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Abstract

We consider the three dimensional Navier-Stokes equations and we
prove that for Leray-Hopf weak solutions it is possible to characterize (up
to sub-sequences) their long-time averages, which satisfy the Reynolds
averaged equations. Moreover, we show the validity of the Boussinesq
hypothesis, without any additional assumption. Finally, in the last sec-
tion we consider ensemble averages of solutions and we prove that the
fluctuations continue to have a dissipative effect on the mean flow.
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1 Introduction

We start by describing the problem we will analyze, with particular emphasis
on the role of the external force and on the functional setting which turns out
appropriate to describe the long-time behavior.
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1.1 Framework and motivations

In this paper we study the effect of time-averaging on (Leray-Hopf) weak solu-
tions to the 3D initial-boundary value problem for the Navier-Stokes equations
(NSE for simplicity in the sequel)





vt + (v · ∇)v − ν∆v +∇p = f in ]0,+∞[×Ω,

∇ · v = 0 in ]0,+∞[×Ω,

v = 0 on ]0,+∞[×Γ,

v(0,x) = v0(x) in Ω,

(1.1)

where ν > 0 is the kinematic viscosity while Ω ⊂ R

3 is an open Lipschitz and
bounded set. We will often use the alternative expression ∇ · (v ⊗ v) for the
convective term, which is equivalent due to the divergence-free constraint1.

In order to properly set what we mean by time-averaging, let ψ : R+×Ω →
R

N be any tensor field related to a given turbulent flow (N being its order).
The time-average over a time interval [0, t] is defined by

Mt(ψ)(x) :=
1

t

∫ t

0

ψ(s,x) ds for t > 0. (1.2)

The main aim of this paper is to apply the averaging operator Mt to NSE (1.1)
and, according to standard turbulence modeling process, to study the limit
when t→ +∞. We will adopt the following standard notation for the long-time
average

ψ(x) := lim
t→+∞

Mt(ψ)(x), (1.3)

whenever the limit exists. We recall that time-averaging has been introduced by
O. Reynolds [25], at least for large values of t, and the ideas have been widely
developed by L. Prandtl [23] in the case of turbulent channel flows. The same
ideas have been also later considered in the case of fully developed homogeneous
and isotropic turbulence, such as grid-generated turbulence. In this case the
velocity field is postulated as oscillating around a mean smoother steady state,
see for instance G.-K. Batchelor [1].

The standard assumption about such turbulent flows is the ergodic one,
so that –according to the Birkhoff theorem– the time-averaging coincide with
statistical means (U. Frisch [12]), which is one of the basis for the derivation of
RANS turbulent models such as the k–εmodel (Mohammadi and Pironneau [22]
and Chacon and Lewandowski [7]). However, it is worth noting that even for a
given A ⊂ R and λ the Lebesgue measure, the mapping

A 7→ lim
t→+∞

1

t
λ(A ∩ [0, t]) = lim

t→+∞
Mt(1A) = µ(A),

1Being given two vector fields u = (u1, u2, u3) and w = (w1, w2, w3) , the tensor product
of u by w is defined by (u ⊗w)ij = uiwj , for 1 ≤ i, j ≤ 3. It is easily checked that, at least
formally, ∇ · v = 0 implies that (v · ∇)v = ∇ · (v ⊗ v).
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is not –strictly speaking– a probability measure since it is not σ-additive2.
Therefore, the quantity ψ is not rigorously a statistic, even if practitioners
could be tempted to write it (in a suggestive and evocative meaningful way) as
follows:

ψ(x) =

∫

R+

ψ(s,x) dµ(s).

Concerning the application of time-averaging to turbulent flows one first
main problem is due to the fact that the integration with respect to any variable
is a linear operation, which is not well behaved on quadratic terms. In particular
(but the same holds true even for finite-time averaging)

v ⊗ v 6= v ⊗ v, (1.4)

and the modeling of the difference between the left and right-hand side of (1.4)
is one of the generic open questions in any large scale modeling. This is known
as the interior closure problem, (cf. Berselli, Iliescu, and Layton [3], Chacon and
Lewandowski [7], and Sagaut [26]).

By following the standard notation let v′ := v − v denote the velocity fluc-
tuation. When we formally apply the “bar operator” (1.3) to the NSE (1.1), it
appears the Reynolds stress tensor v′ ⊗ v′ in the resulting equations through the
term −div(v′ ⊗ v′) in the right-hand side, due to this nonlinear phenomenon.
One of the main themes in turbulence modeling is the Boussinesq hypothesis:

“on average the fluctuations are dissipative,”

which means that the term −div(v′ ⊗ v′) can be considered as a viscous force
exerted by the fluctuations (of the velocity) over the means (of the velocity
itself). This naturally leads to the introduction of the concept of eddy-viscosity
and it is at the basis of many eddy-viscosity models which have been proposed.
It is still a great mathematical challenge today to obtain rigorous mathematical
proofs of the validity of this process, which is of paramount importance in
large scale modeling, hence in the mathematical analysis of turbulent flows, see
refs. [3, 7, 26].

1.2 On the source term and an existence result.

Since we aim to consider long-time averages for the NSE, we must consider
solutions which are global-in-time (defined for all positive times). Due to the
well-known open problems related to the NSE, this forces to restrict to weak
solutions. By using a most natural setting we take the initial datum v0 in

H := {u ∈ L2(Ω)3 : ∇ · u = 0, v · n = 0 on Γ},

where Γ = ∂Ω is the boundary of Ω, and n denotes the outward normal unit
vector. The classical Leray-Hopf result of existence (but without uniqueness)

2The mapping µ satisfies µ(A ∪ B) = µ(A) + µ(B) for A ∩ B = ∅ but, on the other hand,
we have

∑
∞

n=0 µ([n, n+ 1[) = 0 6= 1 = µ(
⋃

∞

n=0[n, n+ 1[).
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of a global weak solution v to the NSE holds when f ∈ L2(R+;V
′), and the

velocity v satisfies
v ∈ L2(R+, V ) ∩ L∞(R+, H),

where
V := {u ∈ H1

0 (Ω)
3 : ∇ · u = 0},

and V ′ is its topological dual. We will also denote by < , > the duality pairing3

between V ′ and V .
Such source term f verifies

∫∞

t
‖f(s)‖2V ′ ds → 0 when t → +∞. Therefore,

we guess that it cannot maintain any turbulent motion for large t, which is
not relevant for our purpose. This is why we must choose a broader class for
the source terms. According to the usual folklore in mathematical analysis, we
decided to consider the space L2

uloc(R+;V
′) made of all measurable vector fields

f : R+ → V ′ such that

‖f‖L2
uloc(R+;V ′) :=

[
sup
t≥0

∫ t+1

t

‖f(s)‖2V ′ ds

]1/2
< +∞.

We will see in the following, that the above space, which strictly contains
L2(R+;V

′), is well suited for our framework. We will prove the following exis-
tence result, in order to make the paper self-contained.

Theorem 1.1. Let v0 ∈ H, and let f ∈ L2
uloc(R+;V

′). Then, there exists a
weak solution v to the NSE (1.1) global-in-time, obtained by approximations,
such that

v ∈ L2
loc(R+;V ) ∩ L∞(R+;H),

and which satisfies for all t ≥ 0,

‖v(t)‖2 ≤ ‖v0‖
2 +

(
3 +

CΩ

ν

)
F2

ν
,

and

ν

∫ t

0

‖∇v(s)‖2ds ≤ ‖v0‖
2 + ([t] + 1)

F2

ν
,

where F := ‖f‖L2
uloc(R+;V ′).

