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Abstract—A dataset is crucial not only for model learning and
evaluation but also to advance knowledge on human behavior,
thus fostering mutual inspiration between neuroscience and
robotics. However, choosing the right dataset to use or creating
a new dataset is not an easy task, due to the variety of data
that can be found in the related literature. The first step to
tackle this issue is to achieve a good knowledge of those that
are available. In this work, we take a significant step forward by
reviewing datasets that were published in the last 10 years and
that are directly related to object manipulation and grasping.
We report on modalities, activities, and annotations for each
individual dataset and we discuss our view on its use for object
manipulation. We also compare the datasets and summarize
them. Finally, we conclude the survey by providing suggestions
and discussing the best practices for the creation of new datasets.

I. INTRODUCTION

Big and organized datasets are valuable in various scientific
fields, primarily because they are crucial for revealing hidden
patterns, testing hypotheses, and evaluating algorithms. The
demand for datasets follows the advancement of a multi-
disciplinary field or the evolution of particular problems, and
new datasets never stopped being created. In robotics grasping
and manipulation, many datasets were recently created by a
number of groups for different research purposes and very
often shared in the robotics community. It is possible to find
human motion datasets [1], instrumental activities of daily
living (IADL) datasets [2] for, object and model datasets [3],
object geometry and motion datasets [4], haptic interaction
datasets [5], among others. The datasets are not only crucial for
evaluating and comparing the performances of novel methods
[5], but they are also extremely valuable for motion / path
planning (see e.g. [6] for a review), robotic learning and
training [7] and investigation of human behavior. The goal
is to achieve a mutual inspiration between neuroscience and
robotics, thus leading to the definition of effective design and
control guidelines for artificial systems [8].

The role of datasets should be not only to inform the control
and development of robotic devices, but also to verify or deny
the correctness and effectiveness of an algorithm or system
design, and expose the flaws or exemplify the strength of the
algorithm or the design itself. However, in order to properly
choose a good dataset, one first needs to know what datasets
are already available, what they include, and how they differ.
Then one can decide on whether any dataset would be useful
and which one would best serve the research purpose. One
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may also decide that none of the datasets suits the purpose,
and the reason on which that particular decision is made can be
used to improve on the existing datasets and prepare new ones.
To help one with choosing the right dataset(s) or deciding on
creating new datasets, we contribute a review of datasets that
we consider useful for research on object manipulation and
grasping. The datasets were created no earlier than 2009 since
earlier datasets are usually not supported or accessible.

Object manipulation is the process of changing in a con-
trolled fashion the position and orientation of an object in
order to execute a specific task. In contrast to a gross mo-
tion such as waving and stretching, an object manipulation
motion is a fine motion, and the body parts involved cover a
much smaller physical space. In this survey, we mainly focus
on datasets that contain object manipulation motions. Gross
motions may be present in certain reviewed datasets, but they
do not play a dominant role. Under this regard, it is worth
to mention another type of datasets, which are specifically
designed for whole-body motions or limb motions, and hence
are not considered in this review. They are particularly im-
portant to humanoid, behavioral science, rehabilitation, neuro-
science, and human computer interaction. One example is the
KIT Whole-Body Human Motion Database [1] https://
motion-database.humanoids.kit.edu/. It focuses
on human and object motions, which are annotated through
motion description tags. It contains not only motion captured
data in a raw format (e.g. marker motions of the capture
system), but also information on the subject anthropometric
measurements, the objects used and the environment along
with a data interface to transfer motion to different kinematic
and dynamic models of humans and robots. Other large-scale
motion databases available to the scientific community are
reviewed in [1].

