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Abstract

Aboson two-legladder in the presence of a synthetic magnetic flux is investigated by means of
bosonization techniques and density matrix renormalization group (DMRG). We follow the quantum
phase transition from the commensurate Meissner to the incommensurate vortex phase with
increasing flux at different fillings. When the applied flux is p and close to it, where p s the filling per
rung, we find a second incommensuration in the vortex state that affects physical observables such as
the momentum distribution, the rung—rung correlation function and the spin—spin and charge—
charge static structure factors.

A remarkable characteristic of charged systems with broken U(1) global gauge symmetry such as
superconductors is the Meissner—Ochsenfeld effect [1]. In the Meissner phase, below the critical field H,, a
superconductor behaves as a perfect diamagnet, i.e. it develops surface currents that fully screen the external
magnetic field. In a type-II superconductor, for fields above H > H_;, an Abrikosov vortex lattice phase is
formed in the system, where the magnetic field penetrates into vortex cores. In quasi one-dimensional systems,
analogues of the Meissner and Abrikosov vortex lattice have been predicted for the bosonic two-legladder [2-5],
the simplest system where orbital magnetic field effects are allowed. It was shown that in this model, the
quantum phase transition between the Meissner and the Vortex phase is a commensurate-incommensurate (C—
IC) transition [6—8]. For ladder systems at commensurate filling, a chiral Mott insulator phase with currents
circulating in loops commensurate with the ladder was obtained [9-12]. Initially, Josephson junction arrays [ 13—
16] were proposed as experimental realizations of bosonic one-dimensional systems [17, 18]. However,
Josephson junctions are dissipative and open systems [19—-21] that cannot be described using a Hermitian many-
body Hamiltonian in a canonical formalism. Moreover, the quantum effects in the vortex phase of the Josephson
ladder are weak [22]. Fortunately, with the recent advent of ultracold atomic gases, another route to realize low
dimensional strongly interacting bosonic systems has opened [23-25]. Atoms being neutral, it is necessary to
find a way to realize an artificial magnetic flux acting on the ladder. Alternatively, one can consider the mapping
of the two-legladder bosonic model to a two-component spinor boson model in which the bosons in the upper
leg become spin-up bosons and the bosons in the lower leg spin-down bosons. Under such mapping, the
magnetic flux of the ladder becomes a spin—orbit coupling for the spinor bosons. Theoretical proposals to realize
either artificial gauge fields or artificial spin—orbit coupling have been put forward [26, 27], and an artificial spin—
orbit coupling has been achieved in a cold atoms experiment [28, 29]. Recently, the Meissner effect and the
formation of a vortex state have been observed for non-interacting ultracold bosonic atoms bosons on a two leg
ladder in artificial gauge fields induced by laser-assisted tunneling [30]. The behavior of the chiral currentasa
function of the coupling strength along the rungs of the ladder, indicates a diamagnetic phase when it reaches a
saturated maximum and a vortex lattice phase when it starts to decrease. This experimental achievement has
revived the theoretical interest for bosonic ladders in the presence of magnetic flux and its spinor-boson
equivalent in the presence of interaction, where an even richer phase diagram is expected [5, 31-38].

©2016 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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Figure 1. Schematic representation of the Hamiltonian equation (1). The presence of an artificial magnetic flux A per plaquette,
induces the hopping terms on the chain to acquire a phase that depends on the spin (chain). No double occupancy is allowed due to
hard-core interaction.

In the present manuscript, we study the C-IC transitions of the hard-core boson ladder with equal densities
in the two legs, for varying interleg coupling and flux [39] and fixed fillings away from half-filling. We confirm
that above a threshold in the interleg coupling, the Meissner phase is stable for all fluxes [40] while below that
threshold the C-IC phase transition [3] to the vortex phase takes place at large enough flux. However, within the
vortex phase, we find that a second incommensuration [39] appears at a flux commensurate with the filling,
which we characterize by different observables.

The paper is organized as follows. In section 1, we present the model and the Hamiltonian and define the
observables. In section 2 we describe the bosonization treatment, the Meissner state and the C-IC transition. In
section 3, we discuss the second incommensuration as a function of the filling. Finally, in the conclusion we
present the phase-diagram emerging for the half-filled case.

1. Model and Hamiltonian

The lattice Hamiltonian of the bosonic ladder in a flux [2, 3] reads:

Hy=>" —t(b],ebjy10 + b,y 67D 5) — QY bl by o, (1)

J,o Jo
where the operator h](tf destroys (creates) a hard core boson onssite j of the o chain. We have definedo = +1/2
as the chain index [3, 39], A as the flux in each plaquette (corresponding to a Landau gauge with the vector
potential parallel to the legs), {2 as the interchain hopping. The t ' * 7 is the hopping amplitude on the chain o. A
schematic picture of the model and its relevant parameters is shown in figure 1. This hard-core boson model can
be mapped into a spin-ladder model with Dzialoshinskii-Moriya interactions [41, 42], as detailed in appendix A.
Asaresult of translational invariance and parity, the spectrum of the Hamiltonian (1) is even and 27-periodic
in A\
Theleg-current operator J;(j, A) is defined as:

) . i i OH,
JG N =) — 1ta(bj’ae"\"bj+1,g - bjﬂ’oe*"\"bj,g) = 8—;’ 2)

a

while the rung current is defined as:
JL(j) = —iQb]bj — b} ;). 3)

The average densities of bosons are p, = %, where N, is the number of particles in chain o and L is the
length of the chain. In the rest of the manuscript, we will be considering a fixed total density p = p;, + p|. Inthe
absence of applied flux A the ground state of the system is a rung-Mott Insulator for p = 1 and a superfluid for
p < 1[43]. This situation is not changed at finite A so that for p = 1 Mott—Meissner and Mott—Vortex phase
[11,12,40] are obtained.

For our analysis, we are interested in the following observables: the rung-current correlator C(k)

Ck) = (JL(N]L(0))e ™, 4)
i
the leg-symmetric density correlator S (k)
Sc(k) = > (njono e ™, 5)
jro,0"
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the leg-antisymmetric density correlator Sy(k)
Ss (k) = Z 0'0'/<7lj,g7’l(),g/> e ik (6)
j,0,0"

and the leg-resolved momentum distribution #,(k)

ng (k) =y (b} ,bo,s)e M. (7)

J

The non leg-resolved momentum distribution is # (k) = n;(k) + (k). Thelatter quantity is accessible in
time-of-flight spectroscopy [30].

