ALSFRS-R (r � 0.49; P � .039) (Fig 2B, -C).

Signal intensity did not differ between patients with ALS and

HS (On-line Fig 1D) but correlated with UMN score (r � �0.47;

P � .001), DPR (r � �0.60; P � .009), and ALSFRS-R (r � 0.45;

P � .061) (Fig 2D–F).

Signal intensity in the subgroup of patients with faster DPR

was significantly lower than that in the slower DPR subgroup (P �

.024), while no significant difference in cortical thickness was

found between subgroups of patients (On-line Fig 2).

No significant correlations were found between morphomet-

ric parameters and either motor-evoked potential indices (central

motor conduction time and cortical silent period) or the ferric-

reducing ability of plasma, advanced oxidation protein products,

and thiols.

DISCUSSION
UHF MR Signal in M1 of Controls and Patients with ALS
UHF MR imaging allows an in vivo evaluation of the inner struc-

ture of the cerebral motor cortex of patients with ALS and con-

trols. The gradient recalled-echo T2* sequence at 7T provides

information on the architectural organization of the human cor-

tex in vivo,32 due to the iron and myelin contribution to T2*

contrast.26 Because myelin and iron in the form of ferritin are

strongly co-localized in the intracortical myelinated fibers,33 the

MR signals across the cortical gray matter reflect myelin content

and myeloarchitecture.34 The normal anatomy of the M1 (Brod-

mann area 4)35 at UHF depends on its peculiar architecture: The

large cortical thickness, inconspicuous lamination pattern, low

cell density, and the absence of a clear boundary between layer VI

FIG 2. Correlations in patients with ALS between morphometric parameters (thickness and signal intensity of deeper layers of M1) and clinical
scores (UMN score, DPR, and ALSFRS-R). The UMN score ranges from zero to 8 because it refers to a single limb and not to the overall evaluation.
Correlations between morphometric parameters and UMN score were calculated by taking into account the clinical score of each limb of every
patient and signal intensity and thickness of the corresponding areas of M1.
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and white matter36 correspond to the MR imaging findings of the

motor cortex as shown in Fig 1A, -B.

In patients with ALS, in accordance with previous ex vivo UHF

images of the affected cerebral cortices,9 we revealed a rim of

signal hypointensity with an inconstant track appearance beneath

a preserved superficial hyperintense cortical layer (Fig 1D, -E).

The decreased signal intensity of the motor cortex on T2*-

weighted images in patients with ALS may represent ferritin be-

cause at postmortem examination, the precentral cortex showed

intensely stained microglia and macrophages after antiferritin an-

tibody staining.13 Until now, cortical hypointensity in vivo

seemed to involve the motor cortex in a full-thickness fashion at

both conventional37 and UHF9 MR imaging. Our targeted UHF

MR imaging high-resolution study, as well as the ex vivo UHF

imaging, demonstrated that in patients with ALS, the signal hy-

pointensity is confined to the deeper layers of the cerebral cortex,

the same structures in which several studies have shown an in-

creased number of microglial cells resulting from local prolifera-

tion of resident microglia.38

PET with radioligand-binding biomarkers of activated micro-

glia revealed that areas with the highest microglial activation in

patients with ALS were the motor cortices,39 thus corresponding

to the distribution of signal changes and atrophy that we have

detected in our group of patients.

Cortical Thickness in the M1 of Patients with ALS
Cortical atrophy in ALS has been revealed in several voxel-based

morphometry works40-42 by manual or automated measurements

of the cortical thickness and has been interpreted as a structural

surrogate of UMN degeneration.23 In particular, the regional

grade of atrophy in different areas of M1 corresponds to a soma-

totopic functional disability supporting the concepts of cortical

focality and motor phenotype heterogeneity.43 In line with previ-

ous results, our data confirmed the thinning of the M1 in patients

with ALS and the correlation between the cortical atrophy and the

UMN burden, but we observed that the alteration is confined to

the deeper cortical layers rather than the full-thickness cortex.

