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Abstract

We consider a second order equation with a linear “elastic” part and a nonlinear
damping term depending on a power of the norm of the velocity. We investigate the
asymptotic behavior of solutions, after rescaling them suitably in order to take into
account the decay rate and bound their energy away from zero.

We find a rather unexpected dichotomy phenomenon. Solutions with finitely many
Fourier components are asymptotic to solutions of the linearized equation without damp-
ing, and exhibit some sort of equipartition of the energy among the components. So-
lutions with infinitely many Fourier components tend to zero weakly but not strongly.
We show also that the limit of the energy of solutions depends only on the number of
their Fourier components.

The proof of our results is inspired by the analysis of a simplified model which we
devise through an averaging procedure, and whose solutions exhibit the same asymptotic
properties as the solutions to the original equation.

Mathematics Subject Classification 2010 (MSC2010): 35B40, 35L70, 35B36.

Key words: dissipative hyperbolic equations, nonlinear damping, decay rate, weak
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1 Introduction

Let H be a real Hilbert space, in which |x| denotes the norm of an element x ∈ H , and
〈x, y〉 denotes the scalar product of two elements x and y. Let A be a self-adjoint operator
on H with dense domain D(A). We assume that H admits a countable orthonormal
basis made by eigenvectors of A corresponding to an increasing sequence of positive
eigenvalues λ2k.

We consider the second order evolution equation

u′′(t) + |u′(t)|2u′(t) + Au(t) = 0, (1.1)

with initial conditions

u(0) = u0 ∈ D(A1/2), u′(0) = u1 ∈ H. (1.2)

All nonzero solutions to (1.1) decay to zero in the energy space D(A1/2)×H , with
a decay rate proportional to t−1/2 (see Proposition 3.1). This suggests the introduction
and the investigation of the rescaled variable v(t) :=

√
t · u(t).

The special structure of the damping term guarantees that for any linear subspace
F ⊆ D(A) such that A(F ) ⊆ F , the space F × F is positively invariant by the flow
generated by (1.1). In particular, equation (1.1) possesses the so-called finite dimensional
modes, namely solutions whose both components of the initial state (u0, u1) are finite
combinations of the eigenvectors. Denoting by uk(t) and vk(t) the projections of u(t)
and v(t) on the kth eigenspace, we shall call for simplicity the quantity

t
(

|u′k(t)|2 + λ2k|uk(t)|2
)

the “energy of the kth Fourier component of v(t)” while

t
(

|u′(t)|2 + |A1/2u(t)|2
)

will be called the “energy of v(t)”. For t large, these quantities are easily seen to be
equivalent to |v′k(t)|2+λ2k|vk(t)|2 and |v′(t)|2+|A1/2v(t)|2, respectively. Our main results,
formally stated as Theorem 2.1 and Theorem 2.5, can be summed up as follows.

• The limit of the energy of v(t) depends only on the number of Fourier components
of v(t) that are different from 0. In particular, the limit of the energy can take
only countably many values.

• If v(t) has only a finite number of Fourier components different from 0, then v(t)
is asymptotic in a strong sense to a suitable solution v∞(t) to the nondissipative
linear equation

v′′(t) + Av(t) = 0. (1.3)

Moreover, there is equipartition of the energy in the limit, in the sense that all
nonzero Fourier components of v∞(t) do have the same energy.
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• If v(t) has infinitely many components different from 0, then v(t) tends to 0 weakly
in the energy space, but not strongly. Roughly speaking, the energy of v(t) does
not tend to 0, but in the limit there is again equipartition of the energy, now among
infinitely many components, and this forces all components of v(t) to vanish in
the limit.

In other words, the Fourier components of rescaled solutions to (1.1) communicate
to each other, and this can result in some sort of energy transfer from lower to higher
frequencies, longing for a uniform distribution of the energy among components. In the
case of an infinite number of non-trivial Fourier components, the weak convergence to
0 implies non-compactness of the profile in the energy space. In particular, if A has
compact resolvent, whenever the initial state (u0, u1) belongs to D(A) × D(A1/2) and
has an infinite number of elementary modes, the norm of (v(t), v′(t)) in D(A)×D(A1/2)
is unbounded, a typical phenomenon usually called weak turbulence, cf. e.g. [1] and [6]
for other examples.

Our abstract theory applies for example to wave equations with nonlinear nonlocal
damping terms of the form

utt(t, x) +

(
∫ ℓ

0

u2t (t, x) dx

)

ut(t, x)− uxx(t, x) = 0 (1.4)

in a bounded interval (0, ℓ) of the real line with homogeneous Dirichlet boundary con-
ditions. This is a toy model of the wave equation with local nonlinear damping

utt(t, x) + u3t (t, x)− uxx(t, x) = 0 t ≥ 0, x ∈ (0, ℓ), (1.5)

which in turn is the prototype of all wave equations with nonlinear dissipation of order
higher than one at the origin. This more general problem was the motivation that led
us to consider equations (1.4) and (1.1). It is quite easy to prove that all solutions to
(1.5) decay at least as t−1/2. Actually the more general problem

utt(t, x) + g(ut(t, x))−∆u(t, x) = 0

in any bounded domain with homogeneous Dirichlet boundary conditions and g non-
decreasing has been extensively studied under relevant assumptions on the behavior of
g near the origin and some conditions on the growth of g at infinity, cf. e.g. [9, 2, 5, 8]
in which reasonable energy estimates, of the same form as those in the ODE case are
obtained. However, the asymptotic behavior of solutions to the simple equation (1.5)
is still a widely open problem since, unlike the ODE case, the optimality of this decay
rate in unknown: there are neither examples of solutions to (1.5) whose decay rate is
proportional to t−1/2, nor examples of nonzero solutions that decay faster.

It is not clear whether our results shed some light on the local case or not. For sure,
they confirm the complexity of the problem. In the case of (1.5) there are no simple
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invariant subspaces, and the interplay between components induced by the nonlinearity
is more involved. Therefore, it is reasonable to guess that at most the infinite dimen-
sional behavior of (1.4) extends to (1.5), and this behavior is characterized by lack of
an asymptotic profile and lack of strong convergence.

As a matter of fact, the problem of optimal decay rates is strongly related to regular-
ity issues. It can be easily shown that solutions to (1.5) with initial data in the energy
space remain in the same space for all times, and their energy is bounded by the initial
energy. But what about more regular solutions? Can one bound higher order Sobolev
norms of solutions in terms of the corresponding norms of initial data? This is another
open problem, whose answer would imply partial results for decay rates, as explained in
[4] and [6], cf. also [10] for a partial optimality result in the case of boundary damping.
However, the energy traveling toward higher frequencies might prevent the bounds on
higher order norms from being true, or at least from being easy to prove.

This paper is organized as follows. In section 2 we state our main results. In sec-
tion 3 we prove the basic energy estimate from above and from below for solution to
(1.1), we introduce Fourier components, and we interpret (1.1) as a system of infinitely
many ordinary differential equations. In section 4 we consider a simplified system, ob-
tained from the original one by averaging some oscillating terms. Then we analyze the
simplified system, we discover that it is the gradient flow of a quadratically perturbed
convex functional, whose solutions exhibit most of the features of the full system we
started with, including the existence of a large class of solutions which die off weakly at
infinity. In Section 5 we investigate the asymptotic behavior of solutions to scalar dif-
ferential equations and inequalities involving fast oscillating terms. Section 6 is devoted
to estimates on oscillating integrals. Finally, in section 7 we put things together and we
conclude the proof of our main results.

2 Statements

Let us consider equation (1.1) with initial data (1.2). If A is self-adjoint and nonnegative,
it is quite standard that the problem admits a unique weak global solution

u ∈ C1 ([0,+∞), H) ∩ C0
(

[0,+∞), D(A1/2)
)

.

Moreover, the classical energy

E(t) := |u′(t)|2 + |A1/2u(t)|2 (2.1)

is of class C1, and its time-derivative satisfies

E ′(t) = −2|u′(t)|4 ∀t ≥ 0. (2.2)

The following is the main result of this paper.

3



Theorem 2.1. Let H be a Hilbert space, and let A be a linear operator on H with dense
domain D(A). Let us assume that there exist a countable orthonormal basis {ek} of H
and an increasing sequence {λk} of positive real numbers such that

Aek = λ2kek ∀k ∈ N.

Let u(t) be the solution to problem (1.1)–(1.2), let {u0k} and {u1k} denote the com-
ponents of u0 and u1 with respect to the orthonormal basis, and let {uk(t)} denote the
corresponding components of u(t). Let us consider the set

J := {k ∈ N : u21k + u20k 6= 0}. (2.3)

Then the asymptotic behavior of u(t) and its energy depends on J as follows.

(1) (Trivial solution) If J = ∅, then u(t) = 0 for every t ≥ 0 and in particular

lim
t→+∞

t
(

|u′(t)|2 + |A1/2u(t)|2
)

= 0.