2. Bosonization of the two-leg boson ladder

We apply Haldane’s bosonization of interacting bosons [44] to the Hamiltonian (1) assuming that 2isa
perturbation. In the absence of interchain couplings and spin—orbit coupling, the Hamiltonian of the bosons can
be written as:

Hy = Zf%[“aKa (mll,)? + %(8x¢g)2:|> (®

where [§, (x), TIg(x")] = 10036 (x — x'), u,, is the velocity of excitations, K, is the Tomonaga—Luttinger (TL)
exponent. In the case of hard-core bosons, u, = 2t sin (77,02) andK, = 1.

Introducing the fields 6, = 7 f *11,,, we can represent [44] the boson annihilation operators as:

biy . iy
=ty (x) = %@ YA cos(2mg, (x) — 2mmpPx) ©)
\/E m=0
and the density operators [44] as:
Mo _ p,(x) = p¥ — laxgbg + > "B cos(2me, (x) — 2mmpPx). (10)
a T

m=1

Here, we have introduced the lattice spacing a, while A,,, and B,,, are non-universal coefficients. In the case of
hard core bosons at half filling, these coefficients have been found analytically [45]. From equation (9), we
deduce the bosonized expression of the interchain hopping as:

Hip, = —QAZ fdx cos(0; — 0), a1

where we have kept only the most relevant term in the renormalization group sense [3].

For a model with equivalent up and down leg as equation (1), and in the absence of the spontaneous density
imbalance between the chains found for weak repulsion [46, 47], u; = u and K; = K|, itis convenient to
introduce the leg-symmetric and leg-antisymmetric representation:

1 1
II. = f(m + 1) I, = ﬁ(l} — 1I), (12)

1 1
¢, = f(‘bT + (bl) o, = f(‘bT - (bl)’ (13)

in order to rewrite (8)—(11) as:
H = H. + H, (14)
_ % 2, HUc 2
He= [Z [ucKc(ch) i (axqsc)] (1s)
dx s

Hs - fg[usKs(ﬂ—Hs)z + 11:_5(8X¢s)2:| - QAOZ fd‘x COS(\/EQS)- (16)

The Hamiltonian H, describes the gapless leg-symmetric density modes, while H, which describes the leg-
antisymmetric modes, has the form of a quantum sine-Gordon model [48-50] and is gapful for Ky > 1/4.Ina
model of bosons with spin—orbit coupling, H, would describe the spin modes, and H. the total density (i.e., the
‘charge’ in the bosonization literature) modes. Till now, we have not considered the effect of the flux . We now
show that it can be exactly incorporated in the bosonized Hamiltonian. In the absence of interchain hopping €2,
we can perform independent gauge transformations on the upper and the lower leg of the ladder. In particular,
the gauge transformation:
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b]‘)g = e_i/\UjEj,g (17)

entirely removes A from the Hamiltonian. We can then apply the Haldane bosonization (8) and (9) to the Ej, o
operators. Combining the resulting expressions with equation (17), we see that b; , has now a bosonized
expression of the form:

bi, - gy T _
L = Y (x) = el i STAY cos(2me, (x) — 2mmpPx). (18)
ﬁ m=0
The boson operators b; , can be written in the form (9) with ¢, = @U and 6, (x) = 0, (x) — O’% and the
Hamiltonian expressed in terms of the fields IT and ¢, now reads:

dx AV | Us
H - ;fg[uaKa ('R—Ha + U;) + Z(ax(ba)z]’ (19)

leading to a modified Hamiltonian for the leg antisymmetric modes
dx A 2 Us 2 2
HS = fz— MSKS 7TH5 + \/5— + E(8X¢S) - QAO fdx COS(\/EQS)' (20)
s a s

Asdiscussed in [3], when €2 == 0 the A term is imposing a gradient of §; — 6|, while the term (11) is imposing a
constant value of 6} — 6. For sufficiently large values of A it becomes energetically advantageous to populate the
ground state with solitons giving rise to an incommensurate (IC) phase. In the ladder language, such IC phase is
the vortex lattice [3].

2.1. Gapful excitations in the Meissner state

The quantum sine-Gordon model (16) is integrable [51, 52] and its spectrum is fully determined. The
Hamiltonian (16) for A = Ohasagap A ~ ?|aQ / us|%, where a is the lattice spacing, for Ky > 1/4.Inits
ground state (6,) = 0[7+/2].For 1/4 < K, < 1/2, the excitations above the ground state are solitons and

antisolitons with the relativistic dispersion E (k) = /(usk)?> + AZ2.The soliton and the antisoliton are
topological excitations of the field 6, that carry aleg current j© = +u, K. In the case where one is considering
the gap between the ground state and an excited state of total spin current zero (i. e. containing at least one
soliton and one antisoliton), the measured gap will be 2A,. When K > 1/2, the solitons [49] and the
antisolitons attract each other and can form bound states called breathers that do not carry any spin current. The
measured gap between the ground state and the lowest zero current state will be the mass of the lightest breather
[53]

2K
4Ks—

1 . T 1
A — dug F(slg—z)sm(sm—z) 7r1"(1 - TKS) OAG
) aﬁ F( 2K, ) F( 1 ) 2u
4K, — 1 4K,

In the case of hard core bosons [54], which is the one considered in the numerical analysis here, we have
K. = K, = 1,50 Ay ~ ©2/3.In thatlimit, the Hamiltonian (16) has been studied in relation with spin-1/2
chain materials with staggered Dzialoshinskii-Moriya in a magnetic field [55-60]. With a weak spin-spin
repulsion logarithmic corrections [55, 56] are actually obtained as a result a marginal flow,
and A, ~ Q2/3|In Q.

Besides the solitons and antisolitons, there are two breathers [61-63], a light breather of mass A and a heavy
breather of mass /3 A,.

The amplitude in equation (21) A, can be estimated for hard core bosons in the case of low density, using the
Ala  GGB/2)n?

