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TAAR1 is widely expressed across the mammalian brain, particularly in limbic and
monoaminergic areas, allegedly involved in mood, attention, memory, fear, and
addiction. However, the subcellular distribution of TAAR1 is still unclear, since TAAR1
signal is largely intracellular. In vitro, TAAR1 is activated with nanomolar to micromolar
affinity by some endogenous amines, particularly p-tyramine, beta-phenylethylamine,
and 3-iodothyronamine (T1AM), the latter representing a novel branch of thyroid
hormone signaling. In addition, TAAR1 responds to a number of psychoactive drugs,
i.e., amphetamines, ergoline derivatives, bromocriptine and lisuride. Trace amines have
been identified as neurotransmitters in invertebrates, and they are considered as
potential neuromodulators. In particular, beta-phenylethylamine and p-tyramine have
been reported to modify the release and/or the response to dopamine, norepinephrine,
acetylcholine and GABA, while evidence of cross-talk between TAAR1 and other
aminergic receptors has been provided. Systemic or intracerebroventricular injection
of exogenous T1AM produced prolearning and antiamnestic effects, reduced pain
threshold, decreased non-REM sleep, and modulated the firing rate of adrenergic
neurons in locus coeruleus. However each of these substances may have additional
molecular targets, and it is unclear whether their endogenous levels are sufficient to
produce significant TAAR1 activation in vivo. TAAR1 knock out mice show a worse
performance in anxiety and working memory tests, and they are more prone to develop
ethanol addiction. They also show increased locomotor response to amphetamine,
and decreased stereotypical responses induced by apomorphine. Notably, human
genes for TAARs cluster on chromosome 6 at q23, within a region whose mutations
have been reported to confer susceptibility to schizophrenia and bipolar disorder. For
human TAAR1, around 200 non-synonymous and 400 synonymous single nucleotide
polymorphisms have been identified, but their functional consequences have not been
extensively investigated yet. In conclusion, the bulk of evidence points to a significant
physiological role of TAAR1 in the modulation of central nervous system function and
a potential pharmacological role of TAAR1 agonists in neurology and/or psychiatry.
However, the specific effects of TAAR1 stimulation are still controversial, and many
crucial issues require further investigation.
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INTRODUCTION

Trace amine-associated receptor 1 (TAAR1) was identified in
2001 through a degenerate PCR approach: by using primers based
on the sequences of dopamine or serotonin receptors, a novel G
protein-coupled receptor (GPCR) was discovered, which turned
out to respond to some trace amines, rather than to classical
biogenic amines, and was at that time named trace amine receptor
1 (TA1 or TAR1) (Borowsky et al., 2001; Bunzow et al., 2001). The
term “trace amine” needs some clarification. It was introduced
to designate endogenous amines whose tissue concentrations
are physiologically < 100 ng/g tissue (Boulton, 1974), and it
was initially applied to p-tyramine (TYR), 2-phenylethylamine
(PEA), and tryptamine. These amines are produced by the
decarboxylation of aromatic amino acids (respectively, tyrosine,
phenylalanine, and tryptophan) which is assumed to be catalyzed
by the enzyme aromatic amino acid decarboxylase (AADC)
(Berry, 2004). Although other amines have been detected in
tissues at very low concentrations, in its current use the term
is still restricted to the three original compounds, and to some
of their derivatives, namely 2-hydroxy-p-tyramine (octopamine),
N-methyl-2-hydroxy-p-tyramine (synephrine), and 3-methoxy-
p-tyramine.

Homology analysis led to the conclusion that TAAR1 is the
prototype of a novel class of aminergic receptors. However, it
became evident that some members of this family have different
pharmacological profiles. Therefore, it was suggested to rename
them as “trace amine-associated receptors,” and the acronym
TAAR was introduced (Lindemann et al., 2005). This term has
been accepted by the Human Genome Organization (HUGO)
Gene Nomenclature Committee and will be used in this review,
although the International Union of Pharmacology (IUPHAR)
still recommends the original denomination of “trace amine
receptors” (Maguire et al., 2009).

Up to 28 distinct TAAR subfamilies have been described so
far. The TAAR1-9 subfamilies are expressed in most vertebrates,
while the TAAR10-28 subfamilies have only be detected in
teleosts (Gloriam et al., 2005; Hashiguchi and Nishida, 2007;
Hussain et al., 2009). Notably, TYR and octopamine are thought
to be the chief neuromodulators in insects (Roeder, 1999;
Grohmann et al., 2003), but there appears to be no phylogenetic
relation between vertebrate TAARs and invertebrate TYR and
octopamine receptors.

The large number of TAARs, and their wide distribution
in all vertebrate phyla, are consistent with a major biological
role, but their specific function has not been determined yet,
and the endogenous agonists responsible for their physiological
activation have not been definitely identified. Some TAARs
appear to be olfactory receptors, at least in rodents (Liberles
and Buck, 2006), and a distinction between “olfactory” and
“non-olfactory” TAARs has been proposed. It is quite possible
that, during vertebrate evolution, molecules able to bind
the products of aromatic amino acid decarboxylation have
progressively developed the capacity to interact with different
ligands, acquiring novel functional roles.

The biochemical and biological features of TAARs have been
discussed in several excellent reviews (Lindemann and Hoener,

2005; Lindemann et al., 2005; Lewin, 2006; Zucchi et al., 2006;
Grandy, 2007; Liberles, 2015; Berry et al., 2017). In the present
paper, we will focus on a single issue, namely the elusive
relationship between TAAR1 and central nervous system (CNS)
function. As a matter of fact, TAAR1 has been initially identified
in the CNS, and several lines of evidence have implied it in the
control of neuronal interaction. However, many crucial questions
are still open, and the alleged role of TAAR1 in neuromodulation
deserves critical analysis.

In particular, we will review the literature about TAAR1
distribution in brain, its activation by endogenous compounds
and psychoactive drugs, and its interaction with signal
transduction pathways triggered by established neuromediators.
The CNS effects observed after the administration of TAAR1
ligands will be discussed, functional implications will be drawn
from transgenic models, and the putative association of single
nucleotide polymorphisms (SNPs) with psychiatric disease will
be analyzed.

TAAR EXPRESSION

The family of TAARs is widely distributed throughout peripheral
and brain tissues. Quantitative reverse transcription (RT)-PCR
revealed low levels (15–100 copies/ng cDNA) of TAAR9 mRNA
in mouse kidney (Borowsky et al., 2001), and human skeletal
muscle and pituitary (Vanti et al., 2003). TAAR8 was found
in mouse kidney, mouse amygdala (Borowsky et al., 2001)
and rat heart (Chiellini et al., 2007); TAAR2, TAAR3, and
TAAR4 could also be detected in the rat heart, even if at
substantially lower level (Chiellini et al., 2007). Expression
of TAAR2, TAAR3, and TAAR4, together with TAAR5, was
additionally reported in rodent and human peripheral leukocytes,
and particularly in B cells and NK cells, but not in cultured
macrophages or dendritic cells (D’Andrea et al., 2003; Nelson
et al., 2007). TAAR6 has been found at low levels in mouse
amygdala and hippocampus (Borowsky et al., 2001). Through in
situ hybridization, signals specific for TAAR5 were observed in
the mouse amygdala and hypothalamic regions involved in the
regulation of weight and body temperature, namely the arcuate
nucleus and the ventromedial hypothalamus (Dinter et al., 2015)
(Figures 1, 2).