(2) (Finite dimensional modes) If J is a finite set with j elements, then uk(t) = 0
for every t ≥ 0 and every k 6∈ J . In addition, for every k ∈ J there exists a real
number θk,∞ such that

lim
t→+∞

(√
t · uk(t)−

2√
2j + 1

· cos (λkt+ θk,∞)

λk

)

= 0, (2.4)

lim
t→+∞

(√
t · u′k(t) +

2√
2j + 1

· sin (λkt+ θk,∞)

)

= 0, (2.5)

and in particular

lim
t→+∞

t
(

|u′(t)|2 + |A1/2u(t)|2
)

=
4j

2j + 1
.

(3) (Infinite dimensional modes) If J is infinite, then

lim
t→+∞

t
(

|u′k(t)|2 + λ2k|uk(t)|2
)

= 0 ∀k ∈ N,

but
lim inf
t→+∞

t
(

|u′(t)|2 + |A1/2u(t)|2
)

> 0, (2.6)

and hence
√
t · (u(t), u′(t)) converges to (0, 0) weakly but not strongly.

Let us comment on some aspects of Theorem 2.1 above.

Remark 2.2. The result holds true also when H is a finite dimensional Hilbert space,
but in that case only the first two options apply.
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Remark 2.3. In the case of finite dimensional modes, let us set

v∞(t) :=
2√

2j + 1
·
∑

k∈J

cos (λkt+ θk,∞)

λk
· ek ∀t ≥ 0.

It can be verified that v∞(t) is a solution to the linear homogeneous equation with-
out damping (1.3), and that (2.4) and (2.5) are equivalent to saying that v∞(t) is the
asymptotic profile of

√
t · u(t), in the sense that

lim
t→+∞

(

∣

∣

∣

√
t · u′(t)− v′∞(t)

∣

∣

∣

2

+
∣

∣

∣

√
t · u(t)− v∞(t)

∣

∣

∣

2
)

= 0.

Remark 2.4. The assumptions of Theorem 2.1 imply in particular that all eigenvalues
are simple. Things become more complex if multiplicities are allowed. Let us consider
the simplest case where H is a space of dimension 2, and the operator A is the identity.
In this case equation (1.1) reduces to a system of two ordinary differential equations of
the form

ü+ (u̇2 + v̇2)u̇+ u = 0,
v̈ + (u̇2 + v̇2)v̇ + v = 0.

If (v(0), v′(0)) = c(u(0), u′(0)) for some constant c, then v(t) = cu(t) for every t ≥ 0,
hence there is no equipartition of the energy in the limit.

In our second result we consider again the case where J is infinite, and we improve
(2.6) under a uniform gap condition on eigenvalues (which is satisfied for our model
problem (1.4)).

Theorem 2.5. Let H, A, λk, u(t) and J be as in Theorem 2.1. Let us assume in
addition that J is infinite and

inf
k∈N

(λk+1 − λk) > 0. (2.7)

Then it turns out that

lim
t→+∞

t
(

|u′(t)|2 + |A1/2u(t)|2
)

= 2. (2.8)

3 Basic energy estimates and reduction to ODEs

In this section we move the first steps in the proof of Theorem 2.1. In particular, we
prove a basic energy estimate and we reduce the problem to a system of countably many
ordinary differential equations.

Proposition 3.1 (Basic energy estimate). Let H, A and u(t) be as in Theorem 2.1.
Let us assume that (u0, u1) 6= (0, 0).

Then there exists two positive constants M1 and M2 such that

M1

1 + t
≤ |u′(t)|2 + |A1/2u(t)|2 ≤ M2

1 + t
∀t ≥ 0. (3.1)

5



Proof Let us consider the classic energy (2.1). From (2.2) it follows that

E ′(t) = −2|u′(t)|4 ≥ −2[E(t)]2 ∀t ≥ 0.

Integrating this differential inequality we obtain the estimate from below in (3.1).
Since E ′(t) ≤ 0 for every t ≥ 0, we deduce also that

E(t) ≤ E(0) ∀t ≥ 0. (3.2)

Let us consider now the modified energy

Fε(t) := E(t) + 2ε〈u(t), u′(t)〉E(t),

where ε is a positive parameter. We claim that there exists ε0 > 0 such that

1

2
E(t) ≤ Fε(t) ≤ 2E(t) ∀t ≥ 0, ∀ε ∈ (0, ε0], (3.3)

and
F ′
ε(t) ≤ −ε[E(t)]2 ∀t ≥ 0, ∀ε ∈ (0, ε0]. (3.4)

If we prove these claims, then we set ε = ε0, and from (3.4) and the estimate from
above in (3.3) we deduce that

F ′
ε0(t) ≤ −ε0

4
[Fε0(t)]

2 ∀t ≥ 0.

An integration of this differential inequality gives that

Fε0(t) ≤
k1

1 + t
∀t ≥ 0

for a suitable constant k1, and hence the estimate from below in (3.3) implies that

E(t) ≤ 2Fε0(t) ≤
2k1
1 + t

∀t ≥ 0,

which proves the estimate from above in (3.1).
So we only need to prove (3.3) and (3.4). The coerciveness of the operator A implies

that

|2〈u′(t), u(t)〉| ≤ |u′(t)|2 + |u(t)|2 ≤ |u′(t)|2 + 1

λ21
|A1/2u(t)|2,

so that from (3.2) we obtain

|2〈u′(t), u(t)〉| ≤ max

{

1,
1

λ21

}

E(t) ≤ k2 ∀t ≥ 0 (3.5)

for a suitable constant k2 depending on initial data. This guarantees that (3.3) holds
true when ε is small enough.
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As for (3.4), with some computations we obtain that it is equivalent to

(2− 3ε)|u′(t)|4 + ε|A1/2u(t)|4 − 2ε|u′(t)|2 · |A1/2u(t)|2

+ 6ε〈u′(t), u(t)〉 · |u′(t)|4 + 2ε〈u′(t), u(t)〉 · |u′(t)|2 · |A1/2u(t)|2 ≥ 0. (3.6)

Keeping (3.5) into account, (3.6) holds true if we show that

(2− 3ε− 3εk2)|u′(t)|4 + ε|A1/2u(t)|4 − ε(2 + k2)|u′(t)|2 · |A1/2u(t)|2 ≥ 0.

The left-hand side is a quadratic form in the variables |u′(t)|2 and |A1/2u(t)|2, and
it is nonnegative for all values of the variables provided that

(2− 3ε− 3εk2)ε ≥ 4ε2(2 + k2)
2,

which is clearly true when ε is small enough. This completes the proof. �

Proposition 3.1 suggests that u(t) decays as t−1/2, and motivates the variable change

v(t) :=
√
t+ 1 · u(t) ∀t ≥ 0.

The energy of v(t) is given by

|v′(t)|2 + |A1/2v(t)|2 = (t+ 1)|u′(t)|2 + |u(t)|2
4(t+ 1)

+ 〈u′(t), u(t)〉+ (t + 1)|A1/2u(t)|2.

We claim that there exist constants M3 and M4 such that

0 < M3 ≤ |v′(t)|2 + |A1/2v(t)|2 ≤ M4 ∀t ≥ 0. (3.7)

The upper estimate being quite clear, we just prove the lower bound. To this end
we start by the simple inequality

|v′(t)|2 + |A1/2v(t)|2 ≥ (t+ 1)|u′(t)|2 +
[

λ21
2

+
1

4(t+ 1)

]

|u(t)|2 + 〈u′(t), u(t)〉

+
t + 1

2
|A1/2u(t)|2.

On the other hand

(t + 1)|u′(t)|2 +
[

λ21
2

+
1

4(t+ 1)

]

|u(t)|2 + 〈u′(t), u(t)〉

is obviously greater than or equal to

(t+ 1)|u′(t)|2 + 2λ21 + 1

4(t+ 1)
|u(t)|2 + 〈u′(t), u(t)〉.
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By decomposing this expression we obtain the inequality

t+ 1

2λ21 + 1
|u′(t)|2 + 2λ21 + 1

4(t+ 1)
|u(t)|2 + 〈u′(t), u(t)〉+ (t+ 1)

(

1− 1

2λ21 + 1

)

|u′(t)|2

≥ 2λ21
2λ21 + 1

(t+ 1)|u′(t)|2,

and we end up with

|v′(t)|2 + |A1/2v(t)|2 ≥ min

{

1

2
,

2λ21
2λ21 + 1

}

(t+ 1)(|u′(t)|2 + |A1/2u(t)|2),

which proves the lower bound in (3.7) with

M3 = min

{

1

2
,

2λ21
2λ21 + 1

}

M1.

Starting from (1.1), with some computations we can verify that v(t) solves

v′′(t) +
(

|v′(t)|2 − 1
) v′(t)

t+ 1
+ Av(t) = g1(t)v(t) + g2(t)v

′(t), (3.8)

where g1 : [0,+∞) → R and g2 : [0,+∞) → R are defined by

g1(t) := −3

4

1

(t+ 1)2
+

1

2

|v′(t)|2
(t + 1)2

− 1

2

〈v(t), v′(t)〉
(t+ 1)3

+
1

8

|v(t)|2
(t+ 1)4

,

g2(t) :=
〈v(t), v′(t)〉
(t+ 1)2

− 1

4

|v(t)|2
(t+ 1)3

.

Due to (3.7), there exists a constant M5 such that

|g1(t)|+ |g2(t)| ≤
M5

(t+ 1)2
∀t ≥ 0. (3.9)

In the sequel we interpret g1(t) and g2(t) as time-dependent coefficients satisfying
this estimate, rather than nonlinear terms.

