

The Anatomical Record

Scaling of primate forearm muscle architecture as it relates to locomotion and posture

Journal:	Anatomical Record
Manuscript ID	AR-SI-Musc-17-0058.R1
Wiley - Manuscript type:	Special Issue Article
Date Submitted by the Author:	n/a
Complete List of Authors:	Leischner, Carissa; University of South Carolina School of Medicine, Cell Biology and Anatomy Crouch, Michael; University of South Carolina School of Medicine, Cell Biology and Anatomy Allen, Kari; Washington University in Saint Louis School of Medicine Marchi, Damiano; University di Pisa, Biology; University of the Witwatersrand, Pastor, J; University of Valladolid, Department of Anatomy and Radiology Hartstone-Rose, Adam; University of South Carolina School of Medicine, Cell Biology and Anatomy
Keywords:	Muscle, Primate, Arboreal, Terrestrial, Forearm
	-

SCHOLARONE[™] Manuscripts

The Anatomical Record

2		
3	1	Scaling of primate forearm muscle architecture as it relates to locomotion and posture
4 5		
6	2	
7		
8	3	Carissa L. Leischner ¹ Michael Crouch ¹ Kari L. Allen ² Damiano Marchi ^{3,4} Francisco
9	5	carissa E. Eciscimer , Michael Croach , Rar E. Allen , Damano Marcin , Trancisco
10	1	Paster ⁵ Adam Hartstone Pose ¹
12	4	Pastor, Adam nartstone-Nose
13	F	
14	3	
15	(
16	6	Department of Cell Biology and Anatomy, University of South Carolina School of
18	_	
19	7	Medicine
20		
21	8	² Department of Neuroscience, Washington University School of Medicine in St. Louis;
22		
23 24	9	Department of Anthropology, Washington University in St. Louis
25		
26	10	³ Department of Biology, University of Pisa, Via Derna 1, Pisa 56126, Italy
27		
28	11	⁴ Evolutionary Studies Institute and Centre for Excellence in PalaeoSciences. University of
29 30		,, _,
31	12	the Witwatersrand Private Bag 3 Wits 2050 South Africa
32	12	
33	13	⁵ Departamento de Apatomía y Radiología, Universidad de Valladolid
34	15	Departamento de Anatomía y Nadiología, Oniversidad de Valiadolid
35	14	
37	14	
38	1.5	
39	15	Carissa Leischner (Corresponding Author)
40	16	University of South Carolina School of Medicine
41	17	6439 Garners Ferry Road
42 43	18	Building 1 CBA rm C-36 c/o Adam Hartstone-Rose
44	19	Columbia, SC 29209
45	20	
46	21	leischne@email.sc.edu
47	22	803-341-5653
48	23	
49 50	24	Michael Crouch
51	25	University of South Carolina School of Medicine
52	25	6439 Garners Ferry Road
53	20	Building 1 CBA rm C 26 c/o Adam Hartstone Pose
54 55	27	Columbia SC 20200
55 56	∠0 20	michael crouch@uccmed.cc.edu
57	29	
58	30	210-211-2121
59		
60		

1		
2	21	
4	31 22	Kori L. Allen
5	32 22	Kari L. Allen Washington University School of Medicine in St. Lewis
6 7	33	Washington University School of Medicine in St. Louis
8	34 25	
9	35	North Building, 3820
10	36	St. Louis, MO 63110
11	37	
1Z 13	38	kari.allen@wustl.edu
14	39	314-747-6572
15	40	
16	41	<u>Damiano Marchi</u>
17	42	University of Pisa
18 10	43	Department of Biology
20	44	Via Derna 1, Pisa 56126, Italy
21	45	
22	46	damiano marchi@unini.it
23	47	39-050-2211350 (nh)
24	48	39-050-2211330 (pr)
25 26	40	35 050 2211475 (lax)
27	49 50	Francisco Dastor
28	50	<u>Francisco Pastor</u>
29	51	Universidad de Validolid
30	52	Departamento de Anatomia y Radiologia
31	53	C/. Ramón y Cajal, 7
32 33	54	47005 Valladolid, Spain
34	55	
35	56	juanpas@med.uva.es
36	57	
37	58	Adam Hartstone-Rose
30 30	59	University of South Carolina School of Medicine
40	60	6439 Garners Ferry Road
41	61	Building 1 CBA rm C-36
42	62	Columbia. SC 29209
43	63	
44 45	64	adamhr@sc.edu
46	65	803-216-3816
47	05	005 210 5010
48	66	Bunning title: Scaling of primate forearm MMA architecture
49	00	
50 51	(7	
52	6/	Grant sponsor: National Science Foundation; Grant Numbers: BCS-14-40599 and IOS-15-
53		
54	68	57125
55		
56 57	69	
58		
59		
60		

The Anatomical Record

71	It has been previously proposed that distal humerus morphology may reflect the
72	locomotor pattern and substrate preferred by different primates. However,
73	relationships between these behaviors and the morphological capabilities of muscles
74	originating on these osteological structures have not been fully explored. Here, we
75	present data about forearm muscle architecture in a sample of 44 primate species (n =
76	55 specimens): 9 strepsirrhines, 15 platyrrhines, and 20 catarrhines. The sample
77	includes all major locomotor and substrate use groups. We isolated each antebrachial
78	muscle and categorized them into functional groups: wrist and digital extensors and
79	flexors, antebrachial mm. that do not cross the wrist, and functional combinations
80	thereof. Muscle mass, physiological cross-sectional area (PCSA), reduced PCSA (RPCSA),
81	and fiber length (FL) are examined in the context of higher taxonomic group, as well as
82	locomotor/postural and substrate preferences. Results show that muscle masses, PCSA,
83	and RPCSA scale with positive allometry while FL scales with isometry indicating that
84	larger primates have relatively stronger, but neither faster nor more flexible, forearms
85	across the sample. When accounting for variation in body size, we found no statistically
86	significant difference in architecture among higher taxonomic groups or
87	locomotor/postural groups. However, we found that arboreal primates have
88	significantly greater FL than terrestrial ones, suggesting that these species are adapted
89	for greater speed and/or flexibility in the trees. These data may affect our
90	interpretation of the mechanisms for variation in humeral morphology and provide
91	information for refining biomechanical models of joint stress and movement in extant

Key words: primate, forearm, locomotion, arboreal, terrestrial, muscle architecture

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
20	
20	
21	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
30	
40	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
50	
54	
22	
56	
57	
58	
59	
60	

and fossil primates.

The Anatomical Record

114 INTRODUCTION

Multiple studies have suggested that osteological differences in the distal humerus among primates may reflect variation in the force production capabilities of the forearm musculature, likely necessitated by differences in substrate interaction between primates practicing different locomotor patterns (Jenkins, 1973; Ziemer, 1977; Szalay and Dagosto, 1980; Feldesman, 1982; Fleagle and Simons, 1982; Fleagle and Meldrum, 1988; Harrison, 1989; Frost and Delson, 2002). However, in addition to osteological features associated with mechanical advantage, muscle strength may be affected by a number of variables, including muscle mass and muscle fiber architecture. Jenkins (1973) describes a condition by which torsional stresses at the elbow joint are produced by the force of the extrinsic digital and wrist flexors during pronated hand postures. According to his model (Jenkins, 1973), this force can be counterbalanced in three ways: 1) reducing the flexor muscle mass, 2) increasing the extensor muscle mass, or 3) shifting the flexor muscles posteriorly to run behind the elbow joint. This elegant explanation has been highly cited in the literature and appears to correspond well with the observed skeletal morphology of cercopithecoid primates (Napier and Davis, 1959; Birchette, 1982; Fleagle and Simons, 1982; Harrison, 1989; McCrossin et al., 1998; Frost and Delson, 2002). Although analyses of extrinsic forearm muscle weights have been performed for hominoids and some catarrhine monkeys (Tuttle, 1969; Tuttle, 1972), there is little information available for platyrrhine and strepsirrhine primates.

