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Abstract 17 

 18 

We provide a geomorphological analysis of a glacial valley in the Pelister mountain, in 19 

Macedonia. Three boulders from a frontal moraine were dated with cosmogenic nuclide 20 

isotope 10Be. Results demonstrate that the boulders have been exposed since 15.24 ± 21 

0.85 ka. This age constrains the formation of the frontal moraine to the Oldest Dryas cold 22 

event. This age fits with that of the other glacier deposits dated to the Older Dryas in the 23 

Alps, Balkans, Carpathians and Turkey mountains. The Pelister palaeo glacier has been 24 

reconstructed and its equilibrium line altitude extracted, returning of a value of 2,250 m asl. 25 

This is in good agreement with the equilibrium line altitudes of most other reconstructed 26 

glaciers of the same age in the circum-Mediterranean mountains, demonstrating a 27 

comparable response to the Oldest Dryas event. Other palaeoenvironmental records near 28 

the Pelister mountain indicate that the Older Dryas was here characterized by a cold and 29 

remarkably-dry event. The temporal relationship between Older Dryas glacier advances in 30 

the Balkan region and recorded changes in the Atlantic thermohaline circulation during the 31 

Laurentide Ice Sheet massive ice discharge (H1 event), confirms the strong climatic link 32 

between the pan Mediterranean regions and the North Atlantic Ocean. 33 

 34 

Supplementary material: geochemical laboratory results are available at: 35 

http://geolsoc.figshare.com 36 
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In the last decades, the increased interest on the size and geometry of palaeo glaciers in 38 

the pan-Mediterranean region and their climatic significance has stimulated a number of 39 

new studies on many of its mountain ranges (Hughes et al. 2006a; Hughes & Woodward 40 

2008; 2017 and reference therein). The chronological information included in some of 41 

these data has been used to interpret glacier dynamics and, when integrated with other 42 

terrestrial and marine climate proxies, to derive palaeoevironmental conditions (Federici et 43 

al. 2017; Palacios et al. 2017). In particular, palaeoglaciological reconstructions can be 44 

used to infer the climate of the past, based on the paradigm that glaciers respond to 45 

changes in air temperature and precipitation by adjusting their mass balance with a 46 

consequent advance/retreat of the glacier’s front (Oerlemans 2005). 47 

The climate of the Mediterranean mountains is influenced by atmospheric perturbations 48 

originated off the North Atlantic, along with southward outbreaks of the polar front and of 49 

the Siberian high pressure (Lionello et al.  2006; Florinet & Schlüchter 2000; Kuhlemann et 50 

al. 2008). Moreover, zones of cyclogenesis can be generated in the central Mediterranean 51 

area (Gulf of Lions and Genova) as well as in the subtropical high-pressure zone. How 52 

these various components interplayed in the past remains an unresolved and discussed 53 

question in palaeoclimatology (Kuhlemann et al. 2008). Within this context, the behavior of 54 

Mediterranean mountain glaciers across the last glacial cycle may help to unravel the 55 

effect of the various climatic components that affected the Mediterranean atmospheric 56 

circulations during this time. 57 

The chronological data collected so far indicate that, following the Last Glacial Maximum 58 

(~23 ka, LGM hereafter, Hughes & Gibbard 2015), the Mediterranean mountain glaciers 59 

recorded at least two Late-glacial (~23-10 ka) advances, approximately at 16-15 ka and 60 

13-11 ka (Giraudi & Frezzotti 1997; Ivy-Ochs et al. 2006; Federici et al. 2008; Hughes & 61 

Woodward 2008; Akçar et al. 2014; Hughes & Gibbard 2015; Federici et al. 2017; Palacios 62 

et al. 2016). These two advances match with the cold periods known as GS-2a and GS-1 63 

stadials recognized in the oxygen isotope record of Greenland cores (Björk et al. 1998; 64 

Rasmussen et al. 2006), and with the Oldest and Younger Dryas in many other studies 65 

(Clark et al. 2012; Palacios et al. 2017 and reference therein).  66 

Despite the relative large number of recent publications, the distribution of chronologically-67 

constrained glacier advances is spatially discontinuous, with some mountain ranges still 68 

completely or partially unstudied. For example, in the Dinaric Alps and Greek mountains, 69 

the LGM and older glacial cycles are well documented (Hughes et al. 2003; 2006a; 2010), 70 

whereas Late-glacial advances are less documented and rarely dated, with the exception 71 



of the mountains of Kosovo and Montenegro (Kuhlemann et al. 2008; Hughes et al. 2011). 72 

Even worse is the situation of the mountainous regions within the Former Yugoslavian 73 

Republic of Macedonia (from now on referred to as Macedonia). Here, despite evidence of 74 

multiple glacier advances (Menković et al. 2004; Ribolini et al. 2011; Milevsky 2015), no 75 

chronological constraints have ever been obtained, thus putting this region completely 76 

outside of the palimpsest of cold climate events of the Mediterranean. 77 

The aim of this work is to illustrate the glacial geomorphology and chronology of a frontal 78 

moraine in the Pelister mountain range, SW Macedonia (Fig. 1). The ages, obtained by 79 

cosmogenic 10Be dating of the glacial deposit, and the equilibrium line altitude (ELA) of the 80 

reconstructed glacier that deposited it, are then discussed in the context of other glacier 81 

advances of similar age across the Mediterranean, as well as in relation to other 82 

palaeoenvironmental records. 83 

 84 

Setting 85 

 86 

The Pelister mountain range (Fig. 1) is characterized by a number of summits exceeding 87 

an elevation of 2,500 m asl, with the Pelister peak being the highest at 2,601 m asl. 88 