@1

continuum limit [64, 65] or in the case of half-filling [45]. In the first case, Ry where Gis the
Barnes G function and #, is the number of particles per site, while in the second case, A%Z” ~ (0.588 352. This
gives the estimates:
A _ i 200/6) (JRTG/HGG/2) Qa)” 1 )

a J7T(2/3) V2T (1/4) " o
for low density, and:

_ug 20(1/6) (24AL(3/4)Co Qa ) 03

a vl e/3\ ra/ms  uw)

for half-filling.
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2.2. Correlation functions in the Meissner state
Asfor K > 1/4the ground state of H; has §;long-range ordered and the excitations above the ground state are
gapped, the system described by (14) is a Luther-Emery liquid [66]. In such a phase,

;0 (Ja)

bjo ~ (el720G0) ¢l (24)

giving rise to correlations (b; ; bj o) ~ . This behavior is a remnant of the single condensate

obtained in the non-interacting case [5, 30|]{ gijl;ﬁ/e(w
Ji = QAgsiny20,, (25)
wehave (J; (x)) = Oand
(LG () ~ e, (26)

as|x — x| — oo. Thus, the average rung-current vanishes and its fluctuations are short ranged and
commensurate, so that C(k) takes a Lorentzian shape in the vicinity of k = 0.
In the case of density—density and spin—spin correlation functions, we have:

1 > i~ p@ — £8x¢c + > B, cos(my2 ¢, — mmp©@x)cos(m2 ¢,) 27)
a g ™ m
and
1 > onje ~ p® — L&Cqﬁs + > By cos(my2 ¢, — mmp@x)sin(m2 ). (28)
2a 7 T2 .

Since the field 6; is long-range ordered, exponentials /’* and derivatives 9, ¢, of its dual field ¢, are short-range
ordered. Asaresult, the density correlations decay as (x — x’)~2 atlong distance leading to S, (k) = K |k|/(27),
while the spin—spin correlations are decaying exponentially giving a Lorentzian shape for S;(k). Finally, if we
consider the longitudinal spin current, the obtained bosonized expression is:

_ ugK, A
JiN) = % (HS + mﬁ)' (29)

In the Meissner phase, the linear behavior is obtained, with (Jj(\)) = Au K Q2ma)~L

2.3. C-IC transition
Adding the spin—orbit coupling A in (16) gives a Hamiltonian for the spin modes:

. dx ’ Ug 2
Hsfg[ (wH + \/_a) +E(ax¢s)2:|QA0 fdxcosﬁﬁs- (30)

Expanding (711, + \/~/2a)?and using 7II; = 9,6,, up to a constant shift, the spin—orbit coupling adds a term:

“KAf 0,0, 31)

to the Hamiltonian (16).
Now, if we call N is the number of sine-Gordon solitons and N; the number of antisolitons, we have:

NoN= [T g, (32)
—00 W\/E
and the contribution of the spin—orbit coupling is rewritten as
wRA N Ny, (33)
a

showing that A acts as a chemical potential for solitons or antisolitons. On the other hand the energy ¢ cost of
forming Nj solitons and N; antisolitonsis Ag(N; + N;). When |[A\| > A,
solitons (or antisolitons depending on the sign of \) in the ground state. Because of the fermionic character of
solitons [67], their density remains finite, and we obtain another Luttinger liquid. This is the C-IC transition [6—
8,68]. A detailed picture can be obtained for Ky = 1,/2, where solitons can be treated as non-interacting
Fermions as discussed in appendix B.

In the IC phase, the Hamiltonian describing the Luttinger liquid of solitons is:

_ dx| & * 2 s()
H= | E[%(A)&(A)(wﬂs)z ) x¢>] (34)
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with 6, = 95 — sign(\)g ()\)x/ J2.The density of solitons is proportional to q(\), while u.“(\) is the
renormalized velocity of excitations and K;*()) is the renormalized Luttinger exponent.

We now address the behavior of the observables in the IC phase. Near the transition [8, 69], for
A= A+ 0,KFON) — 1/2,q(\) < JA — Acand u(\) o< /A — A.. The expression of the spin current in
the IC phase now becomes:

D) = MS—KS(i - Sign(A)q(A)), (35)
2 \7a
namely the existence of a finite soliton density reduces the average spin current. This justifies the interpretation
of these solitons as vortices letting the current to flow along the legs. For large A, we have g (\) ~ |A|/(7a), so
that the expectation value of the spin current eventually vanishes for large flux values.
Let us turn to the momentum distribution. In the IC phase and for finite size L with periodic boundary

conditions (PBC) one has:

el N x—x") S

bob N = . 36
b bir) [L . (,r|x,x,|)]1/(41<c>+1/<41<3> (36)
—SsSm\—
T L
Asaresult, for 1 /(4K.) + 1/(4K}) < 1onehas:
1 1 T T 1 1 Llk—oq(\) |
L 1*&:417;F(1 BT R:)COS(S—KC + W)F(g twt T )
i’lg(k) =2|— LIk 3 > (37)
2T F(I*%*%+ |—nq<>|)

K. 8K 2

so that now n1,,(k) has a peak for k = og(\), whose height scales as L! ~1/(4Kd—1/4K?) That peak becomes a
power-law divergence in the limit of L — co. Comparing with the non-interacting case [30], these power-law
divergences are the remnant of the Bose condensate [5] formed at k = 0 in the Meissner phase oratk = +q()\)/
2 in the vortex phase.

Turning to the spin—current correlation function, in the IC phase we have [3, 4]:

cos[g(A)(x — x)]

(JL(DILGN) ~ — (38)
[£ sin ~Hi=i’ I]Ks*
7r L
Since 1/2 < K. < 1, the correlation function C(k) presents in the IC phase two cusps at k = £q(\).
Turning now to the density correlation function, we have:
2K, cos(mp©5)
<znj,gn0,g,> ~ ey Pl (39)
o0’ L2 Sin2 (T]) I:g sin (%)] e
K. (OF
ZOU'nj,ano,a' ~ s 4 COS(7Tp IZ) — (40)
0,0’ 2L2 Sirl2 (%) |:£ sin (ﬂ)] otk
m L

Sincel < K, + K < 2, we find, after taking the Fourier transform (FT), that both Sy(k) and S.(k) possess cusp
singularities S, /s (k) ~ S/s(mp?) + Ce/flk — mp@ [K+K=Tin the vicinity of k = 7p” in the vortex phase, with
evident notation for the subscript ¢/s. In the hard core boson system, with K. = K. = 1, the cusp singularities
become slope discontinuities.

