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Abstract—In this paper, we study the physical layer multicast-
ing to multiple co-channel groups in large-scale antenna systems.
The users within each group are interested in a common message
and different groups have distinct messages. In particular, we aim
at designing the precoding vectors solving the so-called quality of
service (QoS) and weighted max-min fairness (MMF) problems,
assuming that the channel state information is available at
the base station (BS). To solve both problems, the baseline
approach exploits the semidefinite relaxation (SDR) technique.
Considering a BS with N antennas, the SDR complexity is
more than O(N6), which prevents its application in large-scale
antenna systems. To overcome this issue, we present two new
classes of algorithms that, not only have significantly lower
computational complexity than existing solutions, but also largely
outperform the SDR based methods. Moreover, we present a
novel duality between transformed versions of the QoS and the
weighted MMF problems. The duality explicitly determines the
solution to the weighted MMF problem given the solution to
the QoS problem, and vice versa. Numerical results are used to
validate the effectiveness of the proposed solutions and to make
comparisons with existing alternatives under different operating
conditions.

Index Terms—Physical layer multicasting, large-scale antenna
systems, massive MIMO multicasting, computational complexity.

I. INTRODUCTION

The advent of data-hungry services and applications has
significantly increased the amount of data traffic of wireless
networks [1]. A considerable amount of this traffic belongs
to the services that are of interest to one or several groups
of subscribers such as news headlines, financial data, regular
system updates, and video broadcasting [1], [2]. The traditional
unicast technology is highly inefficient for these services as it
ignores the nature of such a traffic demand [2]–[4]. To address
this issue, the multicasting technology has been included in
different releases of the third generation partnership project
(3GPP) [2].

Physical layer multicasting is an efficient multicasting tech-
nique designed for wireless networks [3], [4]. It has been
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widely studied in the literature either for single or multiple
groups of users [3]–[14]. In single-group multicasting, a
transmitter exploits channel state information (CSI) to send
out a common stream of data to one group of users, while
in multigroup multicasting multiple independent streams of
common data are sent to multiple distinct groups of users. In
this context, two classes of problems have received particular
attention, the so-called quality-of-service (QoS) problem and
the weighted max-min-fairness (MMF)1 problem. The former
aims to minimize the total transmit power while satisfying
target signal-to-interference-plus-noise ratios (SINRs) at the
active user equipments (UEs). The latter seeks to maximize the
minimum weighted SINR among all the UEs in the system,
subject to a total transmit power constraint.

A seminal treatment of single-group multicasting for both
QoS and MMF problems was first presented in [3]. Therein,
it was proved that both QoS and MMF problems are NP-hard
and then an approximate solution was presented employing
semidefinite relaxation (SDR) technique [15]. This work is
then extended to a multigroup single-cell scenario in [4]. It
should be noted that, since in the multigroup case the SINR
of every UE depends on the precoding vectors of all other
groups, even finding a feasible solution for QoS and MMF
problems might be a challenging task [4], [11]. Therefore, in
[4] the SDR technique is followed by a randomization and a
multigroup multicast power control phase. In [5], the MMF
problem is studied under per-antenna power constraint for
multigroup single-cell systems. The coordinated physical layer
multicasting for single-group multicell scenario is investigated
in [6]. Also, its application to coordinated physical layer
multicasting for multigroup multicell scenario is studied in
[14].

The aforementioned works (among many others) are based
on the SDR technique, which is characterized by high compu-
tational complexity when the system dimensions grow large,
especially for large antenna arrays. More precisely, consider
a single-cell network wherein a BS with N antennas serves
K UEs in G multicasting groups. Then, solving the QoS
problem via SDR requires O(

p
GN) iterations of an interior

point method with each iteration requiring O(G3N6+KGN2)
arithmetic operations [4]. The computational cost of finding an
approximate solution for the MMF problem is even higher
as its solution is achieved by iteratively solving different
instances of the QoS problem. Therefore, the SDR-based solu-

1For brevity, hereafter, we refer to the weighted MMF problem as MMF
problem.
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tions are not suitable for practical implementation when N , G,
or K, grow large, as envisioned in large-scale antenna systems
(commonly known as Massive MIMO systems) wherein N can
be of the order of hundreds [16]–[23].

In the context of Massive MIMO multicasting, two possible
approaches have been recently proposed, namely, the asymp-
totic approach and the successive convex approximation (SCA)
approach [11], [23]–[28]. The former exploits the asymptotic
orthogonality of the channel vectors, when N grows very large
and K is kept fixed, to simplify the SINR expression of each
UE and facilitate the design of asymptotically optimal beam-
forming schemes [23]–[25]. In particular, [25] investigates
the MMF problem for the multigroup single-cell multicasting
whereas the single-group multicell case is studied in [24]. The
extension to a multigroup multicell network is considered in
[23]. The main problem with the asymptotic approach is that
an extremely large number of antennas is required to reach
the asymptotic orthogonality condition. As a consequence, the
performance of the asymptotically optimal precoders is poor
when the system does not have an extremely large number of
antennas (in the order of thousands) [23].

The SCA approach aims at iteratively solving the non-
convex QoS and MMF problems by means of SCA of the
original problems around a feasible point [29], [30]. More
specifically, the algorithm starts from an initial feasible point,
the non-convex constraints are approximated by convex func-
tions around this point, and the resulting convex problem
is solved before proceeding to the next iteration. This pro-
cedure is repeated until convergence to a stationary point.
In [26], the SCA technique has been applied to reduce the
computational complexity of beamforming design in single-
group multicasting for large-scale antenna arrays. However,
the SCA method is not suitable for multigroup multicasting
communications as it requires an initial feasible point, which
is hard to compute in these scenarios [11]. To handle this issue,
a feasible point pursuit SCA (FPP-SCA) algorithm is proposed
in [27] and applied to multigroup multicasting in [11]. Therein,
in order to guarantee the feasibility of the problem, slack
variables are added to relax the constraints, and a penalty is
used to ensure that slacks are sparingly used. The solution of
the resulting optimization problem is then used for another
round of approximation and the procedure is repeated until
convergence. However, the method itself has two drawbacks.
First, although the solution of the approximated problem is
always feasible, it might not be a feasible solution of the
original multicasting problem and it is sensitive to the initial
point of the algorithm as it is detailed in [27]. Second, it is
still computationally demanding when the number of antennas
grows.

In this paper, we address all the aforementioned drawbacks
for a multigroup single-cell system by introducing a two-layer
precoding scheme, which is tailored for large-scale antenna
systems. Our main contributions are summarized as follows:

1) We present two algorithms for the QoS and MMF
problems, that outperform most of the aforementioned
solutions while guaranteeing a low computational com-
plexity.

2) We reveal new duality results that allow to solve both
QoS and MMF problems simultaneously. This is in
sharp contrast with the existing algorithms for which the
MMF problem is solved by iteratively solving different
instances of the QoS problem.

3) We introduce a heuristic algorithm that significantly im-
proves the computational complexity while only slightly
reducing the performance of both QoS and MMF solu-
tions.

The remainder of the paper is organized as follows. Section
II introduces the system model for a multigroup single-cell
large-scale antenna array system and formulates the corre-
sponding QoS and MMF problems. Section III introduces
the proposed two-layer precoder, it provides a duality result
between transformed versions of the QoS and MMF problems,
and then it proposes two algorithms for solving both. Section
IV introduces a heuristic solution to further reduce the compu-
tational complexity. Section V presents the numerical results
whereas conclusions are drawn in Section VI.