136	While the argument that large medial epicondyles support large flexor muscles is
137	clearly logical, muscle force is not reliably predicted by muscle mass or volume (Gans
138	and Bock, 1965). Rather, muscle action is affected by muscle architecture, including
139	fiber length and degree of pennation. The use of physiological cross-sectional area
140	(PCSA) and reduced physiological cross-sectional area (RPCSA) takes these variables into
141	account and provides a better estimate of maximum muscle force than weight
142	measurements alone (Payne et al., 2006; Taylor and Vinyard, 2008). Theoretically, a
143	given muscle compartment of an animal could produce more force with less total
144	volume by altering muscle architecture. Subtle differences in muscle architecture
145	introduce the possibility that the bony area of muscular insertion does not reflect the
146	muscle mass, but instead reflects the force produced by that muscle. Tuttle (1972) was
147	aware of this fact and avoided the use of absolute muscle mass and/or volume in his
148	study of anthropoid hands and feet.
149	The model proposed by Jenkins (1973) implies that the frequency of use of a
150	particular muscle group in locomotion is reflected in variable volume of the musculature
151	and its osteological origin (i.e., greater employment in locomotion = bigger muscle
152	volume = larger bony insertion). Following this model, we would expect animals
153	involved in locomotor categories employing frequent gripping (i.e., arboreal
154	quadrupedalism, climbing, and suspension) to require greater force of the digital flexors
155	compared to animals that are predominantly terrestrial. Terrestrial animals would be
156	expected to require generation of large forces by their deep digital flexors (in toe-off)
157	and their pronators (in quadrupedalism), but less force in their wrist and superficial

The Anatomical Record

2	
3	
4	
5	
6	
7	
0	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
∠∪ ว≀	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
22	
0Z 22	
აა ე⊿	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
ΔΔ	
15	
40	
40	
41	
48	
49	
50	
51	
52	
53	
54	
55	
56	
50	
57 E0	
20	
59	
60	

158 digital flexors. The model predicts that greater force will be generated by either 159 increased muscle volume of the appropriate groups, or an appropriate change in 160 muscular architecture. Further, any increase in muscle volume is expected to generate 161 a larger bony origin site (greater epicondylar projection). 162 163 Muscle fiber architecture and its relationship to posture, substrate use and locomotor 164 patterns 165 166 In our previous studies (Perry and Hartstone-Rose, 2010; Hartstone-Rose and 167 Perry, 2011; Hartstone-Rose et al., 2012b; Hartstone-Rose et al., 2015) the muscle 168 architecture of the masticatory system in felids and lemurs co-vary with the mechanical 169 requirements of differing diets—specifically with gape and bite force. In both clades, 170 the length of the masticatory muscle fibers seems to be adapted for the size of food 171 items, while force variables scale isometrically with body size. In other words, the mass 172 and physiological cross-sectional area of the masticatory muscles scale tightly with body 173 mass, but provide no real dietary behavioral signals. Muscle fiber length, on the other 174 hand, does reveal information about dietary behavior. Because of this common pattern 175 in the masticatory muscles, we suspect that muscle fiber architecture plays an 176 important role in other anatomical regions, for instance as an indicator of adaptation in 177 the muscles of locomotion. An examination of muscle fiber architecture in the limb 178 muscles may indicate whether limb muscles are adapted for strength or speed—the 179 latter, for instance, may be of optimum advantage in aid of vertical leaping. We might

180	also find correlations between muscle fiber structure and substrate use (e.g., terrestrial
181	vs. arboreal) as arboreal primates rely more heavily on quick movement through the
182	trees than terrestrial primates do on land, or higher taxonomic group (between
183	catarrhines, platyrrhines, and strepsirrhines) since selection or drift could drive
184	morphological changes in muscle fiber architecture as well. Fiber type analysis would
185	add even greater depth to this type of analysis, but is beyond the scope of the current
186	study.
187	
188	Muscle fiber architecture
189	
190	Skeletal muscle fiber structure should vary across skeletal regions and across
191	taxa in patterns that are related to the selective pressures of that anatomical region –
192	for instance those imposed on the muscles of mastication by specific diets and those
193	imposed on the forelimb muscles by specific locomotor behaviors. Skeletal muscles can
194	be seen as a collection of fibers arranged in parallel. While these fibers have a relatively
195	consistent diameter in muscles of varying sizes, the spatial arrangement of fibers can
196	vary significantly. It is the arrangement of these fibers that is responsible for muscle
197	contraction and force production (Brinckmann, 2002). Muscle fibers may be oriented
198	longitudinally to the force generating axis of the muscle, or they may be pennate
199	(oriented at an angle). In muscles of equivalent gross dimensions, muscles with
200	longitudinally-oriented fibers are longer, and thus the muscle has greater potential to
201	stretch (since stretch is proportional to the resting length of the muscle) and also to

Page 9 of 41

202

The Anatomical Record

1	
2	
3	
۵ ۵	
4 5	
ວ	
6	
7	
8	
9	
10	
11	
11	
12	
13	
14	
15	
16	
17	
18	
10	
13	
20	
21	
22	
23	
24	
25	
26	
20	
21	
28	
29	
30	
31	
32	
33	
31	
25	
30	
36	
37	
38	
39	
40	
<u>41</u>	
יד 10	
-72 10	
43	
44	
45	
46	
47	
48	
49	
50	
50	
51	
52	
53	
54	
55	
56	
57	
50	
50	
59	
60	

223

move more quickly (since each muscle fiber theoretically contracts at the same rate and 203 longer fibers cover more distance in that same amount of time). Pennation serves to 204 increase the number of muscle fibers with in a given muscle volume. Fibers have a 205 relatively consistent cross section, and cross-sectional area is directly proportional to 206 force production. Pennation increases muscle strength as a consequence of this 207 increase in fiber number. However, pennate muscles have shorter fiber lengths for the 208 same muscle volume. Thus, a fundamental tradeoff exists in muscle fiber architecture: 209 for a given muscle volume, muscles can be adapted for stretch and speed (fewer longer 210 fibers), or adapted for strength (greater number of shorter fibers). If a muscle needs to 211 be both strong and fast and/or flexible, then the muscle must be of greater volume than 212 one that is adapted for only one of these states, or for a compromise thereof (Anapol 213 and Barry, 1996). 214 As a consequence of differences in muscle fiber orientation, the anatomical cross-215 sectional area of a muscle is not always proportional to its force generating capacity. 216 The physiological cross-sectional area (PCSA) of a muscle – the cross-sectional area 217 measured perpendicular to the longitudinal axis of fiber orientation – is a more accurate 218 measure of muscle force production because it represents the sum of the individual 219 muscle fiber cross-sectional areas (Maughan et al., 1983; Brinckmann, 2002). Reduced 220 physiological cross-sectional area (RPCSA) – another measure of muscle force – takes 221 into account the amount of force lost due to the angle of muscle fibers in a pennate 222 muscle that runs orthogonal to the muscle's line of action – essentially by removing the

vector of force imparted by pennation that is perpendicular to the total muscle's line of

224	action (Anapol and Barry, 1996; Perry et al., 2011).
225	
226	Locomotor Pattern
227	
228	The primate order is characterized by a great diversity of locomotor behaviors
229	(Hunt et al., 1996; Fleagle, 1999). Field research has established that greater variation in
230	locomotion exists among primates than was originally thought, both between and
231	within species. Since the early attempts to classify primate locomotion into categories
232	(Prost, 1965a, 1965b) it has been clear that such a task is quite difficult, though
233	anatomists and especially students who use biomechanical approaches have long
234	recognized that a complete understanding of primate musculoskeletal system must rely
235	especially on quantitative primate positional behavior data (Hunt et al., 1996). The aim
236	here is to provide only broad locomotor distinctions, recognizing that some variability in
237	locomotor/postural behavior exists within the taxonomic groups shown in Table 1. As
238	described in the methods section below, we have assigned each species represented in
239	our sample to locomotion/posture and substrate use categories based on the available
240	behavioral literature.
241	
242	HYPOTHESES AND PREDICTIONS
243	
244	The primary goal of this study is to evaluate the potential correlation between
245	extrinsic hand/wrist muscle architecture and locomotor patterns/posture, substrate
	10