Remark 1.2. The weak solution v shares most of the properties of the Leray-
Hopf weak solutions, with estimates valid for all positive times. Notice that we
do not know whether or not this solution is unique. Anyway, it will not get
“regular” as t→ +∞, which is the feature of interest for our study. As usual by
regular we mean that is does not necessarily have the L2-norm of the gradient
(locally) bounded, hence that it is not a strong solution.

3Generally speaking and when no risk of confusion occurs, we always denote by <, > the
duality pairing between any Banach space X and its dual X′, without mentioning explicitly
which spaces are involved.
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1.3 Long-time averaging

We consider v0 ∈ H and f ∈ L2
uloc(R+;V

′), and let v be any global-in-time
weak solution to the NSE corresponding to these data. We will prove that there
exists a second order stress tensor σ(r) = (σij), for 1 ≤ i, j ≤ 3, such that the
time-average Mt(v) converges as t → +∞ (up to a sub-sequence) to a vector
field denoted by v, which is a solution of the steady-state Reynolds averaged
equations:






(v · ∇)v − ν∆v +∇p+∇ · σ(r) = f in Ω,

∇ · v = 0 in Ω,

v = 0 on Γ.

(1.5)

By analogy with turbulence modeling, we identify σ(r) as the Reynolds stress
tensor4. In addition, we show that when the source term f(t) converges to a
constant when t → +∞ –in some specific sense– then σ(r) is dissipative “in
average”. This means that the averaged work over Ω done by the term ∇ ·σ(r)

is non negative, that is

0 ≤
1

|Ω|

∫

Ω

(∇ · σ(r)) · v dx. (1.6)

The result holds without any extra-assumption of uniqueness or regularity of
v. Similar results were initially obtained in [19]. However, we substantially
improve them since:

i) We do not need to assume that Γ (the boundary of Ω) to be of class C9/4,1,
as it was the case in [19]; here Ω bounded and with Lipschitz boundary is
enough;

ii) We are not considering only constant source terms f as in [19]; our results
are valid for the broad class L2

uloc(R+;V
′). However, we do not know

whether this class is optimal or not, in the sense that it may exists a space
F, that strictly contains L2

uloc(R+;V
′), and such that the same result still

holds for all f ∈ F.

Next, we consider the long-time averages of families of solutions corresponding
to different external forces. We show by means of methods of convex analysis
that it is possible to identify also in this case a limit, among the families of
both Reynolds velocities and stress tensors. In some sense the structure of the
result is not changed if we perform different experiments considering oscillatory
external forces, or if the solution is affected by perturbations, due to the lack
of precision in measurement. Observe that our results do not follows from the
existence (and special properties) of statistical solutions, as for the problems
analyzed in [11] for instance, but are valid for all weak solutions and generalize
and improve the results in [7, 17, 19], relaxing many of the hypotheses.

4The convergence result is proved through a variational formulation. The pressure p is
derived from De Rham Theorem, after passing to the limit.
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To be more specific, our two main results are the following. The notation,
the definitions of the function spaces, and the precise formulation are given in
Section 2.1.

Theorem 1.3. Let be given v0 ∈ H, f ∈ L2
uloc(R+;V

′), and let v a global-in-
time weak solution to the NSE (1.1). Then, there exists

a) a sequence {tn}n∈N such that lim
n→∞

tn = +∞;

b) a vector field v ∈ V ;

c) vector field f ∈ V ′;

d) a vector field B ∈ L3/2(Ω)3;

e) a second order tensor field σ(r) ∈ L3(Ω)9;

such that it holds:

i) when n→ ∞,

Mtn(v)⇀ v in V,

Mtn(f)⇀ f in V ′,

Mtn

(
(v · ∇)v

)
⇀ B in L3/2(Ω)3,

Mtn(v
′ ⊗ v′)⇀ σ(r) in L3(Ω)9;

ii) the Reynolds equation (1.5) holds true in the weak sense;

iii) the following equalities F = B− (v · ∇)v = ∇ · σ(r) are valid in D′(Ω);

iv) the following energy balance holds true

ν‖∇v‖2 +

∫

Ω

F · v dx =< f ,v >;

v) if in addition the source term verifies:

∃ f̃ ∈ V ′, such that lim
t→+∞

∫ t+1

t

‖f(s)− f̃‖2V ′ ds = 0, (1.7)

then f = f̃ and the tensor σ(r) is dissipative in average, that is (1.6) holds
true.

Our second result has to be compared with results in Layton et al. [16, 17],
where the long-time averages are taken for an ensemble of solutions.
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Theorem 1.4. Let be given a sequence {fk}k∈N ⊂ Lq(Ω) converging weakly

to some 〈f〉 in Lq(Ω), with q > 6
5 and let {vk}k∈N be the associated long-time

average of velocities, whose existence has been proved in Theorem 1.3. Then,
the sequence of arithmetic averages of the long-time limits {〈v〉n}n∈N, defined
as

〈v〉n :=
1

n

n∑

k=1

vk

converges weakly, as n → +∞, in V to some 〈v〉, which satisfies the following
system of Reynolds type





(〈v〉 · ∇) 〈v〉 − ν∆〈v〉 +∇〈p〉+∇ · 〈σ(r)〉 = 〈f〉 in Ω,

∇ · 〈v〉 = 0 in Ω,

〈v〉 = 0 on Γ,

where 〈σ(r)〉 is dissipative in average, that is more precisely

0 ≤
1

|Ω|

∫

Ω

(∇ · 〈σ(r)〉) · 〈v〉 dx.

Plan of the paper In Section 2 we recall the main notation and we prove
some results about the existence and the global estimates which are valid for
the NSE, with uniformly-local source terms. In Section 3 we present a short
overview of the long-time filtering, applied to the turbulent flows (especially we
recall the Reynolds rules). In Section 4 we prove the first result (Thm. 1.3)
about convergence to solutions of the Reynolds equations and the dissipative
effect of the Reynolds tensor. Finally, in Section 5 we prove the result (Thm. 1.4)
about the behavior of an ensemble of solutions.

2 Navier-Stokes equations with uniformly-local

source terms

This section is devoted to sketch a proof of Theorem 1.1. Most of the arguments
are quite standard and we will give appropriate references at each step, to focus
on what seems (at least to us) non-standard when f ∈ L2

uloc(R+;V
′); especially

the proof of the uniform L2-estimate (2.4), which is the building block for the
results of the present paper. Before doing this, we introduce the function spaces
we will use, and precisely define the notion of weak solutions we will deal with.

2.1 Function spaces

Let Ω ⊂ R3 be a bounded open set with Lipschitz boundary ∂Ω. This is a sort
of minimal assumption of regularity on the domain, in order to have the usual

7



properties for Sobolev spaces and to characterize in a proper way divergence-
free vector fields in the context of Sobolev spaces, see for instance Constantin
and Foias [8], Galdi [13, 14], Girault and Raviart [15], Tartar [27].

We use the customary Lebesgue spaces (Lp(Ω), ‖ . ‖p) and Sobolev spaces
(W 1,p(Ω), ‖ . ‖1,p). For simplicity, we denote the L2-norm simply by ‖ . ‖ and we
write H1(Ω) :=W 1,2(Ω). For a given sequence {xn}n∈N ⊂ X , where (X, ‖ . ‖X)
is Banach space, we denote by xn → x the strong convergence, while by xn ⇀ x
the weak one.