Studies in rodent, primate, and fish elucidated a chemosensory
olfactory function for all TAARs, except TAAR1 (Liberles
and Buck, 2006; Hussain et al., 2009; Horowitz et al., 2014).
TAARs are expressed in the mouse olfactory epithelium at
levels overlapping those of odorant receptor genes (Liberles
and Buck, 2006), and in the neonatal Grueneberg ganglion
(Fleischer et al., 2007), but not in the vomeronasal organ
(Liberles and Buck, 2006). Distinct TAARs define unique sensory
neuron populations, as they co-localize neither with other
TAARs nor with odorant receptors (Liberles and Buck, 2006). In
olfactory neurons, TAARs are localized in cilia, the site of odor
detection, and in axons (Johnson et al., 2012). TAAR-expressing
neurons project to discrete glomeruli (Johnson et al., 2012)
and sense volatile amines, some of which may act as aversive
or attractive social cues (Liberles, 2015). Notably, evidence of
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FIGURE 1 | Anatomical distribution of trace amine-associated receptors
(TAARs): expression of members of the TAAR family across the body.

TAAR5 expression in olfactory mucosa has also been reported in
human (Carnicelli et al., 2010) (Figure 2).

Within the TAAR family, a unique characteristic of TAAR1
is the absence from the olfactory system of rodent, primate, and
fish (Liberles and Buck, 2006; Hussain et al., 2009; Horowitz
et al., 2014). On the other hand, its mRNA was detected in
rodents at moderate levels (100 copies/ng cDNA) in stomach,
at low levels in small intestine, and at trace (<15) levels in
pancreas (Borowsky et al., 2001; Bunzow et al., 2001). TAAR1
gene transcripts were, jointly with TAAR2, the most abundant
in the mucosal layer of the duodenum in mice (Ito et al.,
2009). Histological data provided confirmation of the presence
of TAAR1 in the gastrointestinal tract and in the insulin-
secreting β cells, but not the glucagon-secreting α cells, of
human and mouse pancreatic Langerhans islets (Raab et al.,
2016). Therefore, TAAR1 appears to be substantially expressed
in organs responsible for food absorption and regulation of
glucose metabolism. Trace levels of TAAR1 were detected
in the cardiovascular system, both in the rat heart (Bunzow
et al., 2001), and aorta (by RT-PCR and by Western blotting),
where it could mediate trace amine-induced vasoconstriction
and elevation of blood pressure (Fehler et al., 2010). TAAR1
gene transcripts were, jointly with TAAR2, the most abundant

in human polymorphonucleates and lymphocytes, to suggest a
potential role in immune functions (Babusyte et al., 2013). Using
immunofluorescence microscopy and immunoblotting, TAAR1
was found in lumen-apposed apical plasma membrane domains
and in reticular and vesicular structures in the cytoplasm of
thyroid follicle cells in mice, as a suggested target of thyronamines
in a non-classical mechanism of thyroid autoregulation (Szumska
et al., 2015). The initial reports of other peripheral tissues,
namely kidney, lung, liver, prostate, testis, skeletal muscle, and
spleen harboring TAAR1 at trace to low levels (Borowsky
et al., 2001; Bunzow et al., 2001; Chiellini et al., 2012), have
not been confirmed by recent analysis using more specific
TAAR1 antibodies (Revel et al., 2013; Raab et al., 2016)
(Figure 1).

RT-PCR experiments revealed TAAR1 expression in
many distinct rodent CNS regions, namely olfactory bulb,
nucleus accumbens/olfactory tubercle, hypothalamus, pituitary,
cerebellum, pontine reticular formation, and most intriguingly
the prefrontal cortex and other cortical areas, as well as limbic
and monoaminergic areas, such as hippocampus, amygdala,
substantia nigra, and ventral tegmental area (Borowsky et al.,
2001; Bunzow et al., 2001). These results were confirmed and
further detailed by in situ hybridization histochemistry, which
showed: intense staining in mitral cell layer of the olfactory bulb,
piriform cortex, arcuate, motor, and mesencephalic trigeminal
nuclei, lateral reticular and hypoglossal nuclei, cerebellar
Purkinje cells, and ventral horn of the spinal cord; moderate
labeling in frontal, enthorinal, and agranular cortices, ventral
pallidum, thalamus, hippocampus, hypothalamus, ambiguous,
gigantocellular reticular nuclei, dorsal raphe nucleus, locus
caeruleus, and ventral tegmental area; weak labeling in septum,
basal ganglia, amygdala, myelencephalon, and dorsal horn of the
spinal cord (Borowsky et al., 2001).

However, replacing the entire TAAR1 coding sequence with a
reporter gene consisting of LacZ fused to a nuclear localization
sequence to analyze TAAR1 tissue distribution, left some of
the above reported areas unrecognized, presumably because of
the lower sensitivity of this approach as compared to in situ
hybridization (Lindemann et al., 2008). Notably, this TAAR1
knockout mouse line consistently allowed the identification
of TAAR1 in: hypothalamus and preoptic area, known to
modulate sleep (Chung et al., 2017) and energy expenditure
(Coborn et al., 2017); ventral tegmental area, a dopaminergic
area critical for learning processes and motivated and addictive
behaviors (Langlois and Nugent, 2017); amygdala, a complex
structure with a broad array of actions in emotional – especially
fear – processing, reward learning and motivation, aggressive,
maternal, sexual, and ingestive behaviors, and cognitive functions
(LeDoux, 2007); dorsal raphe nucleus, a serotonergic region
involved in cognition, reward, pain sensitivity, and circadian
rhythms (Zhao et al., 2015); bed nucleus of the stria terminalis,
relevant for the control of autonomic, neuroendocrine and
behavioral – defensive and reproductive – responses (Crestani
et al., 2013); parahippocampal region and subiculum, which
play a fundamental role in memory processes (O’Mara et al.,
2001; Lindemann et al., 2008; Pilly and Grossberg, 2013).
These findings have been generalized to primates, as a wide
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FIGURE 2 | Anatomical distribution of TAARs: expression of members of the TAAR family in brain and olfactory mucosa.

distribution of TAAR1 mRNA and proteins was demonstrated
in rhesus monkey brain monoaminergic nuclei (Xie et al.,
2007).

More recently, on the basis of pharmacologic studies
indicating pro-cognitive actions of TAAR1 agonists (Revel et al.,
2013), growing interest has risen as to whether TAAR1 is
expressed and has a role in the prefrontal cortex, a brain
region with prominent cognitive functions. Using a double
approach – RT-PCR and histoenzymology – TAAR1 expression
could be detected in the frontal cortex of mice, in addition
to the aforementioned monoaminergic areas (Di Cara et al.,
2011). More in detail, TAAR1 mRNA and fluorescent signal
were consistently found in layer V cortical neurons in rodent
prefrontal cortex (Espinoza et al., 2015b) (Figure 2). Besides
neurons, TAAR1 was found to be expressed in the cytoplasm
and nucleus of human astrocytes by means of RT-PCR
and immunocytochemistry/confocal microscopy (Cisneros and
Ghorpade, 2014) (Figure 3).