Moreover, the behaviors S, (k) ~ ZK‘lel and S, (k) ~ %ﬂkl as k — 0 signal that both charge and spin
excitations are gapless in the vortex phase.

We performed numerical simulations for the hard-core spinless bosons on a two-leg ladder as a function of
flux and interchain hopping and for different fillings by means of density matrix renormalization group
(DMRG) simulations [70, 71] with PBC. Simulations are performed for sizesup to L = 64, keeping up to
M = 1256 states during the renormalization procedure. The truncation error, that is the weight of the discarded
states, is at most of order 10~°, while the error on the ground-state energy is of order 5 x 10> at most.

A summary for the behavior of observables and correlation functions across the C-IC transition at two
different fillings is shown in figure 2 for p = 0.75 and in figure 3 for p = 0.5. In both cases, no spontaneous
density imbalance [46, 47] between the chains is present. In each panel (a) of the two figures we compare the
behavior of the FT of the rung-current correlation function C(k) in the Meissner phase and in the Vortex phase.
The numerical data confirm the prediction of a structureless shape in the Meissner phase and the appearance of
two cusp-like peaks in the Vortex phase, respectivelyatk = g(\) and k = 27 — q(\). Since we show data in the
vortex phase far from the transition, g(A) = A, as expected. The spin gap closure in the Vortex phase is visible
also in the low-momentum behavior of the spin static structure factor Sy(k) displayed in each panel (b) of the two

6
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Figure 2. First incommensuration: appearance of the standard Vortex phase. DMRG simulation for L = 64 in PBC for A = 7/4and
p = 0.75(\ = pm). FT of the correlation functions described in the text for two different values of interchain coupling 2/t = 0.0625
(black solid line) and 0.5(red solid line), respectively in the Vortex and Meissner phase. Panel (a): rung-current correlation function
C(k). Panel (b): spin correlation function Sy(k) multiplied by a factor 2. Panel (c): charge correlation S.(k) divided by a factor 2. Panel
(d): total momentum distribution n(k). See text for the corresponding definitions. The blue dashed lines in panels (b) and (c) signal the
valuesk = mpand k = 2m — 7wp. The magenta dashed lines in panel a) signals the peaks positions of C(k), k = Aandk = 27 — A.
The dark-green dashed lines in panel (d) signals the peaks of the momentum distribution atk = +\/2.

16
12 .
3 £ gt |
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4 | ]
0
-1 1
1 T
c)
3 N
o 05 1 ¥ 05} :
~ o /‘\
0 L 0 1
0 0.5 1 1.5 2 0 0.5 1 1.5 2
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Figure 3. The same as in figure 2 for p = 0.5.

figures 2 and 3: in the Vortex phase S, (k) = Ki|k| /27 while in the Meissner phase S(k) = S,(0) 4 ak®with
Ss(0) > 0.Inthese cases Kg = 1 as expected for a hard-core boson system. At large momenta the Lorentzian
profile centered at k = T, characteristic of the Meissner phase, is replaced by two slope discontinuities at k = 7p
and k = 2w — mpas expected in the Vortex phase for K; = K. = 1. The same evolution can be seen in the
charge static structure factors shown in the (c) panels of figures 2 and 3. The commensurate-incommensurate
transition is clearly visible in the momentum distribution shown in panels (d) of figures 2 and 3: in the Meissner
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phase it presents only one cusp-like peak at k = 0 as expected in a bosonic TLliquid, while the Vortex phase it is
characterized by two peaks with same shape, centered atk = +4q())/2.

For K, = 1/2, the sine-Gordon Hamiltonian (30) can be rewritten as a free Fermion Hamiltonian [48, 66]
allowing a more detailed treatment of the C-IC transition [3, 6]. Such a treatment sheds additional light on the
physics of this C-IC transition, providing an overall alternative description considering that no differences are
expected at a qualitative level away from the K; = 1/2 case. The details of such derivation are accounted for in
appendix B.

3. The second incommensuration appearingat A~ wp

As A gets close to mp, with p = N/L s the density per rung and for N/L not small compared to unity, A\us/a
becomes of the order of the energy cutoff us/a and the form (30) for the Hamiltonian cannot be used. In order
to describe the low—energy physics at A = p, itis necessary to choose a gauge with the vector potential along
the rungs of the ladder, so that the interchain hopping reads:
Hiop = QY2 (00ib] b . (41)
J,o
Applying bosonization to (41), we obtain from (9) the following representation for the interchain hopping:
Q

Hpop = —— [ dxe¥20 [e71V20400) 1 ei26m00] 4 e in20c[eiV2(0it0) 4 o2 0=, (42)
2ma
The latter can be rewritten in terms of SU(2); Wess—Zumino—Novikov—Witten (WZNW) currents [72]:
Hpop = Qfdx [ieiwi@“(]R_ +J.) + hel. (43)

In the case of N/L = 1, the complex exponential of equation(43) is replaced [39] by a cosine cos v/2 ¢,. At
commensurate fillings, N/L is a rational number p/m with p, m mutually prime and a term cos m+/2 ¢, is also
present in the Hamiltonian. In the presence of such term, the symmetry of the U(1) charge Hamiltonian is
lowered to Z,, and a spontaneous symmetry breaking giving rise to a charge gap and a long-range ordered eiV2a
becomes possible in the presence of long ranged interactions [73]. In such case, an insulating phase with a second
incommensuration is obtained [39].

