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Abstract

Despite recent progress in proteomics most protein complexes are still unknown. Identifica-
tion of these complexes will help us understand cellular regulatory mechanisms and support
development of new drugs. Therefore it is really important to establish detailed information
about the composition and the abundance of protein complexes but existing algorithms can
only give qualitative predictions. Herein, we propose a new approach based on stochastic
simulations of protein complex formation that integrates multi-source data—such as protein
abundances, domain-domain interactions and functional annotations—to predict alternative
forms of protein complexes together with their abundances. This method, called SiComPre
(Simulation based Complex Prediction), achieves better qualitative prediction of yeast and
human protein complexes than existing methods and is the first to predict protein complex
abundances. Furthermore, we show that SiComPre can be used to predict complexome
changes upon drug treatment with the example of bortezomib. SiComPre is the first method
to produce quantitative predictions on the abundance of molecular complexes while per-
forming the best qualitative predictions. With new data on tissue specific protein complexes
becoming available SiComPre will be able to predict qualitative and quantitative differences
in the complexome in various tissue types and under various conditions.

Author Summary

Most proteins are biologically active only when part of a complex with other proteins of
the same or other type. Hence, to unravel biological functions of proteins, it is important
to identify the type of complexes they can form. Multiple copies of each protein are present
in cells and some of these could be involved in multiple complexes, thus it is a challenging
task to identify protein complex compositions and abundances of all possible complexes.
In this article we propose an integrative computational approach able to predict protein
complexes from existing data sources on protein-protein and domain-domain interactions
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and protein abundances. By merging this information we built a computational model of
all proteins and their dynamic interactions. Using cell-specific data we performed multiple
stochastic simulations to predict protein complexes specific to budding yeast and human
cells. Our predictions on protein complex compositions are consistent with a manually
curated dataset and, for the first time, provide an approximation of their abundances. Our
simulations can also predict how perturbations by a drug can influence the composition
and abundance of protein complexes.

Introduction

Mass-spectrometry (MS) techniques solved many fundamental issues in the identification of
protein complexes [1-3] and other high-throughput techniques allowed the identification of
Protein-Protein Interactions (PPI) and Domain-Domain Interactions (DDI), which paved

the way for computational methods to predict protein complexes [4, 5]. Validation of these
computational approaches is based on the existence of data on detected protein complexes in
the budding yeast Saccharomyces cerevisiae [6-9] and on initial data on Homo sapiens [10, 11].
Unfortunately, all existing complex prediction methods produce only qualitative results even
though protein complexes are formed dynamically and in various amounts throughout cell life.
Note also that proteins with low abundance and with many possible binding partners might
limit complex formation [12]. Therefore, it is crucial to predict the quantity of protein
complexes.

Graph theory algorithms to predict clusters that match protein complexes [13-15] or repli-
cate structural properties of protein complexes retrieved from in vitro experiments have been
applied [14]. Recently a new clustering algorithm [15] considerably improved predictions by
allowing the overlapping of protein complexes with a reference protein-protein interaction net-
work (PPIN). Herein, we propose a method which simulates dynamic complex formation that
relies on complementary binding sites of proteins and that considers absolute protein levels
[16, 17] as initial number of molecular entities, in order to predict both the existence of a par-
ticular complex and its quantity. Protein binding sites correspond to domains and merging
DDI and PPI data we built a proteome-wide model of all interactions in S. cerevisiae and H.
sapiens. We consider DDIs only between proteins with a corresponding PPI, but the same
domain of a given protein can be bound by multiple proteins with matching DDI and PPI lead-
ing to competition for binding sites and limiting formation of unrealistically large complexes.
This ensures that proteins with high number of possible interactors do not interact with all pos-
sible partners at the same time and limits the size of such complexes [18]. The method was
tested on protein complex prediction and it produced both exceptional qualitative results and
the first quantitative prediction on protein complexes. We have also examined how the addi-
tion of a drug (the proteasome inhibitor, bortezomib in this case) influences the complexome
in a qualitative and quantitative fashion. This served as a proof of concept towards protein
complex prediction based drug design [19, 20].