3 4	246	use, and higher taxonomic group across the Order Primates. We explore the scaling
5 6 7	247	patterns of individual architectural variables with body size, in an attempt to elucidate
8 9	248	whether there are differences in allometric scaling patterns associated with contrasts in
10 11 12	249	higher taxonomic group, locomotion/posture, and substrate categories. We also test
13 14	250	predictions related to the distribution of relative muscle volume and muscle among
15 16 17	251	these groups—i.e. do statistically significant differences occur among primates of
18 19	252	differing higher taxonomic group, locomotion/posture, and substrate preferences, when
20 21 22	253	variation related to body size is taken into account?
23 24 25	254	
25 26 27	255	Our hypotheses regarding forearm muscle architecture and the behaviors in question
28 29 20	256	are as follows:
30 31 32	257	
33 34 25	258	1) Because of their reliance on speed to move through their habitat, arboreal primates
35 36 37	259	will have relatively greater forearm flexor fiber length (FL) compared to terrestrial
38 39	260	primates. Alternatively, because of their reliance on grip strength to hang onto trees,
40 41 42	261	arboreal primates will have relatively high PCSA and RPCSA compared to terrestrial
43 44 45	262	primates.
45 46 47	263	
48 49	264	2) Vertical clingers and leapers will, because of their reliance on quick movement
50 51 52	265	through the trees, have relatively greater forearm FL compared to quadrupedal and
53 54	266	suspensory primates. Alternatively, because of their more obtuse wrist position, vertical
55 56 57 58 59 60	267	clinging and leaping primates will have relatively shorter forearm FL compared to

268 quadrupedal and suspensory primates.

How these variables interact with higher taxonomic group (to examine the influence of
founder/drift effects) and across body size (to examine allometric effects) will also be
assessed.

- 274 MATERIALS AND METHODS

The specimens in this study include ten species of strepsirrhines, fifteen species of platyrrhines, and twenty species of catarrhines (Table 1). More than one individual of eleven species was dissected (Eulemur fulvus, Aotus azarae, Callithrix jacchus, Callithrix geoffroyi, Cebuella pygmaea, Saimiri sciureus, Sapajus apella, Chlorocebus aethiops, Miopithecus talapoin, Cercocebus atys, Gorilla gorilla gorilla); in these cases the masses of the individuals dissected were averaged, as well as all functional values. If the individual's weight was unavailable, the average for its sex was taken from Fleagle (1999)—if the sex was unknown, a species average was taken from the same reference. All were adult animals and (except the aye-aye, Daubentonia madagascariensis) were from captive facilities in the United States and Spain, with the majority of specimens being from Spanish zoos and dissected at the Universidad de Valladolid. The ave-ave was a wild born specimen that died at Parc Tsimbazaza, Antananarivo Madagascar. The same specimen was used for a previous study on the masticatory muscle structure

The Anatomical Record

289	(Perry et al., 2013). All specimens were fresh frozen with minimal degradation of the
290	muscle tissue.

All antebrachial muscles were dissected from one forearm of each specimen. Each muscle was isolated, removed from its insertion points on the bone, and measured for volume and muscle architecture variables. Data for each muscle was considered both individually and as a part of a broader functional group—i.e. categorized into the broad group of "flexors" (flexor carpi radialis, palmaris longus, flexor carpi ulnaris, flexor digitorum superficialis, flexor digitorum profundus, flexor pollicis longus), "extensors" (extensor carpi radialis longus, extensor carpi radialis brevis, extensor digitorum, extensor carpi ulnaris, abductor pollicis longus, extensor digiti minimi, extensor indicis, extensor pollicis longus, extensor pollicis brevis) and "others" – muscles that do not flex or extend the wrist (brachioradialis, pronator teres, pronator guadratus, supinator). Subgroupings of these (e.g., wrist and digital flexors and extensors) were also analyzed. Some of these specific muscles, particularly those involving fine motor control, were not distinctly identifiable in some specimens. In contrast, some species had notable elaborations and subdivisions of these muscles; for instance, the ave-ave (Daubentonia) had a distinct muscle that extended its third digit. It is not surprising that this unique "tap forager" has a unique muscle configuration. Since we analyzed muscles in broader groups (e.g., all digital extensors combined) and not in terms of individual identifiable muscles, these variations did not preclude analyses across the whole sample; all species-specific muscle variants were easily combined into their functional groupings.

Page 14 of 41

310	For those muscles crossing the radiocarpal joint, the tendons were uniformly cut
311	at the level of the flexor and extensor retinacula, rather than excised from their
312	insertion point within the hand. The external tendon was cut from the muscle at the
313	level in which no muscle fibers continued to inset upon it (Stern, 1971). The muscle
314	belly length, width, and thickness were then recorded with respect to their anatomical
315	placement within the forearm, each measured to the nearest 0.01mm using digital
316	calipers. The muscle bellies were then weighed to 0.0001g using a digital scale.
317	Muscle fiber length was measured using a protocol modified from Rayne and
318	Crawford (1972). Each muscle was immersed in 10% sulfuric acid (for all but the aye-
319	aye) and cooked in an oven at 60°C. Cooking time varied between 45 minutes and 6
320	hours depending on muscle size and the amount of connective tissue present. The aye-
321	aye (Daubentonia) was opportunistically dissected on site in Madagascar, where sulfuric
322	acid was not readily available; instead, its muscles were cooked over longer periods
323	(~1.5 times longer) in white vinegar (~acetic acid). This substitution was validated prior
324	to using it on this specimen, and found to yield equivalent results. The acid cooking
325	process dissolves the collagenous connective tissue and allows individual fascicles to be
326	carefully manipulated with forceps without breakage. The fascicle lengths are then
327	measured using digital calipers. An average of 40 representative fascicle bundles were
328	measured per muscle, ensuring that all regions of the muscle were represented. The
329	mean of these measurements was taken as the fascicle/fiber length (FL) for that muscle.
330	Muscle mass (MM) and FL are used to calculate PCSA for each muscle from the
331	following equation using a formula modified from Schumacher (1961):

1	
2	
3	
4	
5	
5	
6	
7	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
18	
10	
20	
20	
21	
22	
23	
24	
25	
26	
20	
21	
28	
29	
30	
31	
32	
33	
31	
24	
30	
36	
37	
38	
39	
40	
41	
12	
72 40	
43	
44	
45	
46	
47	
48	
49	
50	
50	
51	
52	
53	
54	
55	
56	
57	
51	
20	
59	
60	

332	q = m/lp
333	Here, q is PCSA, m is muscle mass, l is mean fiber length, and ρ is a constant: the
334	specific density of muscle. The ρ value used was 1.0564 g/cm ³ (Murphy and Beardsley,
335	1974). PCSA is in cm ² , muscle mass is in grams (g), and fiber length is in centimeters
336	(cm). Calculations were made after converting FL from millimeters to centimeters.
337	Muscle thickness, measured perpendicular to the direction of pull of the muscle
338	(bony origin to bony insertion) in the coronal plane, is used for calculating the pennation
339	angle ($ heta$) to then calculate RPCSA. The following formula is used for determining $ heta$
340	(Anapol and Barry, 1996), in which <i>a</i> is muscle thickness and <i>l</i> is mean fiber length:
341	$\sin\theta = a/I$
342	Reduced physiological cross-sectional area (RPCSA) provides information about
343	the portion of muscle cross section that applies force parallel to the muscle's overall line
344	of action. The equation for calculating RPCSA includes pennation angle (θ) and, as its
345	name implies, RPCSA is always smaller than PCSA unless all of the muscle fibers run
346	parallel to the long axis of the muscle – that is, the muscle has no pennation at all. We
347	again follow the method of Anapol and Berry (1996) in using the following equation:
348	$q_r = m(\cos\Theta)/lp$
349	Muscle data were separated into functional groups: all flexors, all extensors,
350	wrist and digital flexors, wrist and digital extensors, others (pronators, supinator, and
351	brachioradialis), and all muscles combined. MM, PCSA, and RPCSA were calculated as
352	the sum of those values for all muscles in a particular group for an individual specimen.