Similar to the other mountain ranges belonging to the West Macedonian Zone (Arsovski 89 

1997), the Pelister’s has a NE-SW main axis strike. Since the Late Caenozoic, the area 90 

experienced differential movements along normal, oblique and strike slip faults that led to 91 

the formation of horst and graben systems roughly aligned to the NE-SW direction. Some 92 

of these grabens are now filled by lakes, such as the Ohrid and Prespa lakes (Burchfiel et 93 

al. 2004; Hoffmann 2013; Milevski 2015). From the main watershed, the Pelister mountain 94 

flanks steeply descend towards the Lake Prespa and Bitola plain, to the W and E 95 

respectively. Three valleys drain the eastern flank, all joining a main SW-NE oriented river 96 

that runs along the mountain’s foot, and which enters the Bitola plain. One of these 97 

valleys, the Veternica Valley, hosts a typical glacial cirque lake, the Golemo Ezero (Fig. 2), 98 

in its uppermost part. The lake is located at 2,222 m asl, in proximity to the main 99 

watershed, between the Veternica (2,420 m asl) and Mrazarnik (2,236 m asl) peaks. It is 100 

17 m deep and is dammed by a moraine, which is the focus of the chronological work and 101 

palaeoglacier reconstruction presented here.  102 

The bedrock of the Pelister mountain range is mainly composed of an Ordovician alkaline-103 

granites and granodiorites, frequently embedded within Paleozoic shales, and quartz- and 104 

quartz-sericite schists. Locally, amphibolites and amphibolite-schists crop out. 105 



The geomorphology of the region includes cirques and thick glacial and fluvio-glacial 106 

deposits, along with extensive periglacial landforms such as block streams, block fields, 107 

solifluction lobes and ploughing blocks (Stojadinović 1970; Kolčakovski 1996; Andonovski 108 

& Milevski 2001). 109 

As it was not possible to retrieve any local meteorological data, climate information was 110 

sourced from a global dataset obtained by interpolating weather stations at a resolution of 111 

30 arc seconds (http://www.worldclim.org) (Hijmans et al. 2005). From this, it appears that 112 

the top of the Vertnica Valley is presently characterized by total annual precipitation of 980 113 

mm, with November and August being the wettest (110 mm) and the driest (53 mm) 114 

months respectively. The mean annual temperature is 2.7 °C, with January and July being 115 

the coldest (-5.8 °C) and warmest (11.5 °C) months respectively. 116 

 117 

Methods 118 

The Veternica Valley was surveyed during two field campaigns in 2013 and 2014. The 119 

survey led to detailed geomorphological mapping undertaken on topographic maps at 120 

1:25,000 scale. The mapping was later implemented by the analysis of satellite imagines 121 

(Quick Bird imagery: QB02 sensor and Pan_MS1 band, 60 cm spatial resolution). 122 

Sampling and dating were focused on the frontal moraine that dams the Golemo Ezero 123 

Lake. The moraine is matrix-supported and characterized by a large number of boulders 124 

resting on its crest. The top surface of three of these boulders was sampled for the 125 

purpose of obtaining an exposure age through the measurement of the 10Be cosmogenic 126 

isotope concentration. The sampled boulders stand 0.5 to 1 meter above the surrounding 127 

moraine’s crest and are characterized by a quartz-rich crystalline and metamorphic 128 

lithology, i.e. quartz-rich schist. Each sample was collected from a flat (though not 129 

necessarily horizontal) surface as far away as possible from the boulder’s edges. Only the 130 

first 3-4 cm of rock from the surface of the boulder were collected. The angle to the horizon 131 

was measured at 30-degree intervals, as well as the strike and dip of the sampled surface 132 

in order to calculate topographic and self-shielding (Dunne et al. 1999).  133 

Quartz was obtained from each sample using magnetic separation to isolate iron-bearing 134 

minerals, froth flotation to separate feldspars and micas, and density separation to remove 135 

heavy minerals. The quartz was finished with hydrofluoric and nitric acid leaches and 136 

purity checked with Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-137 

OES) analysis. This purified quartz was spiked with approximately 0.250 mg of Be in a 138 

carrier solution prepared from beryl and dissolved in hydrofluoric and nitric acids. After 139 



volume reduction, fluorides were decomposed in sulfuric acid and the resulting solids were 140 

converted to chlorides and added to a pH>14 sodium hydroxide solution to remove 141 

residual iron, titanium, calcium, and magnesium. Beryllium was precipitated out of this 142 

solution, taken up with oxalic acid, and purified on cation columns. Purified beryllium was 143 

oxidized in a propane flame, mixed with niobium powder, and packed into stainless steel 144 

cathodes for the AMS measurement at PRIME Lab, Purdue University, using standards 145 