Materials and Methods
Simulation settings

Our approach considered protein domains, retrieved with SMART [21], together with their
corresponding DDI [22] and PPI [23]. We ran stochastic simulations for a reaction-diffusion
system where multiple instances of proteins (corresponding to the square root of detected
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protein levels [16]) move and interact randomly on a two-dimensional logical space inspired
by the Gillespie MultiParticle algorithm (GMP) [24]. We considered the square root of the
absolute protein expression levels and a 2D simulation environment to reduce the computa-
tional cost, while keeping the possibilities for all proteins to meet any other protein in a reason-
able time (S1 Text). In classic Gillespie algorithm [25], space is not explicity considered and the
diffusion of molecules is assumed to be only a limiting factor on the reaction rates. It is abso-
lutely important to consider space when simulating protein complex formation since closely
located proteins or proteins that already participate in the same complex should have higher
probability to bind with each other. Therefore, simulation algorithms that do not consider
space cannot capture the right behavior of complexation and decomplexation of proteins. We
considered a two-dimensional simulation space instead of the real three dimensional structure
(3D) of the cell, because a well-discretized 2D space is already enough to reduce the probability
of distant proteins to bind each other. Consideration of the real 3D structure of the cell would
make the simulations more realistic, but the increase of computational costs would be out-
weighed by the benefits of considering diffusion in the third dimension.

Protein binding sites and molecular crowding

We divided the simulation space into square lattices, called sub-volumes (SV), where proteins
are diffused randomly between neighbour lattices at discrete time steps. As a further simplifica-
tion, we used the same diffusion rate for each protein (this could be improved with proteome
wide data on diffusion rates becoming available). Proteins are represented as complex objects
with binding sites corresponding to domains similarly to the BlenX modelling language [26].
Complementary binding sites can interact to form complexes and their bonds can break and
lead to sub-complexes (Fig 1A). The inclusion of domains as binding sites allows competition
between proteins for a given binding site. As a result, in our simulations two proteins cannot
bind to the same domain, which can have an impact on the formation of protein complexes
when two competing proteins are present in different abundances. Due to molecular crowding
and to the stochastic nature of interactions, the simulations might lead to results that depend
on the initial position of each molecule. To reduce this effect, we consider multiple simulation
runs with random initial conditions and protein complexes are extracted from multiple time
points of the simulation. The reported results came from two simulations with different initial
localizations of proteins in space. We collected the list of simulated protein complexes at two
separate simulation time points (four points in total). We found that more than two simulation
runs do not increase the overall performance of the method: more complexes can be found, but
prediction accuracy decreases (S1 Fig). This finding could be explained by the combination of
the robustness of our simulation based method (See S1 Text for details) and the limited infor-
mation on protein complexes reported in reference datasets [6, 9]. Indeed a single simulation is
enough to identify 90% of reference complexes, and two more simulations increase the per-
centage only to 91% (S1 Text). A complication comes from discrepancies between PPIs and
DDIs data: only 34% of protein pairs involved in a PPI have a corresponding DDI between
identified domains of the involved proteins. To enable interactions between proteins involved
in a PPI, but missing proper DDI pair, we added fictitious interacting domains. Various strate-
gies were tested (S1 Text) and the best solution was found to be the addition of fictitious
domains to a pair of interacting proteins only if they are involved in the same biological func-
tion, according to MIPS [6]. Therefore, we consider DDI information between a pair of
proteins only if a corresponding PPI exists. This step increased the ratio of PPIs with corre-
sponding DDI to 84%. Our yeast model consists of 1474 proteins and the model based on data
from humans contains 2342 proteins (Table 1). The presence of fictitious domains in some of
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Fig 1. The SiComPre algorithm and its performance in predicting protein complexes. a, The SiComPre algorithm. Each protein is represented by a
different colour node, edges show their interactions through domains (either known DDI or predicted from PPl by common GO annotations). For each protein

pairs that appear in a simulated complex (S1-S5 second panel) the corresponding frequency matrix element increases by one. Refined complexes are

formed by clustering this matrix (more details in the Online Methods). b, Performance of qualitative prediction of budding yeast and human protein complexes
by SiComPre are compared with results of two of the most representative methods [13, 15]. SiComPre SIM—all simulated complexes considered, SiComPre
CL—all refined complexes considered, SiComPre-LG—after low abundance large RCs dropped and SiComPre-SM—after low abundance small RCs
dropped (see Methods for details and S1 Text to see how these performed in the alternative f-score system). ¢, Prediction of human protein complexes of

SiComPre compared to predictions of ClusterOne. In blue we report the set of complexes predicted by SiComPre, in green those predicted by ClusterOne.
The red numbers indicate the matched complexes in the CORUM dataset after the process of removing redundant complexes.

doi:10.1371/journal.pcbi.1004424.9001

the predicted complexes cannot be used to reject a prediction but if the fraction of fictitious

domains in a complex is low it strengthen the predictions, as it is based on known domain-
domain interactions. The computation intensive simulations were run on GPUs supporting

CUDA (details in S1 Text).