At generic filling, or when the term cos m+/2 ¢, is irrelevant , we have an unbroken U(1) symmetry
¢. — ¢. + vand 6, — 6 + ~.Insuch case, the Mermin—Wagner theorem [74, 75] precludes long range
ordering for ¢. + 6. However, since the perturbation in (43) is relevant in the renormalization group sense and
has non-zero conformal spin, it is still expected to give rise to IC correlations at the strong coupling fixed point.
To give a qualitative picture of such incommensuration, we turn to a mean-field treatment. Compared with the
half-filled case, the assumption (¢.) = = would correspond to a spontaneously broken U(1) symmetry, not
permitted by the Mermin—Wagner theorem. The Gaussian fluctuations of the ¢ modes around the saddle point
would in fact restore the U(1) symmetry that one has to assume broken to use a mean-field theory. To partially
take into account the effect of these fluctuations, we will first solve the mean-field theory for an arbitrary value of
v, and we will then average the obtained correlation functions over . Such averaging procedure ensures that
(eV2¢) = 0, and more generally that the obtained correlation functions respect the U(1) symmetry of the
Hamiltonian. Of course, that procedure is not expected to produce quantitative estimates, since the fluctations
of ¢. are underestimated. In particular, the amplitude of the incommensuration can be less than the one
expected from the mean field theory, and the decay exponents of the correlations can be larger. But the mean
field treatment is providing some insight on the correlation functions that can reveal the presence of a second
incommensuration at the fixed point. Assuming (¢.) = =, after the transformation ¢, — 6; + - and
¢. — ¢. + v the Hamiltonian H. + H, + Hy,p can be treated in mean-field theory [76-79], After defining :

8

=< =80} + J)smF>
ma
hs = 8Q(cos V2 AV mr (44)
usinga 7/ 2 rotation around the x axis, J/ = J, J* = —J, and applying abelian bosonization [80], we rewrite:
dx ~ ~ h -
MF _ [dx 2 21 s
Y = [Tl + 0007 - — [odds, (45)
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which allows us to write:

SR ENW- SRS S o S g—_ (46)

T~ 2 V=RL 27U

In turn, this allows us to solve (44) with i, ~ Q*and g_ ~ °. We obtain a gap in the total density excitations,
A ~ 2, while the antisymmetric modes remain gapless and develop an incommensuration. To characterize
the incommensuration, we first make a shift of the field ¢, — ¢, + "X while 8, — B, thus

G
sin /2 6, = sin /28, (47)
cos V20, = sin(ﬁ b + hux) (48)
sin /2 ¢, = —cos /2 0, (49)
cos V2, = cos(\/? &, + h;x). (50)

Since for the rung-current in the mean-field approximation we have:

Ji(x)= &[ZAOZ sin(mpx — J26, — v) — 2A0A; sin(v/2 6, + ﬁ¢c + 2y — 2ﬂpx)cos(ﬁ¢s)
ma
— 2A0A;sin(N2 6, — 2¢)cos(V2 ¢)] (51)

after the rotation we find:

hex

Ji(x)= ﬂlZAoz(sin(ﬂpx — 'y)sin(«/zq%s + ) — cos(mpx — fy)sin(ﬁés)
ma

N

— 2A0A; cos(2y — 2mpx)sin v/2 B cos ( V26, + hsx)

Us

+ V2 AA sin(2y — 27rpx)8x<7>5

— 2A0A sin V20, cos(ﬁ&s + hsx)], (52)

Us

we will have to take the average with respect to ¢s and 6 and with respect to . The latter averaging partially takes
into account the restablishment of the full U(1) symmetry by fluctuations around the mean-field. Averaging over
v gives expressions that are translationally invariant. We find:

ho(j — 7' ..
UL (DI () ~ QAZA? 1)2cos( U-J ))COSZWP(]]/)

(] _j/ Ug
L eAA? cos2mp(j —j")
G-7)
C Ly
+92Agcoswp(j—j’)cos(h5(] ]))I' ! 7 + QZAg‘icoslw.p(].,| ]). (53)
s J =] J =

We therefore see that an incommensuration develops in the k ~ 0and k ~ 2 A = 2mp component of the
rung-current and density-wave correlations. In the FT peaks are located at mp , mp & hg/us while the
singularities at 2rpand 2mp =+ h,/u, are discontinuities of slope. Since h; ~ 2, theincommensuration
increases with interchain hopping. One can repeat the calculation also for the S, operator and its correlation
function S;(j — j') ~ cos(Aj)cos(Aj") ¥ _l giving rise to a peak at k ~ +mp. We note that since we have
made very crude approximations to treat the ¢. fluctuations, we cannot make accurate predictions on the
correct value of the exponents.

Regarding the calculation of the momentum distribution, since the boson annihilation operators do not
correspond to primary fields of the SU(2); WZNW model, we cannot derive their expression in terms of 6, and
(ESS using the SU(2) rotation. However, since el has conformal dimensions (1/16, 1/16) its expression in terms of

i

the fields ngS and 6, can be expressed as a sum of operators of conformal dimensions (1,/16, 1/16). A general
expression for the case A = mhas been derived previously [81]. The general form on n; consisted of three peaks
centered at w0 £ hy/usand w o or a single broad peak 7 o, depending on the value of 2. In the present case, a
broad peak centered at 2\ o or a narrow peak at 2\ o plus satellites centered at 2\ + h,/u, are expected. As we
noted above, these results can be derived rigorously provided we are at a commensurate filling and a charge gap
is formed. At generic filling, or when interactions in the charge sector are insufficiently repulsive, the U(1)

9
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Figure 4. Second incommensuration. DMRG simulation results at L = 64 in PBC. Momentum distribution n(k) at p = 0.75 for
different values of the applied flux A as in the legend, spanning from below to well above the threshold A = 0.75 for the appearance of
the second incommensuration. The interchain hopping is fixed at the value /¢t = 1.25.

o 8
Q/t=0.0625 . °
075 Q=125 0 ® i
o]
(o]
b o
£ 05} ° . E
N o] [ ]
[0} L]
(o]
0.25 | ° E

Figure 5. Second incommensuration. DMRG simulation results at L = 64 in PBC. Position K,y of the peaks of the momentum
distribution n(k) at p = 0.75. Open black dots: €2/t = 0.0625. Red solid dots: 2/t = 1.25.

symmetry of the term (43) is reestablished by quantum fluctuations. In such case, the mean field treatment is
only a suggestion that IC fluctuations will be present in a fully gapless state.

In figure 4 we follow the appearance of the second incommensuration in the momentum distribution for the
systemat p = 0.75, spanning from below the critical A\. = mp = 0.75 mup to A = 7, as from panels (a) to (f). At
A = 0.757 the appearance of the secondary peaks are clearly detectable.