In order to determine the physiological role of TAAR1,
several investigations have focused on its coupling with a second
messenger system. In molecular pharmacology, this is commonly
obtained for GPCRs through immortalized, clonal cell lines stably
expressing heterologous receptors. However, repeated attempts
to reliably express TAAR1 and to identify its messenger system(s)
proved disappointing, a potential obstacle being the prominent
intracellular localization of the receptor, as shown by confocal

images of HEK293 cells expressing an engineered rat TAAR1
carrying an epitope tag at the N-terminus (Bunzow et al., 2001).
Experiments with transient expression of TAAR1 fared better,
notwithstanding the low signal to noise ratios and variable
receptor densities of those preparations (Grandy, 2007), and
similarly showed a predominantly intracellular distribution of
TAAR1, with rare instances of membrane expression (Miller
et al., 2005). Moreover, the use of cell fractionation techniques
combined with biotinylation and Western blotting demonstrated
the association of rhesus monkey TAAR1 with membrane
fraction, but not with the extracellular one (Xie et al., 2008a). The
receptor’s localization in vivo seems to recapitulate such findings,
in that both in situ hybridization histochemistry in mouse and
immunohistochemical analysis in rhesus monkey revealed a
largely cytoplasmatic signal in neurons, as punctate foci within
the perikaryon extending into the axon, with rare membrane-
associated expression (Borowsky et al., 2001; Xie et al., 2007).
TAAR1 lacks N-terminal glycosylation sites (Barak et al., 2008),
and this might be the reason why it mainly remains intracellular,
in the endoplasmatic reticulum or in vesicular membranes.
In this location it could act as a binding site for agonists
synthesized in the cytoplasm of trace amine-producing cells.
Possibly, agonists could be transferred to the cytoplasm and/or
vesicular lumen by plasma membrane and vesicular transporters
(Bunzow et al., 2001). Alternatively, an accessory protein,
most probably another GPCR, may be needed for TAAR1 to
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FIGURE 3 | Subcellular distribution of TAARs: intracellular localization of TAAR1 in the central nervous system (CNS).

dynamically translocate to the plasma membrane in response to
transporter-mediated agonist uptake (Xie et al., 2007; Espinoza
et al., 2011; Harmeier et al., 2015) (Figure 3). It has been proposed
that the binding of trace amines to the intracellular TAAR1
may favor heterodimerization with dopamine D2 receptors and
translocation to the plasma membrane, as discussed below.

RECEPTOR PHARMACOLOGY

The early pharmacological characterization of TAAR1 was
significantly slowed down by the difficulties in ensuring a stable
in vitro expression in the plasma membrane. Indeed, transient
transfection for TAAR1 in heterologous cell lines led either to
TAAR1 degradation or to intracellular sequestration (Borowsky
et al., 2001; Bunzow et al., 2001; Miller et al., 2005; Barak et al.,
2008), and, therefore, to the impossibility to test its response to
putative ligands. This obstacle was creatively overcome by several
groups, who employed different approaches: co-expression of
TAAR1 with rat Gαs (Wainscott et al., 2007) or Gq-Gα16
signaling proteins (Navarro et al., 2006); modification of receptor
N-terminus, in order to ensure its membrane expression (Barak
et al., 2008); creation of rat and human chimeras (Lindemann
et al., 2005; Reese et al., 2007). Since exposure to TAAR1
agonists induced the activation of intracellular pathways that
ultimately lead to cAMP synthesis, in most investigations TAAR1
activation was evaluated on the basis of cAMP production. In the
systems co-expressing TAAR1 and Gq-Gα16 signaling proteins,
TAAR1 activation was coupled to the mobilization of intracellular
calcium (Navarro et al., 2006).

Once a stable extracellular membrane expression was ensured,
and the specific reporting system identified, TAAR1 ligands have
been extensively characterized (Figure 4). TAAR1 owes its name
to the fact that, in the first two studies that led to its identification,
trace amines, particularly PEA and TYR, were more potent

than catecholamines and serotonin in activating the receptor
(Borowsky et al., 2001; Bunzow et al., 2001). Indeed, the EC50’s
of trace amines were in the nanomolar range, whereas dopamine,
norepinephrine, epinephrine, and serotonin had EC50’s in the
micromolar range. According to Bunzow et al. (2001), TYR
was more potent than PEA in stimulating rat TAAR1 (EC50
69 ± 9 and 240 ± 71 nM respectively). Whereas, Borowsky et al.
(2001) could not find any significant differences in potencies of
the two compounds on human TAAR1. Bunzow’s finding was
subsequently confirmed by Reese et al. (2007), while Borowsky’s
result was not corroborated by later studies (Lindemann et al.,
2005; Navarro et al., 2006; Reese et al., 2007; Wainscott et al.,
2007) that demonstrated that PEA shows the highest potency in
human TAAR1 activation. In general, the affinity for the single
trace amines was higher in rat than in mouse and human, and
the difference between human and rat TAAR1 often exceeded one
order of magnitude (reviewed by Berry et al., 2017).

The study by Bunzow et al. (2001) also represented
the first systematic and extensive characterization of TAAR1
pharmacology. Indeed, by using HEK293 cells, stably transfected
with rat TAAR1, they screened a large number of compounds.
Their evaluation of the differential responses to trace amines and
catecholamines, and the ranking of potencies of the different
compounds, revealed that the presence of a hydroxyl group
at the 3-position of the PEA molecule or at the 5-position of
the tryptamine molecule significantly reduced agonist potency.
The structural explanation of this finding is probably the
lack of two serine residues, which are present in the ligand
binding pocket of adrenergic and serotonergic receptors, and
form a hydrogen bond with the ligand meta-hydroxyl group.
In TAAR1, these serines have been replaced by alanine and
phenylalanine, respectively (Grandy, 2007). Another interesting
finding was the observation that the O-methyl derivatives
of dopamine, norepinephrine, and epinephrine were more
potent than the parent compounds. Since these derivatives
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FIGURE 4 | Chemical structure of some endogenous and synthetic TAAR1 ligands. Additional drugs which have been reported to act on TAAR1 are mentioned in
the text (receptor pharmacology).

are physiologically produced by the enzyme catechol-O-methyl
transferase (COMT), and TAAR1 is present in areas where
COMT expression is demonstrated to be highest (Mannisto and
Kaakkola, 1999), a potential physiological role of TAAR1 in

modulating adrenergic systems was hypothesized, as discussed
below.

Since PEA and TYR share the same phenylethylamine
structure with amphetamines, Bunzow et al. (2001) inquired if
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these drugs of abuse could activate TAAR1, obtaining positive
results (Bunzow et al., 2001). The affinity for rat TAAR1,
as evaluated on the basis of EC50’s, was in the micromolar
range. p-Hydroxyamphetamine was the most potent derivative,
whereas N-ethyl analogs had significant lower activities when
compared to amphetamine and its N-methyl derivatives
[methamphetamine and 3,4-methylenedioxymethamphetamine
(MDMA)]. The latter result was confirmed in rhesus monkey
TAAR1 (Miller et al., 2005). Later studies confirmed these
findings and, at the same time, unraveled that TAAR1
from different species showed different stereospecificity to
amphetamine and its derivatives (Reese et al., 2007; Wainscott
et al., 2007; Lewin et al., 2008; Simmler et al., 2016).

Other abuse substances and psychoactive drugs were
found to activate TAAR1, with EC50 in the nanomolar to
micromolar range. These include lysergic acid diethylamide,
bromocriptine, lisuride, nomifensine, apomorphine, ractopamin,
clonidine, guanabenz, idozoxan, aminoindanes (2-aminoindane
and 5-iodo-2-aminoindane), and m-chlorophenylpiperazine
(Bunzow et al., 2001; Hu et al., 2009; Liu et al., 2014; Sukhanov
et al., 2014; Simmler et al., 2016).

Aside trace amines, another class of endogenous amines
able to interact with TAAR1 is represented by thyronamines.
3-iodothyronamine (T1AM) is an endogenous compound,
detected in most rodent tissues and in human blood,
probably derived from thyroid hormone through deiodination
and decarboxylation (reviewed by Hoefig et al., 2016).
Scanlan et al. (2004) reported T1AM to be the most potent
endogenous TAAR1 agonist, with an EC50 for rat TAAR1 of
14 nM. As observed for trace amines, the affinity for mouse
and human TAAR1 was one to two orders of magnitude
lower (Coster et al., 2015). Other thyronamines, particularly
3,5-diiodothyronamine, 3-3′-didiodothyronamine, 3,5,3′-
triiodothyronamine, and thyronamine (T0AM), were also able
to activate TAAR1, but they were at least 5 to 10-fold less potent
than T1AM (Scanlan et al., 2004). T0AM is also an endogenous
compound, while the other thyronamines have not been detected
in tissues so far (Saba et al., 2010). Although the development of
an analytical assay for T1AM is still an open question, plasma
and tissue T1AM concentration is probably higher than the
conventional limit of 100 ng/g (Saba et al., 2010; Hoefig et al.,
2011, 2016; Galli et al., 2012). In any case, thyronamines are not
usually included in the group of trace amines.