As usual in mathematical fluid dynamics, we use the following spaces

V = {ϕ ∈ D(Ω)3, ∇ · ϕ = 0},

H =
{
v ∈ L2(Ω)3, ∇ · v = 0, v · n = 0 on Γ

}
,

V =
{
v ∈ H1

0 (Ω)
3, ∇ · v = 0

}
,

and we recall that V is dense in H and V for their respective topologies [15, 27].
Let (X, ‖ . ‖X) be a Banach space, we will use the Bochner spaces Lp(I;X),

for I = [0, T ] (for some fixed T > 0) or I = R+ equipped with the norm

‖u‖Lp(I;X) :=

(∫

I

‖u(s)‖pXds

) 1
p

.

The existence of weak solutions for the NSE (1.1) is generally proved in the
literature when v0 ∈ H and the source term f ∈ L2(I;V ′), or alternatively
when the source term is a given constant element of V ′. In order to study the
long-time behavior of weak solutions of the NSE (1.1), we aim to enlarge the
class of function spaces allowed for the source term f , to catch a more complex
behavior than that coming from constant external forces, as initially developed
in [19]. To do so, we deal with “uniformly-local” spaces, as defined below in the
most general setting.

Definition 2.1. Let be given p ∈ [1,+∞[. We define Lp
uloc(R+;X) as the space

of strongly measurable functions f : R+ → X such that

‖f‖Lp
uloc(X) :=

[
sup
t≥0

∫ t+1

t

‖f(s)‖pXds

]1/p
< +∞.

It is easily checked that the spaces Lp
uloc(R+;X) are Banach spaces con-

taining the constant X-valued functions, and strictly containing Lp(R+;X), as
illustrated by the following elementary lemma.

Lemma 2.2. Let be given f ∈ C(R+;X) converging a limit ℓ ∈ X when t →
+∞. Then, for any p ∈ [1,+∞[, we have that f ∈ Lp

uloc(R+;X), and there
exists T > 0 such that

‖f‖Lp
uloc(X) ≤

[
sup

t∈[0,T+1]

‖f(t)‖pX + (1 + ‖ℓ‖X)p

] 1
p

.
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Proof. As ℓ = lim
t→+∞

f(t), there exists T > 0 such that: ∀ t > T , ‖f(t)−ℓ‖X ≤ 1.

In particular, it holds
∫ t+1

t

‖f(s)‖pX ds ≤ (1 + ‖ℓ‖X)p for t > T,

while for all t ∈ [0, T ],
∫ t+1

t

‖f(s)‖pX ds ≤ sup
t∈[0,T+1]

‖f(t)‖pX ,

hence the result.

However, it easy to find examples of discontinuous functions in Lp
uloc(R+;X)

which are not converging when t → +∞, and which are not belonging to
Lp(R+;X).

2.2 Weak solutions

There are many ways of defining weak solutions to the NSE (see also P.-L.
Lions [21]). Since we are considering the incompressible case, the pressure is
treated as a Lagrange multiplier. Following the pioneering idea developed by
Leray [18], the NSE are projected over spaces of divergence-free functions. This
is why when we talk about solutions the NSE, only the velocity v is mentioned,
not the pressure.

Following J.-L. Lions [20], we give the following definition of weak solution,
see also Temam [28, Ch. III].

Definition 2.3 (Weak solution). Given v0 ∈ H and f ∈ L2(I;V ′) we say that v
is a weak solution over the interval I = [0, T ] if the following items are fulfilled:

i) the vector field v has the following regularity properties

v ∈ L2(I;V ) ∩ L∞(I;H),

and is weakly continuous from I to H, while lim
t→0+

‖v(t) − v0‖H = 0;

ii) for all ϕ ∈ V,

d

dt

∫

Ω

v(t,x) · ϕ(x) dx −

∫

Ω

v(t,x) ⊗ v(t,x) : ∇ϕ(x) dx

+ ν

∫

Ω

∇v(t,x) : ∇ϕ(x) dx = < f(t),ϕ >,

holds true in D′(I);

iii) the energy inequality

d

dt

1

2
‖v(t)‖2 + ν‖∇v(t)‖2 ≤ < f(t),v(t) >, (2.1)

holds in D′(I), where we write v(t) instead of v(t, ·) for simplicity.
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When f ∈ L2(0, T ;V ′) and v is a weak solution in I = [0, T ], and this holds
true for all T > 0, we speak of “global-in-time solution”, or simply a “global
solution”. In particular, ii) is satisfied in the sense of D′(0,+∞).

There are several ways to prove the existence of (at least) a weak solution to
the NSE. Among them, in what follows, we will use the Faedo-Galerkin method.
Roughly speaking, let {ϕn}n∈N denote a Hilbert basis of V , and let, for n ∈ N,
Vn := span{ϕ1, · · · ,ϕn}. By assuming f ∈ L2(I;V ′), it can be proved by the
Cauchy-Lipschitz theorem (see [20]) the existence of a unique vn ∈ C1(I;Vn)
such that for all ϕk, with k = 1, . . . , n it holds

d

dt

∫

Ω

vn(t,x) · ϕk(x) dx −

∫

Ω

vn(t,x) ⊗ vn(t,x) : ∇ϕk(x) dx

+ ν

∫

Ω

∇vn(t,x) · ∇ϕk(x) dx = < f(t),ϕk >,

(2.2)

and which naturally satisfies the energy balance (equality)

d

dt

1

2
‖vn(t)‖

2 + ν‖∇vn(t)‖
2 = < f ,vn > . (2.3)

It can be also proved (always see again [20]) that from the sequence {vn}n∈N
one can extract a sub-sequence converging, in an appropriate sense, to a weak
solution to the NSE. When I = R+ we get a global solution.

However, when we now assume f ∈ L2
uloc(R+;V

′), this does not work so
straightforward. Of course, for any given T > 0, we have

L2
uloc(R+;V

′)∣∣[0, T ] →֒ L2([0, T ];V ′),

where L2
uloc(R+;V

′)|[0,T ] denotes the restriction of a function in L2
uloc(R+;V

′)
to [0, T ]. Therefore, no doubt that the construction above holds over any time-
interval [0, T ]. In such case letting T go to +∞ to get a global solution is not
obvious, and we do not know any reference explicitly dealing with this issue,
which deserves to be investigated more carefully. This is the aim of the next
subsection, where we prove the most relevant a-priori estimates

2.3 A priori estimates

Let be given f ∈ L2
uloc(R+;V

′), and let vn = v be the solution of the Galerkin
projection of the NSE over the finite dimensional space Vn. The function v

satisfies (2.2) and (2.3) (we do not write the subscript n for simplicity), is
smooth, unique, and can be constructed by Cauchy-Lipschitz over any finite time
interval [0, T ]. Hence, we observe that by uniqueness it can be extended to R+.
We then denote F := ‖f‖L2

uloc(R+;V ′) and then after a delicate manipulation of
the energy balance combined with the Poincaré inequality, we get the following
lemma.
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Lemma 2.4. For all t ≥ 0 we have

‖v(t)‖2 ≤ ‖v0‖
2 +

(
3 +

CΩ

ν

)
F2

ν
, (2.4)

as well as

ν

∫ t

0

‖∇v(s)‖2 ds ≤ ‖v0‖
2 + ([t] + 1)

F2

ν
, (2.5)

where CΩ denotes the constant in the Poincaré inequality ‖u‖2 ≤ CΩ‖∇u‖2,
valid for all u ∈ V .

Proof. We focus on the proof of the estimate (2.4), the estimate (2.5) being a
direct consequence of the energy balance.