Notations: Scalars are denoted by lower case letters whereas
boldface lower (upper) case letters are used for vectors (ma-
trices). We denote by 0 a matrix of appropriate size where all
its elements are zero. The transpose, conjugate transpose, real
part, absolute value, and second norm operator are denoted by
(·)T , (·)H , Re(·), | · |, and k · k. The set of all positive real
numbers is denoted by R+. A circular symmetric complex
Gaussian random vector x is denoted by x ⇠ CN (0,C),
where 0 and C are its mean and covariance matrix, respec-
tively. The inverse of an invertible function f(.) is shown by
f�1(.).

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a single-cell large-scale antenna array system in
which a BS equipped with N antennas serves G multicasting
groups. Denote by G = {1, . . . , G} the set of indices of all
groups and call Kj the set of UE indices associated with group
j, with cardinality Kj = |Kj | and such that Kj \ Ki = ;,
j 6= i, i.e., each UE is associated with a single group. Within
this setting, we assume that N > K�minj2G Kj , where K =PG

j=1 Kj is the total number of UEs in the network. Since we
consider large antenna systems, this technical assumption is
naturally in place. A double index notation is used to refer to
each UE as e.g., “user k in group j”. Under this convention, let
gjk 2 CN be the channel between UE k in group j and the BS
and assume that gjk =

p
�jkhjk, where hjk ⇠ CN (0N , IN )

is the small-scale fading channel and �jk accounts for the
large-scale channel attenuation (or path loss). We assume that
the BS has perfect knowledge of the channel vectors {gjk}.

Denoting by wj 2 CN the precoding vector associated with
group j, the signal yjk received at UE k can be written as:

yjk = gH
jkwjsj +

GX

i=1,i 6=j

gH
jkwisi + njk (1)

where si ⇠ CN (0, 1) is the signal intended to group i, as-
sumed independent across i, and njk ⇠ CN (0, �2

jk) accounts



3

for the additive Gaussian noise. The SINR �jk of UE k in
group j can be written as

�jk =
|gH

jkwj |2
PG

i=1,i 6=j |gH
jkwi|2 + �2

jk

(2)

and the total average transmit power is
PG

j=1 kwjk2. Under
the above assumptions, an instance of the QoS problem can
be formulated as follows [4]:

Q(⌘) : min
{wj}

GX

j=1

kwjk2 (3)

s.t. �jk � ⌘jk 8j, k (4)

where ⌘jk is the prescribed SINR of UE k in group j and
⌘ 2 CK is the vector collecting all the {⌘jk}. Accordingly,
an instance of the MMF problem is [4]:

F(⌘, P ) : max
{wj}

min
j

min
k

1

⌘jk
�jk (5)

s.t.
GX

j=1

kwjk2  P (6)

where P accounts for the power constraint at the BS, and 1
⌘jk

represents the weight of �jk. As mentioned before, Q(⌘) and
F(⌘, P ) are NP-hard and the existing algorithms for comput-
ing their approximate solutions have either high computational
complexity [3], [5], [11], or poor performance [23], [24], [28].
A two-layered architecture is proposed next to overcome these
drawbacks.

III. THE PROPOSED TWO-LAYER PRECODING SCHEME

In this section, we propose a simple and computationally
efficient method to compute approximate solution to the QoS
and MMF problems. The method is based on a two-layer
precoding scheme: (i) the outer layer restricts the space of
valid precoders to those cancelling the inter-group interference,
thereby approximating the QoS and MMF problems by simpler
(still non-convex) problems, denoted by QoSdec and MMFdec,
for which trivial feasible points can be found; (ii) starting
from these feasible points, the inner layer is designed to reach
a suboptimal solution to the QoSdec and MMFdec problems,
which are also feasible solutions of the original QoS and MMF
problems. Section III-A presents the outer layer. Section III-B
reveals an explicit duality between the QoSdec and MMFdec
problems. Section III-C presents the inner layer and the
algorithms developed. Section III-D evaluates the complexity
of the proposed algorithms.

A. Outer Layer – Removing Multigroup Interference

Denote by Gi 2 CN⇥Ki the matrix collecting the channel
vectors of all the Ki UEs in group i. The complete elimina-
tion of the multigroup interference

PG
i=1,i 6=j gH

jkwisi in (1)
is achieved by using the block-diagonalization zero-forcing
(BDZF) technique [31], [32]. Consider a two-layer precoding
vector for group j as follows

wj = Fjcj 8j 2 G (7)

where cj 2 CN�⌧j with ⌧j = K � Kj is the inner layer,
the design of which is discussed later, and Fj 2 CN⇥(N�⌧j)

is the outer layer. We design Fj as an isometric matrix
whose columns form a basis for the null space of G�j =
[G1, . . . ,Gj�1,Gj+1, . . . ,GG] 2 CN⇥⌧j , i.e., GH

�jFj =
0⌧j⇥(N�⌧j). As proposed in [31], [32], Fj can be obtained
through the singular value decomposition (SVD) of G�j . This
requires 16(G�1)KN2+24N

PG
j=1(K�Kj)

2 floating point
operations (flops)2. The same goal can be obtained with lower
complexity (linear in the number of BS antennas N ) using
the QR-based decomposition approach as shown in [34]. This
produces

G�j = QjRj =
⇥
Q0

j Q00
j

⇤ R0
j

0

�
= Q0

jR
0
j (8)

where Q00
j 2 CN⇥(N�⌧j) gives the null space of G�j such that

GH
�jQ

00
j = 0⌧j⇥(N�⌧j). Therefore we can use Q00

j , as the outer
layer of wj , i.e., Fj = Q00

j . Since the QR decomposition of
an m by n matrix can be computed with 8mn2� 8/3n3 flops
[33], the total number of flops required to perform the BDZF
technique reduces to 8N

PG
j=1(K �Kj)

2 � 8/3
PG

j=1(K �
Kj)

3, which increases linearly with N . Plugging Fj = Q00
j

into (2) yields

�jk = |gH
jkcj |2 (9)

where gjk = 1
�jk

(Q00
j )Hgjk 2 CN�⌧j denotes the equivalent

channel vector of UE k in group j. As 8j (Fj)
HFj = IN�⌧j

,
the proposed outer layer does not change the transmit power,
i.e.,

PG
j=1 kwjk2 =

PG
j=1 kcjk2. Therefore, using the BDZF

technique the QoS problem reduces to QoSdec. Note that we
define the QoSdec as the transformed version of the QoS
problem into G single-group multicasting QoS problems,
{Qj(⌘j)}G

j=1, where the jth problem is given by

Qj(⌘j) : min
{cj}

kcjk2 (10)

s.t. |gH
jkcj |2 � ⌘jk 8k (11)

where ⌘j 2 CKj is the vector collecting all the quantities
{⌘jk} in group j. To grasp the relation between the QoSdec
problem and the prescribed SINRs, i.e., {⌘j}G

j=1, we denote
an instance of the QoSdec problem by Q(⌘) = {Qj(⌘j)}G

j=1.
Accordingly, using the BDZF technique, the MMF problem
reduces to MMFdec, where we show an instance of it by
F(⌘, P ) and it is given as follows

F(⌘, P ) : max
{cj}

min
j

min
k

1

⌘jk
|gH

jkcj |2 (12)

s.t.