Prediction refinements

The simulation produces a list of complexes together with their structure (Simulated Com-
plexes, SCs). Many SCs are constituted of similar set of proteins (S1 Text). To quantify how
many overlapping complexes we detected, we apply a refinement process based on a frequency

matrix where each element represents how many times a pair of proteins interacted in SCs
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Table 1. Protein coverage summary and number of predicted complexes.

Input Final Model Predicted Complexes
Proteins in Interactions in Proteins with Proteins with Proteins in Interactions in Matching New
PPI dataset PPI dataset Abundance Domains the model the model Complexes Complexes

Yeast 1622 9022 6234 5374 1474 7618 409 248

Human 3006 13992 7309 2285 2342 9395 268 890

PPI datasets used in this study contain 1622 and 3006 proteins for yeast and human respectively [23]. In yeast, all of these proteins can be found in the
abundance datasets [3, 16], while in human only 88% of proteins in the PPI network have data on protein abundances [10]. More information is known
about domains in yeast than in human [21]. The final yeast model contains 84% of the interactions and 91% of proteins from the initial PPl network. The
human model contains 67% of the interactions and 76% of the proteins of the PPI network (Table 1). The missing proteins and interactions are due to the
lack of DDI interactions or shared GO function between two proteins of the same interaction (S1 Text for additional details about model generation). The
whole pipeline generated 657 complexes in yeast from which 248 do not match any known complexes [9]. From the human data we predicted 1158
complexes and 890 of these cannot be associated to any CORUM complex.

doi:10.1371/journal.pcbi. 1004424.1001

[14]. Clustering this matrix generates the refined complexes (RCs) and the total number of SCs
associated with a RC gives the quantity of that RC. Abundance of a RC is used to further
increase the performance of SiComPre by dropping complexes below a threshold abundance
and above or below a threshold size (details in S1 Text). An overview of the algorithm that we
named SiComPre for Simulation based Complex Prediction is shown in Fig 1A.

Results
Qualitative predictions

The quality check of predicted protein complexes was done by comparing them with experi-
mentally detected complexes from various sources [6, 9]. We used well accepted scoring meth-
ods to compare predicted and experimentally detected complexes: recall gives the fraction of
properly predicted complexes [13]; maximal matching ratio (MMR) measures the ratio of one-
to-one matching between reference and predicted complexes [15] and the geometric accuracy
is a function of proper and improper protein associations to complexes [27] (S1 Text). A sum
of these scores leads to a global measure (composite score) quantifying the performance of the
prediction [15]. Qualitatively similar results measured by an alternative scoring system (called
f-score) [13] are discussed in S1 Text. The scores of SiComPre and existing algorithms for bud-
ding yeast are presented in Fig 1B. We also show how SiComPre scores change at various steps
of our prediction method (Fig 1A): stopping the process at the simulated complexes (SiComPre
SIM) after clustering (SiComPre CL). The composite score of SiComPre CL are equal or higher
than any previous methods (Fig 1B and S1 Text). Since we can quantify the abundance of