Moreover, cortical atrophy and signal hypointensity of the M1 in

patients with ALS are in line, respectively, with the reduction of

N-acetylaspartate and the increase of myo-inositol44 as an expres-

sion of the neurodegenerative phenomena and gliosis.

MR Imaging of M1: Biomarker for Diagnosis or Prognosis
Several conventional MR imaging studies subjectively evaluated

the cortical morphology and signal changes in patients with

ALS.37,45-49 These studies using full-thickness measures of corti-

cal signal changes were limited by low specificity because similar

findings are age-related and can also be detected in subjects with-

out ALS.50 Although our approach permitted the evaluation of

the inner structure of the cerebral motor cortex, the diagnostic

accuracy (71%) and the sensitivity (67% and 50% for reader 1 and

reader 2, respectively) of M1 morphologic changes remain

unsatisfactory.

Unlike electrophysiologic data, in which a correlation with

UMN impairment has never been demonstrated,51 in our study,

the quantitative analysis showed that increased image hypointen-

sity and the atrophic deep motor cortex both correspond to

greater UMN involvement. The correlation between the signal

intensity and the UMN score and the fact that the UMN score was

significantly higher in correctly diagnosed patients than in misdi-

agnosed ones support the hypothesis that hypointensity is a

marker of UMN degeneration rather than of ALS.

This relationship influences the diagnostic accuracy of MR

imaging, which remains modest because the correct diagnosis of

ALS based on cortical signal changes depends on the amount of

UMN impairment in sampled patients. The variable impairment

of UMNs in ALS explains why decreased signal intensity in ALS

has been reported at a variable extent, ranging from 93%37 to

30%.13

The cortical signal intensity correlates with DPR and could

constitute a prognostic marker of the disease. Although we inter-

pret signal intensity as an expression of activated microglia, we do

not know the pathologic mechanism that regulates the disease

progression in our patients.

Translational research in mutant SOD1 transgenic mice shows

that microglial cells become activated before motor neurons dis-

appear and well before clinical disease onset.52 Moreover SOD

mutant levels in microglia regulate the rate of disease progres-

sion.53 The correlation between cortical signal hypointensity as a

presumptive marker of activated microglia and DPR could con-

stitute the basis of a longitudinal study of microgliosis in patients

with ALS, widening the pathogenic scenario of the causes of this

disease and offering novel targets for therapeutic development.

To understand whether the neuroinflammatory reaction could be

a therapeutic target in ALS, a reliable biomarker able to investigate

and monitor the neuroinflammatory response to motor-neuron

degeneration with time would be desirable. Besides laboratory

inflammatory markers in the CSF54 and PET studies by using

microglial ligands, high-resolution UHF MR imaging might pro-

vide alternative relevant information on neuroinflammation.

In ALS, biomarkers of disease or prognosis would be para-

mount for patient management and therapeutic implications.5

Advanced neuroimaging techniques provide an opportunity to

assess disease pathophysiology and promise new biomarkers.55

The introduction of the UHF MR imaging of the cerebral cortex in

evaluating patients with ALS could be an adjunctive tool in a

multimodal approach to the research of biomarkers.5

The main limitation of the present study is the small sample

of patients, which affects the statistical power. A further limi-

tation is the impossibility of enrolling patients with advanced

disease for logistic reasons related to their disability, which

would probably have provided information on the course of

the disease.

CONCLUSIONS
The combined high spatial resolution and sensitivity to paramag-

netic substances of 7T MR imaging demonstrate in vivo signal

changes of the cerebral motor cortex that resemble the distribu-

tion of activated microglia within the cortex of patients with ALS.

Reduced cortical thickness and signal hypointensity of the M1

deep layers could constitute a marker of UMN impairment in

patients with ALS. Further studies with a larger sample of patients

would be desirable to confirm the UHF MR imaging results in

motor neuron disorders.
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