First at all, note that if t ∈ [0, 1], then (2.4) is automatically satisfied for such
a time t. Let us now integrate the energy balance (2.3) between two arbitrary
times 0 ≤ ξ ≤ τ , and use the Young inequality. We get:

‖v(τ)‖2 + ν

∫ τ

ξ

‖∇v(s)‖2 ds ≤ ‖v(ξ)‖2 +
1

ν

∫ τ

ξ

‖f(s)‖2V ′ ds. (2.6)

From there, we distinguish three different cases.

a) The time t ≥ 1 is such that

‖v(t)‖ ≤ ‖v(t+ 1)‖. (2.7)

b) The time t ≥ 1 is such that

‖v(t+ 1)‖ < ‖v(t)‖, (2.8)

and there exists n ∈ N for t− n− 1 > 1 satisfying

∀ k = 0, · · · , n− 1, ‖v(t− k)‖ < ‖v(t− k − 1)‖, (2.9)

and
‖v(t− n)‖ ≤ ‖v(t− n− 1)‖. (2.10)

c) The time t is such that t ≥ 1, the inequality (2.8) holds true, and

∀ k = 1, · · · , [t], ‖v(t− k)‖ < ‖v(t− k − 1)‖. (2.11)

Case a) We consider (2.6) with ξ = t and τ = t + 1 and by using (2.7), we
get

ν

∫ t+1

t

‖∇v(s)‖2 ds ≤ ‖v(t+ 1)‖2 − ‖v(t)‖2 + ν

∫ t+1

t

‖∇v(s)‖2 ds

≤
1

ν

∫ t+1

t

‖f(s)‖2V ′ ds ≤
F2

ν
.
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Hence, by the Poincaré inequality we have

ν

∫ t+1

t

‖v(s)‖2 ds ≤ CΩν

∫ t+1

t

‖∇v(s)‖2 ds ≤
CΩF

2

ν
. (2.12)

Let be given now ǫ > 0 and let ξ ∈ [t, t+ 1] be such that

‖v(ξ)‖2 < inf
s∈[t,t+1]

‖v(s)‖2 + ǫ ≤ ‖v(s)‖2 + ǫ ∀ s ∈ [t, t+ 1]. (2.13)

Combining (2.7), (2.13), and with some manipulations implies

‖v(t)‖2 ≤ ‖v(t+ 1)‖2 ≤
∣∣‖v(t+ 1)‖2 − ‖v(ξ)‖2

∣∣+ ‖v(ξ)‖2

≤
∣∣‖v(t+ 1)‖2 − ‖v(ξ)‖2

∣∣+
∫ t+1

t

‖v(ξ)‖2 ds

≤
∣∣‖v(t+ 1)‖2 − ‖v(ξ)‖2

∣∣+
∫ t+1

t

(‖v(s)‖2 + ǫ) ds.

Hence, by using (2.6) with τ = t+ 1 and the inequality (2.12) we get

‖v(t)‖2 ≤

(
1 +

CΩ

ν

)
F2

ν
+ ǫ.

In conclusion if we fix ǫ small enough (such that ǫ ≤ F2/ν), then

‖v(t)‖2 ≤

(
2 +

CΩ

ν

)
F2

ν
.

Therefore, the estimate (2.4) is satisfied for times t such that (2.7) holds. In
particular, for such times the estimate is better, being the initial data not in-
volved.

Case b) We argue by induction. If n = 0, therefore (2.10) becomes for such
time t:

‖v(t− 1)‖ ≤ ‖v(t)‖.

Then, we deduce from the previous case, replacing t by t− 1 ≥ 0, that

‖v(t− 1)‖2 ≤

(
2 +

CΩ

ν

)
F2

ν
. (2.14)

Combining this last inequality (2.14) with the energy balance (2.6), taking τ = t
and ξ = t− 1, yields

‖v(t)‖2 ≤

(
3 +

CΩ

ν

)
F2

ν
. (2.15)

For a given n, we get from (2.10) and the previous calculations, that

‖v(t− n− 1)‖2 ≤

(
3 +

CΩ

ν

)
F2

ν
,
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hence (2.15) follows by using (2.9). Therefore, (2.4) is satisfied for such t.

Case c) Inequalities (2.11) read

‖v(t)‖2 < ‖v(t− 1)‖2 < ‖v(t− 2)‖2 < · · · < ‖v(t− [t])‖2,

that is
‖v(t)‖2 ≤ sup

s∈[0,1]

‖v(s)‖2,

on which integration of the standard energy inequality (2.1) gives

‖v(t)‖2 ≤ sup
s∈[0,1]

‖v(s)‖2 ≤ ‖v0‖
2 +

1

ν

∫ 1

0

‖f(s)‖2V ′ ds ≤ ‖v0‖
2 +

F2

ν
,

which leads to (2.4).

We have covered all possible cases, which completes the proof of (2.4). Es-
timate (2.5) is obtained by (2.6) taking ξ = 0 and τ = t:

ν

∫ t

0

‖∇v(s)‖2 ds ≤ ‖v0‖
2 +

1

ν

∫ [t]+1

0

‖f(s)‖2V ′ ds ≤ ‖v0‖
2 +

[t] + 1

ν
F2,

which concludes the proof.

Once we have proved that the uniform (independently of n ∈ N) L2-estimate
is satisfied by the Galerkin approximate functions, it is rather classical to prove
that we can extract a sub-sequence that converges weakly to a weak solution to
the NSE. We refer to the references already mentioned for this point.

3 Properties of the time-averaging filter

We sketch the standard routine, concerning time-averaging, when used in tur-
bulence modeling practice. In particular, we recall the Reynolds decomposition
and the Reynolds rules. Then, we give a few technical properties of the time-
averaging operator Mt, for a given fixed time t > 0, as defined by (1.2).

3.1 General setup of turbulence modeling

We recall that Mt is a linear filtering operator which commutes with differen-
tiation with respect to the space variables (the so called Reynolds rules). In
particular, one has the following result (its proof is straightforward), which is
essential for our modeling process.

Lemma 3.1. Let be given ψ ∈ L1([0, T ],W 1,p(Ω)), then

DMt(ψ) =Mt(Dψ) ∀ t > 0,

for any first order differential operator D acting on the space variables x ∈ Ω.

13



By denoting the long-time average of any field ψ by ψ as in (1.3), we consider
the fluctuations ψ′ around the mean value, given by the Reynolds decomposition

ψ := ψ + ψ′.

Observe that long-time averaging has many convenient formal mathematical
properties.

Lemma 3.2. The following formal properties holds true, provided the long-time
averages do exist.

1. The “bar operator” preserves the no-slip boundary condition. In other
words, if ψ|Γ = 0, then ψ|Γ = 0;

2. Fluctuation are in the kernel of the bar operator, that is ψ′ = 0;

3. The bar operator is idempotent, that is ψ = ψ, which also yields ψ ϕ = ψϕ.

Accordingly, the velocity components can be decomposed following the Reynolds
decomposition as follows.

v(t,x) = v(x) + v′(t,x).