each predicted complexes, we could evaluate how SiComPre performs when low abundance
complexes are dropped from the list. Two alternative versions were tried by dropping low
abundance large size complexes (SiComPre-LG) or low abundance small size complexes
(SiComPre-SM) (S1 Text) and found that SiComPre-LG outperforms all other methods on the
basis of the composite score and SiComPre-SM works the best in the alternative f-score predic-
tion measurement system (S1 Text). This highlights that both scoring systems differentially
penalize wrong predictions of large and small complexes but SiComPre still performs well in
both systems. Other protein complex prediction methods could be investigated, but Cluster-
One was already proved to perform better than each of these [15]. Note also that the clustering
and dropping of low abundance complexes slightly reduces the recall, but increases accuracy,
thus the direct simulation results could be used to predict higher fraction of complexes (0.9055
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instead of 0.874), but with lower composite score (2.2573 instead of 2.3472). S1 Text show that
use of alternative databases with somewhat differing PPIs [23] or changes in initial data or in
prediction scoring [13] do not change the high performance of all versions of SiComPre. The
full process generated 657 protein complexes. 248 of these have an overlap score < 0.25, thus
these are considered as newly predicted protein complexes (Tables 1 and S1). We also tested
whether the consideration of protein abundances can effectively improve the qualitative pre-
dictions of SiComPre. We ran simulations where the abundance of all proteins were set to the
average (7491 molecules) of all protein abundances in the input dataset [16]. The qualitative
results show a decrement of the composite score compared to simulation that uses actual pro-
tein abundances: composite score after the simulation step is 2.16 compared to 2.26 of using
actual protein abundances (S2 Fig). Therefore, incorporating protein abundance information is
improving qualitative protein complex predictions.

Quantitative predictions

SiComPre has the best scores available in the literature and it can also predict the abundance of
protein complexes by counting the number of SCs overlapping a RC that can then be associated
with experimentally identified complexes. S1 Table lists all our predicted complexes with their
predicted abundances and their associated best matching reference complexes. Comprehensive
validation of these quantitative predictions is impossible at the moment since we lack a refer-
ence dataset on protein complex abundances. However, some of the predictions can be vali-
dated according complex abundances published in the literature [28-33] (Table 2). For
instance we predicted ~2,200 copies of RNA polymerase complex I, ~3,900 RNA polymerase
complex IT and 144 RNA polymerase complex III. Data is available for the RNA polymerase II
holoenzyme in haploid yeast in the range of 2,000 to 4,000 complexes [30]. The proportion of
polymerases is maintained with respect to Mus Musculus, where their quantification is
~30,000, ~60,000 and ~3,000 respectively [29]. Approximately 50,000 copies of ribosomes
were detected in our simulations that were based on the initial protein abundance data of

7.0 x 10* on average for all ribosomal subunits. In logarithmic growing yeast cells the estimated
ribosome number is 187,000 * 56,000 ribosomes [28], but this calculation was based on the
average concentration of 3.15 x 10° subunits per cell and assumes that all ribosomal rRNAs are
involved in ribosome formation, thus our quantitative prediction could be realistic.

Even after the clustering and optimization steps, we found that multiple RCs that differ in
either size or exact structure (Fig 2) are associated to a single experimentally characterized
complex. For instance several alternatives of the ribosomal large subunit were found, which
could be different existing variants or be caused by the lack of rRNAs in the simulations.
SiComPre also predicted several RCs that we could not associate with any characterized com-
plexes. We identified some complexes containing up to six proteins and several of them
showed high abundances (>1000 copies per cell). Two of these six-protein complexes (RC 222
and 272 in S1 Table) share four common proteins and, according to functional annotations,
are related to nuclear transport processes. These and other predicted complexes in S1 Table
call for further research on their possible existence and role in yeast cells. Similar overlaps
between RCs are plotted in Fig 3. This graph represents all the RCs (nodes) and the protein
content overlapping between them (edges). Larger protein complexes are associated with more
alternative RCs by SiComPre. The alterative RCs of an existing protein complex could be
merged to increase the precision of predictions. However, alternative RCs could also corre-
spond to existing variation of the same complex and could thus lead to the discovery of other
proteins that associate and have functional relevance in an already known complex. An
example of possible auxiliary subunits of the chromatin remodelling RSC complex [34] is
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Table 2. Summary of quantitative predictions of protein complex abundances in yeast.

Protein complex  Experimental SiComPre Average of constitutive Experimental Evidences
abundance predicted subunit abundances
abundance
Ribosome 187,000 50,000 53,331 An average of 187,000 copies has been estimated [28].
RNA polymerase | 1,500 2,200 5,031 Assuming the proportion of RNA polymerases in Mus

Musculus[29] is maintained in yeast, the abundance is the
half of that of RNA polymerase |I.

RNA polymerase Il 3,000 3,900 4,375 An average of 3,000 complexes has been estimated in
Yeast[30].

RNA polymerase 150 144 3,352 Similary for RNA polymerase |, approximated to be 1/20 of

i that of RNA polymerase Il

Nuclear Pore 200 462 2,120 An average of 200 NPC has been estimated[31].