The positions of these peaks move towards zero with increasing the flux, and disappear completely at A = m,
where the system is back in the standard Vortex phase. In the presence of the second incommensuration, the
position of the peaks is no longer proportional to the applied flux: this is apparent in figure 5, where the position
kmax Of the peaks in the momentum distribution is displayed as a function of A for the case with p = 0.75and 2/
t = 1.25 (red solid dots). For lower values of €2 /1, the relation g(\) = Ais valid on alarge range, and the possible
deviation at critical A is not appreciable, as it is seen in the figure 5 (open black dots).

We can also follow the evolution of the momentum distribution at the critical \. = 7p while varying the
interchain hopping €. In figure 6 we show n(k) for the system at p = 0.5 and fixed applied flux A = 7/2 on
increasing the interchain hopping. For the case with 2/t = 0.0625, represented by the dashed black line, the gap
in total density is too small to be detected in the present numerical simulation at the L = 64 system size. Yet, at
Q = 0.5and 0.75 the second incommensuration becomes clearly visible with the predicted appearance of the
secondary peaks.

10
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Figure 6. Second incommensuration. DMRG simulation resultsat L = 64 in PBC. Momentum distribution n(k) at p = 0.5 and fixed
applied flux A = 7p, for different values of 2/t as in the legend. Dashed black line: 2/t = 0.0625, where the system is in the standard
vortex phase (first incommensuration). Dashed magenta line: {2/¢ = 1, where the system is in the Meissner phase. Red and blue solid
lines: 0/t = 0.5and 2/t = 0.75, respectively, where the occurrence of the second incommensuration is signaled by the appearance of

the secondary peaks.
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Figure 7. First and second incommensuration. DMRG simulation results at L = 64 in PBC. FT of the rung-current correlation
function C(k) at fixed applied flux A = 0.757 for different fillings as in the legend: p = 1.0, 0.75,0.5,0.25 and 0.125 are represented by
black, red, green, blue and magenta solid lines, respectively. Left panel: case with €2/t = 0.0625. Right panel: case with Q/t = 0.75.
Dataat)/t = 0.75and p = 1 hasbeen shifted to make more evident the second incommensurations peaks.

As mentioned above, the second incommensuration also shows up in the correlation function for the rung-
current. In figure 7 we show the FT of this quantity at A = 0.75 7 for different fillings. The left panel of figure 7
displays the data at a small value 2/t = 0.0625: here, the system is in the standard Vortex phase (first
incommensuration) characterized by peaks located at g(\) = 0.75 7. For the p = 0.75 the small interchain
hopping leads to second incommensuration too small to be detected for the system size of the present
simulation. In all filling cases the peaks are located atk = q(\) = 0.75mand k = 27 — q()\) = 5/4x. The right
panel of figure 7 displays the data at 2/t = 0.75, which is instead a sufficiently large value so that the second
incommensuration becomes sizable: indeed, C(k) gets the expected second incommensuration at the predicted
filling p = 0.75, while at smaller values of the filling no qualitative differences are seen with respect to the
behavior shown in the left panel. At p = 1.0 the second incommensuration appears at A\ = 7and the peak at
k = m,and it is still detectable for this applied flux [39].

In our previous study, we found [39] a large region of stability of the second incommensuration near the
critical value of \. In order to see how this region evolves with the filling, we summarize in figure 8 the phase
diagram obtained from DMRG simulations in PBC for a system size L = 64 atfilling p = 0.5, in which the
boundary in the transition from Meissner to Vortex phase and the extension of the region near A = 7/2 with the
second incommensuration are visible.
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Figure 8. DMRG simulation results at L = 64 in PBC. Phase diagram for a hard-core bosonic system on ladder as a function of flux

per plaquette A and §2/¢, at the filling value p = 0.5. The occurrence of the two incommensurations is evidenced as follows. The black
solid line represents the phase boundary between the Meissner and the first incommensuration, a standard Vortex phase. The dark—
green solid dots are the points where the second incommensuration appears. The dashed blue line marks the critical A = 0.57 at
which the second incommensuration is expected. For comparison, the phase boundary between the Meissner and Vortex phase fora
non-interacting system is represented as well, by the red-dashed line. Notice the enhanced size of the Meissner region in the hard-core
repulsive with respect to the non-interacting case.
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Figure 9. DMRG simulation results at L = 64 in PBC. Spin static structure factor Sy(k) for different fillings as in the legend: p = 1.0,
0.75,0.5,0.25,and 0.125 are represented by the black, red, green, blue, and magenta solid lines, respectively. Left panel: A = 0.1875 7
and the small value of interchain hopping 2/t = 0.0625, where the system is always in the standard Vortex phase at all fillings. Right
panel: A = 0.25wand 2/¢ = 0.25. Notice that the system at p = 0.125is in the Meissner phase.

In figure 9 we show the behavior of S;(k) for different fillings in two different situations in which only the first
or also the second incommensuration appears in the left panel, the behavior in the standard vortex phase is
displayed, after picking small values of A and €2/¢. In the right panel, we show the behavior at A\ = 0.25 7: here,
the appearance of the second incommensuration is expected at p = 0.25, characterized by two peaks develop at
k = 0.25mand k = 27 — 0.257, and with S;(k — 0) getting a sizable finite value and a linear momentum
dependence. At the other fillings, the spin correlation function gets small finite values at k = 0 and very low
peaksatk = pmrandk = 27 — pm, apart from the case p = 0.125 already in the Meissner phase.