GX

j=1

kcjk2  P. (13)

As mentioned in the introduction, finding a feasible point
for Q(⌘) is hard [4]. The same holds for F(⌘, P ) since
the common approach to solve F(⌘, P ) relies on iteratively
solving Q(⌘). On the contrary, finding a feasible point for
Q(⌘) = {Qj(⌘j)} and, thus, for F(⌘, P ) is a straightforward

2The SVD calculation of an m by n matrix requires 16m2n + 24mn2

flops [33].
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task, thanks to the single-group nature of each subproblem
Qj(⌘j). More specifically, for any given group j an initial
feasible point can be computed by first choosing an arbitrary
beamforming vector cj and then rescaling it so as to meet the
most violated SINR constraint with equality. Despite being
simpler to solve than Q(⌘) and F(⌘, P ), both Q(⌘) and
F(⌘, P ) are still NP-hard – as it easily follows observing that
for G = 1 they reduce to the single-group problems studied in
[3]. The main difficulty in solving Q(⌘) and F(⌘, P ) lies in
the non-convexity of the SINR constraints. In Section III-C,
the SCA technique is used to develop a possible solution
capable of overcoming this issue.

Before delving into this, next we further detail the character-
istics of Q(⌘) and F(⌘, P ) and establish a duality and direct
relations between the two problems: the solution of F(⌘, P )
can be obtained from that of Q(⌘) (and vice versa). These
results will be used in Section III-C and Section IV to compute
an approximate solution to F(⌘, P ) by means of Q(⌘) without
the need of iteratively solving instances of Q(⌘) as for existing
alternatives [4]–[6].

B. On the duality between Q(⌘) and F(⌘, P )

Let {c?j (⌘)} and P ?(⌘) denote the set of optimal precoding
vectors and the optimal objective value of Q(⌘), respectively.
Similarly, let {c�j (⌘, P )} and t�(⌘, P ) denote the set of
optimal precoding vectors and the optimal objective value of
F(⌘, P ). We then start providing the following result:

Lemma 1. For Q(⌘) and F(⌘, P ) we have:

c?j (↵⌘) = c�j (⌘, P ?(↵⌘)) 8j 2 G (14)

with ↵ = t� (⌘, P ?(↵⌘)). Also, we have that:

c�j (⌘, P ) = c?j (t�(⌘, P )⌘) 8j 2 G (15)

with P = P ? (t�(⌘, P )⌘).

Proof. The proof proceeds by contradiction. First, notice
that, by definition, {c?j (↵⌘)} is a feasible solution of
F(⌘, P ?(↵⌘)) with an objective value equal to ↵. Now,
let us assume there exists a set of precoding vectors
{c�j (⌘, P ?(↵⌘))} for which t�(⌘, P ?(↵⌘)) > ↵. Clearly,
{c�j (⌘, P ?(↵⌘))} is also a feasible solution of Q(↵⌘) for
which all the SINR constraints are over satisfied. Hence,
there exists a constant ⌫ < 1 such that {⌫c�j (⌘, P ?(↵⌘))}
meets all the SINR constraints of Q(↵⌘) with equality while
providing a smaller objective value than P ?(↵⌘). This, how-
ever, contradicts our assumption and proves that (14) is valid
with ↵ = t�(⌘, P ?(↵⌘)). A similar line of reasoning can
be used to prove (15). By definition the set of precoding
vectors {c�j (⌘, P )} is a feasible solution of Q(t�(⌘, P )⌘)
with an objective value equal to P . Let us assume there
exists {c?j (t�(⌘, P )⌘)} with P ?(t�(⌘, P )⌘) < P . Then, one
can use the remaining power, P � P ?(t�(⌘, P )⌘) to rescale
{c?j (t�(⌘, P )⌘)} and improve F(⌘, P ). This is in contradic-
tion with our assumption and completes the proof.

Also, the following lemma can be simply proved from the
definition of Q(⌘):

Lemma 2. For Q(↵⌘) and 8↵ 2 R+ we have

P ?(↵⌘) =↵P ?(⌘) (16)

and 8j 2 G
c?j (↵⌘) =

p
↵c?j (⌘). (17)

We are now ready to state the following explicit duality
between Q(⌘) and F(⌘, P ):

Theorem 1. Given the set of optimal precoding vectors
and the optimal objective value of Q(⌘), i.e., {c?j (⌘)} and
P ?(⌘), the set of optimal precoding vectors and the optimal
objective value of F(⌘, P ), i.e. {c�j (⌘, P )} and t�(⌘, P ), are
determined as

c�j (⌘, P ) =

s
P

P ?(⌘)
c?j (⌘) 8j 2 G (18)

t�(⌘, P ) =
P

P ?(⌘)
(19)

and vice versa as

c?j (⌘) =
1p

t�(⌘, P )
c�j (⌘, P ) 8j 2 G (20)

P ?(⌘) =
P

t�(⌘, P )
. (21)

Proof. Starting with (18) we have that
s

P

P ?(⌘)
c?j (⌘)

(a)
= c?j (

P

P ?(⌘)
⌘)

(b)
= c�j

✓
⌘, P ?(

P

P ?(⌘)
⌘)

◆
(22)

(c)
= c�j

✓
⌘,

P

P ?(⌘)
P ?(⌘)

◆
= c�j (⌘, P ) (23)

where (a) follows from (17), (b) holds because of (14) and
(c) is obtained using (16). The equality (19) follows from

P
(a)
= P ? (t�(⌘, P )⌘)

(b)
= t�(⌘, P )P ?(⌘) (24)

where (a) exploits P = P ? (t�(⌘, P )⌘) (see Lemma 1), and
(b) is due to (16). The equality in (20) follows from replacing
(19) in (18).

Theorem 1 reveals the relation between the optimal pre-
coding vectors and the optimal objective values of Q(⌘) and
F(⌘, P ). However, as they are NP-hard, any arbitrary algo-
rithm with polynomial complexity can provide an approximate
set of precoding vectors, rather than the optimal one. Hence,
it is interesting to establish a relation between the precoding
vectors and the objective values of Q(⌘) and F(⌘, P ) while
they are achieved from any arbitrary sub-optimal algorithm.
This relation is given in Propositions 1 and 2.

Proposition 1. Assume {c?j,app(⌘)} is a set of
precoding vectors of Q(⌘) and P ?

app(⌘) is its
associated objective value achieved by any arbitrary
algorithm. Then, the set of precoding vectors
{
q

P
P?

app(⌘)c
?
j,app(⌘)} (or {

q
P

P?
app(⌘)Fjc

?
j,app(⌘)}) is

a feasible answer for F(⌘, P ) (or F(⌘, P )), and
provides an objective value t�app(⌘, P ) such that
t�app(⌘, P ) 2 [ P

P?
app(⌘) ,

P
P?(⌘) ].
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Proof. Please refer to the Appendix A.

Proposition 2. Assume {c�j,app(⌘, P )} is a set
of precoding vectors of F(⌘, P ) and t�app(⌘, P )
is its associated objective value achieved by any
arbitrary algorithm. Then, the set of precoding vectors
{ 1p

t�app(⌘,P )
c�j,app(⌘, P )} (or { 1p

t�app(⌘,P )
Fjc

�
j,app(⌘, P )}),

is a feasible answer for Q(⌘) (or Q(⌘)), and
provides an objective value P ?

app(⌘) such that
P ?

app(⌘) 2 [ P
t�(⌘,P ) ,

P
t�app(⌘,P ) ].