TYR, PEA, and T1AM are the most likely candidates as
physiological TAAR1 agonists. However, it should be kept in
mind that they all share additional molecular targets. PEA
and TYR have long been known to increase catecholamine
and serotonin availability by competing with their receptors,
transporters, or storage sites. However, given the fact that
monoaminergic transporter activity is dependent on ligand
concentrations (Yatin et al., 2002), the low tissue concentrations
of trace amines casts doubts on their functional role. On the
other hand, T1AM has been reported to be a multitarget ligand,
since it can also interact with other TAAR subtypes (particularly
TAAR5), α2A- and β-adrenergic receptors, TRM8 calcium
channels, and membrane amine transporters like dopamine
transporter (DAT), norepinephrine transporter (NET), and

vesicular monoamine transporter (VMAT) (reviewed by Hoefig
et al., 2016). The affinity for these additional targets is
substantially lower than the affinity for rat TAAR1, but the
difficulties in assessing T1AM concentration at receptor level do
not enable to reach a clear conclusion about their physiological
relevance. As discussed below, the presence of non-TAAR targets
is an important pitfall in the interpretation of experimental
results obtained with the administration of natural TAAR1
ligands.

Considerable effort has been devoted to the development
of synthetic TAAR1 agonists. After the discovery that T1AM
is a TAAR1 agonist, two series of T1AM analogs (mostly
phenyltyramine derivatives: see Figure 4 for the structure of some
of the most active compounds) were synthesized and tested on
the basis of cAMP production in heterologous cells expressing
mouse or rat TAAR1 (Hart et al., 2006; Tan et al., 2007).
These investigations established some milestones for the analysis
of thyronamine structure-activity relationship (reviewed by
Chiellini et al., 2017), and showed that the thyronamine scaffold
is amenable to several types of chemical modifications, which can
preserve or even increase the activity of the parent compound.
More recently, another class of halogen-free biaryl-methane
thyronamine analogs was obtained and tested both in vitro and
in vivo (Chiellini et al., 2015, 2016). The analogs known as SG1
and SG2 showed similar potency as the endogenous ligands,
and some SG2 derivatives were even more potent. While these
compounds are certainly TAAR1 agonists, their selectivity has not
been extensively evaluated yet, and they share with T1AM some
functional effects (e.g., stimulation of hepatic gluconeogenesis)
which may not be TAAR1-mediated (Regard et al., 2007).

Another approach was followed by the investigators at
Hoffmann-La Roche, who produced an iterative series of
structural modifications on adrenergic ligands, including the
amino-oxazoline α2A-adrenergic receptor agonist S18616. In this
way a potent full TAAR1 agonist, RO5166017, was obtained
(Revel et al., 2011). Other full agonists (e.g., RO5256390)
and partial agonists (e.g., RO5203648 and RO5263397) were
subsequently identified (Revel et al., 2012, 2013). The “RO
compounds” were reported to be highly selective for TAAR1 on
the basis of a screening procedure based on radioligand binding
assays involving over 100 target proteins. They were therefore
widely used in functional experiments to determine the effects
of TAAR1 stimulation, as reviewed below. However, it should be
pointed out that micromolar concentration of these compounds
produced >80% inhibition of specific ligand binding at other
receptors, namely some subtypes of adrenergic (α2), serotonergic
(5-HT2A and 5-HT3), opioid (especially κ and µ), imidazoline
(especially I1), and muscarinic receptors. The selectivity ratio
vs. TAAR1 was usually >100, but Ki’s were nevertheless in the
nanomolar range (Revel et al., 2011).

A strong effort was also made to identify TAAR1 antagonists.
To this purpose, over 700,000 Roche compounds were screened
on the basis of the capacity to inhibit cAMP production triggered
by PEA in cells expressing a chimeric human/rat TAAR1 receptor
(Bradaia et al., 2009; Stalder et al., 2011). A benzamine derivative
[RO5212773 or EPPTB, N-(3-Ethoxy-phenyl)-4-pyrrolidin-1-
yl-3-trifluoromethyl-benzamide (EPPTB) (Galley et al., 2009)]
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was eventually selected. It shows good selectivity and very
high affinity for mouse TAAR1 (Ki = 0.9 nM), with lower
affinity for rat TAAR1 (Ki = 942 nM) and human TAAR1
(Ki > 5 µM). Interestingly, basal cAMP levels were reduced by
EPPTB, suggesting that TAAR1 may be constitutively active and
that EPPTB should be regarded as an inverse agonist, rather than
as a neutral antagonist (Bradaia et al., 2009). However, it has not
been formally excluded that endogenous agonists may have been
present in the preparations used in this investigations. Notably,
EPPTB has a high clearance, which limits its use in vivo (Stalder
et al., 2011; Berry et al., 2017).

CROSS TALK BETWEEN TAAR1 AND
MONOAMINERGIC SYSTEMS

Consistent with its CNS distribution, TAAR1 appears to
interact with other monoaminergic systems. In vivo, the use of
TAAR1 agonists lowered hyperlocomotion in pharmacologic, i.e.,
cocaine-induced, and genetic, i.e., DAT-knockout (KO), models
of hyperdopaminergia (Revel et al., 2011, 2013), allegedly a
hallmark of psychosis (Howes and Kapur, 2009). Intracellular
electrophysiological recordings showed significant decrease in
spontaneous firing rate and membrane hyperpolarization under
application of TYR (10–100 µM) (Geracitano et al., 2004;
Lindemann et al., 2008), PEA (Geracitano et al., 2004), or
the synthetic TAAR1 agonist RO5166017 (500 nM) in mouse
and rat dopaminergic and serotoninergic neurons, respectively
from the ventral tegmental area and the substantia nigra pars
compacta, and from the dorsal raphe nucleus (Revel et al., 2011).
These effects were counteracted by the application of EPPTB
(10 nM) under current-clamp conditions (Bradaia et al., 2009).
Moreover, when EPPTB was applied alone, the basal firing rate of
dopaminergic neurons was significantly and reversibly enhanced,
as discussed above (Bradaia et al., 2009).

Converging evidences point to K+ currents as effectors of
membrane hyper/de-polarization effects respectively induced
by TYR or EPPTB. Firstly, in voltage-clamp conditions,
dopaminergic neurons responded to TYR with a drop in input
resistance (Geracitano et al., 2004; Bradaia et al., 2009). By
applying voltage ramps from −20 to −140 mV, dopaminergic
neurons stimulated with TYR at physiological extracellular
[K+] (2.5 mM) exhibited an inwardly rectifying current whose
polarity reversed close to the calculated K+ equilibrium potential
(−101 mV), and which was sensitive to EPPTB (Bradaia et al.,
2009). The reversal potential of the induced current was shifted
to −60 mV upon alteration of extracellular [K+] to 12.5 mM
(Bradaia et al., 2009). The current could be abolished by the
non-selective K+ channel blocker Ba2+ (300 µM) and the Kir3
channel blocker tertiapin (10 µM), but not in presence of
protein kinase A and mixed Na+/K+ current inhibitors (Bradaia
et al., 2009). Since blocking G protein activation with GDPβS
attenuated the current, it is plausible that TAAR1 gates Kir3-type
K+ channels through the Gβγ subunits (Bradaia et al., 2009), as
already known for other GPCRs (Mark and Herlitze, 2000).