Complex

Eisosome 75 80,372 109,500 It is the average of Eisosomes in yeast[32].

Nucleosome 57,000 90,300 267,640 The estimated number of nucleosomes in yeast[33].

Anaphase- 3,000 1,406 494 2 There are about 1000-5000 APC per cell in yeast[32].

Promoting

Complex

Only a few protein complex abundances are available in the literature. We summarized these, providing also a short explanation of how these were
estimated. We compared SiComPre predictions against the trivial method of predicting protein complex abundances using the average of the abundance
of the constitutive subunits. SiComPre predictions show a better agreement to experimental data compared to predictions based on the protein
abundance averages. The predicted abundances were rescaled by squaring the value predicted from the simulation to re-establish the linear dependence
between SiComPre predictions and experimental data.

doi:10.1371/journal.pcbi.1004424.t002

[ Cytoplasmic ribosomal large subunit
) UTP A complex
Kornberg's mediator (SRB) complex
@ Mitochondrial ribosomal small subunit
U1 snRNP complex
U2 snRNP complex
@ Commitment complex
@ 19/22S regulator
B DNA-directed RNA polymerase Il complex
@ SAGA complex
mRNA cleavage and poly. specificity factor c.
I 20S proteasome
@ Mitochondrial ribosomal large subunit
RSC complex
@ DNA-directed RNA polymerase Il complex
Ino80p complex
elF3
@ Multi-elF complex
B Nucleolar ribonuclease P complex
@ mitochondrial inner membrane peptidase c.
8 Nup84p complex
Transcription factor TFIIE complex
@ mitochondrial outer membrane translocase c.
DASH complex
@ coPl
) Aurora B-INCENP protein kinase complex

Fig 2. Budding yeast protein complexes predicted by SiComPre. Structure of many refined predicted complexes after dropping small abundance
complexes. The colours are chosen according to the best matching reference complex. The legend shows some of the most well-known complexes (the full
list can be found in S1 Table). Similarly coloured RCs match a single reference complex. These RCs can be considered different variants of the same
complex.

doi:10.1371/journal.pcbi.1004424.9002
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Fig 3. Relationship between predicted refined complexes (RCs). a, In the left part of this figure, nodes represent all the predicted RCs, edges represent
overlap between RCs. Connected protein complexes share components above a threshold overlap (> 0.1). Node size corresponds to the number of proteins
in the complex and the colour represents the quantitative prediction with darker colour meaning higher abundance. Some of these connected components
match the same reference complex with every node representing a complex variant. In the right part of this figure, we merged all variant refined complexes
that could be associated with the RSC complex, the colour depth of the nodes represent how many times a protein has been observed in a SC that match one
of these RCs. In this case edges represent interactions between proteins found in the initial PPI dataset [23]. The three set of proteins with coloured
background are named according to the corresponding reference complexes [9]. All the proteins of the reference RSC complex are found by SiComPre
except YBLOO6C and YGR275W. These form a dense region with higher abundance corresponding to the core complex and a less dense auxiliary complex
attached to it. Two of the proteins in the less dense region match the reference complex of ISW1a, suggesting a strong interaction between these two
complexes. b, The core RSC complex and its attachments according to Gavin et al. [5] compared with the RSC complex predicted by SiComPre. Blue nodes
are core proteins, while all the others are attachments according to Gavin et al [5]. Colour indicate whether they are predicted by SiComPre either to be in
RSC complex (purple), ISW1a complex (yellow), new module (pink) or not bounded to RSC (orange). Edges represent interactions according to the initial PPI
database [23].

doi:10.1371/journal.pcbi.1004424.9003
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highlighted in Fig 3a. SiComPre predicted that the RSC complex often interact with the ISW1a
complex [35] and a new module of four proteins (Fig 3a). A similar subdivision of protein com-
plexes has been proposed by Gavin et al. [5], where proteins are either part of the core of a
complex or are attachments or part of modules bound to the core proteins. The core group is
preserved in most of the isoforms of the complex, while attachments and modules may give a
different function to the complex. Their analysis is based on genome-wide mass spectrometry
data thus can be directly used to validate SiComPre results. All but two of the proteins in the
most abundant SiComPre predicted RSC complex are part of the core of the RSC complex of
Gavin et al [5] and ISW1a and the four proteins in the new module of the SiComPre complex
are all attachments of the Gavin RSC complex (Fig 3b). This shows that SiComPre can be used
not only to quantitatively predict protein complex abundances but also to predict possible
alternative compositions of these complexes.