Proof. Please refer to the Appendix B.

Note that the relation between the QoS and MMF problems
was first discovered in [4], but it was not given in an explicit
form. Therefore, the existing works in the literature, as [4]–[6],
[11], solve the MMF problem by iteratively solving specific
instances of the QoS problem. By virtue of the large number
of antennas available in large-scale antenna systems and the
BDZF technique, Theorem 1, Proposition 1, and Proposition
2, state that F(⌘, P ) and Q(⌘) (also F(⌘, P ) and Q(⌘)) can
be solved simultaneously. It is also interesting to observe that
the upper bound of the objective value of F(⌘, P ) achieved
via Proposition 1 is equal to (19). Also, the lower bound of the
objective value of Q(⌘) achieved via Proposition 2 is equal
to (21).

C. Inner Layer – Successive Convex Approximation

In the sequel, the SCA technique is applied to solve Q(⌘)
and F(⌘, P ). We begin with Q(⌘), and rewrite |ḡH

jkcj |2 as

|ḡH
jkcj |2 = cH

j Xjkcj (25)

where Xjk = ḡjkḡ
H
jk is a rank-one positive semi-definite

matrix. Thus, for any arbitrary vector zj 2 CN�⌧j we have
that (cj � zj)

HXjk(cj � zj) � 0 from which it follows

cH
j Xjkcj � 2Re(zH

j Xjkcj)� zH
j Xjkzj . (26)

Now, for any zj the non-convex SINR constraint cH
j Xjkcj �

⌘jk can be replaced with a tighter convex constraint given by

2Re(zH
j Xjkcj)� zH

j Xjkzj � ⌘jk. (27)

By replacing (11) with (27), we obtain

eQj(⌘j , zj) : min
{cj}

kcjk2 (28)

s.t. 2Re(zH
j Xjkcj)� zH

j Xjkzj � ⌘jk 8k (29)

which represents a convex approximation of Qj(⌘j) for a
specific instance of zj . Now, we can introduce Algorithm 1
and its following proposition for the QoS problem.

Algorithm 1 The QoS BDZF-SCA Algorithm

1: Compute Fj 8j 2 G.
2: for j = 1 to G do
3: Select an arbitrary z

(1)
j and rescale it such that 8k

z
(1)H
j Xjkz

(1)
j � ⌘jk.

4: repeat
5: Solve:

eQj(⌘j , z
(i)
j ) : min

c
(i)
j

kc(i)
j k2

s.t. 2Re(z
(i)H
j Xjkc

(i)
j )� z

(i)H
j Xjkz

(i)
j � ⌘jk 8k.

6: Let c
(i)
j denote the optimal value obtained from

eQj(⌘j , z
(i)
j ), then set z

(i+1)
j  c

(i)
j .

7: until Convergence
8: end for
9: Compute the precoding vectors wj = Fjcj 8j 2 G.

Proposition 3. Algorithm 1 converges to a point satisfying the
KKT conditions of Q(⌘), while providing a feasible solution
for Q(⌘).

Proof. Please refer to the Appendix C.

Now let us consider F(⌘, P ) and F(⌘, P ). A solution
to these two problems can be achieved by first applying
Algorithm 1 and then using Proposition 1. Besides, we can
directly apply the SCA technique to F(⌘, P ) and find a
solution to these two problems, similar to Algorithm 1. The
latter approach is presented in Algorithm 2 and we have the
following proposition for Algorithm 2.

Proposition 4. Algorithm 2 converges to a KKT point of
F(⌘, P ), while providing a feasible solution to F(⌘, P ).

Proof. The proof follows the same lines as the proof of
Proposition 3.

Algorithm 2 The MMF BDZF-SCA Algorithm

1: Compute Fj 8j 2 G.
2: Select an arbitrary set z(1) := {z(1)

j }G
j=1 such thatPG

j=1 kz
(1)
j k2  P.

3: repeat
4: Solve:

eF(⌘, P, z(i)) : max
{c(i)

j }
min

j
min

k

1

⌘jk

h
2Re(z

(i)H
j Xjkc

(i)
j )

�z
(i)H
j Xjkz

(i)
j

i

s.t.
GX

j=1

kc(i)
j k2  P.

5: Let {c(i)
j }G

j=1 denote the optimal value obtained from
eF(⌘, P, z(i)), then 8j 2 G set z

(i+1)
j  c

(i)
j .

6: until Convergence
7: Generate the precoding vectors wj = Fjcj 8j 2 G.
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D. Computational Complexity

The computational load of Algorithms 1 and 2 is now
assessed in terms of the number of required flops as follows.
Note that both algorithms consist of three steps. The first
step computes {Fj ; 8j 2 G} and requires 8N

PG
j=1(K �

Kj)
2�8/3

PG
j=1(K�Kj)

3 flops using the QR-decomposition
[33], [34]. The second step aims at designing the inner layer
precoding vectors {cj ; 8j 2 G} – as detailed in lines 2 to
8 (2 to 6) of Algorithm 1 (Algorithm 2). Since eQ(⌘, z) and
eF(⌘, P, z) are both convex, they can be solved at each iteration
using standard techniques with a worst case complexity of
O(N3) [27]. Therefore, the number of flops required by the
second step is O(IN3) with I being the number of iterations
required to converge. As it will be observed in Section V, only
a few iterations are needed to reach a satisfying solution even
for large N . The third step calculates the composite precoding
vectors wj = Fjcj and requires 8GN2� 8(G� 1)KN flops.
In large-scale antenna array systems, i.e., where N � K, the
overall complexity of the proposed algorithm is dominated
by the second step and it is of O(N3). Taking into account
that the complexity of SDR based techniques is greater than
O(N6) [4], a reduction by a factor of N3 is achieved through
Algorithms 1 and 2.

IV. A HEURISTIC INNER LAYER OF ORDER O(N)

In the previous section, it was shown that the complexity
of the proposed algorithms is of O(N3), which is due to the
application of SCA technique to find the inner layer precoding
vectors, i.e., {cj}G

j=1,. Therefore, the inner layer retrieval
may still be computationally expensive when N is relatively
large. Moreover, it requires optimization packages for solving
the convex problems eQ(⌘, z) and eF(⌘, P, z), which may not
be available on every hardware platform. Therefore, in what
follows, we present a simple, yet effective, heuristic algorithm
for computing the inner layer precoding vectors of Q(⌘) with
a complexity of O(N). Then, by employing Proposition 1 and
the solution obtained for Q(⌘), we compute an approximate
solution for F(⌘, P ). Therefore, the complexity of simulta-
neously finding an inner layer precoder for both problems
becomes O(N).

The proposed heuristic algorithm aims at computing the
precoding vector cj 8j 2 G, in Kj sequential steps. The algo-
rithm has two main parts, the ordering part and the successive
precoder design part. Assuming that the Kj UEs in group j are
labeled from 1 to Kj , the ordering part will re-label them by a
bijective function fj : {1, . . . , Kj} ! {µj1, . . . , µjKj

}, where
µjk = fj(i) means that the UE who was labeled as i is now re-
labeled as µjk and will be served in kth step of the algorithm,
k 2 {1, . . . , Kj}. Therefore, the new labels, {µjk}Kj

k=1, will
determine the order by which the UEs in group j are served
in each step. The successive precoder design part, designs the
precoding vector of group j in Kj steps such that in kth step
the requested SNR of UE µjk is met with minimum power
consumption while the SNR of the previous k�1 ordered UEs,
i.e., {µjt}k�1

t=1 , is not violated. We will detail the successive
precoder design and the user ordering in the following two
subsections.