353 A weighted average FL for each muscle group was calculated by adding the products of

Page 16 of 41

354	each muscle's FL by its MM and then dividing that by the total MM for the group. Prior
355	to regression of logged variables, the cube root of the cubic variables (masses) and the
356	square root of squared variables (PCSA and RPCSA) was taken so that all predicted
357	regression slopes for logged data would be equal to 1.
358	Predominant locomotion, posture and substrate use were derived from the
359	literature (Table 1). We grouped the species included in this study into three broad
360	locomotor categories: "quadrupedal," which includes primates (both arboreal and
361	terrestrial) that move mainly using a quadrupedal gait; "vertical clinging/leaping," which
362	includes primates that exhibit leaping behavior as a substantial portion of their
363	locomotion; and "suspensory," which includes primates that rely mainly on their
364	forelimbs for locomotion in the trees. We grouped both strepsirrhines (like Hapalemur
365	griseus and Galago senegalensis) and leaping anthropoids (callitrichines) in the vertical
366	clinging and leaping (VCL) category following Kinzey et al. (1975) and Garber (1992).
367	Many primates, though primarily arboreal, spend some time on the ground
368	foraging and moving from one foraging site to the next, while others are mainly
369	terrestrial and climb up trees only to escape predators or to sleep (Fleagle, 1999).
370	However, the generally adopted subdivision between arboreal and terrestrial primates
371	does not fully take into account the complexity of substrate use patterns. The degree of
372	terrestriality of different primates can change considerably, even among species that
373	are closely related (Gebo, 1987; McGraw, 1998, 2000). We recognize that many species
374	of guenons, for example, spend different amounts of time on the ground (Gebo and
375	Sargis, 1994); however, for the purpose of this study we classified each species as either

The Anatomical Record

3 4	376	arboreal or terrestrial, with terrestrial species spending the majority of their feeding
5 6 7	377	time on the ground (Marchi et al., this issue). In the future, the inclusion of more species
8 9	378	in studies of this nature could allow for more specific categorizations concerning
10 11 12	379	substrate use.
13 14	380	In order to test the prediction that there are differences in forearm muscle
15 16 17	381	architecture across primates based on higher taxonomic group, locomotor/posture
18 19	382	pattern, and substrate use, scaling patterns were evaluated using Reduced Major Axis
20 21 22	383	(RMA) regressions of each functional variable (MM, FL, PCSA, RPCSA, organized into
23 24	384	their functional groups) on the independent variable of body mass. RMA regression was
25 26 27	385	applied across the entire primate sample, and within-group scaling patterns were
28 29	386	assessed via RMA of subsets of data parsed by taxonomic group, locomotor category,
30 31 32	387	and substrate use.
33 34 25	388	Residuals were calculated as the perpendicular distance from the RMA
35 36 37	389	regression line in log space. Multiple pairwise comparisons were applied to evaluate
38 39	390	statistical differences in these "size-adjusted" muscle masses among taxonomic,
40 41 42	391	locomotor/postural, and substrate-use groups. All analyses were done in JMP13 (SAS),
43 44 45	392	using a significance criterion of alpha < 0.05.
45 46 47	393	
48 49 50	394	RESULTS
50 51 52	395	
53 54 55	396	Allometry across the whole sample
56 57	397	All muscle masses correlate strongly with body mass ($r^2 \ge 0.96$). Across the
58 59 60		17

2	
3	
4	
5	
6	
7	
0	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
10	
10	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
20	
20	
21	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
11	
12	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
55	
50	
5/	
28	
59	
60	

1

entire sample, muscle mass scales with body mass via significant, albeit often weak,
positive allometry (confidence intervals for slope > 1.0) for the following muscle groups:
total flexors + extensors, flexors, total forearm muscles, other muscles, wrist flexors
(Table 2). Based on the allometry of the slopes, we can infer that larger primates have
relatively larger muscle mass overall than smaller primates. Interestingly, the extensor
muscle groups by themselves scale with body mass at a slope statistically

indistinguishable from isometry (95% CI overlaps 1.0).

405 PCSA scales with positive allometry (slopes range from 1.13 to 1.47, see Table 2) 406 with body mass for all muscle groups, with the exception of wrist extensors (WE), which 407 trend weakly towards positive allometry (slope = 1.13, 95%CI = 0.98 to 1.29). Judging from 408 this, it is clear that larger primates have relatively stronger forearm muscles overall, and 409 in particular, relatively stronger forearm flexors than smaller primates. A similar scaling 410 relationship occurs between RPCSA and body mass; however, in this case WE scales with 411 weak positive allometry (slope = 1.13, 95% CI = 1.00 to 1.27) on body mass. Thus, even 412 when "correcting" for pennation, larger primates' forearms are still relatively stronger 413 than those of smaller primates. FL scales isometrically with body mass across every 414 muscle group, indicating that larger primates would not be expected to have relatively 415 greater fiber lengths in their forearm muscles than smaller primates. Although there is a 416 scaling relationship with the strength variables (larger animals are relatively stronger) 417 there is not one with the speed/flexibility variable (FL).

418

419

The same trends hold true when looking at the scaling of specific divisions of the

Page 19 of 41

1

The Anatomical Record

2	
3	
4	
5	
6	
7	
1	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
18	
10	
20	
20	
21	
22	
23	
24	
25	
26	
27	
21	
28	
29	
30	
31	
32	
33	
34	
24	
30	
36	
37	
38	
39	
40	
41	
12	
42	
43	
44	
45	
46	
47	
48	
49	
50	
50 51	
51	
52	
53	
54	
55	
56	
57	
50	
DQ CO	
59	
60	

420	muscles across the primate sample. That is, PCSA and RPCSA scale with positive
421	allometry (slopes range from 1.13 to 1.31), while FL scales with isometry tending toward
422	weak, but insignificant (95% CI for slope encompasses 1.00) negative allometry for the
423	flexors and extensors when analyzed both as groups, and when separated into digital
424	and wrist subdivisions. While MM for the combined flexors and extensors was
425	significantly positively allometric, isometric scaling cannot be statistically excluded for
426	the extensor group or the digital or wrist extensor subgroup muscle masses. As with the
427	combined flexor and extensor statistics, larger primates have relatively larger PCSA and
428	RPCSA (signifying greater strength) across all separate forearm functional groups.
429	Likewise, they also have isometric FL trending toward negative allometry for each
430	functional group. However, while the combined flexor and extensor muscles tend to be
431	relatively larger (greater MM) in larger primates, this is driven only by relatively larger
432	flexor MM – the MM of the extensors, although trending toward positive allometry, are
433	statistically isometric.
434	
435	Analyses of the residuals of architectural variables by higher taxonomic and functional
436	group
437	
438	No significant differences were found among higher taxonomic groups
439	(strepsirrhines, platyrrhines and catarrhines) in size-adjusted variables (residuals from
440	RMA regression on log body mass). Thus, in our sample, none of these taxonomic
441	groups is any more or less strong, fast, or flexible in any of their forearm muscle groups.