Let now {vk(t)} denote the components of v(t) with respect to the orthonormal
basis. Then (3.8) can be rewritten as a system of countably many ordinary differential
equations of the form

v′′k(t) +

(

∞
∑

i=0

[v′i(t)]
2 − 1

)

v′k(t)

t + 1
+ λ2kvk(t) = g1(t)vk(t) + g2(t)v

′
k(t). (3.10)

Let us introduce polar coordinates rk(t) and ϕk(t) in such a way that

vk(t) =
1

λk
rk(t) cosϕk(t), v′k(t) = rk(t) sinϕk(t).
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In these new variables every second order equation (3.10) is equivalent to a system of
two first order equations of the form (for the sake of shortness we do not write explicitly
the dependence of rk and ϕk on t)

r′k = −
(

∞
∑

i=0

r2i sin
2 ϕi − 1

)

rk sin
2 ϕk

t+ 1
+ γk(t)rk sinϕk, (3.11)

ϕ′
k = −λk −

(

∞
∑

i=0

r2i sin
2 ϕi − 1

)

sinϕk cosϕk

t+ 1
+ γk(t) cosϕk, (3.12)

where

γk(t) :=
1

λk
g1(t) cosϕk(t) + g2(t) sinϕk(t) ∀t ≥ 0.

In particular, since eigenvalues are bounded from below, from (3.9) it follows that
there exists a constant M6 such that

|γk(t)| ≤
M6

(t+ 1)2
∀t ≥ 0, ∀k ∈ N. (3.13)

Finally, we perform one more variable change in order to get rid of (t + 1) in the
denominators of equations (3.11)–(3.12). To this end, for every k ∈ N we set

ρk(t) := rk(e
t − 1), θk(t) := ϕk(e

t − 1),

and we realize that in these new variables system (3.11)–(3.12) reads as

ρ′k = −
(

∞
∑

i=0

ρ2i sin
2 θi − 1

)

ρk sin
2 θk + Γ1,k(t)ρk, (3.14)

θ′k = −λket −
(

∞
∑

i=0

ρ2i sin
2 θi − 1

)

sin θk cos θk + Γ2,k(t), (3.15)

where

Γ1,k(t) := etγk(e
t − 1) sin θk(t), Γ2,k(t) := etγk(e

t − 1) cos θk(t),

so that from (3.13) it follows that there exists a constant M7 such that

|Γ1,k(t)|+ |Γ2,k(t)| ≤M7e
−t ∀t ≥ 0, ∀k ∈ N. (3.16)

We observe that ρk can be factored out in the right-hand side of (3.14), and hence
either ρk(t) = 0 for every t ≥ 0, or ρk(t) > 0 for every t ≥ 0, where the second option
applies if and only if k belongs to the set J defined in (2.3). We observe also that the
sequence ρk(t) is square-integrable for every t ≥ 0, and the square of its norm

R(t) :=
∞
∑

k=0

ρ2k(t) =
∑

k∈J

ρ2k(t) (3.17)
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satisfies
R(t) =

(

|v′(et − 1)|2 + |A1/2v(et − 1)|2
)

.

In particular, from (3.7) it follows that

0 < M3 ≤ R(t) ≤M4 ∀t ≥ 0 (3.18)

for every nontrivial solution.
Finally, we observe that in the new variables Theorem 2.1 and Theorem 2.5 have

been reduced to proving the following facts.

• (Finite dimensional modes) If J is a nonempty finite set, then for every k ∈ J it
turns out that

lim
t→+∞

ρk(t) =
2√

2j + 1
(3.19)

and there exists a real number θk,∞ such that

lim
t→+∞

(

θk(t) + λke
t
)

= θk,∞. (3.20)

• (Infinite dimensional modes) If J is infinite, then

lim
t→+∞

ρk(t) = 0 ∀k ∈ N, (3.21)

and under the additional uniform gap assumption (2.7) it turns out that

lim
t→+∞

R(t) = 2. (3.22)

4 Heuristics

In this section we make some drastic simplifications in equations (3.14)–(3.15). These
non-rigorous steps lead to a simplified model, which is then analyzed rigorously in
Theorem 4.1 below. The result is that solutions to the simplified model exhibit all the
features stated in Theorem 2.1 and Theorem 2.5 for solutions to the full system. Since
the derivation of the simplified model is not rigorous, we can not exploit Theorem 4.1
in the study of (3.14)–(3.15). Nevertheless, the proof of Theorem 4.1 provides a short
sketch without technicalities of the ideas that are involved in the proof of the main
results.

To begin with, in (3.14) and (3.15) we ignore the terms with Γ1,k(t) and Γ2,k(t).
Indeed these terms are integrable because of (3.16), and hence it is reasonable to expect
that they have no influence on the asymptotic dynamics. Now let us consider (3.15),
which seems to suggest that θk(t) ∼ −λket. If this is true, then the trigonometric terms
in (3.14) oscillate very quickly, and in turn this suggests that some homogenization effect
takes place. Therefore, it seems reasonable to replace all those oscillating terms with
their time-averages.

10



The time-averages can be easily computed to be

lim
t→+∞

1

t

∫ t

0

sin2 (λes) ds =
1

2
∀λ > 0, (4.1)

lim
t→+∞

1

t

∫ t

0

sin2 (λes) · sin2 (µes) ds =
1

4
∀λ > µ > 0, (4.2)

lim
t→+∞

1

t

∫ t

0

sin4 (λes) ds =
3

8
∀λ > 0. (4.3)

A comparison of (4.1) and (4.2) reveals that the two oscillating functions in the
integral (4.2) are in some sense independent when λ 6= µ, while (4.3) shows that this
independence fails when λ = µ. This lack of independence plays a fundamental role in
the sequel.

After replacing all oscillating coefficients in (3.14) with their time-averages, we are
left with the following system of autonomous ordinary differential equations

ρ′k = ρk

(

1

2
− 3

8
ρ2k −

1

4

∑

i 6=k

ρ2i

)

= ρk

(

1

2
− 1

8
ρ2k −

1

4

∞
∑

i=0

ρ2i

)

(4.4)

Quite magically, this system turns out to be the gradient flow of the functional

F(ρ) := −1

4

∞
∑

k=0

ρ2k +
1

16

(

∞
∑

k=0

ρ2k

)2

+
1

32

∞
∑

k=0

ρ4k, (4.5)

where ρ belongs to the space ℓ2+ of square-summable sequences of nonnegative real
numbers. Since F(ρ) is a continuous quadratic perturbation of a convex functional (the
sum of the last two terms), its gradient flow generates a semigroup in ℓ2+. Solutions
are expected to be asymptotic to stationary points of F(ρ). In addition to the trivial
stationary point with all components equal to 0, all remaining stationary points ρ are
of the form

ρk :=







2√
2j + 1

if k ∈ J,

0 if k 6∈ J

for some finite subset J ⊆ N with j elements. Incidentally it is not difficult to check
that any such stationary point is the minimum point of the restriction of F(ρ) to the
subset

WJ :=
{

ρ ∈ ℓ2+ : ρk = 0 for every k 6∈ J
}

. (4.6)

Now we show that the asymptotic behavior of solutions to the averaged system (4.4)
corresponds to the results announced in our main theorems.

Theorem 4.1 (Asymptotics for solutions to the homogenized system). Let {ρk(t)} be
a solution to system (4.4) in ℓ2+, and let J := {k ∈ N : ρk(0) > 0}.

Then the asymptotic behavior of the solution depends on J as follows.
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(1) (Trivial null solution) If J = ∅, then ρk(t) = 0 for every k ∈ N and every t ≥ 0.

(2) (Finite dimensional modes) If J is a finite set with j elements, then ρk(t) = 0 for
every k 6∈ J and every t ≥ 0, and

lim
t→+∞

ρk(t) =
2√

2j + 1
∀k ∈ J. (4.7)

In other words, in this case the solution leaves in the subspace WJ defined by (4.6),
and tends to the minimum point of the restriction of F(ρ) to WJ .

(3) (Infinite dimensional modes) If J is infinite, then

lim
t→+∞

ρk(t) = 0 ∀k ∈ N,

but

lim
t→+∞

∞
∑

k=0

ρ2k(t) = 2, (4.8)

and in particular the solution tends to 0 weakly but not strongly.

Proof First of all we observe that components with null initial datum remain null
during the evolution, while components with positive initial datum remain positive for
all subsequent times.

Then we introduce the total energy R(t) of the solution, defined as in (3.17). More-
over, for every pair of indices h and k in J , we consider the ratio

Qh,k(t) :=
ρk(t)

ρh(t)
∀t ≥ 0, (4.9)

which is well-defined because the denominator never vanishes.
Simple calculations show that

R′(t) = R(t)− 1

2
R2(t)− 1

4

∑

k∈J

ρ4k(t) ∀t ≥ 0, (4.10)

and

Q′
h,k(t) =

1

8
ρ2h(t) ·Qh,k(t)

(

1−Q2
h,k(t)

)

∀t ≥ 0. (4.11)

Now we prove some basic estimates on the energy and the quotients, and then we
distinguish the case where all components tend to 0, and the case where at least one
component does not tend to 0.
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Non-optimal energy estimates We prove that

4

3
≤ lim inf

t→+∞
R(t) ≤ lim sup

t→+∞
R(t) ≤ 2. (4.12)

Indeed plugging the trivial estimate

0 ≤
∑

k∈J

ρ4k(t) ≤
(

∑

k∈J

ρ2k(t)

)2

into (4.10) we obtain that

R(t)− 1

2
R2(t)− 1

4
R2(t) ≤ R′(t) ≤ R(t)− 1

2
R2(t) ∀t ≥ 0.

Integrating the two differential inequalities we deduce (4.12).