A. The Successive Precoder

Assume that 8j 2 G the UE ordering is given, i.e., {µjk}Kj

k=1

is known. Denote by c
(k)
j the precoding vector cj at kth step,

then it is computed as follows:

c
(k)
j = c

(k�1)
j + ↵

(k)
j d

(k)
j k 2 {1, . . . , Kj} (30)

where d
(k)
j 2 CN�⌧j is a unit norm vector and ↵

(k)
j 2 C.

In what follows, we explain how d
(k)
j and ↵

(k)
j should be

designed such that the SNR constraint of µjk is met with
minimum power consumption while the SNR of {µjt}k�1

t=1 is
not violated.

We start by initializing the precoding vector c
(1)
j

of UE µj1 such that its own SNR constraint, i.e.,
|gH

jµj1
c
(1)
j |2 � ⌘jµj1

, is met with equality. This yields
c
(1)
j = (

p
⌘jµj1/kgjµj1

k2)gjµj1
. For k 2 {2, . . . , Kj}, the

vectors d
(k)
j must be chosen such that the previously satisfied

k � 1 SINR constraints are not violated. This is achieved by
selecting d

(k)
j orthogonal to {gjµji

}k�1
i=1 , i.e., gH

jµji
d

(k)
j = 0

for i = 1, . . . , k � 1. To this end, {d(k)
j }Kj

k=2 are computed
using the Gram–Schmidt procedure, which produces d

(k)
j =

u
(k)
j /ku(k)

j k with

u
(k)
j = gjµjk

�
k�1X

i=1

u
(i)H
j gjµjk

ku(i)
j k2

u
(i)
j (31)

being the component of gjµjk
orthogonal to the subspace

spanned by {u(i)
j }k�1

i=1 . Once the unit norm vectors d
(k)
j

are computed, we proceed with the design of coefficients
{↵(k)

j }Kj

k=2. In particular, each ↵
(k)
j is chosen such that the

power consumption in step k, given by ||c(k)
j ||2 = ||c(k�1)

j ||2+
|↵(k)

j |2, is minimized while satisfying the kth SINR constraint.
More precisely, ↵(k)

j must be computed as the solution of the
following problem:

min
↵

(k)
j

|↵(k)
j |2 s.t. |gH

jµjk
c
(k)
j |2 � ⌘jµjk

. (32)

As shown in the Appendix D (see also [12]), the optimal
↵

(k)
j = |↵(k)

j | exp(i \↵(k)
j ) is computed as:

\↵(k)
j =� \⇢(k)

j (33)

|↵(k)
j |=
�|⇢(k)

j |+
q

|⇢(k)
j |2�|gH

jµjk
d

(k)
j |2

�
|gH

jµjk
c
(k�1)
j |2�⌘jµjk

�

|gH
jµjk

d
(k)
j |2

(34)

with ⇢
(k)
j = gH

jµjk
d

(k)
j c

(k�1)H

j gjµjk
. In the sequel, the above

results are used to sort the UEs according to a worst-first pol-
icy, which is observed to achieve close-to-optimal performance
by means of numerical results in Section V.

B. User Ordering

At this stage, we are only left with the computation of
the UE ordering indices {µjk}. A possible solution is il-
lustrated in [12], for the QoS problem in single-group mul-
ticasting systems. More specifically, denote by S(k�1)

j =
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{µj1, . . . , µj(k�1)} the set of indices of the ordered UEs at
step k� 1 and call R(k�1)

j the set of indices of the remaining
ones, i.e., R(k�1)

j = {1 . . . , Kj} \ {f�1
j (µjt)}k�1

t=1 . Then, in
[12] the set S(k)

j is computed as S(k)
j = S(k�1)

j [ {µjk} with

µjk = arg min
i2R(k�1)

j

|gH
jic

(k�1)
j |2
⌘ji

(35)

corresponding to the UE index in R(k�1)
j that has the weak-

est ratio (or also the most violated constraint) between the
provided SNR up to step k, given by |gH

jic
(k�1)
j |2, and the

requested one given by ⌘ji. The above procedure has the
following two drawbacks. Firstly, it needs to calculate at
each stage k the quantities |gH

jic
(k�1)
j |2 8i 2 R(k�1)

j , which
requires O(K2

j N) flops for group j. This is costly if N and
Kj are large. Secondly, it does not take into account the extra
amount of power |↵(k)

j |2 required at stage k to meet the SNR
constraint of the selected UE. To see how this comes about,
consider a generic UE i 2 R(k�1)

j such that at stage k the ratio
|gH

jic
(k�1)
j |2/⌘ji takes a very high value. This might happen,

for example, because its own channel vector gji is almost
collinear to the channel vectors of the UEs selected in the
previous k � 1 stages. According to (35), such a UE will be
selected at the very end of the procedure. This, however, would
result in a huge power consumption because the Gram-Schmidt
procedure will only have a restricted number of degrees of
freedom to make c

(Kj)
j orthogonal to gji for i = 1, . . . , Kj�1

and at the same time to meet the requested SINR. In other
words, the procedure in (35) sorts the UEs according to a
best-first criterion such that higher priority is given to the UEs
requiring low power to meet their SNR constraints.

Unlike [12], we make use of the power increase (34) at
each stage k to order the UEs within each group according
to a worst-first criterion. As mentioned before, this choice
is motivated by the fact that the Gram-Schmidt procedure in
(31) progressively reduces the available degrees of freedom
as k tends to Kj . Therefore, since power consumption is
dominated by UEs with the worst conditions (according to
some criterion), higher priority should be given to these UEs.
Mathematically, we propose to compute the index µjk at step
k as follows:

µjk = arg max
i2R(k�1)

j

|↵(k)
ji |2 (36)

with

|↵(k)
ji |=

�|⇢(k)
ji |+

q
|⇢(k)

ji |2�|gH
jid

(k)
j |2

�
|gH

jic
(k�1)
j |2�⌘ji

�

|gH
jid

(k)
j |2

(37)

and ⇢
(k)
ji = gH

jid
(k)
j c

(k�1)H

j gji. As seen, µjk corresponds to
the UE index in R(k�1)

j for which the incremental power
|↵(k)

ji |2 at stage k takes the maximum value. Note that the com-
putational cost of this operation is still O(K2

j N) flops as for
[12]. To further reduce the computational burden, we propose
an alternative approach that exploits the inherent characteristic
of large-scale antenna systems. As N is large, each user

i 2 R(k�1)
j can use the excess degree of freedom, provided

by the large number of antennas, to chose d
(k)
j as collinear as

possible to gji while almost nulling the interference generated
to the other UEs, i.e., |gH

jic
(k�1)
j | ⇡ 0. Therefore, by replacing

|gH
jid

(k)
j |2 with ||gji||2 and neglecting the term |gH

jic
(k�1)
j |,

the right-hand-side of (37) reduces to ⌘ji

kgjik2 . This means that
UEs in group j can be ordered by simply sorting the following
ratios in a descending order:

(
⌘j1

kgj1k2
, . . . ,

⌘jKj

kgjKj
k2

)
8j 2 G. (38)

In other words, higher priority should be given to those UEs
that have bad channel conditions compared to the target SNRs.
In doing so, no greedy strategy is required for UE ordering,
thereby reducing the total number of flops to O(KjN). Based
on the above discussion, a heuristic solution is proposed in
Algorithm 3 for the inner layer. Numerical results are used
in Section V to make comparisons among the above ordering
policies in different settings. As it will be seen, the ordering
policy of (38) largely outperforms the strategy of [12].