Page 20 of 41

Contrary to our hypotheses, there were also no statistical differences in the forearm architectural variables between the locomotion/posture groups. That is, there are no statistical differences in the strength, flexibility or speed abilities of guadrupedal vs. suspensory vs. vertical clinging and leaping (VCL) taxa or the quadrupeds vs. the combined group of suspensory and VCL species. Also, surprisingly, the aye-aye fell within the range of similarly sized quadrupedal primates across all of the architectural variables despite its highly specialized manual abilities. Unlike the postural/locomotor comparisons, analyses show that arboreal and terrestrial species are significantly different in PCSA and RPCSA (Table 3): Although there are not significant differences in any of the MM variables between arboreal and terrestrial taxa (i.e., both have equally massive forearm muscles), there is some evidence that terrestrial species have relatively higher PCSA and RPCSA. Although only a few of these strength variables are significant or approach significance, it does appear that terrestrial primates are, in some ways, stronger than arboreal species. The more compelling trend is clearly in the FL data (Fig. 1): arboreal primates have relatively longer forearm muscle fibers than terrestrial primates in their combined flexors and extensors, and also in the sum of all forearm muscles. Most of the other subgroups of muscles either reach or approach significance as well, but the unambiguously significant difference in the most combined categories of muscles suggests that there really is an overarching difference in the FL between terrestrial and arboreal primates – the latter clearly have either more flexible or faster forearm abilities.

DISCUSSION

The Anatomical Record

This study sought to determine whether there are significant relationships between locomotor/postural or substrate groups and forearm muscle architectural variables in primates. We examined a large number of variables grouped by wrist and digital flexors and extensors, "other" muscles (a grouping of the antebrachial muscles that do not affect the wrist or digits) and various combinations thereof. We also sought to use these architectural variables to identify whether specific lineages or functional groups of primates appear to be adapted for strength or speed/flexibility. As we have found in our previous studies of the masticatory apparatus (Hartstone-Rose and Perry 2011; Hartstone-Rose et al. 2012; Perry and Hartstone-Rose 2010) and our similar analysis of leg muscles (Marchi et al., this issue), muscle fiber architecture clearly demonstrates the functional trade-off between strength and stretch with notable behavioral correlates. As we expected based on previous studies (and basic principles of allometry), our regressions indicate that larger primates have relatively larger and stronger forearm muscles than do smaller primates; when the forearm muscles were analyzed in their functional compartments, PCSA and RPCSA scaled with positive allometry (or with isometry trending toward positive allometry) with body mass in nearly every muscle category. Fiber length, however, scales with isometry with body mass (though this is not always the case with other animals; e.g. Herrel et al. (2002)). From this, we would expect that larger primates would have relatively larger and stronger forearm muscles;

485 they would not, however, have relatively faster or more flexible muscles. This suggests

486	that larger primates benefit more from stronger forearm muscles than they do from
487	faster-moving forearm muscles. With that said, in much of our previous work (e.g.
488	Hartstone-Rose et al. (2012a)), we have found positive allometry in muscle masses and
489	cross-sections, but isometry in fiber lengths – not necessarily because stretch/speed
490	simply scales directly with body size, but because FL tends to be where we see the
491	strongest functional signals. Thus, there is variation in FL between species because of
492	behavioral needs (e.g., frugivory vs. folivory adaptations in masticatory muscles), and
493	this variation reduces the coefficient of correlation sufficiently to reduce any positive or
494	negative allometry signal.
495	When considering the residuals data, there were no statistically significant
496	patterns independent of body mass supporting the existence of any taxonomic effects
497	within forearm muscle architecture.
498	Surprisingly, we also did not find architectural signals related to
499	locomotor/postural categorizations; forearm muscle fiber architecture does not reveal
500	statistical differences between quadrupedal primates and those that grip trees vertically
501	or leap propulsively. (Admittedly, that propulsion is achieved almost entirely by the
502	hind-limb musculature; see Marchi et al., this issue).
503	We did find a strong signal separating primates by substrate use: by some
504	metrics, terrestrial primates are significantly stronger than arboreal primates, and by
505	more substantial signals, arboreal primates have significantly greater FL than terrestrial
506	primates suggesting adaptations for speed and flexibility in the trees. These results
507	demonstrate how the functional tradeoff between strength vs. speed, a tradeoff that

The Anatomical Record

Page 23 of 41		The Anatomical Record	
1 2 3	500	a har a she ada a she a ta she a she a she a she ta da sa ti's ta sa sa la Char	
4 5	508	we have explored more extensively as we have related masticatory muscle fiber	
6 7	509	architecture to dietary specializations, applies to the forearm muscles. Although we	
8 9	510	could find no indication supporting our hypothesis that vertical clingers and leapers	
10 11 12	511	have relatively stronger muscles than those in other locomotor groups, it does seem	
13 14	512	clear that arboreality requires a different architecture than terrestriality.	
15 16 17	513	In the context of Jenkins' model (1973), it would be expected for groups such a) S
18 19	514	arboreal, suspensory, and terrestrial primates to have larger digital flexor volumes and	d
20 21 22	515	larger bony insertions because of their employment in locomotion. However, only our	•
23 24	516	results for terrestrial primates fit this model, which suggests that the use of bony orig	ins
25 26 27	517	on the distal humerus may not always be an accurate method to predict the force	
28 29	518	production capabilities of the forearm musculature in primates.	
30 31 32	519	As an extension of this project, our lab is currently examining the covariation of	of
33 34	520	muscle force production with the osteology of their origins – the epicondyles of the	
35 36 37	521	distal humerus. Future work will benefit from data on antebrachial muscle strength,	
38 39	522	allowing for reconstructions of the biomechanical loads resulting from muscle action	
40 41 42	523	around the joint, which may speak directly to the models proposed by Jenkins (1973).	
43 44	524	Although previous work has demonstrated that the length and retroflexion of the	
45 46 47	525	medial epicondyle may be a significant predictor of substrate use (arboreality v.	
48 49	526	terrestriality) in the fossil record, our findings imply a lack of support for hypotheses	
50 51 52	527	relating posture (i.e. quadrupedal/orthograde) and locomotion	
53 54	528	(quadrupedal/suspensory/vertical clinging and leaping) to the distal humerus, as we	
55 56 57	529	could not find the soft-tissue relationships that those hypotheses were based on.	
58 59			21
60		John Wiley & Sons, Inc.	Ζ:

530	However, we are now collecting data on the humeri of the same individuals from this
531	study to test these hypotheses that have related that morphology to specific behaviors
532	requiring differences in strength.
533	
534	ACKNOWLEDGEMENTS
535	
536	We would like the thank two anonymous reviewers who made truly excellent
537	recommendations that greatly improved the current manuscript, Magdalena Muchlinski
538	and her students Holden Hemingway and Heidi Vollrath for their assistance during data
539	collection in Spain, Amanda Heckler, Kristen MacNeill, Katelyn M. Reilly, Alicia Grant,
540	Andrea Mikes for their tireless measuring of fascicles, and Jonathan Perry for valuable
541	discussion about so much of the content of this paper. While we are holding back the
542	full data set until the acceptance of our follow-up paper combining these soft-tissue
543	results with osteometrics, we are happy to freely share these data (along with data from
544	our other papers in this issue on leg and masticatory architecture of the same
545	specimens) upon request (please contact AHR); as these papers focus on functional
546	correlates of a broad section of primates with little examination of phylogenetic effects,
547	we are particularly interested in sharing our data with anyone interested in leading an
548	exploration of the phylogenetic effects of our forearm (perhaps in combination with the
549	leg and masticatory?) data more deeply. This research was funded by the National
550	Science Foundation (BCS-14-40599 and IOS-15-57125).
551	
552	