As a control, we investigated whether protein complex abundances can be predicted simply
by averaging the abundance of all the constituting subunits. We found that on average there is
a 14-fold difference between SiComPre quantitative predictions of protein complexes and the
average abundance of their constitutive subunits with low correlation between them (Pearson
0.159, Spearman’s 0.006 (S1 Text)). The importance of the use of actual protein abundances in
predicting protein complex abundances can be also seen on the predictions of the few examples
with literature data (Table 2).

Prediction of human protein complexes

We also tested SiComPre on the human PPI [10] with protein abundances from a human oste-
osarcoma cell line (U20S) [3]. We validated the results against the CORUM dataset of mam-
malian protein complexes [11] from which redundancies and complexes smaller than three
proteins have been removed [10, 11]. This resulted in a new dataset of 324 non redundant
human protein complexes, 39 of which were identified by SiComPre. Despite this relatively low
match, our predictions outperform any other existing methods [10] (Fig 1B), predicting four
more complexes than ClusterOne (Fig 1C). The low number of matched complexes is due to
the lack of comprehensive experimental data, which cannot be compensated for by any predic-
tion methods. It is possible that multiple instances of a predicted complex correspond to an
existing, but so far unknown, complex. For instance, the high abundance six-protein complexes
RC 145 and 504 (S2 Table) share five common proteins, which are all associated with snRNA
binding (without our addition of any fictitious domain) and thus suggests the existence of
these complexes. Indeed this complex appears under the name of LSM-complex in the
extended CORUM dataset of 1685 characterized complexes from which SiComPre matches
295 protein complexes. Similarly, Complex RC 259 cannot be associated to any of the CORUM
complexes (S2 Table) but it matches the pyruvate dehydrogenase complex [36] based on
Uniprot protein descriptions. Examples of complexes which cannot be associated to any char-
acterized complex are the five-protein complexes RC 365 and RC 391. These share four com-
ponents and are associated with Rab related GTPase activity, vesicle formation and transport
[37]. A few of the constituting proteins participate in the RCP-RAB11 and Rab geranylgeranyl-
transferase complexes but the whole complex does not show significant overlap with either of
these. It is important to note that interactions between the constituting proteins of these com-
plexes are always supported by known DDI, thus no fictitious domain had been added to pre-
dict these complexes.

It is hard to find validation for the predicted abundances of protein complexes in the con-
sidered osteosarcoma cell line (U20S). SiComPre predicted 1.3 x 10° ribosomes, which is in
the same order of the number of ribosome identified in HeLa cells (3.3 x 10°) [38].
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Robustness of SiComPre predictions

SiComPre predicted 4456 different types of budding yeast protein complexes after two stochas-
tic simulations and considering two separate time points. This is a surprisingly low number
considering all the possible complexes that could appear from the initial PPI sub-network of
interacting proteins of the proteome-wide yeast network (1622 nodes and 9074 edges). 2983
complexes were predicted by the first simulation with random initial position of each protein
(we considered two time points of that single run). The second stochastic simulation with new,
random initial settings, shared 1462 complexes with the first run. Similarity increases to almost
2030 complexes (68% of total hit counts) when complex with similar counterpart (overlap > =
0.75) between two simulations are considered. Moreover, only one simulation is enough to
identify 90% of reference complexes, while the addition of a second simulation increases the
percentage of predicted reference complexes by only 1% (S1 Fig). Addition of further simula-
tions does not increase predictive capabilities (Fig 1). This suggests that most complexes
robustly form independently of the stochastic noise in the initial layout of proteins in the
various sub-volumes. Quite often the protein complex abundances also show extraordinary
robustness. A good example is the methionyl glutamyl tRNA synthetase complex [39] with
abundances 2217 and 225 (actual simulated values to the square to predict real biological
abundances) in two simulation runs with a perfectly predicted structure match (matching
score = 1). Many other complexes also have small abundance variations between the two simu-
lations (S1 Table) and only small fraction of yeast complexes show high sensitivity to noise in
initial settings. For instance, the abundance of the mRNA cleavage factor complex (CFI) varied
between 17° and 30 copies and the Pho85p/Pcl8p complex was not observed in the first simu-
lation but 64 (8 simulated) complexes appeared in the second run. To get a broader picture for
each complex we calculated the coefficient of variation (CV = standard deviation / mean) of its
quantitative predictions. Only 20% of complexes show a CV > 0.5) in the case of the human
protein complex predictions after three runs (53 Table). In yeast, where only two runs were
performed, 36% of complexes have CV > 0.5. Finally we compared the quantitative predictions
resulted from two separate simulations and observed that quantitative predictions are also
robust as the two simulations on the yeast data gave quantitative protein complex predictions
with a Pearson’s correlation of 0.997, while based on results from the human data this correla-
tion was 0.998 (S2 and S3 Tables).