Let us determine (at least formally) the equation satisfied by v. To do so, we
use the above Reynolds rules to expand the nonlinear quadratic term into

v ⊗ v = v ⊗ v + v′ ⊗ v′,

which follows by observing that v′ ⊗ v = v ⊗ v′ = 0. Long-time averaging ap-
plied to the Navier-Stokes equations (in a strong formulation) gives the following
“equilibrium problem” for the long-time average v(x),






−ν∆v +∇ · (v ⊗ v) +∇p = f in Ω,

∇ · v = 0 in Ω,

v = 0 on Γ,

where the first equation can be rewritten also as follows (by using the decom-
position into averages and fluctuations)

−ν∆v +∇ · (v ⊗ v) +∇p = −∇ · (v′ ⊗ v′) + f ,

Beside convergence issues, a relevant point is to characterize the average of
product of fluctuations from the right-hand side, which is the divergence of the
so called Reynolds stress tensor, defined as follows

σ(r) = v′ ⊗ v′. (3.1)

The Boussinesq hypothesis, formalized in [5] (see also [7, Ch. 3 & 4], for a com-
prehensive and modern presentation) corresponds then to a closure hypothesis
with the following linear constitutive equation:

σ(r) = −νt
∇v +∇vT

2
+

2

3
k Id, (3.2)
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where νt ≥ 0 is a scalar coefficient, called turbulent viscosity or eddy-viscosity
(sometimes called “effective viscosity”), and

k =
1

2
|v′|2,

is the turbulent kinetic energy. Formula (3.2) is a linear relation between stress
and strain tensors, and shares common formal points with the linear constitutive
equation valid for Newtonian fluids. In particular, this assumptions motivates
the fact that σ(r) must be dissipative5. Some recent results in the numerical
verification of the hypothesis can be found in the special issue [4] dedicated
to Boussinesq. Here we show that, beside the validity of the modeling as-
sumption (3.2), the Reynolds stress tensor σ(r) is dissipative, under minimal
assumptions on the regularity of the data of the problem.

3.2 time-averaging of uniformly-local fields

We list in this section some technical properties of the operator Mt acting on
uniform-local fields, and the corresponding global weak solutions to the NSE. We
start with the following corollary of Bochner theorem (see Yosida [29, p. 132]).

Lemma 3.3. Assume that, for some t > 0 we have ψ ∈ Lp([0, t];X) (namely ψ
is a Bochner p-summable function over [0, t], with values in the Banach space
X). Then, it holds

‖Mt(ψ)‖X ≤
1

t
1
p

‖ψ‖Lp([0,t];X). (3.3)

A simple consequence is then the following

Lemma 3.4. Let 1 < p <∞ and let be given f ∈ Lp
uloc(R+;X). Then

∀ t ≥ 1, ‖Mt(f)‖X ≤ 2‖f‖Lp
uloc(R+;X).

Proof. Applying some straightforward inequalities yields

‖Mt(f)‖X ≤
1

t

∫ t

0

‖f‖X ds ≤
1

t

∫ [t]+1

0

‖f‖X ds ≤
1

t

[t]∑

k=0

∫ k+1

k

‖f‖X ds.

Therefore by the Hölder inequality we get:

‖Mt(f)‖X ≤
1

t

[t]∑

k=0

(∫ k+1

k

‖f‖pX ds

)1/p(∫ k+1

k

1 ds

)1/p′

≤
[t] + 1

t
‖f‖p

Lp
uloc(X)

≤ 2‖f‖p
Lp

uloc(R+;X)
,

the last inequality being satisfied for t ≥ 1.

5The sign adopted in (3.1) is a convention consistent with our mathematical approach.
However, according to the analogy of the Reynolds stress with viscous forces, it is common to
define it as σ

(r) = −v
′ ⊗ v

′, which does not change anything.
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We finish this section with a last technical result, that we will need to prove
the item v) of Theorem 1.3.

Lemma 3.5. Let 1 < p <∞ and let be given f ∈ Lp
uloc(R+;X), which satisfies

in addition

∃ f̃ ∈ X, such that lim
t→+∞

∫ t+1

t

‖f(s)− f̃‖pX ds = 0. (3.4)

Then, we have

lim
t→+∞

1

t

∫ t

0

‖f(s)− f̃‖pX ds = 0. (3.5)

Moreover, Mt(f) weakly converges to f̃ in X when t→ +∞.

Proof. By the hypothesis (3.4), we have that

∀ ε > 0 ∃M ∈ N :

∫ t+1

t

‖f(s)− f̃‖pX ds <
ε

2
∀ t > M.

Hence, for t ≥M , then

1

t

∫ t

0

‖f(s)− f̃‖pX ds =
1

t

∫ M

0

‖f(s)− f̃‖pX ds+
1

t

∫ t

M

‖f(s)− f̃‖pX ds

≤
M

t

(
‖f‖p

Lp
uloc(X)

+ ‖f̃‖pX
)
+

[t] + 1−M

t

ε

2
.

It follows that one can choose M large enough such that

1

t

∫ t

0

‖f(s)− f̃‖pX ds < ε ∀ t > M,

hence, being this valid for arbitrary ε > 0, it follows (3.5).

It remains to prove the weak convergence ofMt(f) to f̃ ∈ X when t→ +∞.
To this end, let be given ϕ ∈ X ′. Then, we have

< ϕ,Mt(f) > − < ϕ, f̃ > =
1

t

∫ t

0

< ϕ, f(s)− f̃ > ds,

which leads to

| < ϕ,Mt(f) > − < ϕ, f̃ > | ≤
1

t

∫ t

0

‖ϕ‖X′‖f(s)− f̃‖X ds,

and by Hölder inequality,

∣∣∣< ϕ,Mt(f) > − < ϕ, f̃ >
∣∣∣ ≤ ‖ϕ‖X′

(
1

t

∫ t

0

‖f(s)− f̃‖pX ds

) 1
p

,

yielding, by (3.5), to limt→+∞ < ϕ,Mt(f) > = < ϕ, f̃ >, hence concluding the
proof.
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In the next section, we will focus on the case p = 2 and X = V ′. In order to
complete our toolbox, we conclude this section by the following result, which is
a consequence of Lemma 2.4.

Lemma 3.6. Let be given v0 ∈ H, f ∈ L2
uloc(R+;V

′), and let v be a global
weak solution to the NSE corresponding to the above data. Then, we have

Mt(‖∇v‖2) ≤
‖v0‖

2

νt
+ 2

F2

ν2
, ∀ t ≥ 1, (3.6)

where F = ‖f‖L2
uloc(R+;V ′).

Proof. It suffices to divide estimate (2.5) by νt and use the inequality [x]+1
x ≤ 2

which is valid for all x ≥ 1. Therefore, it follows that

1

t

∫ t

0

‖∇v(s)‖2 ds ≤
‖v0‖

2

νt
+ 2

F2

ν2
,

ending the proof.

4 Proof of Theorem 1.3

In all this section we have as before v0 ∈ H , f ∈ L2
uloc(R+;V

′), and v is a global
weak solution to the NSE (1.1) corresponding to the above data. We split the
proof of Theorem 1.3 into two steps. We first apply the operator Mt to the
NSE, then we extract sub-sequences and take the limit in the equations. In the
second step we make the identification with the Reynolds stress σ(r) and show
that it is dissipative in average, at least when f satisfies in addition (1.7).

4.1 Extracting sub-sequences

We set:
Vt(x) :=Mt(v)(x).

Applying the operator Mt on the NSE we see that for almost all t ≥ 0 and for
all φφφ ∈ V , the field Vt is a weak solution of the following steady Stokes problem
(where t > 0 is simply a parameter)

ν

∫

Ω

∇Vt : ∇φφφ dx+

∫

Ω

Mt((v · ∇)v) · φφφdx = < Mt(f),φφφ >

+

∫

Ω

v0 − v(t)

t
· φφφdx.

(4.1)

The full justification of the equality (4.1) starting from the definition of global
weak solutions can be obtained by following a very well-known path used for
instance to show that Leray-Hopf weak solutions can be re-defined on a set of
zero Lebesgue measure in [0, t] in such a way that v(s) ∈ H for all s ∈ [0, t],
see for instance Galdi [13, Lemma 2.1]. In fact, by following ideas developed
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among the others by Prodi [24], one can take χ[a,b] the characteristic function
of an interval [a, b] ⊂ R, and use as test function its regularization multiplied
by φφφ ∈ V . Passing to the limit as the regularization parameter vanishes one
gets (4.1).