described by Nishiizumi et al. (2007). 146 

Exposure ages were calculated adopting the North-East North American production rate 147 

and using LM as time-dependent adaptation scaling scheme (Balco et al. 2009). The 148 

calculations were undertaken with the online CRONUS-Earth tool 149 

(http://hess.ess.washington.edu/math/) version 2.2. A rock density of 2.7 g/cm3 was 150 

considered in the age calculation. 151 

Limited features of weathering (i.e. grooves, cavities, micro-relief) were visible on the 152 

surface of sampled boulders, indicating a negligible erosion. Therefore, and because a 153 

robust, independent control on the erosion rate could not be obtained, the ages were not 154 

corrected for this factor. Analogously, information about boulder snow cover today as well 155 

as during the Late-glacial are lacking. Therefore, ages were not corrected for this factor 156 

either. By not accounting for erosion and snow cover, the ages discussed in this paper are 157 

likely to be some hundred years younger than the actual deposition of the moraine. 158 

Tectonic uplift could cause a production rate lower than expected because the Pelister 159 

mountain experienced high vertical movement (up to 4-5 mm/yr) in the Late Quaternary 160 

(Lilienberg, 1968). Given the exposure ages, this effect may account for up to ~50-70 161 

meters increase in elevation since the calculated ages. This would have affected the 162 

calculated ages by no more than 450 hundred years. Glacial isostatic adjustment can be 163 

ruled out for the studied area due to the limited thickness of the palaeoglacier. Accordingly, 164 

no corrections were applied for changes in elevation of the sampled boulders. 165 

A GIS approach, based on the numerical technique of Benn & Hulton (2010), has been 166 

used to semi-automatically reconstruct the thickness and extent of the former cirque 167 

glacier that deposited the sampled moraine (Pellitero et al. 2016). The approach is based 168 

on a user given shear stress, which by default is set to 100 kilopascals (kpa). In this case a 169 

shear stress of 50 kpa has been used in the lower portion of the reconstructed glacier in 170 

order to match the ice level suggested by the front-lateral moraine, and a default 100 kpa 171 

for the rest of the glacier. Further GIS tools (Pellitero et al. 2015) have been adopted to 172 

automatically derive the Equilibrium Line Altitude (ELA) value of the reconstructed glacier, 173 



by applying the classic Area Altitude Balance Ratio (AABR) method (Osmatson 2005), with 174 

a ratio value of 1.6, same as the average obtained on present-day glaciers in other parts of 175 

the Mediterranean mountains (Rea, 2009). The same approach was used to reconstruct 176 

the extent of, and calculate the ELAs of, other Mediterranean range palaeo-glaciers, 177 

coeval of the glacier that deposited the sampled moraine. Mapped frontal moraines which 178 

had been dated to the Oldest Dryas (see location and references in Fig. 5) were used to 179 

reconstruct the 3D surface of the glaciers that deposited them. Glacier reconstruction was 180 

made using the GIS tool mentioned above (Pellitero et al. 2016) with a standard 100 181 

kilopascals shear stress, and the ASTER DEM as the bedrock DEM, with the exception of 182 

the glacial landsystems located in Spain and Italy, for which a better quality DEM was 183 

available. The resulting 3D surface was checked with the glacial geomorphology, so the 184 

resulting glacier surface properly adapted to the landforms (cirques, frontal and lateral 185 

moraines) that evidenced a constraint on its extension. The 3D surface of these palaeo-186 

glaciers were then used to derive their ELA, calculated using the GIS tool described in 187 

Pellitero et al. (2015). As done for the Pelister ELA calculation, an Accumulation Area 188 

Balance Ratio of 1.6 was used in all pan-Mediterranean ELA reconstructions, following 189 

Rea (2009). 190 

 191 

Results 192 

 193 

Glacial and periglacial evidences 194 

 195 

The head of the Veternica Valley is a classic glacial cirque (Fig. 2), with well evident lateral 196 

spurs and a steep rock headwall. A minor, relatively smoothed depression along the 197 

eastern watershed, 30-40 m above the cirque/valley floor, suggests the presence of a 198 

glacial transfluence into the adjacent valley, most likely during the LGM. The cirque floor is 199 

at an elevation of approximately 2,200 m asl. Between this elevation and 1,900 m asl, the 200 

Veternica Valley is occupied by glacial deposits and interspersed bedrock outcrops (Fig. 201 

2). The deposits are made of massive diamicton supported by a coarse sandy-gravel 202 

matrix with frequent decimetric clasts. Numerous metric and plurimetric boulders are 203 

standing on the deposit’s surface. The dominant lithologies of the clastic fraction are 204 

prevalently quartz- schistose and more rarely granitic. 205 

Locally, moraine ridges can be identified within the glacial deposits (Fig. 3a, b, c). The 206 

lowermost frontal moraine is composed of two long lateral ridges converging at about 207 



2,060 m asl. (Fig. 2, 3a and 3b). Right upvalley, a set of ridges delineates two portions of 208 

the same, indented, moraine at a similar altitude (2,110-2,120 m asl), separated by the 209 

current river channel (Fig. 2, 3a and 3b). Further upvalley, the frontal moraine damming 210 

the Golemo Ezero Lake is the most prominent of all the moraines in the valley (Fig. 2 and 211 