The electrophysiological effects of stimulating TAAR1
might involve either monoamine autoreceptors or transporters.

Monoamine autoreceptors function as presynaptic feedback
regulators for monoamine release. The effects of trace amines
were extinguished by the application of dopamine autoreceptors
(D2R) antagonists, such as sulpiride, as well as by treatment
with reserpine, which depletes presynaptic dopamine stores, in
combination with carbidopa, a dopa decarboxylase inhibitor.
Therefore, it was initially proposed that the inhibitory effects of
PEA and TYR could be mediated by indirect stimulation of D2R
via an increase of dopamine release (Geracitano et al., 2004).
The final effect might be a tonic enhancement of D2R-related
autoinhibition by TAAR1 activation, as part of a rheostatic
mechanism regulating the activity of dopaminergic neurons
(Leo et al., 2014). However, RO5166017 (10 µM) was shown to
decrease dopamine release in both the dorsal striatum and the
nucleus accumbens, while EPPTB (10 µM) evoked an increase
of dopamine overflow selectively in nucleus accumbens, a brain
area which receives projections from the ventral tegmental area
(Leo et al., 2014). In addition, it has been reported that TAAR1
antagonists evoked a fourfold increase in agonist affinity to
D2R and prevented D2R desensitization (Bradaia et al., 2009).
Evidence exists that stimulating TAAR1 with PEA (1 µM)
significantly reduces D2R membrane expression, in support
of a mechanism of receptor internalization underpinning its
desensitization (Espinoza et al., 2011). On the contrary, TAAR1
antagonists decreased the potency of ipsapirone at serotonergic
autoreceptors (5-HT1A), and abolished 5-HT1A desensitization
(Revel et al., 2011).

Reciprocally, monoaminergic receptors were found to
modulate TAAR1 activity. In HEK293 cells co-transfected with
TAAR1 and autoreceptors (D2R, 5-HT1A/1B, and α2A/2B), the
response to PEA and common biogenic amines was lower than in
TAAR1-expressing cells, and was enhanced by means of selective
D2R antagonists (Xie et al., 2007, 2008b; Espinoza et al., 2011;
Harmeier et al., 2015). Controversial findings apply as to whether
trace amines directly modulate autoreceptors, which in turn
attenuated TAAR1 signaling (Xie and Miller, 2008), or rather
co-transfection with D2R, 5-HT1A/1B, and α2A/2B reduced
TAAR1 expression (Xie and Miller, 2008; Espinoza et al., 2011).
An alternative possibility is that monoamine autoreceptors can
affect AADC activity and therefore trace amine synthesis (Berry,
2004).

Experiments with either bioluminescence resonance energy
transfer measurement assays or co-immunoprecipitation
demonstrated that TAAR1 and D2R specifically interact to
form heterodimers, mainly at the level of plasma membrane
(Espinoza et al., 2011; Harmeier et al., 2015). One could speculate
that, after crossing the plasma membrane, trace amines may
bind to and induce a conformational change in intracellular
TAAR1, which then translocates to the plasma membrane to
form heterodimers with biogenic amine receptors (Berry, 2004).
Following heteromerization, TAAR1 signals through Gαs to
increase cAMP levels (Borowsky et al., 2001; Bunzow et al.,
2001), while D2R signals through Gαi to decrease cAMP levels
(Lindemann et al., 2008). Upon TAAR1-D2R heteromerization,
cAMP accumulation after activation of TAAR1 was decreased,
that led to reduced phosphorylation of the downstream effector
proteins ERK1/2 and CREB (Harmeier et al., 2015). On the
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other hand, TAAR1 stimulation in presence of D2R triggered
β-arrestin2 recruitment, and downstream silencing of the GSK3β

cascade via Akt and GSK3β (Harmeier et al., 2015). Interestingly,
the latter pathways play a role in psychosis and mood disorders
(Willi and Schwab, 2013), and are targets of lithium (Muneer,
2017).

As TAAR1 localization is mainly intracellular (see above),
it has been hypothesized that monoamine transporters could
provide conduits for trace amines, to cross the plasma membrane
and act on their molecular target (Miller, 2011). In favor of this
hypothesis, both RT-PCR and fluorescence microscopy on rhesus
monkey and mouse brain sections allowed the co-detection
of signals from TAAR1 and DAT in dopaminergic neurons
in the substantia nigra, amongst neurons expressing TAAR1
or DAT alone (Miller et al., 2005; Xie et al., 2007). Indirect
evidence suggests co-expression of TAAR1 with DAT and the
serotonin transporter (SERT) mainly in the striatum, and with
the norepinephrine transporter (NET) in the thalamus (Xie et al.,
2008b). As expected, co-transfecting HEK293 with TAAR1 and
DAT, SERT, or NET potentiated TAAR1 signaling (Miller et al.,
2005; Xie et al., 2007). TAAR1 was also demonstrated to respond
to common biogenic amines, such as dopamine, serotonin,
and norepinephrine (Xie et al., 2008b). These effects were
counteracted by DAT, NET, and SERT inhibitors (Xie et al., 2007).
A synergic relationship might link TAAR1 and monoamine
transporters, as several TAAR1 agonists are substrates for
monoamine transporters, as well. However, trace amines appear
to be substrates of DAT, SERT, and NET at high micromolar,
or millimolar concentrations, which are not expected under
physiological conditions (Berry, 2004). On the contrary, no
potentiation of TAAR1 activity could be observed with T1AM
(Scanlan et al., 2004), which acts as inhibitor, rather than
substrate, of DAT (Panas et al., 2010). Recently, the Organic
Cation Transporter 2 (OCT2) has been identified as a high
affinity neuronal transporter for trace amines at physiologically
relevant concentrations (Berry et al., 2016). The OCT family
is known as a polyspecific, low-selectivity, high capacity family
of transporters which mediate the clearance of monoamines
when DAT, SERT, and NET become saturated (Courousse and
Gautron, 2015). Given such functional link, neurons expressing
both TAAR1 and monoamine transporters could be preferentially
activated by pharmacological agonists, e.g., amphetamines, thus
contributing a crucial role in the development of addiction to
amphetamine-like drugs of abuse (Miller, 2011).

Evidence of a reciprocal regulation of monoamine
transporters by TAAR1 came from in vitro experiments, where it
was found that pretreatment with dopamine, serotonin, NE, and
methamphetamine significantly inhibited monoamine uptake in
HEK293 cells co-expressing TAAR1 and DAT/SERT/NET (Xie
and Miller, 2007, 2009), a finding that was later confirmed in
synaptosomes (Xie et al., 2008b; Xie and Miller, 2009). This effect
was potentiated by pretreatment with the selective monoamine
autoreceptor inhibitors, to suggest that concurrent activation
of autoreceptors from biogenic amines may act as a brake on
TAAR1 influence on monoamine transporters (Xie et al., 2008b).
Furthermore, treatment with methamphetamine triggered the
internalization of DAT in TAAR1-DAT cells and in wild-type

mice striatal synaptosomes (Xie and Miller, 2009). The observed
regulatory actions of TAAR1 on transporters are supposedly
dependent on cAMP accumulation and PKC-phosphorylation,
as they were prevented by the PKC inhibitor Ro32-0432 (Xie
and Miller, 2007, 2009; Xie et al., 2008b). Therefore, common
biogenic amines released into the synaptic cleft could interact in
parallel with monoamine autoreceptors and TAAR1 to modulate
their own release and transport in the brain. Additional
regulation of TAAR1 may come from trace amines, which share
spatial distribution with the monoaminergic systems (Berry,
2004) and were similarly found to inhibit uptake and promote
efflux by monoamine transporters (Xie and Miller, 2008).
However, TAAR1-KO and wild-type mice showed overlapping
dopamine uptake and half-life, indicating normal DAT activity
(Leo et al., 2014), consistent with unaltered in vivo functional
activity of TAAR1 agonists over the behavioral abnormalities of
DAT-KO mice (Giros et al., 1996; Sotnikova et al., 2004; Revel
et al., 2012). On the whole, the relevance of TAAR1 interaction
with brain monoamine transporters still awaits clarification
(Figure 5).