Effect of a drug on the human complexome

Tissue-specific protein data is emerging [40] and shows that protein expression and abundance
can greatly vary between tissue [17]. SiComPre can take such tissue-specific information into
account and thus give tissue-specific protein complex predictions, which could soon be useful
in extending our knowledge of human protein complexes. Furthermore the tissue specific vari-
ations in protein levels in cancer and other diseases [41] could be translated into qualitative
and quantitative predictions on protein complexes by SiComPre. These results could be used
to associate complex abundances and compositions with diseases as novel therapeutic targets
[20]. For instance the administration of a drug can influence the abundance of complexes or
allow the formation of new complexes. As a proof of concept, we performed simulations on the
human SiComPre model with the addition of Bortezomib, a proteasome inhibitor [42] (details
in S1 Text), which is a highly characterized drug with known to affect the formation of protein
complexes. Drug—protein interactions were collected from the Stitch database [43] and after
performing a domain enrichment of interacting proteins we estimated the domains bound by
the drug (S1 Text). We set the abundance of Bortezomib to 5000 molecules, which is roughly
the abundance of the most abundant protein we consider for human cells. We mapped protein
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Overlap=0.53

complexes predicted with and without Bortezomib by finding the best matching complexes in
the normal case to the complexes found after Bortezomib addition. Abundances of matching
protein complexes were analysed by a t-test to find complexes which were perturbed in their
abundance by Bortezomib (p-value <0.05). Protein complexes without a best matching com-
plex were considered qualitatively altered by Bortezomib. We observed that the abundance of
the Proteasome, the Anaphase-Promoting Complex, Prefoldin and the Multisynthetase com-
plex were greatly perturbed by Bortezomib. We also observed that the composition of the
above discussed snRNA binding LSM complex and several other predicted complexes were
modified by drug treatment (S3 Table). Several of the altered complexes are involved in tran-
scriptional regulation (constitutive proteins are known transcription factors [44]). We searched
the literature for validation of the involvement of SiComPre predicted transcriptional com-
plexes in Bortezomib treatment and found numerous transcription factors that could be impli-
cated (54 Table). These predictions cannot be trivially inferred from the direct interactions of
Bortezomib [43] as most of the candidate transcription factors are part of larger complexes
that are perturbed by Bortezomib. Thus, we can conclude that SiComPre could be used to pre-
dict qualitative and quantitative changes to complexomes upon drug treatment.

Conserved protein complexes

Several protein complexes perform essential biological functions slowing down their evolution
and allowing only co-evolution of their components [45]. We investigated how protein com-
plex compositions and abundances change between organisms with the example of the Ana-
phase Promoting Complex (APC). Fig 4 shows the structures of SiComPre predicted APC in
yeast, human and in human after Bortezomib treatment. All three SiComPre complexes show
high overlap with the experimentally identified complexes [46]. The SiComPre predicted yeast
APC complex shows an overlap of 0.68 with the core of the APC complex found by Gavin et al
[5] and with one protein exception, fully matches the orthologs of the predicted human APC
(Fig 4). The Bortezomib treatment seems to cause a loss of ANAPCI10 (the yeast ortholog is
Docl) from some of the SiComPre simulated APC complexes (Fig 4). Such loss of ANAPC10
could cause an S-phase block in the cell cycle [47]. The constituting proteins are not the only
variations revealed by SiComPre. As expected, SiComPre predicted the abundance of APC in
human almost one order of magnitude higher than in yeast. Unexpectedly SiComPre also
predicts that the addition of Bortezomib further doubles the abundance of APC in human (S2
and S3 Tables), although the majority of these complexes might be defective due to the lack of
ANPCIO0.