Uniform boundedness of quotients We prove that for every h ∈ J there exists a
constant Dh such that

Qh,k(t) ≤ Dh ∀k ∈ J, ∀t ≥ 0. (4.13)

We point out that Dh is independent of k, and actually it can be defined as

Dh := max
{

1,max{Qh,k(0) : k ∈ J}
}

. (4.14)

To this end, it is enough to remark that solutions to (4.11) are decreasing as long as
they are greater than 1, and observe that the inner maximum in (4.14) is well defined
because for every fixed h ∈ J it turns out that Qh,k(0) → 0 as k → +∞ (because
ρk(0) → 0 as k → +∞).

Case where all components vanish in the limit Let us assume that

lim
t→+∞

ρk(t) = 0 ∀k ∈ J. (4.15)

In this case we prove that J is infinite and (4.8) holds true.
Let us assume that J is finite. Then from (4.15) it follows that R(t) → 0 as t→ +∞,

which contradicts the estimate from below in (4.12).
So J is infinite. In order to prove (4.8), let us fix any index h0 ∈ J . From (4.13) we

obtain that
∑

k∈J

ρ4k(t) =
∑

k∈J

Q2
h0,k

(t)ρ2h0
(t) · ρ2k(t) ≤ D2

h0
· ρ2h0

(t) ·
∑

k∈J

ρ2k(t).

Plugging this estimate into (4.10) we deduce that

R(t)− 1

2
R2(t)− 1

4
D2

h0
· ρ2h0

(t) · R(t) ≤ R′(t) ≤ R(t)− 1

2
R2(t). (4.16)

Since ρ2h0
(t) ·R(t) → 0 as t→ +∞, these two differential inequalities imply (4.8) (we

refer to Proposition 5.3 below for a more general result).
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Case where at least one component does not vanish in the limit Let us assume that
there exists h0 ∈ J such that

lim sup
t→+∞

ρh0
(t) > 0. (4.17)

In this case we prove that J is finite and (4.7) holds true.
Since ρh0

(t) is Lipschitz continuous (because its time-derivative is bounded), from
(4.17) we deduce that

∫ +∞

0

ρ2h0
(t) dt = +∞,

and hence from equation (4.11) we conclude that (we refer to Proposition 5.4 below for
a more general result)

lim
t→+∞

Qh0,k(t) = 1 ∀k ∈ J. (4.18)

We are now ready to prove that J is finite. Let us assume by contradiction that this
is not the case. Then for every n ∈ N there exists a subset Jn ⊆ J with n elements, and
hence

R(t) ≥
∑

k∈Jn

ρ2k(t) =
∑

k∈Jn

Q2
h0,k

(t)ρ2h0
(t) = ρ2h0

(t)
∑

k∈Jn

Q2
h0,k

(t).

When t→ +∞ the last sum tends to n because of (4.18), and hence

lim sup
t→+∞

R(t) ≥ n · lim sup
t→+∞

ρ2h0
(t),

which contradicts the estimate from above in (4.12) when n is large enough. To finish
the proof, we now observe that the vector (ρk(t))k∈J is a bounded solution of a first
order gradient system, so that (cf. e.g. [3], example 2.2.5 p. 21 or [7], corollary 7.3.1 p.
69) its omega-limit set is made of stationary points only. But the only stationary point
satisfying the condition of having all its limiting components positive and equal is the
point with all components equal to the right-hand side of (4.7). �

5 Estimates for differential inequalities

In this section we investigate the asymptotic behavior of solutions to two scalar differ-
ential equations, characterized by the presence of fast oscillating terms. Equations of
this form are going to appear in the proof of our main results as the equations solved
by the energy of the solution and by the ratio between two Fourier components.

Throughout the text we shall meet oscillatory functions with are not absolutely
integrable at infinity but have a convergent integral in a weaker sense.

Definition 5.1 (Semi-integrable function). A function f ∈ C0([t0,∞),R) will be called
semi-integrable on [t0,∞) if the integral

F (t) :=

∫ t

t0

f(s) ds

14



converges to a finite limit as t tends to +∞. In this case the limit will be denoted as
∫ +∞

t0
f(s) ds.

Remark 5.2. A classical example of function which is semi-integrable but not absolutely
integrable in [t0,+∞) for t0 > 0 is

f(t) =
cos(ωt+ φ)

tα
(5.1)

whenever 0 < α ≤ 1. Another classical case (Fresnel’s integrals) is

f(t) = cos(ωt2 + φ).

In the second case the integrability comes from fast oscillations at infinity and the
convergence of the integral appears immediately by the change of variable s = t2 which
reduces us to (5.1) with α = 1/2. The semi-integrable functions that we shall handle
are closer to cos(cebt) in [0,+∞), in which case the integral can be reduced to (5.1) with
α = 1 by the change of variable s = ebt.

The first equation we consider is actually a differential inequality which generalizes
(4.16). It takes the form

∣

∣

∣

∣

z′(t)− z(t) +
1

z∞
· z2(t)− ψ1(t)

∣

∣

∣

∣

≤ ψ2(t) ∀t ≥ 0. (5.2)

When z∞ is a positive constant, and ψ1(t) ≡ ψ2(t) ≡ 0, this inequality reduces to
an ordinary differential equation, and it is easy to see that all its positive solutions tend
to z∞ as t→ +∞. In the following statement we show that the same conclusion is true
under more general assumption on ψ1(t) and ψ2(t).

Proposition 5.3. Let z∞ be a positive constant, and let z : [0,+∞) → R be a solution
of class C1 to the differential inequality (5.2). Let us assume that

(i) the function ψ1 : [0,+∞) → R is continuous and semi-integrable on [0,+∞).

(ii) the function ψ2 : [0,+∞) → R is continuous and satisfies

lim
t→+∞

ψ2(t) = 0, (5.3)

(iii) there exists a constant c0 such that

z(t) ≥ c0 > 0 ∀t ≥ 0. (5.4)

Then it turns out that
lim

t→+∞
z(t) = z∞. (5.5)
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Proof For every t ≥ 0 let us set

x(t) := z(t)− z∞, a(t) := 1 +
x(t)

z∞
=
z(t)

z∞
.

Now (5.2) is equivalent to the two differential inequalities

x′(t) ≤ −a(t)x(t) + ψ1(t) + ψ2(t), (5.6)

x′(t) ≥ −a(t)x(t) + ψ1(t)− ψ2(t), (5.7)

assumption (5.4) implies that

a(t) ≥ c0
z∞

∀t ≥ 0, (5.8)

and (5.5) is equivalent to
lim

t→+∞
x(t) = 0. (5.9)

Let us set

A(t) :=

∫ t

0

a(τ) dτ ∀t ≥ 0,

and let us observe that (5.8) implies that A(t) is increasing and

lim
t→+∞

A(t) = +∞. (5.10)

Let us concentrate on the differential inequality (5.6). Due to a well-known formula,
every solution satisfies

x(t) ≤ e−A(t)x(0) + e−A(t)

∫ t

0

eA(τ)ψ2(τ) dτ + e−A(t)

∫ t

0

eA(τ)ψ1(τ) dτ.

We claim that the three terms in the right-hand side tend to 0 as t → +∞, and
hence

lim sup
t→+∞

x(t) ≤ 0. (5.11)

This is clear for the first term because of (5.10). Since A(t) is increasing and tends
to +∞, we can apply De L’Hôpital’s rule to the second term. Keeping (5.3) and (5.8)
into account, we obtain that

lim
t→+∞

1

eA(t)

∫ t

0

eA(τ)ψ2(τ) dτ = lim
t→+∞

1

a(t)eA(t)
· eA(t)ψ2(t) = 0.

In order to estimate the third term, let us introduce the function

Ψ1(t) :=

∫ +∞

t

ψ1(τ) dτ ∀t ≥ 0.
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Due to the semi-integrability of ψ1(t), the function Ψ1(t) is well defined and Ψ1(t) →
0 as t→ +∞. Now an integration by parts gives that

∫ t

0

eA(τ)ψ1(τ) dτ = eA(t)Ψ1(t)−Ψ1(0)−
∫ t

0

a(τ)eA(τ)Ψ1(τ) dτ.

The first two terms tend to 0 when multiplied by e−A(t). As for the third term, we
apply again De L’Hôpital’s rule and we conclude that

lim
t→+∞

1

eA(t)

∫ t

0

a(τ)eA(τ)Ψ1(τ) dτ = lim
t→+∞

1

a(t)eA(t)
· a(t)eA(t)Ψ1(t) = 0.