3c). It stands 25-30 m above the cirque floor and reaches a maximum elevation of 2,230 m 212 

at its eastern end, where it progressively becomes buried under scree deposits. Numerous 213 

granite and quartz-schist boulders stand on the moraine crest. Another lateral-frontal 214 

moraine system is evident further to the East, close to the cirque wall (Fig. 2 and 3c). This 215 

small moraine system partly overlaps onto the lateral flank of the large frontal moraine 216 

damming the lake. 217 

Many protalus ramparts are present in the slope deposits on the Valley’s western flank and 218 

at the base of the eastern side of the cirque wall (Fig. 2 and 3d). The rampart crests are 219 

partly coalescent and exhibit a close upvalley concavity. Extended block fields and sheets 220 

cover the topmost part of the Valley’s slope (Fig. 2). 221 

 222 

Chronology 223 

 224 

Sampling was restricted to the 3 largest blocks residing on the moraine crest (Fig. 4a, b).  225 

The field and laboratories values entered in the age calculator are reported in the Tab 1. 226 

The dated boulders from the Golemo Ezero moraine returned overlapping ages of 15.03 ± 227 

0.85 ka, 15.56± 0.85 ka and 15.14 ± 0.86 ka (Tab. 2a), thus demonstrating a considerable 228 

consistency. In particular, a constant production rate model and the scaling system for 229 

spallation of Lal (1991) and Stone (2000) were chosen. The alternative adoption of time-230 

varying production models would have returned ages that are only a few hundred years 231 

younger (Tab. 2b). 232 

The mean age of 15.24 ± 0.85 ka is fully consistent with the Late-glacial stadial known as 233 

the Oldest Dryas (Björk et al. 1998; Rasmussen et al. 2006). Given the good 234 

reproducibility of the data, the possibilities that the ages are from boulders that were 235 

exhumed from moraine fine matrix (minimum age) or boulders exposed prior to be 236 

deposited in the fontal moraine (supraglacial debris) (maximum age) can be ruled out. In 237 

these regards, the obtained exposure ages represent the time of deglaciation. 238 

 239 

Discussion 240 

 241 



Chronological correlation 242 

 243 

Recent studies have evidenced the existence of post LGM glacial advances in the 244 

mountain of Turkey, Balkan and Carpathian (Fig. 5). Late-glacial glacial advances in 245 

Turkey were cosmogenically-dated at 14-16 ka and ~13 ka (Zahno et al. 2010; Sarikaya et 246 

al. 2008; Sarikaya et al. 2009; Ackar et al. 2014) (Fig. 6). Similar ages were also obtained 247 

in the Šara mountain chain (Kosovo), where a glacial advance was dated at ~14 ka, 248 

followed by a new advance at 11-12 ka (Kuhlemann et al. 2009). A Late-glacial phase was 249 

also dated in the south Carpathians (Retezat Mountains) at 14-17 ka (Reuther et al. 2007), 250 

followed by a more recent glacial advance (Fig. 6). These data match with the minimum 251 

ages obtained by secondary calcite in moraine deposits in the Massif of Orjen, 252 

Montenegro, where a Late-glacial phase older than 12-13 ka is proposed, along with a 253 

phase older than 8-9 ka BP (Hughes et al. 2011). A glacial advance at 14-19 ka (16.2 ± 254 

2.7 ka) was documented in the Rila mountains (Bulgaria), although it has been interpreted 255 

as a late phase of the LGM (Kuhlemann et al. 2013) (Fig. 6). Recently, a Younger Dryas 256 

glacial phase (10-13 ka) was dated in the mountains of Peloponnesus (Mt Chelmos, 257 

Greece), where Oldest Dryas evidences seem to lack (Pope et al. 2017). 258 

All these data converge in defining a glacial advance framed in the 14.5-17.5 ka interval, 259 

between the LGM and the Younger Dryas. Similar ages have also been reported from 260 

other circum-Mediterranean mountain ranges. These include the Alps (the Gschnitz 261 

stadial) (Ivy-Ochs et al. 2006), some of the main Spanish ranges (Palacio et al. 2016 and 262 

reference therein) and possibly the Central Apennines, where a stadial at ~15 ka has been 263 

hypothesised (Giraudi & Frezzotti 1997). These glacial advances throughout the 264 

Mediterranean are all chronologically linked to the climatic cold interval known as the 265 

Oldest Dryas, recognized in the oxygen isotope record of Greenland cores (GS-2a in the 266 

GRIP ice core) (Björk et al. 1998; Rasmussen et al. 2006). 267 

In this framework, the frontal moraine in the Pelister mountain represents the first dated 268 

evidence of an Oldest Dryas glacial advance in the mountains of Macedonia. The high 269 

climatic instability that characterized this interval determined a number of glaciers’ minor 270 

oscillations and the formation of moraine clusters in various regions (Ivy-Ochs et al. 2006; 271 

Darnault et al. 2012; Palacios et al. 2016). The few small moraines found immediately 272 

downvalley the dated Golemo Ezero moraine also, most likely, resulted from various minor 273 

advances within the Oldest Dryas interval. The moraine dated at ~15 ka represents the 274 

last advance before the Bolling/Allerod climatic amelioration. 275 



Unlike other Balkan, Carpathians, Turkey mountains (Fig. 6) and Pindus mountain in 276 