The process of extracting sub-sequences, which is the core of the main result,
is reported in the following proposition.

Proposition 4.1. Let be given a global solution v to the NSE, corresponding
to the data v0 ∈ H and f ∈ L2

uloc(R+;V
′). Then, there exists

a) a sequence {tn}n∈N that goes to +∞ when n goes to +∞;

b) a vector field f ∈ V ′;

c) a vector field v ∈ V ;

d) a vector field B ∈ L3/2(Ω)3;

such that
Mtn(f)⇀ f in V ′,

Mtn(v)⇀ v in V,

Mtn

(
(v · ∇)v

)
⇀ B in L3/2(Ω)3 ⊂ V ′,

in such a way that for all φφφ ∈ V

ν

∫

Ω

∇v : ∇φφφ dx+

∫

Ω

B ·φφφdx = < f ,φφφ > . (4.2)

Moreover, by defining

F := B− (v · ∇)v ∈ L3/2(Ω)3, (4.3)

we can also rewrite (4.2) as follows

ν

∫

Ω

∇v : ∇φφφ dx+

∫

Ω

(v · ∇)v · φφφ dx+

∫

Ω

F · φφφ dx = < f ,φφφ > . (4.4)

Proof of Proposition 4.1. As f ∈ L2(R+;V
′), we deduce from Lemma 3.4 that

{Mt(f)}t>0 is bounded in V ′. Hence, we can use weak pre-compactness of
bounded sets in the Hilbert space V ′ to infer the existence of tn and f ∈ V ′ such
that Mtn(f) ⇀ f in V ′. Next, estimate (3.6) from Lemma 3.6, combined with
estimate (3.3) from Lemma 3.3, leads to the bound

∃ c > 0 : ‖∇Mt(v)‖ = ‖Mt(∇v)‖ ≤ c ∀ t > 0,

proving (up to a the extraction of a further sub-sequence from {tn}, which we
call with the same name) that Mtn(v)⇀ v in V ′.

Then, we observe that, if v ∈ L∞(0, T ;H)∩L2(0, T ;V ) by classical interpo-
lation

(v · ∇)v ∈ Lr(0, T ;Ls(Ω)) with
2

r
+

3

s
= 4, r ∈ [1, 2].
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In particular, we get

‖(v · ∇)v‖L3/2(Ω) ≤ ‖v‖L6‖∇v‖L2 ≤ CS‖∇v‖2,

where CS is the constant of the Sobolev embedding H1
0 (Ω) →֒ L6(Ω). Hence,

by using the bound on v ∈ V we obtain that

∃ c : ‖Mt

(
(v · ∇)v)

)
‖L3/2(Ω) ≤ c, ∀ t > 0,

proving that, up to a further sub-sequence relabelled again as {tn},

Mtn

(
(v · ∇)v

)
⇀ B in L3/2(Ω)3,

for some vector field B ∈ L3/2(Ω)3.
Next, we use (2.4) which shows that

∫

Ω

v0 − v(t)

t
· φφφdx → 0 as t→ +∞.

Then, writing the weak formulation and by using the results of weak convergence
previously proved, we get (4.2). Then, the identity (4.4) comes simply from the
definition (4.3) of F.

4.2 Reynolds stress, energy balance and dissipation

In the first step we have identified a limit (v, f) for the time-averages of both
velocity and external force (v, f). We need now to recast this in the setting of the
Reynolds equations, in order to address the proof of the Boussinesq assumption.

Proof of Theorem 1.3. Beside the results in Proposition 4.1, in order to com-
plete the proof of Theorem 1.3, we have to prove the following facts:

1) the proper identification of the limits with the Reynolds stress σ(r);

2) the energy balance for v;

3) to prove that σ(r) is dissipative in average.

We proceed in the same order.
Item 1. Since v ∈ L2(0, T ;V ) ⊂ L2(0, T ;L6(Ω)3), it follows that v ⊗ v ∈

L1(0, T ;L3(Ω)). Hence, the same argument as in the previous subsection shows
that (possibly up to the extraction of a further sub-sequence) there exists a
second order tensor θ ∈ L3(Ω)9 such that

Mtn(v ⊗ v)⇀ θ in L3(Ω)9.

Let us set
σ(r) := θ − v ⊗ v.
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Since the operatorMt commutes with the divergence operator, the equation (4.1)
becomes

ν

∫

Ω

∇Vt : ∇φφφ dx−

∫

Ω

Mt(v ⊗ v) : ∇φφφdx = < Mt(f),φφφ >

+

∫

Ω

v0 − v(t)

t
·φφφdx.

(4.5)

Then, by taking the limit along the sequence tn → +∞ in (4.5), we get the
equality

F = ∇ · σ(r).

Item 2. We use v ∈ V in (1.5) as test function and we obtain the equality

ν‖∇v‖2 +

∫

Ω

(∇ · σ(r)) · v dx = < f ,v > . (4.6)

We observe that due to the absence of the time-variable the following identity
concerning the integral over the space variables is valid

∫

Ω

(v · ∇)v · v dx =

∫

Ω

(v · ∇)
|v|2

2
dx = 0 ∀v ∈ V.

This is one of the main technical facts which are typical of the mathematical
analysis of the steady Navier-Stokes equations and which allow to give precise
results for the averaged Reynolds equations. On the other hand, we recall that if
v(t,x) is a non-steady (Leray-Hopf) weak solution, then the space-time integral

∫ T

0

∫

Ω

(v · ∇)v · v dx dt,

is not well defined and consequently the above integral vanishes only formally.

Item 3. From now, we assume that the assumption (1.7) in the statement
of Theorem 1.3 holds true. We integrate the energy inequality (2.1) between 0
and tn and we divide the result by tn > 0, which leads to

‖v(t)‖2

2tn
+

1

tn

∫ tn

0

‖∇v(s)‖2 ds ≤
‖v0‖

2

2tn
+

1

tn

∫ tn

0

< f ,v > ds. (4.7)

Recall that by Lemma 2.4

‖v(t)‖2

2t
→ 0 and

‖v0‖
2

2t
→ 0 as t→ +∞.

From Proposition 4.1 it holds that

1

tn

∫ tn

0

∇v(s) ds ⇀ ∇v in L2(Ω)9,
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hence, we have the lower semi-continuity estimate

‖∇v‖2 ≤ lim inf
tn→+∞

∥∥∥∥
1

tn

∫ tn

0

∇v(s) ds

∥∥∥∥
2

≤ lim inf
tn→∞

1

t2n

∫ tn

0

‖∇v‖2 ds ·

∫ tn

0

1 ds

≤ lim inf
tn→∞

1

tn

∫ tn

0

‖∇v(s)‖2 ds.

Then, passing to the limit as n→ +∞ in (4.7) leads to the following inequality

ν‖∇v‖2 ≤ lim
n→∞

1

tn

∫ tn

0

< f ,v > ds, (4.8)

provided that the limit exists. It remains to identify the right-hand side of (4.8).
We observe that, by combining (1.7) with Lemma 3.5, leads to f̃ = f . Let us
write the following decomposition:

1

tn

∫ tn

0

< f ,v > ds =
1

tn

∫ tn

0

< f − f ,v > ds+
1

tn

∫ tn

0

< f ,v > ds.