Recently, novel evidence has emerged about the role of
TAAR1 as a modulator of glutamatergic transmission in the
prefrontal cortex. TAAR1 agonists were able to suppress the
hyperlocomotion triggered by non-competitive NMDA receptor
blockers, phencyclidine and L-687414, reminiscent of the
antipsychotic drug olanzapine, but with no significant weight
gain and catalepsy (Large, 2007; Revel et al., 2011, 2013). Also,
TAAR1 activation decreased impulsivity in mice performing a
classic Skinner’s schedule of reinforcement (Sagvolden et al.,
1983; Espinoza et al., 2015b), and promoted pro-cognitive
effects, mainly executive functions, in primates and rodents
(Revel et al., 2013). Intriguingly, TAAR1 agonists affected brain
perfusion, as imaged in pharmacological magnetic resonance
imaging, with a similar albeit not identical pattern as olanzapine,
namely activation of cortico-limbic areas and de-activation of
more ventral, subcortical structures (Revel et al., 2013). TAAR1
modulation of the prefrontal cortex glutamatergic NMDA-related
transmission could be indirect, through the interaction with
the dopaminergic system. Alternatively, a direct communication
might exist between TAAR1 and glutamate transmission.
Consistently with the latter hypothesis, methamphetamine and
TAAR1 overexpression significantly reduced the expression of
excitatory amino acid transporter 2 in astrocytes, subsequently
impairing the clearance of extracellular glutamate from the
synaptic cleft (Cisneros and Ghorpade, 2014).

NEURAL EFFECTS OF TAAR1 LIGANDS

As already indicated in the section on pharmacology, the
first TAAR1 ligands to be identified were trace amines
(Table 1). Initially, they were thought to be merely the catabolic
products of the classical monoamines; however, subsequently,
it has been demonstrated that they produce physiological and
pathophysiological effects in their own right.

Given the structural similarities with catecholamines, trace
amines have been implicated in the induction of some of
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FIGURE 5 | Cross-talk between TAAR1 and the dopaminergic system.

TABLE 1 | Neural effects of endogenous TAAR1 agonists.

Agonist Neural effect

p-Octopamine Enhances both excitatory and depressant responses to
noradrenaline (fronto-parietal cortex)

No effects on serotoninergic and dopaminergic transmission

β-PEA Potentiates neuronal responses to dopamine (rat caudate
nucleus, cortex)

Increases neuronal responses to norepinephrine (cortex)

No effects on serotonin and GABA

p-Tyramine Potentiates neuronal responses to dopamine (cortex and caudate
nucleus)

Increases the responses of neurons to norepinephrine (cortex)

No effects on serotonin and GABA

T1AM Orexigenic effect when administered at the level of the arcuate
nucleus

Biphasic effect on food intake when administered i.c.v.

Reduction of non-REM sleep (i.c.v.)

Prolearning and anti-amnestic effect (i.c.v.)

For references see text.

the effects associated with catecholaminergic stimulation. For
example, PEA, that structurally is similar to amphetamine, has
been demonstrated to mimic some of amphetamine effects,
namely it induces locomotor activation and the performance of
stereotyped behavior associated with catecholamine assumption

in both rodents and rhesus monkeys (Borison et al., 1977;
Tinklenberg et al., 1978; Ortmann et al., 1984; Dourish, 1985;
Barroso and Rodriguez, 1996). However, it has to be underscored
that the concentrations that were used to produce those effects
were around the micromolar range, several orders of magnitude
above their concentration in serum and tissue. Indeed, trace
amine concentrations in tissues have been demonstrated to be
comprised between 0.1 and 10 nM, not far from their TAAR1
EC50 estimated in vitro (Berry, 2004; Zucchi et al., 2006).
Therefore, it is possible that catecholaminergic effects were only
pharmacological and that most of trace amine physiological
effects are mediated by high- affinity receptors like TAAR1.

With regard to their physiological roles in the CNS,
trace amines have been proved to act as neuromodulators,
potentiating or inhibiting the effects of the neurotransmitters
with which they are co-released in the synaptic cleft (Berry, 2004).
Octopamine enhances both excitatory and depressant responses
of frontoparietal cortex neurons to norepinephrine, while it does
not produce any effects on serotonin and dopamine transmission
in those cortical areas (Jones, 1982). However, it produces a
depressant action on the firing activity of dopaminergic neurons
of the substantia nigra pars compacta (Pinnock, 1983). The same
effect was elicited in the substantia nigra and in the ventral
tegmental area by TYR and PEA (Pinnock, 1983; Geracitano
et al., 2004; Lindemann et al., 2008). Even though PEA and TYR
dampen dopaminergic neuron firing, some reports suggest that
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PEA and TYR may potentiate neuronal responses to dopamine
both in the rat caudate nucleus (Jones and Boulton, 1980;
Paterson et al., 1991; Sato et al., 1997) and in the rat cortex
(Jones and Boulton, 1980). In rat cortical neurons, both trace
amines also increases neuronal responses to norepinephrine
administration (Paterson, 1988; Paterson and Boulton, 1988).
Of note, these effects were only obtained at pharmacological
concentrations of trace amines. On the other hand, both PEA and
TYR do not produce any significant effects in the transmission of
serotonin (Paterson et al., 1990) and GABA (Jones and Boulton,
1980; Paterson, 1988; Berry et al., 1994; Federici et al., 2005).

As the dopaminergic system plays a fundamental role in the
regulation of the rewarding properties of addictive drugs (Cooper
et al., 2017), selective TAAR1 agonists and antagonists were used
to investigate the putative role of TAAR1 in the field of addiction.
The selective full and partial TAAR1 agonists RO5256390 and
RO5203648 have been demonstrated to reduce cocaine peripheral
(Pei et al., 2014, 2015) and intracranial self-administration (Pei
et al., 2015) and the reinstatement of drug seeking behavior (Pei
et al., 2014, 2015). Also, other TAAR1 partial and full agonists
(RO5263397 and RO5166017) were proved to inhibit cocaine-
conditioned place preference (Thorn et al., 2014; Liu et al.,
2016).

Similar effects have been reported also for methamphetamine.
Indeed, the administration of RO5203648 and RO5263397
reduced hyperlocomotion, self-administration and reinstatement
of methamphetamine seeking behavior (Cotter et al., 2015; Pei
et al., 2017). The mechanism underlying these effects might be
represented by a modulation of addictive-drug induced release of
dopamine. Indeed, several studies have corroborated the fact that
TAAR1 agonists prevent drug-induced dopamine overflow and
dopaminergic neuron increase in firing (Revel et al., 2011; Pei
et al., 2017) in brain structures involved in addiction processes,
such as the nucleus accumbens (Pei et al., 2017).

As discussed in the previous section, inhibition of an inwardly
rectifying K+ current may be related to TAAR1-mediated
modulation of dopaminergic neuros in the ventral tegmental area
(Bradaia et al., 2009). Another mechanism that is thought to be
involved in addictive behavior is the lack of control of impulsivity;
this trait is typical of addiction, is likely due to a dysfunction of
the prefrontal cortex (Bari and Robbins, 2013), and can also be
reduced by full or partial TAAR1 agonists (Sagvolden et al., 1983;
Espinoza et al., 2015b).