This completes the proof of (5.11).
In an analogous way, from (5.7) we deduce that

lim inf
t→+∞

x(t) ≥ 0. (5.12)

From (5.11) and (5.12) we obtain (5.9), and this completes the proof. �

The second equation we consider is a generalization of (4.11). It takes the form

z′(t) = α(t)z(t)(1− z2(t)) + α(t)β(t)z3(t) + γ(t)z(t) ∀t ≥ 0. (5.13)

When α(t) ≡ 1 and β(t) ≡ γ(t) ≡ 0, it is easy to see that all positive solutions
tend to 1 as t→ +∞. In the following result we prove the same conclusion under more
general assumptions on the coefficients.

Proposition 5.4. Let z : [0,+∞) → (0,+∞) be a positive solution of class C1 to the
differential equation (5.13).

Let us assume that

(i) the function α : [0,+∞) → (0,+∞) is bounded and of class C1, and it satisfies

∫ +∞

0

α(t) dt = +∞, (5.14)

(ii) there exists a constant L0 such that

|α′(t)| ≤ L0α(t) ∀t ≥ 0, (5.15)

(iii) the functions β : [0,+∞) → R and γ : [0,+∞) → R are bounded and semi-
integrable.

Then it turns out that
lim

t→+∞
z(t) = 1. (5.16)
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Proof Equation (5.13) is a classical Bernoulli equation, and the usual variable change
x(t) := [z(t)]−2 transforms it into the linear equation

x′(t) = −2(α(t) + γ(t))x(t) + 2α(t)(1− β(t)). (5.17)

In the new setting, conclusion (5.16) is equivalent to proving that

lim
t→+∞

x(t) = 1. (5.18)

In order to avoid plenty of factors 2, with a little abuse of notation we replace 2α(t),
2β(t), 2γ(t) with α(t), β(t), γ(t). This does not change the assumptions, but allows to
rewrite (5.17) in the simpler form

x′(t) = −(α(t) + γ(t))x(t) + α(t)(1− β(t)). (5.19)

Now we introduce the function

A(t) :=

∫ t

0

α(τ) dτ ∀t ≥ 0,

and we observe that
lim

t→+∞
A(t) = +∞ (5.20)

because of assumption (5.14). We also introduce the functions

B(t) :=

∫ +∞

t

β(τ) dτ, C(t) :=

∫ t

0

γ(τ) dτ,

which are well defined for every t ≥ 0 as a consequence of assumption (iii), and satisfy

lim
t→+∞

B(t) = 0. (5.21)

lim
t→+∞

C(t) =: C∞ ∈ R. (5.22)

Every solution to (5.19) is given by the well-known formula

x(t) = e−A(t)−C(t)x(0) + e−A(t)−C(t)

∫ t

0

eA(τ)+C(τ)α(τ) dτ

− e−A(t)−C(t)

∫ t

0

eA(τ)+C(τ)α(τ)β(τ) dτ.

We claim that the first and third term tend to 0 as t→ +∞, while the second term
tends to 1. This would complete the proof of (5.18).

The first term tends to 0 because of (5.20) and (5.22).
The second term can be rewritten as

e−C(t) · 1

eA(t)

∫ t

0

eA(τ)+C(τ)α(τ) dτ.
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The factor e−C(t) tends to e−C∞ . Since A(t) is increasing and tends to +∞, we can
apply De L’Hôpital’s rule to the second factor. We obtain that

lim
t→+∞

1

eA(t)

∫ t

0

eA(τ)+C(τ)α(τ) dτ = lim
t→+∞

1

α(t)eA(t)
· eA(t)+C(t)α(t) = eC∞ ,

and this settles the second term.
In order to compute the limit of the third term, we integrate by parts. We obtain

that
∫ t

0

eA(τ)+C(τ)α(τ)β(τ) dτ = eA(t)+C(t)α(t)B(t)− α(0)B(0)

−
∫ t

0

eA(τ)+C(τ) [(α(τ) + γ(τ))α(τ) + α′(τ)]B(τ) dτ.

When we multiply by e−A(t)−C(t), the terms in the first line tend to 0 because of
(5.20) through (5.22), and the boundedness of the function α(t). Thanks to assumption
(5.15), the absolute value of the last integral is less than or equal to

∫ t

0

eA(τ)+C(τ) (|α(τ)|+ |γ(τ)|+ L0)α(τ)|B(τ)| dτ.

Now we multiply by e−A(t)−C(t), we factor out e−C(t), and we compute the limit of
the rest by exploiting De L’Hôpital’s rule as we did before. From (5.20) through (5.22),
and the boundedness of the functions α(t) and γ(t), we conclude that

lim
t→+∞

1

eA(t)

∫ t

0

eA(τ)+C(τ) (|α(τ)|+ |γ(τ)|+ L0)α(τ)|B(τ)| dτ

= lim
t→+∞

eA(t)+C(t) (|α(t)|+ |γ(t)|+ L0)α(t)|B(t)|
α(t)eA(t)

= 0.

This completes the proof of (5.18). �

In the third and last result of this section we consider again equation (5.13). Let
us assume for simplicity that α(t) ≥ 0 for every t ≥ 0, and β(t) ≡ γ(t) ≡ 0. These
assumptions do not guarantee that positive solutions tend to 1 as t → +∞, but never-
theless they are enough to conclude that all solutions are bounded from above for t ≥ 0
(because solutions are decreasing as long as they stay in the region z(t) > 1). In the
following result we prove a similar conclusion under more general assumptions on the
coefficients.

Proposition 5.5. Let z : [0,+∞) → (0,+∞) be a positive solution of class C1 to the
differential equation (5.13).

Let us assume that
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(i) the function α : [0,+∞) → (0,+∞) is of class C1,

(ii) the functions β : [0,+∞) → R and γ : [0,+∞) → R are continuous,

(iii) there exists a constant L1 such that

max {α(t), |α′(t)|, |β(t)|, |γ(t)|} ≤ L1 ∀t ≥ 0, (5.23)

(iv) there exists a constant L2 such that the following two inequalities
∣

∣

∣

∣

∫ s

t

β(τ) dτ

∣

∣

∣

∣

≤ L2e
−t,

∣

∣

∣

∣

∫ s

t

γ(τ) dτ

∣

∣

∣

∣

≤ L2e
−t (5.24)

hold true for every s ≥ t ≥ 0.

Let t0 ≥ 0 be any nonnegative real number such that

L2

(

1 + 9L1 + 32L2
1 + 32L3

1

)

e−t0 < log 2. (5.25)

Then the following implication holds true

z(t0) ≤ 1 =⇒ sup
t≥t0

z(t) ≤ 2.

Proof Let us assume that z(t0) ≤ 1, and let us set

t2 := sup {t ≥ t0 : z(τ) ≤ 2 ∀τ ∈ [t0, t]} .

If t2 = +∞, the result is proved. Let us assume by contradiction that this is not
the case, and hence t2 < +∞. Due to the continuity of z(t) and the maximality of t2,
it follows that

z(t2) = 2. (5.26)

Let us set
t1 := inf {t ∈ [t0, t2] : z(τ) ≥ 1 ∀τ ∈ [t, t2]} .

Then it turns out that t0 ≤ t1 < t2, and moreover

z(t1) = 1 (5.27)

and
1 ≤ z(t) ≤ 2 ∀t ∈ [t1, t2]. (5.28)

Due to (5.23) and (5.28), from (5.13) we deduce that

|z′(t)| ≤ 8L1 + 8L2
1 ∀t ∈ [t1, t2]. (5.29)

Since z(t) ≥ 1 in [t1, t2] and α(t) is positive, (5.13) implies also that

z′(t) ≤
(

γ(t) + α(t)β(t)z2(t)
)

z(t) ∀t ∈ [t1, t2],
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which we can integrate as a linear differential inequality. Keeping (5.27) into account,
we find that

z(t) ≤ exp

(
∫ t

t1

γ(τ) dτ +

∫ t

t1

α(τ)β(τ)z2(τ) dτ

)

∀t ∈ [t1, t2].

Now we claim that
∫ t2

t1

γ(τ) dτ +

∫ t2

t1

α(τ)β(τ)z2(τ) dτ < log 2. (5.30)

This would imply that z(t2) < 2, thus contradicting (5.26).
Due to the second inequality in (5.24), we can estimate the first integral as

∫ t2

t1

γ(τ) dτ ≤ L2e
−t1 ≤ L2e

−t0 . (5.31)

In order to estimate the second integral, we introduce the function

B(t) :=

∫ +∞

t

β(τ) dτ ∀t ≥ 0.

This function is well defined because of the first inequality in (5.24), and for the
same reason it satisfies

B(t) ≤ L2e
−t ∀t ≥ 0. (5.32)

Now an integration by parts gives that
∫ t2

t1

α(τ)β(τ)z2(τ) dτ = α(t2)z
2(t2)B(t2)− α(t1)z

2(t1)B(t1)

−
∫ t2

t1

B(τ)
(

α′(τ)z2(τ) + 2α(τ)z(τ)z′(τ)
)

dτ.