Greece, there is no evidence of a Younger Dryas glacier advance in this Pelister’s 277 

Veternica Valley, most likely because the lack of accommodation space for snow/ice 278 

deposition and because of limited elevations. In northern Greece, the Younger Dryas ELAs 279 

were 2,425 m a.s.l. according to Hughes et al. (2006b). In the Pelister mountain, which is 280 

in the rain shadow of the Pindus Mt-Albanian Alps, it is realistic to expect the ELA of 281 

Younger Dryas glaciers to be higher and certainly above the highest elevation of 2,420 m 282 

a.s.l. reached in the Veternica Valley above the dated moraine (Fig. 2). However, the 283 

presence of protalus ramparts nearby the Golemo Ezero moraine suggests that the top 284 

most part of the valley may have responded to the cold phase of the Younger Dryas with 285 

the formation of periglacial features. 286 

 287 

ELA calculation and correlation across the Mediterranean region 288 

 289 

At ~15 ka the glacier extended down to the Golemo Ezero moraine with a length of ~500 290 

m, a maximum width of ~300 m and a thickness of up to 85 m. While the North-West side 291 

of the reconstructed glacier is flanked by the steep valley side, the South-East side 292 

appears to be less confined. This suggests that a second glacial mass could have been 293 

contemporaneously present in this area, partly in contact with the reconstructed glacier. 294 

This secondary glacier could be responsible for the deposition of the latero-frontal moraine 295 

system at the base of the eastern part of the cirque wall (Fig. 2). 296 

The ELA calculation with the AABR method, adopting a ratio value of 1.6, yielded a value 297 

of 2,250 m asl. This value can be tentatively correlated with the ELAs obtained from 298 

reconstructed glaciers, associated to moraines dated to the Oldest Dryas, in other, circum-299 

Mediterranean mountain ranges (Fig. 7). A summary plot of ELA vs. longitude (Fig. 8) 300 

shows how the ELA tends to be relatively consistent in the 7°-30° degree of longitude 301 

interval (varying in the 1,960-2,320 m asl altitudinal interval), with the notable exceptions of 302 

the Reovci glacier near the Adriatic coast of the Balkans (11 in Fig. 8) and of the Spain 303 

glaciers. The low value of ELA (1,425 m asl) of the Reovci Oldest Dryas glacier can be 304 

attributed to the role of the Adriatic Sea that generated a relatively high amount of 305 

humidity, which was eventually captured by the westernmost Balkan ranges (Hughes et al. 306 

2010). The ELA of the Spain glaciers is on average higher than that of the other settings. 307 

For at least some of these Spain cases, it is possible that specific topoclimatic conditions 308 

controlled the increased ELA. For example, the high ELA value (2819 m asl) of the Seco 309 



glacier in the Sierra Nevada (5 in Fig. 8) is probably due to the south aspect of the glacial 310 

basin. More in general, it must be taken into account that niche settings may tend to 311 

produce glaciers with ELAs that might not conform to the regional ELA. Indeed, there are 312 

examples of Mediterranean glaciers still surviving today below the regional snowline 313 

because of avalanching and windblown snow contribution (Hughes and Woodward 2017 314 

and references therein). 315 

Despite these exceptions, overall the ELA analysis demonstrates that the glacier in the 316 

Pelister Mountain responded to the Oldest Dryas cold interval in a way comparable to 317 

most of the central-eastern Mediterranean glaciers. 318 

 319 

Correlations with climate proxies 320 

 321 

Atmospheric circulation during the LGM, and, most probably, the Late-glacial, is thought to 322 

have been dominated by advection of cold air masses from the Atlantic Ocean over the 323 

Mediterranean region (Kuhlemann et al. 2008; Florinet & Schlüchter 2000). Indeed, 324 

various marine and continental climate proxies and palaeoenvironmental records 325 

registered the effect of changes in the North Atlantic thermohaline circulation during 326 

massive ice discharge, e.g. Heinrich event (Bar-Matthew et al. 1999; Bartov et al. 2003; 327 

Cacho et al. 2001; Fleitmann et al. 2009; Stanford et al. 2011) (Fig. 9a, b, c). 328 

The fossiliferous contents of cores from Adriatic and North Aegean seas indicate that the 329 

Oldest Dryas has been a cold event that relevantly impacted on the conditions of the sea 330 

surface and terrestrial ecosystem (Combourieu et al. 1998; Siani et al. 2001; Kotthoff et al. 331 

2011; Zonneveld 1996). Particularly, the planktonic foraminifera and dinocyst cold 332 

indicators (Turborotalia Quinqueloba, Neogloboquadrina Pachyderma, Nemaosphaeropsis 333 

Labyrintus, Spiniferites Elongates) suggests that the decline of Sea Surface Temperature 334 

(SST) culminated in a minimum at ~17 cal ka BP (Fig. 8d). Moreover, the fossil pollen 335 

assemblage in these cores indicates that the Oldest Dryas interval was characterized by 336 

pronounced dry condition, as evidenced by a great development of semi-desertic 337 

vegetation (Artemisia) and a scarce presence of trees. The pronounced dry condition is 338 

also demonstrated by the 18O signals recorded in speleothems (Fleitman et al. 2009) (Fig. 339 