In addition, the use of TAAR1 agonists has started to uncover
the possible role that TAAR1 may play in the development
of diseases like schizophrenia, and Parkinson’s disease. Indeed,
TAAR1 activation leads to increased vigilance in rodents and
to pro-cognitive and antidepressant effects in both rodents
and primate models (Revel et al., 2013). With regard to
Parkinson’s disease, Alvarsson et al. (2015) have demonstrated
that in 6-hydroxydopamine model of Parkinson’s disease, TAAR1
activation inhibits L-DOPA induced rotational sensitization and
the development of L-DOPA -induced dyskinesias. Even though
these results have only been demonstrated in rodents and the
way to translate them into human studies is still very long, they
open interesting perspectives in the understanding and possibly
treatment of the two diseases.

Another endogenous class of compounds able to interact with
TAAR1 is represented by thyronamines (Table 1). As reviewed
in previous sections, T1AM activates TAAR1 with the highest
affinity between tyronamines, and it has been demonstrated
to produce relevant neurological effects. When analyzing the
responses elicited by exogenous T1AM administration, it is
important to consider the specific concentrations that have been
obtained in the brain. In fact, baseline tissue T1AM levels lie
in the nanomolar range (Hoefig et al., 2016), and the dosages
used in vivo were found to increase them by only 20–30 times
(Manni et al., 2013), suggesting a potential physiological role of
endogenous T1AM.

T1AM modulates several CNS functions that include feeding
behavior, sleep composition, learning and memory. With regard
to the regulation of food intake, its administration at the level of
the arcuate nucleus of mice fed ad libitum induces an orexigenic
effect (Dhillo et al., 2009); whereas the administration in the
cerebral ventricles (i.c.v.) has a biphasic effects, since, lower
dosages (3.3 nmol/Kg) reduce food intake and higher ones
(51 nmol/Kg) increase food intake in mice (Manni et al., 2012).

T1AM also modulates sleep pattern composition when
administered i.c.v., reducing the duration of non-REM sleep
in mice (James et al., 2013). T1AM has also been proposed
as a novel memory enhancer. Indeed, its administration
i.c.v., has been demonstrated to produce a pro-learning
and anti-amnestic effect as assessed with the novel object
recognition and the passive avoidance tests (Manni et al., 2013).
Moreover, a recent study suggested that also T1AM metabolite
3-iodothyroacetic acid may be involved in the regulation of
learning and memory processes (Laurino et al., 2015). Also,
preliminary evidence suggests that T1AM may also have a
neuroprotective role in Alzheimer’s disease, counteracting beta
amyloid toxicity in a mouse model of Alzheimer’s disease both in
an electrophysiological and a behavioral assessment (Accorroni
et al., 2016).

However, as already underscored for trace amines, it should
be considered that T1AM does not only bind to TAAR1 but
can also interact with other receptors. Therefore, it is possible
that other systems alongside with TAAR1 are involved in the
induction of the effects that have been demonstrated in the
literature.

TRANSGENIC MODELS AND HUMAN
GENETIC INVESTIGATIONS

In order to dissect TAAR1-mediated effects, TAAR1-KO mice
were generated. Their phenotype appeared grossly normal, in
terms of general health, viability, fertility, life span, nest building
behavior, body size and weight, and body temperature. The
examination of general motor functions did not reveal any
difference in dexterity, motor coordination, and spontaneous
locomotor activity. They obtained normal scores in neurological
tests assessing sensory, motor and autonomic responses, visual
acuity, grip strength, and nociception (Wolinsky et al., 2007;
Lindemann et al., 2008; Di Cara et al., 2011). As for behavioral
tests designed to mimic psychiatric symptoms, mice lacking
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TAAR1 showed no alteration in anxiety, stress response,
and working memory, although significant impairment of
sensorimotor gating functions could be observed (Wolinsky
et al., 2007), which is postulated to be a hallmark of dopamine
supersensitivity characteristic of positive psychotic symptoms
(Thaker, 2008). On the same line, mutant mice displayed a
perseverative and impulsive pattern of behavior (Espinoza et al.,
2015b), and were generally slower in learning how to perform
cognitive tests (Achat-Mendes et al., 2012; Espinoza et al., 2015b).

It is plausible that these behavioral phenotypes are underlined
by alterations in the neural circuitry in monoaminergic
systems. Accordingly, there is evidence of increased basal
levels of extracellular dopamine selectively in the nucleus
accumbens, but not the dorsal striatum, of TAAR1-KO mice
(Leo et al., 2014). Of note, several previous studies had not
been able to detect any difference in basal neurotransmitter
concentrations in striatal regions (Wolinsky et al., 2007;
Lindemann et al., 2008; Di Cara et al., 2011), most probably
due to technical shortcomings of conventional microdialysis
(Chefer et al., 2009). Electrophysiological recordings revealed
signs of altered dopamine neurotransmission, namely higher
spontaneous firing rates and depolarized resting membrane
potential in dopaminergic neurons of the ventral tegmental
area (Lindemann et al., 2008). Moreover, changes in D2R
affinity state were detected in the striatum (Wolinsky et al.,
2007), accompanied by D2R upregulation and enhanced D2R-
mediated signaling (Espinoza et al., 2015a). In particular,
in TAAR1-KO mice, Western blot and immunoprecipitation
experiments showed a decreased phosphorylation state for AKT
and GSKβ – two downstream targets of β-arrestin2-dependent
pathway (Beaulieu et al., 2005; Beaulieu and Gainetdinov,
2011), with subsequent activation of GSKβ and degradation of
β-catenin (Espinoza et al., 2015a). Dopamine hyper-activity is
mirrored by the increased basal phosphorylation of tyrosine
hydroxylase at Ser19, Ser31, and Ser40 (Haycock and Haycock,
1991; Di Cara et al., 2011). These data provide additional
support to the hypothesis that TAAR1 may maintain a
tonic negative control on dopamine neurotransmission in
physiological conditions.

Following the evidence about the expression of TAAR1 in
the prefrontal cortex, and the effects of the pharmacological
manipulation of TAAR1 on glutamate neurotransmission,
the role of TAAR1 in prefrontal cortex was further evaluated
by electrophysiological approaches. In TAAR1-KO mice
excitatory post-synaptic currents had increased amplitude
and altered kinetics, due to NMDA deficiency and decreased
NMDA/AMPA ratio (Espinoza et al., 2015b). The lack of TAAR1
modified NMDA composition, reducing the expression of
NMDA GluN1 and GluN2B subunits, while no changes in the
expression of NMDA GluN2A, AMPA GluA1 subunit, and
PSD-95 (a post-synaptic protein crucial for the organization
of post-synaptic structure and integrity) could be detected
(Espinoza et al., 2015b). Furthermore, mice’s sensitivity to
amphetamine, methamphetamine, MDMA, and ethanol
was exacerbated. This emerged from behavioral tests, where
transgenic animals resulted more susceptible to either the
locomotor-stimulating or -depressing effects of various

amphetamines (Lindemann et al., 2008; Di Cara et al., 2011;
Achat-Mendes et al., 2012) or ethanol (Lynch et al., 2013),
respectively. At neurochemical level, amphetamine challenge was
associated to higher concentrations of dopamine, serotonin and
NE in the striatum and prefrontal cortex (Wolinsky et al., 2007;
Lindemann et al., 2008; Di Cara et al., 2011). Such sensitization
effects of TAAR1 could account for its involvement in the
rewarding effects of drugs of abuse. Accordingly, TAAR1-KO
mice developed an earlier and longer-lasting methamphetamine-
induced conditioned place preference as compared to wild-type
littermates (Achat-Mendes et al., 2012).