Human Bortezomib

B Common

[l Yeast specific

M Missing in Bortezomib

y Human specific
Overlap=07.89 ' Overlap=0.78

Fig 4. Variations in SiComPre predicted anaphase promoting complexes. The predicted structures of the APC complex in yeast, human and human
after Bortezomib treatment. The reported overlap scores were calculated by comparing to the reference protein complexes discussed above. The lower
score observed for the yeast is due to the larger APC complex size found in yeast [9].

doi:10.1371/journal.pcbi.1004424.9004
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Quantification of limiting subunits

Thanks to simulated complexes it was possible to estimate the number of unbound proteins.
This can help us to identify which proteins are fully bound in complexes, thus might limit the
formation of other complexes. As expected there is a negative correlation between fraction of
unbound proteins and the number of interactions of proteins (Pearson’s correlation -0.43 for
yeast and -0.39 for human data) as with more possible interactors there is a higher chance of
ending up in a complex. Interestingly there is no correlation between the fraction of free sub-
units and the abundances (Pearson’s correlation 0.03). A high number of proteins are present
in high abundance have a few interactors, but fully used up in complexes (Fig 5 and S5 Table).
For instance, in yeast, TEF4 (YKL081W) has only 6 interactions, present in 102,000 copies,
which are all bounded in complexes. This and several others with low (many cases 0) free abun-
dance could be limiting factors in protein complexes.
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Fig 5. Fraction of unbound subunits. We calculated the predicted number of unbound proteins in a cell by subtracting the number of protein complexes
from total number for each protein. a, Fraction of free proteins in yeast plotted together with the number of their interactions based on the Collins PPI network
[23]. b, fraction of free proteins in human and the number of their interactions in the considered PPI dataset [10].

doi:10.1371/journal.pcbi.1004424.9005
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Discussion

Here we introduced a simulation based protein complex prediction method (SiComPre) that
outperforms existing tools in qualitatively predicting the components of protein complexes
and provides for the first time quantitative predictions on protein complex abundances.
SiComPre incorporates multi-source information and our results show that the addition of
domain information and protein abundances both increase the qualitative prediction of protein
complexes.

Membrane-bound protein complexes are often difficult to be detected. Identification of
membrane protein interactions [48] will allow SiComPre to predict complexes in the mem-
brane with higher precision. In the future SiComPre could also identify variations in the com-
plexome of different organisms and in different tissues of the same organism [40, 49] as tissue-
specific data becomes available. SiComPre will provide increasingly reliable predictions with
the growing availability of human proteins data such as cellular sub-localization, abundance
and binding/unbinding rates. This will enable the discovery of new human protein complexes
and the understanding of the relationship between their variations and complex phenotypes.
Another possible expansion comes from a recent tool that can predict protein abundance
changes through the cell cycle [50]. This data could be used as input for our simulations allow-
ing SiComPre to predict the dynamic of the complexome throughout the cell cycle. In sum-
mary, SiComPre opens a new area of computational analysis of the complexome.

Software availability

All SiComPre applications and datasets are provided to the community on a dedicated website
(www.cosbi.eu/research/prototypes/sicompre). The scripts are available as supplementary S1
File.

Supporting Information

S1 Table. SiComPre predicted budding yeast protein complexes together with their pre-
dicted abundances in Microsoft Excel format.
(XLSX)

§2 Table. SiComPre predicted human protein complexes together with their predicted
abundances in Microsoft Excel format.
(XLSX)

$3 Table. SiComPre predictions on the effect of bortezomib on human protein complexes
in Microsoft Excel format.
(XLSX)

$4 Table. Transcription factors bounded to altered complexes in the simulations with Bor-
tezomib added. This table is in Microsoft Word format.
(DOCX)

S5 Table. Predictions of the fraction of unbound proteins by SiComPre simulations of the
yeast and human data in Microsoft Excel format.
(XLSX)

S1 File. Zipped scripts to run SiComPre.
(RAR)

S1 Text. Supplementary materials with text.
(PDF)
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S1 Fig. Effect of the number of considered simulations on qualitative predictions.
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S2 Fig. Composite scores of protein complex qualitative predictions after two simulations
with actual (left) and average (right) protein abundances.
(DOCX)
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