We conclude this section summarizing in figure 10 the effects that the appearance of the second
incommensuration produces in the different observables and quantities analyzed in the text. We see that there is
almost no effect on the charge static structure factor S(k): as shown in figures 2 or 3, in fact no sharp slope
discontinuityatk = prandk = 27 — pmemerges in the second incommensuration with respect to the first,
thatis the standard vortex case. We remark the difference between the p < 1 cases analyzed in the present paper
and the p = 1.0 case [39], which instead corresponds to a Mott-insulator, i.e., quadratic behavior at low
momenta. The DMRG data show gapless leg-symmetric modes for p < 1in agreement with the
Mermin-Wagner theorem [74, 75] that implies no breaking of the U(1) symmetry ¢, — ¢. + 7, 6, — 6 + 7.
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Figure 10. DMRG simulation results at L = 64 in PBC. Summary of the FT observables behavior at different fillings: p = 1.0,0.75,
0.5,0.25,and 0.125 are represented by the black, red, green, blue, and magenta solid lines, respectively. The value of Aissetto A = mp
and §2/tis chosen in order to make the second incommensuration visible. Panel (a): rung-current correlation function C(k). Panel (b):
spin correlation function Sy(k). Panel (c): twice the charge correlation function S (k). Panel (d): (spin-) chain-resolved momentum
distribution n,(k), with n_, (k) = n, (k). The different curve color represent different values of 2/t as follows: 2/t = 1.25 (black),
Q/t = 1(red), 2/t = 0.75(green), 2/t = 0.25 (blue),and 2/t = 0.0625 (magenta).

4, Conclusion

In conclusion, we have studied the C-IC transition between the Meissner and the vortex state of a two-leg
bosonic ladder in an external flux, and the formation of a second incommensuration in the vortex state when the
flux is matching the particle density. The predictions of the bosonization treatment and the results of DMRG
simulations on the C-IC transition from a commensurate Meissner to a standard IC Vortex phase, and the
second incommensuration, have been discussed. As expected from previous results at half-filling [39], the
occurrence of a second incommensuration has been found by the DMRG simulations whenever the ratio
between the flux and the filling is equal to 7. The developing of the second incommensuration can be followed in
the momentum distribution, that can be readily measured in experiments [30]. A qualitative picture of the
second incommensuration, based on a phase averaging of mean-field approximation of the bosonized theory
has been presented. Our DMRG results have been summarized in the interchain hopping-flux phase diagram
figure 8 at quarter-filling, displaying the Meissner phase, as well as Vortex phase and second incommensuration.
The signatures of the second incommensuration on observables and correlation functions have been summed
up in figure 10. Our predictions can be tested in current experiments, where observables that we have analyzed
and discussed can be accessed. A few questions remain open for future investigations. For example, one could
investigate whether a second incommensuration would also be observed in multi-chain systems, such as aladder
with a few legs or a two-dimensional array of bosonic chains. From the point of view of bosonization, a more
rigorous derivation of the second IC in the case of incommensurate filling would be valuable.

Appendix A. Mapping to a spin ladder

In the hard core boson case, a representation [82] in terms of (pseudo) spins 1,/2 can be introduced:

o ¢t 1t __ ot
bt =81 by = Si (AD)
bj,T = Sjtl bj,l = S;z, (A2)
T z 1 z 1
bj,Tbj»T = Sj,l + E b]T,lb])l - j,2 + E (A3)
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With such mapping, we can rewrite the Hamiltonian (1) as a two-legladder Hamiltonian:

H= Z]( NG ]+1 r + Syr j+1, r) + ( 1)rl)(syr j+1,r S]xrsj+1 r) (A4)
r:1,2
+Zh (5;151'_,2 + S+ 187,2) + J1S71S7, (A5)
J
_NZ(S]‘Z,1 + 57, + hZ(SjZ,1 =82, (A6)
j j

where ] = tcos A\, D = tsin A, ]| = %, Ji = Uy and h = §/2. The term D is a uniform Dzyaloshinskii—
Moriya (DM) [41, 42, 83, 84] interaction, with the DM vector parallel to z. For § = 0, the two legs of the ladder
are exposed to a different magnetic field.

Appendix B. Fermionization approach

We have:

H, = —iu, [[dx(@hdun = o) — b [dee+ v - m [+ vivo, (B

where m = TQAga,h = A% and the Fermion annihilation operators 1} ; are destroying the solitons. The

detailed correspondence between the Fermionic and bosonic expression of the lattice operators is derived below.
The Fermionized Hamiltonian (B1) is obtained by the following correspondence with the boson operators:

it + v = — 22 (B2)
Ston — Wl = ﬁf"¢’5 (B3)
Ui + v g = % (B4)
i — v = % (B5)

Within Fermionization approach the single-particle correlation function (/1)) can be evaluated by the
single-particle Green’s function of the operators that diagonalize the Hamiltonian (B33)

dk . N
(Vo) = fg sin g cos @ (¢ | ek — ¢ i) (B6)

& m
V=N Ju 2T Mz 4+ m?

m 2vA
= In|——=—~ ____|. B8
4y n[h+\/h2—m2) ®%

since (4 ) is real, there is no average current between the legs of the ladder.
However, it is possible to find fluctuations of the current as shown in equation (B38). In the commensurate
phase the correlators can be evaluated using (B33) and one obtains

(B7)

(P ()P (x)) = ek =) (B9)

foo 4m \/(uk)2 + m?
foo 4r ,\/(uk)2 + m?

Wheovne) = - [ E”ike“‘("’*”, (B11)

w/(uk)2 + m?

(V] ) Yp(x)) = k=), (B10)

¥ / 1k(x’—x)
(Y ()P (x)) f e (uk)z — , (B12)
so that:
(Wh @ () = (6] (e ()) = iK(M) B13)
2mu u
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W R () = — (W )by () = isign(x — x’)z’:—uKl(M),

u

(B14)

where K, and K are modified Bessel functions. This leads to the result (B40) and one expects an exponential
decay of the rung current correlation with correlation length u/(2m).

In the IC phase, the Fermion correlation functions are expressible instead in terms of incomplete Bessel
functions [85]:

1w
6w, 2) = — f ez sinh =y, (B15)
0

1T

Indeed, we have (for T = 0):

(P ()1 (x7)) f ) B ———— f ” %Leik("’*x% (B16)

\/(uk)2 + m? oo AT \[(uk)? + m?