From (5.23), (5.26), (5.27), and (5.32) it follows that
∣

∣α(t2)z
2(t2)B(t2)− α(t1)z

2(t1)B(t1)
∣

∣ ≤ L1 · 4 · L2e
−t2 + L1 · 1 · L2e

−t1

≤ 5L1L2e
−t0 . (5.33)

From (5.23), (5.28), (5.29) and (5.32) it follows that
∣

∣B(τ)
(

α′(τ)z2(τ) + 2α(τ)z(τ)z′(τ)
)
∣

∣ ≤ L2e
−τ
(

4L1 + 32L1(L
2
1 + L1)

)

≤ 4L2

(

L1 + 8L2
1 + 8L3

1

)

e−τ (5.34)

for every τ ∈ [t1, t2]. From (5.33) and (5.34) it follows that
∫ t2

t1

α(τ)β(τ)z2(τ) dτ ≤ L2

(

9L1 + 32L2
1 + 32L3

1

)

e−t0 . (5.35)

Adding (5.31) and (5.35), and taking assumption (5.25) into account, we obtain
(5.30). This completes the proof. �
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6 Estimates on oscillating integrals

In the three results of this section we prove the convergence of some oscillating integrals
and series of oscillating integrals. We need these estimates in the proof of our main
result when we deal with the trigonometric terms of (3.14) and (3.15).

Lemma 6.1. Let α > 0, let L3 ≥ 0, and let ψ : [0,+∞) → R be a function of class C1

such that
|ψ′(t)| ≤ L3 ∀t ≥ 0. (6.1)

Then for every s ≥ t ≥ 0 it turns out that
∣

∣

∣

∣

∫ s

t

cos(αeτ + ψ(τ)) dτ

∣

∣

∣

∣

≤ 3 + L3

αet
. (6.2)

Proof We introduce the complex valued functions

g(t) := exp
(

iαet
)

, f(t) := exp (iψ(t)) ,

so that clearly
∣

∣

∣

∣

∫ s

t

cos(αeτ + ψ(τ)) dτ

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫ s

t

exp(i[αeτ + ψ(τ)]) dτ

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ s

t

g(τ)f(τ) dτ

∣

∣

∣

∣

.

Now we have
∫ s

t

g(τ)f(τ) dτ =

∫ s

t

g′(τ)
1

iα
e−τf(τ) dτ

=
1

iα

[

g(s)f(s)e−s − g(t)f(t)e−t −
∫ s

t

g(τ)(f ′(τ)− f(τ))e−τdτ

]

,

yielding the immediate estimate
∣

∣

∣

∣

∫ s

t

g(τ)f(τ) dτ

∣

∣

∣

∣

≤ 3 + L3

α
e−t,

which implies (6.2) �

Lemma 6.1 can also be viewed as a special case of the following result.

Lemma 6.2. Let g : [0,+∞) → C be a continuous function, and let f : [0,+∞) → C

be a function of class C1. Let us assume that there exist two constants L4 and L5 such
that

∣

∣

∣

∣

∫ s

t

g(τ) dτ

∣

∣

∣

∣

≤ L4e
−t ∀s ≥ t ≥ 0, (6.3)

max {|f(t)|, |f ′(t)|} ≤ L5 ∀t ≥ 0.

Then it turns out that
∣

∣

∣

∣

∫ s

t

g(τ)f(τ) dτ

∣

∣

∣

∣

≤ 3L4L5e
−t ∀s ≥ t ≥ 0. (6.4)
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Proof Let us introduce the function

G(t) :=

∫ +∞

t

g(τ) dτ ∀t ≥ 0.

This function is well defined because of assumption (6.3), and for the same reason it
satisfies

|G(t)| ≤ L4e
−t ∀t ≥ 0.

Integrating by parts the left-hand side of (6.4) we find that
∫ s

t

g(τ)f(τ) dτ = G(s)f(s)−G(t)f(t)−
∫ s

t

G(τ)f ′(τ) dτ.

At this point our assumptions imply that
∣

∣

∣

∣

∫ s

t

g(τ)f(τ) dτ

∣

∣

∣

∣

≤ |G(s)| · |f(s)|+ |G(t)| · |f(t)|+
∫ s

t

|G(τ)| · |f ′(τ)| dτ

≤ L4e
−s · L5 + L4e

−t · L5 +

∫ s

t

L4e
−τ · L5 dτ

≤ 3L4L5e
−t,

which proves (6.4). �

The next lemma extends the previous estimates to some series of functions.

Lemma 6.3. Let gk : [0,+∞) → R be a sequence of continuous functions, and let
fk : [0,+∞) → R be a sequence of functions of class C1.

Let us assume that the two series of functions
∞
∑

k=0

fk(t),
∞
∑

k=0

f ′
k(t)

are normally convergent on compact subsets of [0,+∞), and that there exist three con-
stants L6, L7, and L8 such that

|gk(t)| ≤ L6 ∀t ≥ 0, ∀k ∈ N, (6.5)
∣

∣

∣

∣

∫ s

t

gk(τ) dτ

∣

∣

∣

∣

≤ L7e
−t ∀s ≥ t ≥ 0, ∀k ∈ N, (6.6)

and

max

{

∞
∑

k=0

|fk(t)|,
∞
∑

k=0

|f ′
k(t)|

}

≤ L8 ∀t ≥ 0. (6.7)

Then the series
∞
∑

k=0

gk(t)fk(t) (6.8)

is normally convergent on compact subsets of [0,+∞), and its sum satisfies
∣

∣

∣

∣

∣

∫ s

t

(

∞
∑

k=0

gk(τ)fk(τ)

)

dτ

∣

∣

∣

∣

∣

≤ 3L7L8e
−t ∀s ≥ t ≥ 0. (6.9)
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Proof In analogy with the proof of Lemma 6.2, we introduce the functions

Gk(t) :=

∫ +∞

t

gk(τ) dτ.

We observe that they are well defined because of assumption (6.6), and they satisfy

|Gk(t)| ≤ L7e
−t ∀t ≥ 0, ∀k ∈ N. (6.10)

From assumption (6.5) it follows that

sup
t∈K

|gk(t)fk(t)| ≤ L6 sup
t∈K

|fk(t)| ∀k ∈ N

for every compact set K ⊆ [0,+∞). As a consequence, the normal convergence in K of
the series (6.8) follows from the normal convergence in K of the series with general term
fk(t). Due to normal convergence, we can exchange series and integrals in the left-hand
side of (6.9), and deduce that

∣

∣

∣

∣

∣

∫ s

t

(

∞
∑

k=0

gk(τ)fk(τ)

)

dτ

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∞
∑

k=0

∫ s

t

gk(τ)fk(τ) dτ

∣

∣

∣

∣

∣

≤
∞
∑

k=0

∣

∣

∣

∣

∫ s

t

gk(τ)fk(τ) dτ

∣

∣

∣

∣

.

Now we integrate by parts each term of the series, and we exploit (6.10) in analogy
with what as we did before in the proof of Lemma 6.2. We obtain that

∣

∣

∣

∣

∫ s

t

gk(τ)fk(τ) dτ

∣

∣

∣

∣

≤ L7e
−s|fk(s)|+ L7e

−t|fk(t)|+ L7

∫ s

t

e−τ |f ′
k(τ)| dτ

for every k ∈ N. When we sum over k, from (6.7) we deduce that
∞
∑

k=0

L7e
−s|fk(s)| = L7e

−s

∞
∑

k=0

|fk(s)| ≤ L7L8e
−t, (6.11)

and analogously
∞
∑

k=0

L7e
−t|fk(t)| ≤ L7L8e

−t. (6.12)

As for the sum of integrals, we first observe that the normal convergence on compact
subsets of [0,+∞) of the series with general term f ′

k(t) implies an analogous convergence
of the series

∞
∑

k=0

e−τ |f ′
k(τ)|.

Therefore, we can exchange once again series and integrals. Keeping (6.7) into
account, this leads to

∞
∑

k=0

L7

∫ s

t

e−τ |f ′
k(τ)| dτ = L7

∫ s

t

(

∞
∑

k=0

e−τ |f ′
k(τ)|

)

dτ

≤ L7

∫ s

t

L8e
−τ dτ

≤ L7L8 e
−t. (6.13)
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At this point, (6.9) follows from (6.11), (6.12), and (6.13). �

7 Proof of the main results

Equations for the energy and quotients

Preliminary estimates on components Let us consider the notations introduced in sec-
tion 3, where we reduced ourselves to proving (3.19) through (3.22). In this first para-
graph we derive some k-independent estimates on ρk(t) and θk(t) that are needed several
times in the sequel. The constants M8, . . . , M23 we introduce hereafter depend on the
solution (as the constants M1, . . . , M7 of section 3), but they do not depend on k. First
of all, from (3.17) and (3.18) it follows that

∞
∑

k=0

ρ2k(t) ≤M4

and in particular we find

ρk(t) ≤M8 ∀t ≥ 0, ∀k ∈ N, (7.1)

and
∞
∑

k=0

ρ2k(t) sin
2 θk(t) ≤M4. (7.2)

From this estimate and (3.16) it follows that

|ρ′k(t)| ≤M9ρk(t) ∀t ≥ 0, ∀k ∈ N. (7.3)

This implies in particular that

∞
∑

k=0

[ρ′k(t)]
2 ≤M10 ∀t ≥ 0, (7.4)

and
|ρ′k(t)| ≤M11 ∀t ≥ 0, ∀k ∈ N. (7.5)

Moreover, from (7.3) it follows that

ρk(t) ≤ ρk(0)e
M9t ∀t ≥ 0, ∀k ∈ N. (7.6)

Let us consider now the series

∞
∑

k=0

ρmk (t),
∞
∑

k=0

[ρmk (t)]
′,
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where m ≥ 2 is a fixed exponent (in the sequel we need only the cases m = 2 and
m = 4). From the previous estimates it follows that

∞
∑

k=0

ρmk (t) ≤M12,

∞
∑

k=0

∣

∣[ρmk (t)]
′
∣

∣ ≤M12, (7.7)

where of course the constant M12 depends also on m. Moreover, from (7.6) and the
square-integrability of the sequence ρk(0), it follows that both series are normally con-
vergent on compact subsets of [0,+∞).