C. The Proposed Heuristic Inner Layer Precoder

Collecting the results achieved in Sections IV-A and IV-
B, we present the following heuristic algorithm to design the
inner layer precoder of Q(⌘). To emphasis on the simplicity
of Algorithm 3 and to enable the reproducibility of our results,
its MATLAB code is provided in [35].

Algorithm 3 A heuristic algorithm of the inner layer for
solving Q(⌘)

1: for j = 1 to G do
2: Sort the UEs in group j in descending order based

on { ⌘ji

kgjik2 } and label the list as {µj1, . . . , µjKj }, respec-
tively.

3: Compute {d(k)
j }Kj

k=1 using the Gram–Schmidt proce-
dure in (31).

4: Set c
(1)
j =

p
⌘j1

kgjµj1
k2 gjµj1

.
5: for k = 2 to Kj do
6: if |gH

jµjk
c
(k�1)
j |2 < ⌘jµjk

then
7: Compute ↵

(k)
j through (33) and (34).

8: Update c
(k)
j = c

(k�1)
j + ↵

(k)
j d

(k)
j .

9: end if
10: end for
11: end for

The complexity of Algorithm 3 can be evaluated as follows.
Observe that evaluating the terms {⌘ji/kgjik2} for group j
requires 4(N � ⌧j) flops whereas sorting a list of size Kj

needs O(Kj log(Kj)) flops. Therefore, the flop counts for UE
ordering in line 2 is 4Kj(N � ⌧j) + O(Kj log(Kj)). The
Gram–Schmidt procedure of line 4 can be performed through
the QR decomposition, which requires 8(N � ⌧j)K

2
j � 8

3K3
j

flops [33]. The computation of c
(1)
j needs 2(N�⌧j +1) flops.

The condition |gH
jµjk

c
(k�1)
j |2 < ⌘jk in line 6 avoids to waste

power for those UEs whose requested SNR constraints are
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Fig. 1: Average power consumption of the QoS problem,
comparing different ordering policies for G = 1 and K = 20.

already met (more details on this are given in the Appendix).
Lines 6 to 10 require O(N � ⌧j) flops, and as the condition
of line 6 is true at most Kj � 1 times, the flops required by
lines 5 to 11 is O(Kj(N �⌧j)). Summing all the above terms
together, the complexity of Algorithm 3 is found to be O(N),
thereby reducing the complexity of the inner layer precoder
by a factor of N2.

Note that by jointly employing Proposition 1 and Algorithm
3, the approximated precoding vectors for F(⌘, P ) can be
computed as

c�j,BDZF�HEU(⌘,P )=

s
P

P ?
BDZF�HEU(⌘)

c?j,BDZF�HEU(⌘) (39)

where {c?j,BDZF�HEU(⌘)} and P ?
BDZF�HEU(⌘) denotes the

precoding vectors and the total power consumption as obtained
with Algorithm 3. Therefore the precoding vectors for F(⌘, P )
are given by {Fjc

�
j,BDZF�HEU(⌘, P )}.

V. NUMERICAL RESULTS

Monte Carlo simulations are used to assess the performance
of the proposed algorithms and to make comparisons with
existing alternatives. In particular, we consider the algorithm
presented in [4], which employs the SDR technique followed
by a randomization and multicast multigroup power control
(MMPC) policy.3 Comparisons are also made with the asymp-
totic results of [23], the FPP based algorithm presented in
[11], and the heuristic algorithms developed in [12]. A single-
cell system with radius of 900 meters is considered with UEs
being distributed uniformly and randomly in the cell excluding
an inner circular area of radius 100 meters. For each value
of N , the average values of power consumption or minimum
SINR of the system are obtained from 100 different channel
realizations and UE distributions. We assume (if not otherwise
specified) that there are G = 3 multicasting groups, each
counting Kj = 10 UEs (such that K = 30). The channel
vector gjk between UE k in group j and the BS is modeled as

3For the randomization phase, 100 samples are generated using the Gaus-
sian randomization method [4].
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Fig. 2: Average power consumption of the QoS problem with
⌘jk = 255 8j, k.

gjk =
p

�jkhjk where hjk ⇠ CN (0, IN ) represents the small
scale fading and �jk accounts for the large scale attenuation
given by �jk = �128.1�37.6 log10 djk dB with djk being the
distance between the UE and the BS expressed in kilometers
[36]. The noise power spectral density is assumed to be �174
dBm/Hz, and the channel bandwidth is 20 MHz [28]. All the
simulations are performed on a 64-bit Linux operating system
with Intel Xeon processor E5-1680 v3.

Fig. 1 compares the average power consumption of the
ordering policies proposed in [12] with those given by (36)
and (38), for G = 1, K = 20 and ⌘ = 63, 127, and
255 (which correspond to a target rate for each UE of 6, 7
and 8 bit/s/Hz, respectively). The proposed ordering policies
are seen to outperform the ordering of [12]. Moreover, the
simple ordering policy of (38) has even a slightly better
performance than (36). Note that, as the ordering belongs to
the heuristic inner layer of the proposed precoder and as the
outer layer removes the effect of inter-group interference, the
same conclusion holds for G > 1. Based on the above results,
the simpler ordering policy presented in (38) will be used in
the remainder of this section.

Fig. 2 depicts the average power consumption of the QoS
problem versus the number of antennas N at the BS. We
assume that ⌘jk = 255 for all UEs (corresponding to 8
bit/s/Hz/UE), and it is chosen in agreement with 5G rate
requirements [37], but the conclusions generically hold for all
other values of ⌘. The performance of Algorithm 1, and the
combination of BDZF and Algorithm 3 is compared to other
existing algorithms. As the QoS problem is NP-hard, a lower
bound of the problem is also presented as a benchmark [4].
Observe that, the proposed algorithms outperform the SDR-
based solution in [4] and the heuristic one in [12], while they
have nearly the same performance as [11]. However, this is
achieved at a much lower complexity and computational cost
as detailed next. Note that for N � 60 both algorithms are at
most 6% away from the lower bound and this gap reduces as
N grows large, while for SDR technique this gap is 87% and
reduces slowly by adding more antennas.

Fig. 3 illustrates the average minimum SINR of the MMF
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Fig. 3: Average minimum SINR of the MMF problem for
P = 10 Watt.

TABLE I: The average time (in seconds) required to solve
QoS, MMF, or both of them.