ke dk uk ik (x/— o dk uk k(x/—
¥ Ny — ur ik(x'—x) ar ik (x’ —x)
(VR )R (x") L@ = [1 + Nt ]e fﬂ ro e X (B17)

ke dk uk ik (x’—x) < dk uk ik (x’ —x)
UL ()Y (x)) = —|1 - ———= + — ¢ , (B18)
< L L > j:kp 471-( /(uk)z + mz] j:oc A /(Lik)z + mz

where \/(ukg)* + m?> = hand we have noted that (¢}, (x)¥; (x)) = (¥} (x)1Pg (x')). In equation(B16), we have

two contributions, one coming from the partially filled upper band, and the other from the filled lower band
which was the only contribution in the commensurate case. We see that when & — +o0, kg — oo and
(Y ()Y (' )> — 0 uniformly. We have:

f 17’1 1k(x —x) _ m f m<x“ *) sinh 6
kg 47T [(uk)z + m O 47T
J— /_
_im [(9 M) O(_(,F, m<_>)] (B19)
4u u u

f M 1k(x x) m f m(x,,fx) sinh&sinhe
kg 47T [(uk)Z _|_ m O 47T

lm[ﬂ(@}:, m(x’ —x))f_ (9F> .m(x —x))
8u u u

_ El( . M) N El( . M)] (B20)
u u
and thus:
<¢R(x)7/1L(x’)> [EO(GB M) ( O, M)] _ 1&{@) (B21)
4u u u 2mu u
+ ay sinkg(x’ — x) im .m(x — x)
<wR (-x)Q/JR (X )> - 27T(xl—— x) + Su |:€1 (91:, 1714 )
_61(9F’im(x’x)) ( 0, i m(x' x))
u u
N 61(_9F, IM)] © isign(x x/)iKl(mlx_—x’l)
u 2mu u

(W} 0P () = W _ iﬂ[fl(% iM)
T(x" — x) 8u

. 1(9F, m(x' —x)) 1(QF’im(x’ —x))

u u

’r o
+ 61(—9F, 1@)] — isign(x — x') 2::1—14Kl (M) (B22)

u

For large distances, |x — x'| > u/m, we can neglect the contribution from the lower band. The
contribution from the upper band can be obtained from the asymptotic expansions given in [85] on p 146, while
the simpler derivation can be obtained from physical arguments and is presented in the main text. Indeed, in the
case ukp < m, we can make the approximations:
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m

_m (B23)
N (wk)? + m?
uk uk
__uKk LM (B24)
N (wk)? + m? m
giving:
(Vi () (x')) =~ sinkex’ — %) +O0(x —x)7? (B25)
27 (x' — x)
+ "y sinkg(x’ — x) _ % coskp(x' — x) sinkg(x’ — x) Olx — )3 B
UNEILNED) o — o m [ P — P A + O(x — x/) (B26)
¥ Ny sinkg (x' — x) iukg | cos ke(x' — x) sinkp (x’ — x) O(x — x'-3
(Y (YL (x')) o — 1) * — ) . [ Py — ke (o — x)z] + O(x —x')°. (B27)

Second, in the case of ukg >> m, we can linearize the dispersion in the upper band around the points +-kg.
We can then make the approximations:

ulk £ ke) ~ 41 (B28)
\/uz(k + kp)? + m?
This time, we find:

. Qo 0 dk . eikp(x’,x)
T (x X)) = efr&'=x) eklatit'=x) _ B29
Wr¥r(x)) jioo 2m 21 (a + i(x’ — x)) (529)

. . +o0o dk B . efiky(x’fx)

¥ x X! —e ik (x'—x) ek( a+i(x'—x)) — B30
WLwLe) fo 27 27 (a — i — x)) (530

m  sinkp(x’ — x)

(Yh )Y () = (B31)

2muky (X — x)
We see that the correlator (¢} (x) 1)y (x') ) is smaller by a factor m/(ukg) ~ m/h < 1in thatlimit. If we had
instead written a bosonized Hamiltonian, we would have found that (¢; (x)1 (x")) = 0. With equation (B29),
we obtain the expression for the rung-current correlator (B43).

In the Fermionic representation (B1), the Hamiltonian is readily diagonalized in the form

H= Y (ry(uk)> + m> — )¢} i (B32)

k=4
by writing:
YR (x) 1 ao[cospp — singy (Ck+)
= L Yk & ) B33
(TPL (x) JL ; sing, cosy, J\Ck- (B33)
S W20, — uk + im : :
with: e?!%x 7W.The commensurate phase [6] is obtained for || < |m|and the IC phase for || > |m].
We can express the currents as:
us[ A
) = —5[— — Whtr + ﬂwo], (B34)
2 | 2ma
L) = iN2m @i — Yivw), (B35)
and the g ~ 0 component of nj; — #;) as:
(151 = migmo ~ Yptor — Vi (B36)

Using (B34), one has [3] (Jj) = ZSZ in the commensurate phase, and

gy = ;—;[A — R =2 (B37)

in the IC phase. The finite-size scaling of the leg current has been derived in [86]. As (1 ¢);) is real, the average

rung current vanishes.
However, rung-current fluctuations are non-vanishing. Indeed, with the help of Wick’s theorem we obtain:
(L)L @) o [(WR )Y ) (Y (D () + (U] )R (D) (D] (e () (B38)
— (k)R (N) (W] (DY () — (Y] ) 1r () (W () Y ()], (B39)
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In the commensurate phase, the correlators in (B38) can be evaluated using (B33). One obtains:

2 n\2 n\?
<h(x)h(x’>>o<(2i) KO(M) +1<1(M) , (B40)

T U U

where Ky and K; are the modified Bessel functions. The exponential decay is thus recovered for
|x — x| > u/m. Taking the FT, we find

2 2
C0) — Clhy o B[ =0~} _ g - b} (B41)
@2m)? (2m)?
where E and K are complete elliptic integrals [87]. Using the Fermion representation, we can also show that:
(uk)?
Ss(0) — Ss(k) ~ T — E| — . B42
0 — S, ~ 7 ((Zm)Z) (B42)

In the IC phase, the Fermion correlation functions are expressible instead in terms of incomplete Bessel

functions [85]. For large distances, |x — x'| > u/m, we can neglect the contribution from the lower band. The

contribution from the upper band can be obtained from the asymptotic expansions given in [85]. In the limit

ukg > m, simple physical arguments give:

cos 2kg (x — x')
412 (x — x')?

so the Fermi wavevector kg = «h* — m? / uy = q(N\) / 2. Taking the FT (B43), we deduce that C(k) has slope

discontinuities at k = 4-2k. By contrast, in that limit, we find that ((nj; — n;)) (njy — njr)) ~ (j — j')*as
expected from the bosonization arguments.

JL )L (x)) ~ +ey (B43)
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