8c) and endogenic and biogenic carbonate deposits from lakes in the Mediterranean 340 

region (Roberts et al. 2008). 341 

The palaeoenvironmental data nearer to the Pelister mountain are those inferred by the 342 

cores extracted at the bottom of the current Prespa and Ohrid lakes, along with that from 343 



the now disappeared Lake Maliq (Fig. 1). The pollen assemblages are in agreement with a 344 

pronounced dryness during the Oldest Dryas, as evidenced by the dominance of cold-345 

tolerant herbs and minimal occurrence of arboreal plants (cold steppa environment) 346 

(Aufgebauer et al. 2012; Wagner et al. 2010; Bordon et al. 2009; Panagiotopulus et al. 347 

2014). Accordingly, the recorded, limited supply of Ca2+ and HCO3
- ions to the lakes could 348 

be caused by inhibited soil formation and chemical weathering in the catchment 349 

associated with an open steppa vegetation (Aufgebauer et al. 2012; Panagiotopulus et al. 350 

2013). A peak in the abundance curve of Staurosirella Pinnata (Fig. 8e), a typical glacial 351 

type species of diatom, correlates with a minimum of arboreal plants during the Oldest 352 

Dryas interval (Cvetkoska et al. 2015). The high content of Oldest Dryas clastic debris 353 

material (high K counts) (Fig. 8f) in the lake cores has been explained by a spring-summer 354 

water discharge linked to a seasonal melting of glaciers in the catchment (Aufgebauer et 355 

al. 2012; Damaschke et al. 2013). However, this high content of clastic material 356 

characterized both the LGM and the first part of the Late-glacial, thus suggesting that this 357 

seasonal glacier behavior was not restricted to the Oldest Dryas. Although the glaciers 358 

within the lake catchments did not reach the shores during the Oldest Dryas (Ribolini et al. 359 

2011), a seasonal ice covering the lake (at least near the shores) should have been 360 

present, as testified by frequent Ice Rafted Debris (IRD) (Aufgebauer 2012; Wagner et al. 361 

2010). Moreover, Mn Late-glacial peak in the Prespa Lake core (Fig. 8g) was associated 362 

to mixing phenomena in the water column, consistent with higher aeolian activity (Wagner 363 

et al. 2010). An increase in sand content suggesting dry conditions was also observed 364 

during the Oldest Dryas interval in the Lake Prespa core (Fig. 8h) (Aufgebauer et al. 365 

2012).  366 

Local Oldest Dryas temperature and precipitation were tentatively reconstructed using the 367 

fossil pollen assemblages of Lake Maliq (812 m asl, see Fig. 1 for location) (Bordon et al. 368 

2009). An estimated mean annual air temperature (MAAT) from -3 to 1 °C (Fig. 8i) and 369 

mean annual precipitation lower than 400 mm were suggested. The reconstructed air 370 

temperature for the Oldest Dryas warmest month at Lake Maliq (8-10 °C) (Bordon et al. 371 

2009) is partly in agreement with the Chironomid-inferred temperature of July (5.2-5.3 °C) 372 

calculated for the same interval at Lake Brazi (1,740 m asl), in the Southern Carpathians 373 

(Tóth et al. 2012) (Fig. 8j). 374 

Local and regional palaeobotanical, geochemical and sedimentological data collectively 375 

converge in defining, directly or indirectly, a cold, dry and windy Oldest Dryas interval in 376 

the Mt Pelister region. More in general, the estimated dry conditions, together with the 377 



correlation between the Pelister glacier advance and the H1 event, confirms that cold 378 

periods controlled by North Atlantic changes to the thermohaline circulation corresponded 379 

to aridity in the Mediterranean (Bartov et al. 2003; Roberts et al. 2008). 380 

In the context of regional aridity, it is worth noting the relevant role of the mountain ranges 381 

facing the Adriatic Sea, which capture (today, and most likely in the past) most of the 382 

humidity contained in air masses sourced from the Adriatic Sea and further west, leaving 383 

the interior of the Balkan region relatively dry (Hughes et al. 2010). 384 

 385 

Conclusion 386 

 387 

The Oldest Dryas glacial advance is now dated for the first time in the mountain of 388 

Macedonia (Pelister Mountain) to the mean age of 15.24 ± 0.85 ka yr. This age adds a 389 

crucial piece to the puzzle of dated glacier advances in the Balkan Peninsula, and it 390 

represents a geographical bridge between these and other, nearby Mediterranean 391 

mountains, e.g. Turkey and Carpathian ranges. Furthermore, this exposure age fits well 392 

with other glacier advance dated in the Alps (Gschnitz advance) and the Balkan, 393 

Carpathians and Turkey mountains, thus drawing a coherent picture of glaciers response 394 

to the Oldest Dryas cold interval across the Mediterranean.  395 

The ELA of the Oldest Dryas Pelister glacier is in good agreement with that of other 396 

circum-Mediterranean, reconstructed mountain glaciers of the same age. However, some 397 

relevant regional and inter-regional differences exist, indicating a glacier response to the 398 