On one hand since f ∈ V is independent of t, we obviously have

1

tn

∫ tn

0

< f ,v > ds→ < f ,v > . (4.9)

On the other hand, we have also
∣∣∣∣
1

tn

∫ tn

0

< f − f ,v > ds

∣∣∣∣ ≤
1

tn

∫ tn

0

‖f − f‖V ′‖∇v‖ ds

≤

(
1

tn

∫ tn

0

‖f − f‖2V ′ ds

)1/2(
1

tn

∫ tn

0

‖∇v‖2 ds

)1/2

.

(4.10)

Combining (3.5) with (3.6) shows that the right-hand side in (4.10) vanishes as
n→ ∞. Therefore, we deduce by (4.9) that

ν‖∇v‖2 ≤ < f ,v >,

which, combined with (4.6), shows by comparison that

0 ≤
1

|Ω|

∫

Ω

(∇ · σ(r)) · v dx,

ending the proof of Theorem 1.3.

Remark 4.1. It is important to observe that

Mt

(
< f ,v >

)
→ < f ,v >,

is –in some sense– an assumption on the (long-time) behavior of the “covari-
ance” between the external force and the solution itself. Cf. Layton [17, Thm. 5.2]
for a related result in the case of ensemble averages.
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The control of the (average/expectation of) kinetic energy in terms of the
energy input is one of the remarkable features of classes of statistical solutions,
making the stochastic Navier-Stokes equations very appealing in this context.
See the review, with applications to the determination of the Lilly constant, in
Ref. [2]. See also [10].

5 On ensemble averages

In this section we show how to use the results of Theorem 1.3 to give new insight
to the analysis of ensemble averages of solutions. In this case we study suitable
averages of the long-time behavior and not the long-time behavior of statistics,
as in Layton [17].

Since we first take long-time limits and then we average the Reynolds equa-
tions, the initial datum is not so relevant. In fact due to the fact that it holds

‖v0‖
2

t
→ 0 as t→ +∞,

then the mean v is not affected by the initial datum.
As claimed in the introduction, we consider now the problem of having sev-

eral external forces, say a whole family {fk}k∈N ⊂ V ′, all independent of time.
We can think as different experiments with slightly different external forces,
whose difference can be due to errors in measurement or in the uncertainty in-
trinsic in any measurement method. In particular, one can consider for a given
force f and that {fk} will represent small oscillations around it, hence we can
freely assume that we have an uniform bound

∃C > 0 : ‖fk‖V ′ ≤ C ∀ k ∈ N. (5.1)

Having in mind this physical setting, we denote by vk ∈ V the long-time average
of the solution corresponding to the external force fk ∈ V ′ and, as explained
before (without loss of generality) to the initial datum v0 = 0. The vector

vk ∈ V satisfies for all φφφ ∈ V the following equivalent equalities for all k ∈ N

ν

∫

Ω

∇vk : ∇φφφdx+

∫

Ω

Bk · φφφdx = < fk,φφφ >,

ν

∫

Ω

∇vk : ∇φφφdx+

∫

Ω

(vk · ∇)vk · φφφdx+

∫

Ω

Fk · φφφ dx = < fk,φφφ >,

for appropriate Bk,Fk ∈ L3(Ω)3/2. Since both V and V ′ are Hilbert spaces, by
using (5.1) it follows that there exists 〈f〉 ∈ V ′ and a sub-sequence (still denoted
by {fk}) such that

fk ⇀ 〈f〉 in V ′.

Our intention is to characterize, if possible, the limit of {vk}k∈N. If the forces

are fluctuations around a mean value, then the field vk will remain bounded in
V , but possibly without converging to some limit. From an heuristic point of
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view one can expect that averaging the sequence of velocities (which corresponds
to averaging the result over different realizations) one can identify a proper limit,
which retains the “average” effect of the flow.

Again, it comes into the system, the main idea at the basis of Large Scale
methods: the average behavior of solutions seems the only quantity which can be
measured or simulated. It is well-known that one of the most used summability
technique is that of Cesàro and consists in taking the mean values, hence we
focus on the arithmetic mean of velocities

Sn :=
1

n

n∑

k=1

vk.

It is a basic calculus result that if a real sequence {xj}j∈N converges to x ∈ R,
then also its Cesàro mean Sn = 1

n

∑n
j=1 xj will converge to the same value x.

On the other hand, the converse is false; sufficient conditions on the sequence
{xj}j∈N implying that if the Cesàro mean converges, then the original sequence
converges, are known in literature as Tauberian theorems. This is a classical
topic in the study of divergent sequences/series. In the case of X-valued se-
quences {uk}k∈N (the space X being an infinite dimensional Banach space) one
has again that if a sequence converges strongly or weakly, then its Cesàro mean
will converge to the same value, strongly or weakly in X , respectively.

The fact that averaging generally improves the properties of a sequence, is
reflected also in the setting of Banach spaces even if with additional features
coming into the theory. Two main results we will consider are two theorems
known as Banach-Saks and Banach-Mazur.

Banach and Saks originally in 1930 formulated the result in Lp(0, 1), but it
is valid in more general Banach spaces.

Theorem 5.1 (Banach-Saks). Let be given a bounded sequence {xj}j∈N in a
reflexive Banach space X. Then, there exists a sub-sequence {xjk}k∈N such that
the sequence {Sm}m∈N defined by

Sm :=
1

m

m∑

k=1

xjk ,

converges strongly in X.

The reader can observe that in some cases it is not needed to extract a sub-
sequence (think of any orthonormal set in an Hilbert space, which is weakly
converging to zero, and the Cesàro averages converge to zero strongly), but in
general one cannot infer that the averages of the full sequence converge strongly.
One sufficient condition is that of uniform weak convergence. We recall that
{xj} ⊂ X uniformly weakly converges to zero if for any ǫ > 0 there exists
j ∈ N, such that for all φ ∈ X ′, with ‖φ‖X′ ≤ 1, it holds true that

#
{
j ∈ N : |φ(xj)| ≥ ε

}
≤ j.

See also Brezis [6, p. 168].
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Another way of improving the weak convergence to the strong one is by the
by the convex-combination theorem (cf. Yosida [29, p.120]).

Theorem 5.2 (Banach-Mazur). Let {xj} ⊂ X with X a Banach space be a
sequence such that xj ⇀ x as j → +∞.

Then, one can find for each n ∈ N, real coefficients {αn
j }, for j = 1, . . . , n

such that

αn
j ≥ 0 and

n∑

j=1

αn
j = 1,

such that
n∑

j=1

αn
j xj → x in X, as n→ +∞,

that is we can find a “convex combination” of {xj}, which strongly converges to
x ∈ X.

One basic point will be that of considering averages of the external forces,
which we will denote by 〈f〉n and considering the same averages of the solution
of the Reynolds equations 〈v〉n. They are both bounded and hence, weakly con-
verging (up to a sub-sequence) to 〈f〉 ∈ V ′ and 〈v〉 ∈ V , respectively. Then, in
order to prove that the dissipativity is preserved one has to handle the following
limit of the products

lim
n→+∞

< 〈f〉n, 〈v〉n >,

which cannot be characterized, unless (at least) one of the two terms converges
strongly. This is why we have to use special means instead of the simple Cesàro
averages

The first result of this section is then the following:

Proposition 5.1. Let be given {fk}k∈N uniformly bounded in V ′. Then one can
find either a Banach-Saks sub-sequence or a convex combination of {vk}k∈N,
which are converging weakly to some 〈v〉 ∈ V , which satisfies a Reynolds sys-
tem (5.4), with an additional dissipative term.