1		
2		
4	553	REFERENCES
5		
6	554	Anapol F, Barry K. 1996. Fiber architecture of the extensors of the hindlimb in
7	555	semiterrestrial and arboreal guenons. Am J Phys Anthropol 99:429-447.
8 Q	556	Ankel-Simons F. 2007. An introduction to primate anatomy. San Diego: Academic Press.
10	557	Birchette MG. 1982. The postcranial skeleton of Paracolobus chermeroni. In: Harvard
11	558	University.
12	559	Brinckmann P, Frobin, W., Leivseth, G. 2002. Musculoskeletal Biomechanics. New York:
13	560	Thieme.
14	561	Feldesman MR. 1982. Morphometric analysis of the distal humerus of some Cenozoic
16	562	catarrhines - the late divergence hypothesis revisited. Am J Phys Anthropol
17	563	59:73-95.
18	564	Eleagle IG 1999 Primate Adaptation and Evolution Second ed New York: Academic
19	565	
20 21	566	Eleagle IG Meldrum DI 1988 Locomotor Behavior and Skeletal Mornhology of 2
22	567	Sympatric Dithocian Monkovs, Dithocia nithocia and Chiropotes satangs, Am I
23	569	Drimetal 16:227 240
24	560	Filliator 10.227-243.
25	509	Fleagle JG, Simons EL. 1982. The Humerus of Aegyptophinecus Zeuxis - a Primitive
20 27	570	Anthropold. Am J Phys Anthropol 59:175-193.
28	5/1	Frost SR, Deison E. 2002. Fossil Cercopitnecidae from the Hadar Formation and
29	572	surrounding areas of the Afar Depression, Ethiopia. J Hum Evol 43:687-748.
30	573	Gans C, Bock WJ. 1965. The functional significance of muscle architecturea theoretical
31	574	analysis. Ergebnisse der Anatomie und Entwicklungsgeschichte 38:115.
32 33	575	Garber PA. 1992. Vertical clinging, small body size, and the evolution of feeding
34	576	adaptations in the Callitrichinae. Am J Phys Anthropol 88:469-482.
35	577	Gebo DL. 1987. Functional anatomy of the tarsier foot. Am J Phys Anthropol 73:9-31.
36	578	Gebo DL, Sargis EJ. 1994. Terrestrial adaptations in the postcranial skeletons of guenons.
37	579	Am J Phys Anthropol 93:341-371.
30 39	580	Harrison T. 1989. New postcrannial remains of <i>Victoriapithecus</i> from the middle
40	581	Miocene of Kenya. J Hum Evol 18:3-54.
41	582	Hartstone-Rose A, Parkinson JA, Criste T, Perry JMG. 2015. Comparing apples and
42	583	oranges: the influence of food mechanical properties on ingestive bite sizes in
43	584	lemurs. Am J Phys Anthropol 157:513-518.
44	585	Hartstone-Rose A, Perry J, Morrow CJ. 2012a. Bite force estimation and the fiber
46	586	architecture of felid masticatory muscles. The Anatomical Record 295:1336-
47	587	1351
48	588	Hartstone-Rose A Perry IM 2011 Intraspecific variation in maximum ingested food size
49 50	589	and hody mass in Varecia rubra and Pronithecus convereli. Anatomy research
51	590	international 2011.1-8
52	590	Hartstone-Rose & Perry IM Morrow CL 2012h Rite force estimation and the fiber
53	507	architecture of felid macticatory muscles. The Anatomical Pocord 205:1226
54 55	592 502	1251
55 56	575	1331.
57		
58		
59		25
60		23

60

2		
3	594	Herrel A Adriaens D. Verraes W. Aerts P. 2002. Bite performance in clariid fishes with
4	505	hypertrophied iswadductors as deduced by hite modeling. I Morphol 253:196-
5	596	
7	590	200.
8	597	Hunt KD, Cant JGH, Gebo DL, Rose MD, Walker SE, Youlatos D. 1996. Standardized
9	598	descriptions of primate locomotor and postural modes. Primates 37:363-387.
10	599	Jenkins FA. 1973. The functional anatomy and evolution of the mammalian humero-
11	600	ulnar articulation. American Journal of Anatomy 137:281-297.
12	601	Kinzey W, Rosenberger A, Ramirez M. 1975. Vertical clinging and leaping in a neotropical
13	602	anthropoid. Nature.
15	603	Maughan R, Watson J, Weir J. 1983. Strength and cross-sectional area of human skeletal
16	604	muscle. The Journal of physiology 338:37-49.
17	605	McCrossin ML. Benefit BR. Gitau SN. Palmer AK. Blue KT. 1998. Fossil evidence for the
18	606	origins of terrestriality among Old World higher primates. In: Primate
19	607	Locomotion New York: Springer, p. 353-396
20 21	608	McGraw WS 1998 Comparative locomotion and babitat use of six monkeys in the Tai
22	600	Forest Ivery Coast Am I Phys Anthropol 105:402 510
23	610	Forest, ivory coast. And Phys Anthropol 105.495-510.
24	010	McGraw WS. 2000. Positional benavior of Cercopitnecus petaurista. International
25	611	Journal of Primatology 21:157-182.
26	612	Murphy R, Beardsley A. 1974. Mechanical properties of the cat soleus muscle in situ. Am
28	613	J Physiol 227:1008-1013.
29	614	Napier JR, Davis PR. 1959. The fore-limb skeleton and associated remains of Proconsul
30	615	africanus. London: British Museum of Natural History.
31	616	Payne RC, Crompton RH, Isler K, Savage R, Vereecke EE, Günther MM, Thorpe S, D'Août
32	617	K. 2006. Morphological analysis of the hindlimb in apes and humans. I. Muscle
33	618	architecture. J Anat 208:709-724.
35	619	Perry JM, Hartstone-Rose A. 2010. Maximum ingested food size in captive strepsirrhine
36	620	primates: scaling and the effects of diet. Am J Phys Anthropol 142:625-635.
37	621	Perry IMG. Hartstone-Rose A. Macneill KE. Heckler AI. 2013. Ave-ave jaw adductors:
38	622	Anatomy architecture and allometry Am I Phys Anthropol 150:220-220
39	623	Perry IMG Hartstone-Rose A Wall CE 2011 The jaw adductors of strensirrhines in
40 41	624	relation to body cize, dist, and Ingested Food Size. The Anatomical Record
42	625	204,712,729
43	025	294:712-728.
44	626	Prost JH. 1965a. A definitional system for the classification of primate locomotion. Am
45	627	Anthropol 67:1198-1214.
46	628	Prost JH. 1965b. The methodology of gait analysis and gaits of monkeys. Am J Phys
47 48	629	Anthropol 23:215-240.
49	630	Rayne J, Crawford GNC. 1972. The relationship between fibre length, muscle excursion
50	631	and jaw movement in the rat. Arch Oral Biol 17:859-872.
51	632	Schumacher GH. 1961. Funktionelle Morphologie der Kaumuskulatur. Jena: Fisher.
52	633	Stern JT. 1971. Functional myology of the hip and thigh of cebid monkeys and its
ეკ 54	634	implications for the evolution of erect posture. New York: S. Karger Basel.
55	635	Szalay FS. Dagosto M. 1980. Locomotor adaptations as reflected on the humerus of
56	636	Paleogene primates. Folia Primatologica 34:1-45
57	020	
58		
59		

1		
2		
3	637	Taylor AB, Vinyard CJ. 2008. The relationship between jaw muscle architecture and
4 5	638	feeding behavior in primates: tree-gouging and nongouging gummivororous
6	639	callitrichids as a natural experiment. In: Vinvard C. Ravosa MJ. Wall C. editors.
7	640	Primate Craniofacial Eurotion and Biology New York: Springer, p.241-262
8	641	Tuttle P 1072 Polative Mass of Charidial Muscles in Catarrhine Drimates. In: Tuttle P
9	(42)	Tuttle R. 1972. Relative Mass of Chendial Muscles in Catal Hille Phillates. In. Tuttle R,
10	642	editor. Functional and Evolutionary Biology of Primates. Chicago: Wenner-Gren.
11	643	p 262-291.
12	644	Tuttle RH. 1969. Quantitative and functional studies on the hands of the Anthropoidea.
14	645	I. The Hominoidea. J Morphol 128:309-363.
15	646	Ziemer LK. 1977. Study of elbow and radio-ulnar joints in woolly monkey Lagothrix. J
16	647	Anat 124:496-497.
17	648	
18	0.10	
19	640	
20	049	
21		
22	650	
24		
25		
26		
27		
28		
29		
30		
32		
33		
34		
35		
36		
37		
38		
39		
40 41		
42		
43		
44		
45		
46		
47		
48 40		
49 50		
51		
52		
53		
54		
55		
56		
5/ 59		
50 59		
60		27

Table 1. Species used in this study with their body mass, locomotor/postural category and substrate designations; species with

2 two individuals included in the sample are indicated by +.