Oldest Dryas cold period also modulated by the vicinity to source of atmospheric humidity, 399 

local topoclimatic factors, as well as diverse components in the atmospheric circulation. 400 

Palaeoenvironmental records provided by local lakes indicate that the Oldest Dryas has 401 

been a cold interval, characterized by a pronounced aridity.  402 

This confirms how the interior of the Balkan region was more arid than the mountain 403 

ranges near the Adriatic coast, where the great amount of humidity sourced by the Adriatic 404 

Sea caused a pronounced depression of the ELA of local glaciers during the Oldest Dryas 405 

(Hughes et al. 2010). 406 

The results of this work show how glacier advances may be incorporated in the record of 407 

the palaeoenvironmental data of the interior region of the Balkans, and cross-correlated 408 

with regional marine and terrestrial climate-proxy data. Moreover, the temporal relation 409 

between glacier advances in the Balkan region and changes in the thermohaline 410 



circulation during the massive ice discharge event H1, confirms the climatic link between 411 

the pan Mediterranean regions and the North Atlantic Ocean.  412 

 413 

 414 
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Table 1. 10Be exposure ages of the Golemo Ezero moraine, with sample name, 727 

coordinates and elevation, and the concentration of 10Be measured at the PRIME Lab 728 

against standard 07KNSTD. The evaluated thickness and shielding factors are reported. 729 
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(a) 

Sample name 

Thickness Shielding Prod. rate Int. Exp.age Ext. Prod. rate 

 scaling factor (muons) uncertainty (yr) uncertainty (spallation) 

 factor   (atoms/g/yr) (yr)   (yr) (atoms/g/yr) 

 EZ1 0,9833 0,991 0,369 443 15034 857 20,09 

 EZ2 0,9833 0,991 0,37 386 15560 852 20,26 

 EZ3 0,9833 0,994 0,369 451 15149 865 20,29 

  

 

(b) 
 

 

 

  
Scaling 

scheme for 
spallation: 

 
Desilets et al.  

 
(2003,2006) 

 
Dunai  

 
(2001) 

 
Lifton et al. 

 
(2005) 

 
Time-dependent 

 
Lal (1991)/Stone (2000) 

     

Sample name 

Exp age Ext Exp. age Ext. Exp. age Ext. Exp. age Ext. 

(yr) uncertainty (yr) (yr) uncertainty (yr) (yr) 
uncertainty 

(yr) 
(yr) uncertainty (yr) 

EZ1 14302 825 14498 837 14222 819 14847 851 

EZ2 14750 817 14923 828 14666 812 15346 845 

EZ3 14383 831 14563 843 14302 825 14956 859 

 

Table 2. Details of exposure ages calculation. (a): exposure ages calculated with a 

constant production rate model, scaling system for spallation of Lal (1991) and Stone 

(2000); the internal uncertainty (analytical uncertainties which are dominated by AMS 

uncertainties) and the external uncertainty (both analytical and production rate 

uncertainties) are given. (b): exposure ages calculated with a time-varying production 

models. 

  



Figure captions 

 

Fig. 1. Hillshade model of the Lake Ohrid and Lake Prespa region.  The study area on the 

Pelister mountain range is indicated. 

 

Fig. 2. Geomorphological map of the upper Veternica Valley. 1: bedrock; 2: glacial deposit; 

3: moraine ridge; 4: glacial cirque; 5: block field; 6: protalus rampart; 7: slope debris; 8: 

rockfall; 9: debris flow fan. 

 

Fig. 3. Principal geomorphological features of the upper Veternica Valley. a, b: the 

lowermost frontal moraines in the studied area; c: the uppermost frontal moraine in the 

studied area (Golemo Ezero moraine) with samples locations indicated; d: protalus 

ramparts on the western flank of the valley. See also Figure 2. 

 

Fig. 4. Sampled boulders on the top of the Golemo Ezero moraine. Sampling strategy 

favored flat-topped boulder emerging for some decimeters from the moraine crest. 

 

Fig. 5. Locations in the Balkans, Carpathians and Turkey mountains where moraines were 

dated according to cosmogenic isotopes. 1: Šara mountain chain (Balkans, Kosovo) (10Be) 

(Kuhlemann et al. 2009); 2: Pelister mountain (Balkans, Macedonia) (this work); 3: Rila 

mountains (Carpathian, Bulgaria) (10Be) (Kuhlemann et al. 2013); 4: Retezat mountains 

(Carpathians, Romania) (10Be) (Reuther et al. 2007); 5: Sandiras Mountains (SW Turkey) 

(36Cl) (Sarikaya et al. 2008); 6: Uludag Mountain (NW Turkey) (10Be) (Zahno et al. 2010); 

7: Erciyes Mountain (centre-south Turkey) (36Cl) (Sarikaya et al. 2009); 8: Erciyes 

Mountain (centre-south Turkey) (36Cl) (Sarikaya et al. 2009); 9: Uludag mountain (NW 

Turkey) (10Be) (Ackar et al. 2014); 10: Dodegol mountain (SW Turkey) (10Be) (Zahno et al. 

2009); 11: Kaçkar Mountain-Kavron Valley (NE Turkey) (10Be) (Ackar et al. 2007). 