QoS Problem MMF Problem Both QoS and MMF
SDR[4] FPP[11] SDR[4] FPP[11] Alg.1+Pr.1 BDZF+Alg.3+Pr.1

N =40 55 41 419 356 11.3 2.5⇥10-3

N =50 67 51 579 450 11.6 2.8⇥10-3

N =60 84 61 798 507 11.7 3.1 ⇥10-3

N =70 110 75 1151 617 11.9 3.5⇥10-3

N =80 146 87 1549 727 12.2 4.0⇥10-3

N =90 182 107 2050 865 12.5 4.5⇥10-3

problem versus N . The available power at the BS is considered
to be 10 Watt. In this figure, the performance achieved by
Algorithm 2, and the combination of BDZF, Algorithm 3, and
Proposition 1 is compared to other existing algorithms. Also,
the upper bound of the problem is depicted as a benchmark.
Similar to the results of Fig. 2, the proposed algorithms
largely outperform [4] and [12], while nearly having the
same performance as [11]. However, this is achieved for a
computational cost that is significantly smaller than other
algorithms as detailed next. Observe that Algorithm 2 is within
5% of the upper bound with just N = 50 antennas. Also,
Algorithm 3 jointly with BDZF and Proposition 1 achieve the
same target with N = 70 antennas.

To assess the computational complexity of the investigated
algorithms more intuitively, beside the complexity analysis of
Section III-D and Section IV-C, we also present the computa-
tion time required to approximately solve Q(⌘) and F(⌘, P )
versus N , in Table I. The table presents the average time (in
seconds) required to solve the QoS and MMF problems. The
second and third columns report the average time required
by the SDR and the FPP algorithms to solve an instance of
the QoS problem. The fourth and fifth columns present the
average required time by the same algorithms to solve an
instance of the MMF problem. Note the increase in time from
the QoS problem to the MMF problem, as in the SDR and
FPP algorithms the MMF is solved by iteratively applying
the QoS algorithm. The sixth and seventh columns of the
table present the average time required to solve both QoS and
MMF problems simultaneously using the proposed algorithms.
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Fig. 4: CDF of minimum power consumption (QoS problem)
of the system.

Note that not only we solve both problems at the same time
with good performance, but also the required time has reduced
significantly. As an example, for N = 90, the combination of
BDZF, Algorithm 3, and Proposition 1, solves both problems
in less than 5 milliseconds, while the SDR and the FPP
algorithms require 2050 or 865 seconds, respectively, just to
solve the MMF problem. At the same time, as shown in Figs.
2 and 3, the solution provided by joint application of the
BDZF, Algorithm 3, and Proposition 1 is nearly as good as the
solution achieved from the FPP Algorithm, and significantly
outperforms the SDR Algorithm.

Figs. 4 and 5 present the cumulative distribution function
(CDF) of the precoder power consumption and the minimum
SINR of the system for the QoS and MMF problems, respec-
tively. For the QoS problem, the requested SINR by each
user is assumed to be 255, and for the MMF problem the
available power at the BS is considered to be 10 Watt. Unlike
Figs. 2 and 3 that provide the average of minimum power
consumption or the average of minimum SINR of the system,
these figures provide a clear vision on the distribution of these
quantities, for the existing and proposed algorithms. It is seen
that, as we increase N from 40 to 80, the CDF curves of our
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Fig. 5: CDF of minimum SINR (MMF problem) of the system
with P = 10.

proposed algorithms become closer to the optimal bound, and
also improve significantly in terms of performance, thanks to
the large number of antennas. As an example, for the QoS
problem with N = 40, the power consumption is greater than
20 Watt 60% of the times, while with N = 80 our proposed
algorithms always meet the requested SINRs with less than
17 Watt. Also, for the MMF problem none of the algorithms
can provide a minimum SINR bigger than 200 with N = 40,
while for N = 80 our proposed algorithms can provide a
minimum SINR bigger than 200 in 80% of the times. Fig. 5
also contains the CDF of the asymptotic approach of [23].
Notice that the asymptotic approach can never provide an
SINR which is bigger than 20 (or 100) with N = 40 (or
N = 80) antennas and its insufficiency is detailed in [23].

In Section III, we have elaborated the BDZF-SCA approach
and proved the convergence of Algorithms 1 and 2, but we
have not specified the number of iterations required by each
algorithm to converge. Table II presents the average number
of iterations required by Algorithms 1 and 2 to achieve
convergence for different values of G, K and N . Denoting
the objective value achieved at the kth iteration of either
Algorithm 1 or 2 as "(k), the convergence condition of Table

TABLE II: Average number of iterations required by Algo-
rithms 1 and 2.

G = 2, K = 10 G = 3, K = 10 G = 3, K = 15
Alg. 2 Alg. 1 Alg. 2 Alg. 1 Alg. 2 Alg. 1

N = 40 15.12 16.56 15.38 16.90 15.95 17.00
N = 50 15.14 16.61 15.50 16.94 16.12 17.11
N = 60 15.21 16.74 15.54 16.97 16.23 17.14
N = 70 15.40 16.88 15.60 17.04 16.46 17.40
N = 80 15.44 16.94 15.60 17.08 16.52 17.51
N = 90 15.53 17.10 15.62 17.12 16.68 17.56
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Fig. 6: The convergence behavior of Algorithms 1 and 2 for
different number of antennas N .

II is |"(k+1)�"(k)|
"(k) < 10�3. Also, Fig. 6 illustrates "(k) for

both algorithms at each iteration index k for different number
of antennas N . As it is seen, both algorithms converge in a
few iterations for any value of N .

So far, we have assumed that the BS has perfect knowledge
of the channel vectors {gjk}. Although some of the analysis
can in principle be extended (to some extent) to the scenario
with imperfect CSI, we believe that this is out of the scope of
this work and thus it is left for the future. To partially fulfill
this lack, we now investigate the impact of imperfect CSI on
the performance of the proposed algorithms. A time-division-
protocol (TDD) is employed such that channel estimation can
be performed in the uplink on the basis of UE pilot signals
and then used in the downlink. We assume that pilots of length
⌧p = K are used, with power equal to 1 Watt. The estimates
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Fig. 7: Evaluating the impact of imperfect CSI at the BS for
the MMF Problem with G=4, Kj =15 8j and P =10 Watt.

of channel vectors {gjk} are computed at the BS using an
MMSE estimator. This yields [38]

ĝjk =

p
⌧p�jk

�2 + ⌧p�jk

�p
⌧pgjk + n

�
8j, k (40)

where n ⇠ CN (0, �2IN ) is the additive Gaussian noise.
Fig. 7 reports the performance of the proposed algorithms for
MMF when perfect and imperfect CSI (as given in (40)) is
available at the BS. We assume that G = 4 and Kj = 15
for j = 1, . . . , 4. As expected, imperfect CSI degrades the
performance of the proposed algorithms. However, such a
performance loss can be compensated by using more antennas
at the BS. Quantitively speaking, with imperfect CSI N must
be roughly increased by a factor of 15% � 30 % compared
to the perfect CSI case. The higher N , the larger the factor.
For example, to achieve the same performance of the perfect
CSI case with N = 90 and 120, then 110 and 150 antennas
are respectively needed with imperfect CSI, corresponding to
a 22% and 25% increase.

VI. CONCLUSIONS

Multicasting is an efficient technology to transmit dis-
tinct common data streams to multiple groups of users. The
existing multicasting algorithms are either computationally
expensive or exhibit poor performance when applied to large-
scale systems with hundreds of antennas, as envisioned in
next generation of wireless systems. In this paper, we de-
signed new algorithms, which are tailored for physical layer
multicasting in large-scale antenna systems. The proposed
algorithms achieve good performance and are characterized
by affordable computational complexity. This was achieved
by using the large number of antennas to first cancel the
intergroup interference and then reformulate both the QoS
and MMF problems in simple forms. Two efficient algorithms
for solving the simplified problems were presented. Unlike
baseline methods that solve the MMF problem by iteratively
solving the QoS problem, we showed how to solve both
simultaneously with no extra cost.