We stress that we can not hope that these series are normally convergent in [0,+∞),
even when m = 2. Indeed normal convergence would imply uniform convergence, and
hence the possibility to exchange the series and the limit as t → +∞, while the con-
clusion of Theorem 2.1 says that this is not the case, at least when J is an infinite
set.

Finally, plugging (3.16) and (7.2) into (3.15), after integration we obtain that

θk(t) = −λket − ψk(t) (7.8)

for a suitable function ψk : [0,+∞) → R of class C1 satisfying

|ψ′
k(t)| ≤M13 ∀t ≥ 0, ∀k ∈ N. (7.9)

Estimates on trigonometric coefficients For every k ∈ N we set

ak(t) := sin2 θk(t)−
1

2
, bk(t) := sin4 θk(t)−

3

8
,

and for every k 6= h we set

ch,k(t) := sin2 θh(t) sin
2 θk(t)−

1

4
.

These functions represent the corrections we have to take into account when we
approximate the trigonometric functions with their time-average, as we did at the be-
ginning of section 4.

It is easy to see that

sup{|ak(t)|, |bk(t)|, |ch,k(t)|} ≤ 1 ∀t ≥ 0, (7.10)

where the supremum is taken over all admissible indices or pairs of indices. Now we
claim that

∣

∣

∣

∣

∫ s

t

ak(τ) dτ

∣

∣

∣

∣

≤M14e
−t ∀s ≥ t ≥ 0, ∀k ∈ N, (7.11)

∣

∣

∣

∣

∫ s

t

bk(τ) dτ

∣

∣

∣

∣

≤M15e
−t ∀s ≥ t ≥ 0, ∀k ∈ N, (7.12)
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and
∣

∣

∣

∣

∫ s

t

ch,k(τ) dτ

∣

∣

∣

∣

≤M16

(

1 +
1

|λk − λh|

)

e−t ∀s ≥ t ≥ 0, ∀h 6= k. (7.13)

In order to prove (7.11), we just observe that

ak(t) = −1

2
cos(2θk(t)),

and hence by (7.8)

ak(t) = −1

2
cos
(

−2λke
t − 2ψk(t)

)

= −1

2
cos
(

2λke
t + 2ψk(t)

)

.

Thanks to (7.9), the assumptions of Lemma 6.1 are satisfied with α := 2λk, L3 :=
2M13, and ψ(t) := ψk(t). Thus we obtain that

∣

∣

∣

∣

∫ s

t

ak(τ) dτ

∣

∣

∣

∣

≤ 3 + 2M13

2λk
e−t ≤M17e

−t,

where in the last inequality we exploited that all eigenvalues are larger than a fixed
positive constant.

The proof of (7.12) is analogous, just starting from the trigonometric identity

bk(t) = −1

2
cos(2θk(t)) +

1

8
cos(4θk(t)).

Also the proof of (7.13) is analogous, but in this case the trigonometric identity is

ch,k = −1

4
cos(2θh)−

1

4
cos(2θk) +

1

8
cos(2θh + 2θk) +

1

8
cos(2θh − 2θk).

All the four terms can be treated through Lemma 6.1, but now in the last term the
differences between eigenvalues are involved. As a consequence, for the last term we
obtain an estimate of the form

∣

∣

∣

∣

∫ s

t

cos (2θh(τ)− 2θk(τ)) dτ

∣

∣

∣

∣

≤ 3 + 4M13

2|λk − λh|
e−t.

If we want this estimate to be uniform for k 6= h, we have to assume that differences
between eigenvalues are bounded away from 0, and this is exactly the point where
assumption (2.7) comes into play in the proof of Theorem 2.5.

27



Equation for the energy Let R(t) be the total energy as defined in (3.17). We claim
that R(t) solves a differential equation of the form

R′(t) = R(t)− 1

2
R2(t)− 1

4

∞
∑

k=0

ρ4k(t) + µ1(t) + µ2(t), (7.14)

where (for the sake of shortness, we do not write the explicit dependence on t in the
right-hand sides)

µ1(t) := 2

∞
∑

k=0

(

Γ1,kρ
2
k + akρ

2
k − bkρ

4
k

)

, µ2(t) := −2

∞
∑

k=0

(

ρ2k
∑

i 6=k

ci,kρ
2
i

)

. (7.15)

We also claim that µ1(t) satisfies
∣

∣

∣

∣

∫ s

t

µ1(τ) dτ

∣

∣

∣

∣

≤ M18e
−t ∀s ≥ t ≥ 0. (7.16)

The verification of (7.14) is a lengthy but elementary calculation, which starts by
writing

R′(t) = 2

∞
∑

k=0

ρk(t)ρ
′
k(t)

and by replacing ρ′k(t) with the right-hand side of (3.14). The crucial point is that when
computing the product

ρ2k sin
2 θk ·

∞
∑

i=0

ρ2i sin
2 θi,

one has to isolate the term of the series with i = k. In this way the product becomes

ρ4k sin
4 θk + ρ2k

∑

i 6=k

ρ2i sin
2 θi sin

2 θk,

and now one can express sin4 θk in terms of bk, and sin2 θi sin
2 θk in terms of ci.k. The

rest is straightforward algebra.
The proof of (7.16) follows from several applications of Lemma 6.3 with different

choices of fk(t) and gk(t).

• In the case of the term Γ1,kρ
2
k we choose fk(t) := ρ2k(t) and gk(t) := Γ1,k(t).

Indeed the assumptions on fk(t) follow from (7.7) with m = 2 and from the
normal convergence of the same series on compact subsets of [0,+∞), while the
assumptions on gk(t) follows from (3.16).

• In the case of the term akρ
2
k we choose fk(t) := ρ2k(t) and gk(t) := ak(t). The

assumptions on fk(t) are satisfied as before, while those on gk(t) follow from (7.10)
and (7.11).

• In the case of the term bkρ
4
k we choose fk(t) := ρ4k(t) and gk(t) := bk(t). Now we

need the estimates for the series (7.7) withm = 4 in order to verify the assumptions
on fk(t), and (7.10) and (7.12) in order to provide the requires estimates on gk(t).
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Equation for quotients For every pair of indices h and k in J we consider the ratio
Qh,k(t) introduced in (4.9). We remind that components with indices in J never vanish,
and therefore the quotient is well defined and positive for every t ≥ 0. After some
lengthy calculations we obtain

Q′
h,k(t) = αh(t)Qh,k(t)

(

1−Q2
h,k(t)

)

+ αh(t)βh,k(t)Q
3
h,k(t) + γh,k(t)Qh,k(t), (7.17)

where

αh(t) :=
1

8
ρ2h(t),

βh,k(t) = 8(ch,k(t)− bk(t)),

γh,k(t) := ak − ah + Γ1,k − Γ1,h + ρ2h(bh − ch,k) +
∑

i 6∈{h,k}

ρ2i (ci,h − ci,k).

We observe that the first term of equation (7.17) is the same as in equation (4.11),
which was derived by neglecting all the rest.

We claim that

sup
{

|αh(t)|, |α′
h(t)|, |βh,k(t)|, |γh,k(t)|

}

≤M19 ∀t ≥ 0, (7.18)

where the supremum is taken over all admissible indices or pairs of indices, and that

∣

∣

∣

∣

∫ s

t

βh,k(τ) dτ

∣

∣

∣

∣

≤M20

(

1 +
1

|λk − λh|

)

e−t, (7.19)

∣

∣

∣

∣

∫ s

t

γh,k(τ) dτ

∣

∣

∣

∣

≤M21

(

1 +
1

|λk − λh|
+ sup

i 6∈{h,k}

(

1

|λi − λk|
+

1

|λi − λh|

)

)

e−t (7.20)

for every pair of admissible indices and every s > t ≥ 0. We point out that the supremum
in (7.20) is finite because the sequence of eigenvalues is increasing.