 

Fig. 6. Plot showing the exposure age obtained in the Pelister mountain (Golemo Ezero 

moraine) compared with the (averaged) exposure ages found the Balkans, Carpathians 

and Turkey mountains. For site details and references see Fig. 4. 

 

Fig. 7. Locations in the circum-Mediterranean mountains where ELA were recalculated. 1: 

Cuerpo de Hombre glacier (Central range, Spain) (Carrasco 2015; 2: Asuente glacier 

(Cantabrian range, Spain) (Rodriguez-Rodriguez 2016); 3: Pinar glacier (Central range, 

Spain) (Palacios 2012); 4: Hoya Mora glacier (Sierra Nevada, Spain) (Palacios et al. 



2016); 5: Seco glacier (Sierra Nevada, Spain) (Palacios et al. 2016); 6: Piniecho glacier 

(Pyrenees, Spain) (Palacios et al. 2015); 7: Aranser glacier (Pyrenees, Spain) (Palacios et 

al. 2014); 8: Orri glacier (Pyrenees, Spain) (Pallas et al. 2010; 9: Gesso glacier (Maritime 

Alps, NW Italy) (Federici et al. 2017); 10: Aquila glacier (three reconstructed glaciers in the 

same valley) (Apennines, central Italy) (Giraudi & Frezzotti 1997); 11: Reovci glacier 

(Balkans, Montenegro) (Hughes et al. 2010); 12: Pelister glacier (Balkans, Macedonia) 

(this work); 13: Pietrele glacier (south Carpathians, Romania) (Ruszkiczay-Rudiger et al. 

2015); 14: Rila glacier (Balkans, Bulgaria) (Kulhemann et al. 2013); 15: Sandiras glacier 

(Taurus mountain, SW Turkey) (Sarikaya et al. 2008); 16: Karagol glacier (Uludag 

mountain, NW Turkey) (Zahno et al. 2010). 

 

Fig. 8. ELA of Oldest Dryas glaciers vs. longitude of the principal circum-Mediterranean 

mountains. For site details and references see Fig. 7.  

 

Fig. 9. Climate proxy data and palaeoenvironmental records compared with glacial 

advances in the Balkan and Carpathian mountains. (a): 18O recorded in the Greenland ice 

core (GRIP) (Rasmussen et al., 2006); (b): alkenone-based Sea Surface Temperature in 

the Alboran Sea  (Cacho et al. 2001); (c): 18O record of speleothem from the Sofular cave 

(Turkey) (Fleitmann et al. 2009); (d): planktonic foraminifera-based Sea Surface 

Temperature in the Adriatic Sea (Siani et al. 2001); (e): record of Staurosirella Pinnata 

diatom in the Prespa Lake (Cvetkoska et al. 2015); (f): K counts (peaks indicates increase 

in clastic debris input) in the Prespa Lake (Damaschke et al. 2013); (g): Mn record in the 

Prespa Lake core (peaks are associated to mixing phenomena in the water column, 

consistent with increased aeolian activity) (Wagner et al. 2010); (h): sand content in the 

Prespa lake core (Aufgebauer et al. 2012); (i): Mean Annual Air Temperature based on 

pollen assemblage at Lake Maliq (see Fig. 1 for location) (Bordon et al. 2009); (j): 

Chironomid-inferred air temperature of July at Lake Brazi (Southern Carpathians) (Tóth et 

al. 2012); (k): exposure ages of stadial moraines in the Balkans and Carpathians, 1) Šara 

mountain chain (Balkans, Kosovo) (Kuhlemann et al. 2009), 2) Rila mountains 

(Carpathian, Bulgaria) (Kuhlemann et al. 2013), 3) Rezetat mountains (Carpathians, 

Romania) (Reuther et al. 2007), 4) Rezetat mountains (Carpathians, Romania) (Reuther et 

al. 2007), 5) Pelister Mountain (this work). Timing of H0 and H1 Heinrich events according 

to Rasmussen et al. 2014. 
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Table 1. 10Be exposure ages of the Golemo Ezero moraine, with sample name, 

coordinates and elevation, and the concentration of 10Be measured at the PRIME Lab 

against standard 07KNSTD. The evaluated thickness and shielding factors are reported. 
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(a) 

Sample name 

Thickness Shielding Prod. rate Int. Exp.age Ext. Prod. rate 

 scaling factor (muons) uncertainty (yr) uncertainty (spallation) 

 factor   (atoms/g/yr) (yr)   (yr) (atoms/g/yr) 

 EZ1 0,9833 0,991 0,369 443 15034 857 20,09 
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(yr) uncertainty (yr) 

EZ1 14302 825 14498 837 14222 819 14847 851 

EZ2 14750 817 14923 828 14666 812 15346 845 

EZ3 14383 831 14563 843 14302 825 14956 859 

 

Table 2. Details of exposure ages calculation. (a): exposure ages calculated with a 

constant production rate model, scaling system for spallation of Lal (1991) and Stone 

(2000); the internal uncertainty (analytical uncertainties which are dominated by AMS 

uncertainties) and the external uncertainty (both analytical and production rate 

uncertainties) are given. (b): exposure ages calculated with a time-varying production 

models. 
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