APPENDIX A - PROOF OF PROPOSITION 1

Starting with the power constraint of (13) and replacing cj

with
q

P
P?

app(⌘)c
?
j,app(⌘) we have

GX

j=1

k
s

P

P ?
app(⌘)

c?j,app(⌘)k2 =
P

P ?
app(⌘)

GX

j=1

kc?j,app(⌘)k2 =P

which proves the feasibility of the proposed solution. For the
achievable objective value of F(⌘, P ) (or F(⌘, P )) using
{
q

P
P?

app(⌘)c
?
j,app(⌘)}, we have

t�app(⌘, P ) = min
j

min
k

1

⌘jk
|gH

jk

s
P

P ?
app(⌘)

c?j,app(⌘)|2

=
P

P ?
app(⌘)

min
j

min
k

1

⌘jk

��gH
jkc

?
j,app(⌘)

��2 .

Denote � := minj mink
1

⌘jk

��gH
jkc

?
j,app(⌘)

��2. As {c?j,app(⌘)}
is a set of the precoding vectors of Q(⌘), � � 1. Therefore

t�app(⌘, P ) =
P

1
�P ?

app(⌘)
� P

P ?
app(⌘)

.

As 1
�P ?

app(⌘) is an objective value of Q(⌘) that can be
achieved by { 1p

�
c?j,app(⌘)}, it is bigger than or equal to the

optimal objective value of Q(⌘), i.e., 1
�P ?

app(⌘) � P ?(⌘) ,
and we have P/P ?

app(⌘)  t�app(⌘, P )  P/P ?(⌘).

APPENDIX B - PROOF OF PROPOSITION 2

Starting with the SINR constraint of (11) and replacing cj

with 1p
t�app(⌘,P )

c�j,app(⌘, P ), we have

|gH
jkc

�
j,app(⌘, P )|2

t�app(⌘, P )
=

⌘jk

t�app(⌘, P )

|gH
jkc

�
j,app(⌘, P )|2
⌘jk

(a)

� ⌘jk

where in (a) is due to the fact that t�app(⌘, P ) is
the minimum weighted SINR among all UEs. Therefore
{ 1p

t�app(⌘,P )
c�j,app(⌘, P )} is a feasible answer of Q(⌘) and

Q(⌘). For the objective value we have

P ?
app(⌘)=

GX

j=1

k
c�j,app(⌘, P )q

t�app(⌘, P )
k2=

GP
j=1

kc�j,app(⌘, P )k2

t�app(⌘, P )
 P

t�app(⌘,P)
.

Denote � := 1
P

GP
j=1

kc�j,app(⌘, P )k2. As {c�j,app(⌘, P )} is a

set of precoding vectors of F(⌘, P ), �  1. Therefore,

P ?
app(⌘) =

P
1
� t�app(⌘, P )

 P

t�app(⌘, P )
.

Since 1
� t�app(⌘, P ) is an objective value of F(⌘, P ) achieved

by { 1p
�
c�j,app(⌘, P )}, it is less than or equal to the optimal

objective value of F(⌘, P ), i.e., 1
� t�app(⌘, P )  t�(⌘, P ).

Hence we have P/t�(⌘, P )  P ?
app(⌘)  P/t�app(⌘, P ).
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APPENDIX C - PROOF OF PROPOSITION 3

As z
(1)H
j Xjkz

(1)
j � ⌘jk 8k 2 Kj , j 2 G, z

(1)
j is a feasible

solution of eQ(1)
j (⌘j , z

(1)
j ). Now consider the (i+1)th iteration

of the problem 8i 2 {0, 1, . . .}. 8k 2 Kj , j 2 G we have

2Re(z
(i+1)H
j Xjkc

(i+1)
j )� z

(i+1)H
j Xjkz

(i+1)
j

a
=

2Re(c
(i)H
j Xjkc

(i+1)
j )� c

(i)H
j Xjkc

(i)
j (41)

where (a) is due to our update rule, z
(i+1)
j  c

(i)
j . Now if we

set c(i+1)
j = c

(i)
j , (41) reduces to c

(i)H
j Xjkc

(i)
j which is bigger

than ⌘jk due to (26) and (27). Therefore c
(i)
j is a feasible

solution of eQ(i+1)
j (⌘j , z

(i+1)
j ). Hence the objective function

of (i + 1)th iteration is less than or equal to the objective
function of (i)th iteration. As the objective function is bounded
from below, by successively solving the problem we achieve
a non-increasing bounded sequence. Therefore the algorithm
converges. Due to (26), any internal precoding vector cj that
satisfies (27), will also satisfy (11) and as a result, any answer
to eQ(⌘, z) is a feasible answer to Q(⌘) and therefore Q(⌘).
Due to the update rule and the inner approximation in (27),
the convergence point satisfies the KKT conditions for Q(⌘)
as detailed in [30].

APPENDIX D - SOLUTION TO (32)

Hereby we prove the solution of (32), i.e., ↵(k)
j , is given by

(33) and (34). We start with the SNR constraint |gH
jµjk

c
(k)
j |2 �

⌘jµjk
, and replace c

(k)
j with c

(k�1)
j + ↵

(k)
j d

(k)
j using (30).

Denote |ḡH
jµjk

d
(k)
j |2, 2 Re(ej\↵

(k)
j ḡH

jµjk
d

(k)
j c

(k�1)H
j ḡjµjk

),

and |ḡH
jµjk

c
(k�1)
j |2 � ⌘jµjk

as A, B, and C, respectively. The
SNR constraint can be represented as

|gH
jµjk

c
(k)
j |2 � ⌘jµjk

= A|↵(k)
j |2 + B|↵(k)

j | + C � 0 (42)

Notice that if |gH
jµjk

c
(k)
j |2 � ⌘jµjk

, to minimize the power, no
transmission shall be arranged for user µjk, i.e., ↵(k)

j = 0 ,
and the next user shall be served. Otherwise, C < 0. Now we
transform (42) to an equality by introducing � � 0 as follows

A|↵(k)
j |2 + B|↵(k)

j | + C � � = 0.

Hence |↵(k)
j |= �B+

p
B2�4A(C��)

2A , as �B�
p

B2�4A(C��)

2A <0

and is not a valid answer for |↵(k)
j |. Moreover, as 4A� � 0,

to minimize the power � should be equal to zero, i.e, the
power should be used to meet the SNR constraint with
equality. Hence |↵(k)

j | = �B+
p

B2�4AC
2A . Now as A is fixed,

to minimize |↵(k)
j |2 we should minimize �B +

p
B2 � 4AC.

Note �B+
p

B2 � 4AC always has a negative derivative with
respect to B, hence its minimum is achieved for the maximum
value of B. Denote �jkej\✓jk = ḡH

jµjk
d

(k)
j c

(k�1)H
j ḡjµjk

, we

have B = 2 �jk Re(ej(\✓jk+\↵
(k)
j )), the maximum of which

achieved if \↵(k)
j = �\✓jk and |↵(k)

j | is given as in (34).
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