Species	Common Name	Superfamily ¹	Body Size (g) ²	Locomotion Category ³ Subtype ⁴		
	Dresser				Dranch welling and muning. Logning, Monticel	
Eulemur fulvus+	lemur fulvus ⁺ Lemuroidea 2215 [*] Quadrupedalism climbing; Suspension		Arboreal			
Eulemur macaco	Black Lemur	Lemuroidea	1880	Quadrupedalism	Branch walking and running; Leaping, Vertical climbing; Suspension	Arboreal
Hapalemur griseus	Gray Bamboo Lemur	Lemuroidea	709*	Vertical Clinging/Leaping	Leaping; Branch walking and running; Vertical climbing; Suspension	Arboreal
Varecia rubra	Red Ruffed Lemur	Lemuroidea	33005	Quadrupedalism	Branch walking and running; Leaping; Vertical climbing; Feet suspension	Arboreal
Microcebus murinus	Gray Mouse Lemur	Lemuroidea	59	Quadrupedalism	Branch walking and running; Leaping	Arboreal
Daubentonia madagascariensis	Ауе-Ауе	Lemuroidea	2555.00	Tapper	Branch walking and running; Vertical climbing; Leaping	Arboreal
Galago senegalensis	Senegal	Lorisoidea	213*	Vertical	Leaping; Branch walking and running;	Arboreal

	Bushbaby			Clinging/Leaping		
Nycticebus coucang	Slow Loris	Lorisoidea	652.50*	Quadrupedalism	Quadrupedal walking; Vertical climbing	Arboreal
	Nancy Ma's					
Aotus nancymaae	Night	Ceboidea	787	Quadrupedalism	Quadrupedal walking; Leaping	Arboreal
	Monkey					
	Azara's					
Aotus azarae+	Night	Ceboidea	1230	Quadrupedalism	Quadrupedal walking; Leaping	Arboreal
	Monkey					
	Black-					
	Headed		8890.00	7		
Ateles fusciceps	Spider	Ceboidea		Suspensory	Brachiation; Leaping; Bipedal walking	Arboreal
	Monkey					
	Common	Cabaidaa	220 5	Vertical		Aubaural
Callitnrix Jaccnus ⁺	Marmoset	Ceboldea	320.5	Clinging/Leaping	Branch walking and running; Leaping	Arboreal
	White-					
Callithrix geoffroyi+	Headed	Ceboidea	359	Vertical	Branch walking and running; Leaping	Arboreal
	Marmoset			Clinging/Leaping		
Calassilla	Pygmy	Cabaidaa	110	Vertical	Branch walking and running; Leaping; Vertical	Archana
Cebuella pygmea+	Marmoset	Ceboidea	116	Clinging/Leaping	climbing	Arboreal

Page	30	of	41
------	----	----	----

	Golden-						
Leontopithecus	Headed	Cohoidoa	577 50*	Vertical	Branch walking and running: Leaning	Arboroal	
chrysomelas	Lion	Cebbluea	577.50	Clinging/Leaping	Branch waiking and running, Leaping	Arboreal	
	Tamarin						
Leontopithecus	Golden Lion	Cabaidaa	(00*	Vertical	Drough welling and munice. Looping	Arthoreal	
rosalia	Tamarin	Ceboldea	609*	Clinging/Leaping	Branch waiking and running; Leaping	Arboreal	
Saauinus bicolor	Pied	Ceboidea	429*	Ouadrupedalism	Branch walking and running: Leaping	Arboreal	
	Tamarin						
	White-			Vertical			
Saguinus labiatus	Lipped	Ceboidea	539	539	Clinging /Leaning	Branch walking and running; Leaping	Arboreal
	Tamarin			Ginging/ Leaping			
Saavinus oedinus	Cotton-Top	Ceboidea	404	Vertical	Branch walking and running: Leaning	Arboreal	
Sugarnas compas	Tamarin	coordea		Clinging/Leaping	Dration franking and Family, Douping	in boroar	
Saguinus imperator	Emperor	Ceboidea	475	Vertical	Branch walking and running. Leaning	Arboreal	
Suguinus imperator	Tamarin	Cebbluea	475	Clinging/Leaping	Branch warking and running, Leaping	Aibbieai	
	Golden-			Vertical			
Saguinus midas	Handed	Ceboidea	515	Clinging /Leaning	Branch walking and running; Leaping	Arboreal	
	Tamarin			onnging/ reaping			
Saimiri sciureus+	Squirrel	Ceboidea	723 50*	Quadrupedalism	Branch walking and running. Leaning	Arboreal	
Summer sciareus	Monkey	Geboluca	723.30	Quaurupeuansiii	Branch waiking and running, Leaping	Ai boi cal	

	•	•				
Sapajus apella+	Tufted Capuchin	Ceboidea	3085*	Suspensory ⁷	Quadrupedal walking and running; Leaping	Arboreal
Cercopithecus hamlyni	Hamlyn's Monkey	Cercopithecoidea	3360	Quadrupedalism	Quadrupedal walking and running; Leaping	Arboreal
Cercopithecus cephus	Moustached Guenon	Cercopithecoidea	4290	Quadrupedalism	Quadrupedal walking and running; Leaping	Arboreal
Cercopithecus neglectus	De Brazza's Monkey	Cercopithecoidea	10635	Quadrupedalism	Quadrupedal walking and running; Leaping	Arboreal
Cercopithecus petaurista	Lesser Spot-Nosed Monkey	Cercopithecoidea	2900	Quadrupedalism	Quadrupedal walking and running; Leaping	Arboreal
Cercopithecus cambelli	Campbell's Mona Monkey	Cercopithecoidea	1505	Quadrupedalism	Quadrupedal walking and running; Leaping	Arboreal
Cercopithecus mona	Mona Monkey	Cercopithecoidea	5100	Quadrupedalism	Quadrupedal walking and running; Leaping	Arboreal
Chlorocebus aethiops+	Grivet	Cercopithecoidea	3620*	Quadrupedalism	Quadrupedal walking and running; Leaping	Terrestrial
Erythrocebus patas	Patas Monkey	Cercopithecoidea	8185*	Quadrupedalism	Ground walking and running (hand digitigrady)	Terrestrial