Similarly, TAAR1-KO genotype featured greater ethanol
consumption, and resulted more sensitive to the sedative
actions of ethanol, notwithstanding identical pharmacokinetic
parameters (Lynch et al., 2013). Aside TAAR1-KO animals,
the effects of TAAR1 overexpression were investigated in an
ad hoc transgenic mouse line, where a Thy-1,2 expression
cassette drove strong constitutive neuronal expression of TAAR1.
As expected, mice overexpressing TAAR1 exhibited a lower
response to the stimulating effects of amphetamine in terms of
locomotor activity and monoamine release, opposite to TAAR1-
KO mice. However, surprisingly, the effects of augmented
TAAR1 expression paralleled those of TAAR1 deletion in some
phenotypic aspects, including enhanced spontaneous electrical
activity of dopaminergic neurons in the ventral tegmental area
and serotonergic neurons in the dorsal raphe nucleus, associated
to higher basal extracellular concentrations of dopamine and
norepinephrine in the nucleus accumbens and of serotonin in
the prefrontal cortex. To explain this inconsistency, it has been
proposed that the ectopic expression of TAAR1 in GABAergic
neurons in the ventral tegmental area could exert a tonic negative
control on GABA firing activity, thus removing inhibitory
inputs to dopaminergic neurons. Finally, TAAR1 overexpression
did not trigger downregulation of monoamine receptors and
transporters, despite altered monoamine levels (Revel et al.,
2012). Taken together, these data suggest that TAAR1 might
play a complex role in neuromodulation and contribute a novel
target for the development of compounds aimed at treating
neuropsychiatric disorders and substance abuse (Berry et al.,
2017) (Figure 6).

The human and the chimpanzee genomes encompass nine
TAAR genes. Rodent genomes include additional genes, probably
originated by duplication events. All members of the TAAR
family generate short transcripts made of short coding regions
(∼1000 bp-long) with no introns, with the exception of the gene
coding for TAAR2, which contains two exons. In mammals,
TAARs cluster in a single chromosome. The human TAARs
are located on chromosome 6 at band q23.1, a region that
has been reported by several linkage and molecular genetic
studies to be associated with mental disorders (Zucchi et al.,
2006). As regards human TAAR1, about 600 SNPs have been
identified, of which a couple of 100s are non-synonymous
(dbSNP database, NCBI, accessed on the September 5, 2017).
To elucidate their functional effects, Shi et al. (2016) transfected
CHO-K1 cells with eight human TAAR1 constructs containing
SNPs in highly conserved motifs, and measured receptor
expression and cAMP accumulation upon PEA stimulation.
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FIGURE 6 | Multilevel effects of genetic manipulation of TAAR1 in murine
models.

They found that the substitution of a lysine (K218I) in the G
protein-coupling region of the intracytoplasmic loop 3 altered
receptor functionality, as compared to non-transfected cells,
while the other selected variants were non-functional (Shi
et al., 2016). Given the putative role of TAAR1, subjects
carrying such sub-functional receptors might be predisposed to
several mental disorders, including psychosis, mood disorders,
attention-deficit/hyperactivity disorder (ADHD), and addiction.
The use of whole exome sequencing allowed the identification
of a heterozygous rare missense SNP (545G > T; C182F) in the
affected mother and two affected siblings in a small schizophrenia
family. In silico functional analyses predicted this variant to
be damaging, as it causes the breakage of a highly conserved
disulfide bond, with deleterious effects on receptor stability and
cell surface localization, ligand binding, and G protein activation.
Other six rare protein-disturbing variants (S47C, F51L, Y294T,
L295S, A109T, V250A), all but one endorsing a potential for
receptor damage, were found in sporadic patients suffering from
schizophrenia of north Indian (n = 475) and American origin
(n= 310), but in none of 410 healthy controls (John et al., 2017).
The present data therefore suggest that TAAR1 may contribute
an etiological role to the pathogenesis of schizophrenia, amongst
a multiplicity of genetic and environmental risk factors.

CONCLUSION

The bulk of evidence points to a significant physiological role of
TAAR1 in the modulation of CNS function, and to a potential
pharmacological role of TAAR1 agonists in neurology and/or
psychiatry. This conclusion is based on the wide expression of
TAAR1 in the CNS, the significant neurological and/or behavioral
effects produced by the administration of natural or synthetic
TAAR1 agonists, and the neurological phenotypes observed in
TAAR1-KO mice.

However, there is still no formal demonstration that a specific
endogenous mediator produces a specific effect in the CNS
through TAAR1 stimulation. A major pitfall is the existence of
additional targets for most, if not all, known TAAR1 ligands.
Inhibition by EPPTB has been regarded as a criterion to attribute
functional effects to TAAR1 stimulation. Although fairly specific
for TAAR1, screening procedures based on the inhibition of
standard ligand binding showed >80% inhibition at human
A3 adenosine receptor and rat sodium channel, as well as
>50% inhibition at human A1 adenosine receptor, human
cholecystokinin 1 receptor, human melatonin 1 receptor, rat
MAO-A, rat 5HT1B receptor, and rat GABA-dependent chloride
channel (Stalder et al., 2011). Therefore, the responses to EPPTB
should be confirmed through the use of another antagonist with
a different molecular structure, which is not available at present.

Alternatively, the pharmacological investigations should be
corroborated by convergent results obtained by molecular
biology techniques. While TAAR1-KO animals have been
produced and have provided interesting results, experimental
models allowing conditional and tissue-specific TAAR1-KO or
knockdown are needed to obtain clear-cut answers to several
crucial questions.

Another methodological limitation affecting many investi-
gations is the absence of a proper comparison between the
endogenous concentration of the putative ligand and the EC50
derived from pharmacological experiments. In general, the assay
of endogenous tissue levels was not adequately validated, and the
actual concentrations obtained at receptor level after exogenous
administration were not determined.

It must also be realized that the basic biochemical features
of this signaling system are still confused or unknown. TAAR1
has the structural features of a plasma membrane receptor,
but its physiological location is not completely clear. Most
TAAR1 molecules are intracellular, and it is unknown whether
this observation reflects subcellular trafficking of membrane
receptors, or rather the existence of an intracellular pool of
functional receptors, activated by intracellular ligands. The
transduction pathway(s) coupled to TAAR1 is (are) also obscure.
Gs-mediated cAMP production was initially considered as the
hallmark of TAAR1 activation, but we have now evidence that
TAAR1 can also activate inward rectifying potassium channels
and the β-arrestin 2 pathway, probably by Gs-independent
pathways. In addition, a consistent body of evidence support
interaction with, and modulation of, other G protein-coupled
membrane receptors, possibly mediated by the formation of
receptor heterodimers. Putative partners include dopamine,
serotonin, adrenergic, and glutamate receptors. In general, the
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specific pathways activated in specific CNS locations remain to be
determined.

If the TAAR1-triggered pathway has a significant modulatory
role, one would expect that the concentration and/or availability
of its ligands are closely regulated. At present, the brain
metabolism of putative TAAR1 ligands is largely obscure. Trace
amines are allegedly produced by aromatic amino acids through
a few enzymatic steps, always including AADC, but very little
is known about the regulation of AADC expression or activity.
In the case of T1AM, the matter is more complex, since its
synthetic pathway is still controversial, and no evidence of local
production within the CNS has been obtained so far (Hoefig et al.,
2016).

In conclusion, there is strong circumstantial evidence for
an important neurophysiological role of TAAR1, but further
investigation is needed to reach definite conclusions. The matter
has potential practical implications, since TAAR1 might be
an intriguing target for pharmaceutical interventions. In the
16 years elapsed since its discovery, different classes of synthetic
TAAR1 agonists have been developed, and promising results
have been obtained in experimental models of drug abuse, stress,
depression, narcolepsy, and cognitive impairment. Although

the history of medicine reports many instances of drugs that
were successfully introduced in human therapeutics before their
mechanism of action was understood, a deeper knowledge of
TAAR1 physiology and pathophysiology would help to focus
future pharmacological and clinical research.
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