Estimate (7.18) follows from (7.1) and (7.5) in the case of αh(t) and α′
h(t), from

(7.10) in the case of βh,k(t), and from (7.10), (3.16) and (3.18) in the case of γh,k(t).
Estimate (7.19) follows from (7.12) and (7.13).
Finally, in order to verify (7.20), we consider the expression for γh,k, and we apply

• inequality (7.11) to the term ak − ah,

• inequality (3.16) to the term Γ1,k − Γ1,h,

• Lemma 6.2, (7.12), (7.13) to the term ρ2h(ch,k − bh),

• Lemma 6.3 and (7.13) to the last term (the series).
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Proof of Theorem 2.1

Key estimate for quotients We prove that, if there exists h0 ∈ J such that

lim sup
t→+∞

ρh0
(t) > 0, (7.21)

then
lim

t→+∞
Qh0,k(t) = 1 ∀k ∈ J. (7.22)

To begin with, we observe that ρh0
(t) is Lipschitz continuous in [0,+∞) because of

(7.5), and hence (7.21) implies that

∫ +∞

0

ρ2h0
(t) dt = +∞. (7.23)

Let us consider now the quotients Qh0,k(t) with k ∈ J . We claim that in this case
equation (7.17) fits in the framework of Proposition 5.4 with

z(t) := Qh0,k(t), α(t) := αh0
(t), β(t) := βh0,k(t), γ(t) := γh0,k(t).

Indeed assumption (5.14) is exactly (7.23), assumptions (5.15) follows from (7.3),
and the boundedness and semi-integrability of β(t) and γ(t) follow from (7.18), (7.19),
and (7.20). Thus from Proposition 5.4 we obtain (7.22).

Case where J is infinite In this case we show that all components tend to 0, which
establishes statement (3).

Let us assume that this is not the case. Then there exists h0 ∈ J for which (7.21)
holds true, and hence also (7.22) holds true. At this point, arguing exactly as in the
corresponding point in the proof of Theorem 4.1, from (7.21) and (7.22) we deduce that
the total energy is unbounded, thus contradicting the estimate from above in (3.18).

Case where J is finite In this case we prove that (3.19) is true. To begin with, we
observe that there exists h0 ∈ J for which (7.21) holds true, because otherwise the
total energy would tend to 0, thus contradicting the estimate from below in (3.18). As
a consequence, also (7.22) holds true, and in particular the limit of ρk(t) is the same
for every k ∈ J , provided that this limit exists. At this point, (3.19) in equivalent to
showing that

lim
t→+∞

R(t) =
4j

2j + 1
, (7.24)

where j denotes the number of elements of J .
To this end we consider the equalities

R(t) = ρ2h0
(t)
∑

k∈J

Q2
h0,k

(t),
∑

k∈J

ρ4k(t) = ρ4h0
(t)
∑

k∈J

Q4
h0,k

(t).
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From them we deduce that

∑

k∈J

ρ4k(t) = R2(t) ·
(

1

j
+ q(t)

)

, (7.25)

where

q(t) :=

(

∑

k∈J

Q4
h0,k(t)

)

·
(

∑

k∈J

Q2
h0,k(t)

)−2

− 1

j
, (7.26)

hence by (7.22)
lim

t→+∞
q(t) = 0. (7.27)

Going back to (7.14), we find that R(t) solves a differential equation of the form

R′(t) = R(t)− 2j + 1

4j
R2(t)− 1

4
q(t)R2(t) + µ1(t) + µ2(t),

where µ1(t) and µ2(t) are given by (7.15). This differential equation fits in the framework
of Proposition 5.3 with

z(t) := R(t), z∞ :=
4j

2j + 1
, ψ1(t) := µ1(t) + µ2(t), ψ2(t) = |q(t)| · R2(t).

Indeed, assumption (5.3) follows from (7.27), while assumption (5.4) follows from
the estimate from below in (3.18). It remains to prove that ψ1(t) is semi-integrable
in [0,+∞). The semi-integrability of µ1(t) is a consequence of (7.16), and the semi-
integrability of µ2(t) follows from a finite number of applications of Lemma 6.2 with
f(t) := ρ2k(t)ρ

2
i (t) and g(t) := ci,k(t) (here it is essential that the set J is finite). The

required assumptions of f(t) and g(t) follow from (7.1), (7.5), and (7.13).
At this point, Proposition 5.3 implies (7.24).

Asymptotic behavior of the phase It remains to prove (3.20). Actually we need this
fact just in the case where J is finite, but the statement is true and the proof is the
same even in the general case.

Let us consider equation (3.15). From (3.16) we know that Γ2,k is integrable in
[0,+∞). Therefore, (3.20) is equivalent to showing that the function

(

∞
∑

i=0

ρ2i (τ) sin
2 θi(τ)− 1

)

sin θk(τ) cos θk(τ)

is semi-integrable in [0,+∞) for every k ∈ J . First of all, we write the function as

∑

i 6=k

ρ2i sin
2 θi sin θk cos θk + ρ2k sin

3 θk cos θk − sin θk cos θk.
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All these oscillating functions can be treated as we did many times before, starting
from the trigonometric identities

sin θk cos θk =
1

2
sin(2θk), sin3 θk cos θk =

1

4
sin(2θk)−

1

8
sin(4θk),

and

sin2 θi sin θk cos θk =
1

4
sin(2θk) +

1

8
sin(2θi − 2θk)−

1

8
sin(2θi + 2θk).

Due to the relation sin x = cos(x − π/2), we can conclude by exploiting the results
of section 6 as we did in the proof of (7.11) through (7.13), and in the estimates of the
coefficients of (7.17).

Proof of Theorem 2.5

Let us consider again the differential equation (7.14) solved by R(t). We prove that
the uniform gap assumption (2.7) implies the semi-integrability of µ2(t) and a uniform
bound on the quotients that allows to show that the series of fourth powers is negligible
in the limit. At this point we can conclude by applying Proposition 5.3.

Estimate on µ2(t) We show that

∣

∣

∣

∣

∫ s

t

µ2(τ) dτ

∣

∣

∣

∣

≤ M22e
−t ∀s ≥ t ≥ 0. (7.28)

Since µ2(t) involves a double series, this requires a double application of Lemma 6.3.
First of all, we exploit the uniform gap assumption (2.7), and from (7.13) we deduce
that

∣

∣

∣

∣

∫ s

t

ch,k(τ) dτ

∣

∣

∣

∣

≤M23e
−t ∀s ≥ t ≥ 0, ∀h 6= k. (7.29)

Now we set
δk(t) :=

∑

i 6=k

ci,k(t)ρ
2
i (t),

and we apply Lemma 6.3 with fi(t) := ρ2i (t) and gi(t) := ci,k(t). The assumptions are
satisfied due to (7.7), (7.10) and (7.29). We obtain that

∣

∣

∣

∣

∫ s

t

δk(τ) dτ

∣

∣

∣

∣

≤M23e
−t ∀s ≥ t ≥ 0, ∀k ∈ N. (7.30)

Moreover, from (7.10) and (3.18) we obtain also that

|δk(t)| ≤ R(t) ≤M4 ∀t ≥ 0, ∀k ∈ N. (7.31)

Due to (7.30) and (7.31), we can apply again Lemma 6.3 with fk(t) := ρ2k(t) and
gk(t) := δk(t), and this completes the proof of (7.28).
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Estimate on quotients We claim that there exist t0 ≥ 0 and h0 ∈ J such that

Qh0,k(t) ≤ 2 ∀t ≥ t0, ∀k ∈ J. (7.32)

This estimate is trivial when k = h0, independently on t0. Otherwise, we exploit
equation (7.17), which fits in the framework of Proposition 5.5 with

z(t) := Qh,k(t), α(t) := αh(t), β(t) := βh,k(t), γ(t) := γh,k(t).

Let us check the assumptions. Estimate (5.23) follows from (7.18). Estimates (5.24)
follow from (7.19) and (7.20), and the constant L2 is independent of h and k due to
the uniform gap assumption (2.7). As a consequence, any t0 ≥ 0 satisfying (5.25) is
independent of h and k, and ensures that the implication

Qh,k(t0) ≤ 1 =⇒ sup
t≥t0

Qh,k(t) ≤ 2 (7.33)

holds true for every h and k in J . At this point we choose any such t0, and we fix the
index (or one of the indices) h0 ∈ J such that

ρh0
(t0) ≥ ρk(t0) ∀k ∈ J.

Such an index exists, even when J is infinite, because for every t ≥ 0 it turns out
that ρk(t) → 0 as k → +∞ due to the square-integrability of the sequence ρk(t).

This choice of h0 implies that Qh0,k(t0) ≤ 1 for every k ∈ J , and therefore at this
point (7.32) follows from (7.33) with h := h0.

Conclusion To complete the proof we now observe that

∑

k∈J

ρ4k(t) =
∑

k∈J

Q2
h0,k(t)ρ

2
h0
(t) · ρ2k(t) ≤ 4ρ2h0

(t) ·
∑

k∈J

ρ2k(t)

for every t ≥ t0. Plugging this estimate into (7.14) we deduce that

∣

∣

∣

∣

R′(t)−R(t) +
1

2
R2(t)− µ1(t)− µ2(t)

∣

∣

∣

∣

≤ ρ2h0
(t) · R(t) ∀t ≥ t0.

We are now (up to a time-translation by t0) in the framework of Proposition 5.3 with

z(t) := R(t), z∞ := 2, ψ1(t) := µ1(t) + µ2(t), ψ2(t) := ρ2h0
(t) · R(t).

Indeed, the semi-integrability of ψ1 follows from (7.16) and (7.28), assumption (5.3)
follows from the boundedness of R(t) and the fact that ρh0

(t) → 0 as t → +∞, and
assumption (5.4) follows from the estimate from below in (3.18).

At this point, (3.22) is exactly the conclusion of Proposition 5.3. �
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