Miopithecus talapoin+	Angolan Talapoin	Cercopithecoidea	1380	Quadrupedalism	Quadrupedal walking and running; Leaping	Arboreal
Cercocebus atys+	Sooty Sooty <i>itys</i> ⁺ Cercopithecoidea Mangabey 10350 Quadrupedalism Ground walking and running (hand digitigrady)		Ground walking and running (hand digitigrady)	Arboreal		
Cercocebus torquatus	Collared Mangabey	Cercopithecoidea	6230	Quadrupedalism	Ground walking and running (hand digitigrady)	Arboreal
Macaca sylvanus	Barbary Maque	Cercopithecoidea	16000	Quadrupedalism	Quadrupedal walking and running	Arboreal
Mandrillus sphinx	Mandrill	Cercopithecoidea	6900	Quadrupedalism	Ground walking and running (hand digitigrady); Vertical climbing	Terrestrial
Mandrillus leucophaeus	Drill	Cercopithecoidea	20000	Quadrupedalism	Ground walking and running (hand digitigrady); Vertical climbing	Terrestrial
Papio sp.	Baboon	Cercopithecoidea	782006	Quadrupedalism	Ground walking and running (hand digitigrady)	Terrestrial
Colobus guereza	Mantled Guereza	Cercopithecoidea	9200	Quadrupedalism	Quadrupedal walking and running; Bounding; Leaping	Arboreal
Hylobates lar	Lar Gibbon	Hominoidea	5340*	Suspensory ⁷	True Brachiation, Leaping, Bipedal walking	Arboreal
Gorilla gorilla gorilla+	Gorilla	Hominoidea	120950 *	Suspensory ⁷	Ground walking and running (knuckle-walking); Vertical climbing; Modified Brachiation	Terrestrial
Pan troglodytes	Chimpanze	Hominoidea	45466*	Suspensory ⁷	Ground walking and running (knuckle-walking);	Terrestrial

5 6

	e	Vertical climbing; Modified Brachiation
3	14nkel-Simons (2007)	
5	Aiker-Simons (2007).	
4	² Fleagle (1999) except as noted; average mass f	for sex if sex known; average for species if sex unknown (annotated by
5	³ Napier and Napier (1967) except as noted	
6	⁴ Hunt et al. (1996)	
7	⁵ Body size for <i>Varecia variegata</i>	
8	⁶ <i>Papio</i> sp. body mass calculated as average mas	s for genus based on Fleagle (1999)
9	⁷ Cant et al. (2003)	

John Wiley & Sons, Inc.

Posterior (a) and anterior (b) views of a representative primate forearm, with the muscles of interest labeled.

Table 2. Descriptive statistics for RMA regressions of architectural variables against body mass across the whole sample. As described in the methods, because the cube-root and square-root was taken of the volumetric and area variables respectively, all expected slopes = 1.

	Slope	Y-		Lower $\boldsymbol{\beta}$	Upper β					
Y-variable	ble (β)^b in		r	CL	CL					
	Log Muscle Mass (g) ^ 1/3									
Total Flexors and										
Extensors	1.08	-0.79	0.98	1.02	1.16					
Flexors	1.09	-0.85	0.98	1.02	1.17					
Extensors	1.05	-0.91	0.97	0.97	1.13					
Total Muscles	1.11	-0.78	0.98	1.04	1.18					
Other Muscles	1.20	-1.14	0.96	1.09	1.32					
Digital Flexors	1.07	-0.89	0.98	1.00	1.15					
Wrist Flexors	1.18	-1.13	0.97	1.08	1.28					
Digital Extensors	1.08	-1.08	0.96	0.98	1.19					
Wrist Extensors	1.01	-0.96	0.96	0.92	1.12					
	Log	g FL (mm)								
Total Flexors and										
Extensors	0.93	0.22	0.96	0.84	1.02					
Flexors	0.93	0.22	0.94	0.83	1.05					
Extensors	0.98	0.16	0.90	0.83	1.15					
Total Muscles	1.00	0.17	0.94	0.88	1.13					

The Anatomical Record

Other Muscles	1.30	-0.12	0.77	0.98	1.71
Digital Flexors	0.96	0.22	0.93	0.84	1.09
Wrist Flexors	0.86	0.21	0.88	0.72	1.03
Digital Extensors	0.90	0.19	0.90	0.77	1.06
Wrist Extensors	1.01	0.17	0.92	0.88	1.17
	Log PCS	SA ^1/2			
Total Flexors and					
Extensors	1.20	-0.83	0.97	1.10	1.31
Flexors	1.26	-0.99	0.95	1.14	1.40
Extensors	1.17	-1.04	0.95	1.05	1.30
Total Muscles	1.24	-0.82	0.97	1.14	1.35
Other Muscles	1.33	-1.27	0.94	1.17	1.50
Digital Flexors	1.18	-1.01	0.95	1.06	1.32
Wrist Flexors	1.47	-1.46	0.94	1.29	1.66
Digital Extensors	1.33	-1.40	0.92	1.15	1.54
Wrist Extensors	1.13	-1.16	0.92	0.98	1.29
	Log RPC	CSA ^1/2			
Total Flexors and					
Extensors	1.24	-0.89	0.97	1.14	1.35
Flexors	1.30	-1.05	0.97	1.19	1.43
Extensors	1.15	-1.03	0.96	1.04	1.27
Total Muscles	1.25	-0.87	0.97	1.15	1.36
Other Muscles	1.31	-1.38	0.94	1.15	1.50
Digital Flexors	1.28	-1.16	0.93	1.12	1.47
Wrist Flexors	1.46	-1.43	0.96	1.31	1.62

Digital Extensors	1.20	-1.27	0.93	1.05	1.39
Wrist Extensors	1.13	-1.14	0.95	1.00	1.27

The Anatomical Record

Figure 2. shows the Flexor FL plotted against Log BM for arboreal and terrestrial primates. The black line indicates the orthogonal fit across the whole sample; the blue line indicates fit for arboreal species and the red line indicates fit for terrestrial species. Strepsirrhines are denoted as green shapes, Platyrrhines as blue shapes, and Catarrhines as red shapes. Open shapes indicate terrestrial species; filled shapes indicate arboreal species. Quadrupedal primates are denoted by squares, VCL primates are denoted by triangles, and suspensory primates are denoted by circles. *Daubentonia madagascarensis* alone is indicated by an asterisk, as it is classified as a tapper.

Table 3. Descriptive statistics for one-way analyses of residuals of architectural variables grouped by substrate use. P-values annotated by "*" are significant at an alpha of 0.05, "**" alpha >0.01 and those annotated " \sim " approach significance.

Substrate Use							
		Means					
	Arboreal	Terrestrial					
0	Log Muscle M	ass(g)^1/3					
Total Flexors and Extensors	0.00	0.01	0.40				
Flexors	0.00	0.01	0.40				
Extensors	0.00	0.00	0.84				
Total Muscles	0.00	0.01	0.48				
Other Muscles	0.00	-0.01	0.63				
Digital Flexors	0.00	0.01	0.40				
Wrist Flexors	0.00	0.01	0.51				
Digital Extensors	0.00	0.00	0.96				
Wrist Extensors	0.00	0.00	0.98				
	l	Log FL(mm)					
Total Flexors and Extensors	0.00	-0.03	0.01*				
Flexors	0.00	-0.02	0.11				
Extensors	0.00	-0.02	0.25				
Total Muscles	0.01	-0.04	0.01*				
Other Muscles	0.02	-0.10	0.009**				
Digital Flexors	0.01	-0.04	0.04*				

Substrate II

The Anatomical Record

Wrist Flexors	0.00	-0.03	0.14	
Digital Extensors	0.01	-0.03	0.12	
Wrist Extensors	0.01	-0.03	0.13	
		Log PCSA^1/2		
Total Flexors and Extensors	0.00	0.02	0.10~	
Flexors	0.00	0.02	0.34	
Extensors	0.00	0.00	0.85	
Total Muscles	0.00	0.02	0.09~	
Other Muscles	0.00	0.00	0.88	
Digital Flexors	0.00	0.02	0.20	
Wrist Flexors	0.00	0.01	0.75	
Digital Extensors	0.00	-0.01	0.72	
Wrist Extensors	0.00	0.00	0.98	
		Log RPCSA^1/2		
Total Flexors and Extensors	0.00	0.03	0.03*	
Flexors	0.00	0.04	0.05*	
Extensors	0.00	0.02	0.20	
Total Muscles	0.00	0.03	0.09	
Other Muscles	0.00	0.02	0.48	
Digital Flexors	0.00	0.03	0.26	
Wrist Flexors	0.00	0.01	0.59	
Digital Extensors	0.00	-0.02	0.43	
Wrist Extensors	0.00	0.04	0.08~	