Proof of Theorem 5.1. We define 〈f〉n and 〈v〉n to be either

〈f〉n :=
1

n

n∑

k=1

f jk and 〈v〉n :=
1

n

n∑

k=1

vjk

or

〈f〉n :=

n∑

j=1

αn
j f

j and 〈v〉n :=

n∑

j=1

αn
j v

j

where the sub-sequence {f jk}k∈N or the coefficients {αn
j }j, n∈N are chosen ac-

cordingly to the Banach-Saks of Banach-Mazur theorems in such a way that

〈f〉n → 〈f〉 in V ′.
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We define accordingly to the same rules 〈B〉n and we observe that, by lin-
earity, we have ∀n ∈ N

ν

∫

Ω

∇〈v〉n : ∇φφφdx+

∫

Ω

〈B〉n · φφφdx = < 〈f〉n,φφφ > ∀φφφ ∈ V. (5.2)

Then, we can define 〈F〉n := 〈B〉n − (〈v〉n · ∇) 〈v〉n, to rewrite (5.2) also as
follows

ν

∫

Ω

∇〈v〉n : ∇φφφdx+

∫

Ω

(〈v〉n·∇) 〈v〉n·φφφ dx+

∫

Ω

〈F〉n·φφφdx =< 〈f〉n,φφφ > . (5.3)

By the uniform bound on ‖fk‖V ′ and by results of Section 4.2 on the Reynolds
equations it follows that there exists C such that ‖vk‖V ≤ C, hence

‖〈v〉n‖V ≤ C ∀n ∈ N,

and we can suppose that (up to sub-sequences) we have weak convergence of
the convex combinations

〈v〉n ⇀ 〈v〉 in V,

〈B〉n ⇀ 〈B〉 in L3/2(Ω)3,

〈F〉n ⇀ 〈F〉 in L3/2(Ω)3,

Hence, passing to the limit in (5.2), we obtain

ν

∫

Ω

∇〈v〉 : ∇φφφdx+

∫

Ω

〈B〉 · φφφ dx = < 〈f〉,φφφ > ∀φφφ ∈ V.

By the same reasoning used before we have, for 〈F〉 := 〈B〉 − (〈v〉 · ∇) 〈v〉,

ν

∫

Ω

∇〈v〉 : ∇φφφ dx+

∫

Ω

(〈v〉 · ∇) 〈v〉 · φφφdx+

∫

Ω

〈F〉 · φφφ dx = < 〈f〉,φφφ > . (5.4)

Then, if we take φφφ = 〈v〉 in (5.4) we obtain

ν‖∇〈v〉‖2 +

∫

Ω

〈F〉 · 〈v〉 dx = < 〈f〉, 〈v〉 > . (5.5)

On the other hand, if we take φφφ = 〈v〉n in (5.3) and by the result of the previous
section, we have

ν‖∇〈v〉n‖2 ≤ < 〈f〉n, 〈v〉n >,

hence passing to the limit, by using the strong convergence of 〈f〉n in V ′ and
the weak convergence of 〈v〉n in V we have

ν‖∇〈v〉‖2 ≤ lim inf
n→+∞

ν‖∇〈v〉n‖2 ≤ < 〈f〉, 〈v〉 > .

If we compare with (5.5) we have finally the dissipativity

1

|Ω|

∫

Ω

(∇ · 〈σ(r)〉) · 〈v〉 dx =
1

|Ω|

∫

Ω

〈F〉 · 〈v〉 dx ≥ 0,

that is a sort of ensemble/long-time Boussinesq hypothesis, cf. with the results
from Ref. [17, 16].
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In the previous theorem, we have a result which does not concern directly
with the ensemble averages, but a selection of special coefficients is required.
This is not completely satisfactory from the point of view of the numerical
computations, where the full arithmetic mean should be considered. The main
result can be obtained at the price of a slight refinement on the hypotheses on
the external forces

To this end we recall a lemma, which is a sort of Rellich theorem in negative
spaces (see also Galdi [14, Thm. II.5.3] and Feireisl [9, Thm. 2.8]).

Lemma 5.3. Let Ω ⊂ Rn be bounded and let be given 1 < p < n. Let {fk}k∈N
be a sequence uniformly bounded in Lq(Ω) with q > (p∗)′, where p∗ = np

n−p is

the exponent in the Sobolev embedding W 1,p
0 (Ω) →֒ Lp∗

(Ω). Then, there exists
a sub-sequence {fkm}m∈N and f ∈ Lq(Ω) such that

fkm ⇀ f in Lq(Ω),

fkm → f in W−1,p′

(Ω),

or, in other words, the embedding Lq(Ω) →֒→֒ W−1,p′

(Ω) is compact.

We present the proof for the reader’s convenience.

Proof of Lemma 5.3. Since by hypothesis Lq(Ω) is reflexive, by the Banach-
Alaouglu-Bourbaki theorem we can find a sub-sequence fkm such that

fkm ⇀ f in Lq(Ω),

and by considering the sequence {fkm − f}m∈N we can suppose that f = 0. We
then observe that by the Sobolev embedding we have the continuous embeddings

W 1,p
0 (Ω) →֒ Lp∗

(Ω) ∼ L(p∗)′(Ω) →֒ (W 1,p
0 (Ω))′ ≃W−1,p′

(Ω),

where Lp∗

(Ω) ∼ L(p∗)′(Ω) is the duality identification, while the second one
(W 1,p

0 (Ω))′ ≃ W−1,p′

(Ω) is the Lax isomorphism. This shows L(p∗)′(Ω) ⊆

W−1,p′

(Ω).
Next, let be given a sequence {fkm} ⊂W−1,p′

(Ω), then by reflexivity (since
1 < p <∞) there exists {φkm} ⊂W 1,p

0 (Ω) such that

‖fkm‖W−1,p′ (Ω) = fkm(φkm) = < fkm , φkm >,

with ‖φkm‖W 1,p
0

(Ω) = ‖∇φkm‖Lp(Ω) = 1.

Hence, by using the classical Rellich theorem, we can find a sub-sequence
{φkj}j∈N such that

φkj → φ in Lr(Ω) ∀ r < p∗.

In particular, we fix r = q′ (observe that q > (p∗)′ implies q′ < p∗) and we have

‖fkm‖W−1,p′(Ω) = < fkm , φkm − φ > + < fkm , φ > .
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The last term converges to zero, by the definition of weak convergence fkm ⇀ 0,
while the first one satisfies

|< fkm , φkm − φ >| ≤ ‖fkm‖W−1,p′ ‖φkm − φ‖W 1,p
0

,

and since ‖fkm‖W−1,p′ is uniformly bounded and ‖φkm − φ‖W 1,p
0

goes to zero,

then also this one vanishes as j → +∞.

Proof of Theorem 1.4. The proof of this theorem can be obtained by following
the same ideas of the Proposition 5.1. In fact, the main improvement is that the
weak convergence f j ⇀ 〈f〉 in Lq(Ω) implies (without extracting sub-sequences)
that

fk → f in V ′.

This follows since from any sub-sequence we can find a further sub-sequence
which is converging strongly, by Lemma 5.3. Then, by the weak convergence
of the original sequence, the limit is always the same and this implies that the
whole sequence {fk} strongly converges to its weak limit.

Hence, we have

1

n

n∑

k=1

fk → f in V ′,

and then, since 〈v〉n ⇀ 〈v〉 in V , we can infer that

< 〈f〉n, 〈v〉n > = <
1

n

n∑

k=1

fk,
1

n

n∑

k=1

vk > → < 〈f〉, 〈v〉 >,

and the rest follows as in Proposition 5.1.
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