Furthermore, given the importance of grasping as one of
the key topics in robotics research and the motivation for the
development of effective robotic manipulators [9], we also
discuss datasets on human grasping. Indeed, grasping not only
facilitates manipulation, but also determines the arm motions
in many object manipulations as indicated in [10], [11], and
hence can be considered as pre-manipulation. As previously
mentioned, human grasp datasets can offer useful insights not
only to better understand the human behavior but also to shape
the design and control of artificial systems [12]. Under this
regard, it is worth to mention the concept of hand postural
synergies [13], i.e. broadly, goal directed kinematic patterns
of covariation observed between the human hand joints. The
underlying concept for a general geometrical interpretation
of synergies is the dimensionality reduction, i.e. the number
of degrees of freedom (DOFs) of the human hand that can
be controlled in an independent manner is actually smaller
than the physical one [14]. This idea has been successfully
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applied in robotics: i) to relax the control effort using less
control variables [15] and ii) to reduce the dimensionality of
the problem in robotic grasp planning with dexterous hands
[16], facilitating an on-line grasp synthesis [17]. At the same
time, such dimensionality reduction has inspired the design of
under-actuated robotic hands [18], [19].

In this paper, we divide the datasets into three categories
and present them separately: those that include mostly cooking
activities, in Section II, those that include more general activ-
ities of daily living (ADL), in Section III, and the datasets on
kinematics of human grasping of real, or imaginary objects, in
Section IV. Following a common classification of human hand
pose reconstruction systems [20], we decided to organize the
review of grasping and manipulation datasets considering pure
vision-based acquisitions and wearable-based acquisitions as
independent entries, as discussed in Section IV. It is worth
noticing that marker-based recordings of grasping and ma-
nipulation activities are also described in Section IV, since
a certain level of wearability is still required due to the usage
of optical markers placed on the dorsum of human hand. All
datasets are summarized in Table I that classifies the datasets
according to the year that they were published. Moreover, the
use of similar colors denotes a series of similar datasets like
in ([21], [21]+), ([22], [23], [24]), and ([25], [26]). In Table
II, we list the number of instances provided in each dataset.
When a dataset contains sequences, we report the number of
sequences; otherwise, we report the number of data samples.

TABLE I
PUBLICATION YEAR OF DATASETS (INCLUDING DATASETS OF

HANDCORPUS)

Year (20–) 09 10 11 12 13 14 15 16
Datasets [27] [28] [25] [21] [29] [30] [24] [31]

[32] [33] [13] [21]+ [34] [35] [36] [37]
[38] [39] [22] [40] [41] [42] [43]
[44] [45] [23] [26] [46] [47] [48]

[49] [42] [42] [50] [51]
[13] [52]

TABLE II
NUMBER OF INSTANCES PROVIDED BY EACH DATASET

Cooking ADL HandCorpus
Data Size Type Data Size Type Data Size Type
[27] 20 ms [38] 20 ms [13] 286 rg, g
[32] 218 ms [44] 150 v [31] 8739 rg
[45] 28 v [28] 24 ms [33] 19 rg, g
[21] 17 ms [25] 60 ms [36] 825 rg, g
[21]+ 30 ms [26] 120 ms [13] 285 g
[22] 44 v [49] 20 v [39] 114 g
[23] 256 v [41] 979 ms [42] 3694 rg
[24] 273 v [46] 18,210 g [42] 1 k
[29] 50 ms [43] ∼59,000 ms [42] 300 g
[34] 35 ms [37] ∼650,000 g
[40] 88 v [48] >1,000 ms
[30] 67 ms [47] ∼12,000 g
[35] 77 hr ms [50] 13 ms

[51] 193 ms
[52] 4 ms

Meaning of abbreviations in column “Type”: “ms”–multimodal sequence,
“v”–RGB video, “g”–grasp, “rg”–reach and grasp, “k”–kinematic model.
The type “ms” or “multimodal sequence” refers to sequences that contain
multiple modalities.

In the first two categories, we present the datasets in
ascending chronological order. For each dataset, we report
on the modalities, the activities performed, and annotations,
and we give our view on how each dataset relates to object
manipulation. After reporting on the datasets one-by-one,
we summarize them on the availability of modalities, object
identifiability in annotated activities, and the forms of temporal
segmentation of annotated activities. We also provide the
lists of shared annotated activities for the ADL and cooking
datasets, respectively.

The datasets reviewed in category three are hosted in the
HandCorpus initiative website [53], an open access repository
for sharing data about human and robot hands, with the
objective of advancing the state of the art of the analysis of
both the biological and the artificial side. The HandCorpus
goal, under an engineering point of view, is to devise design
guidelines from biology observations for the development of
effective robotic devices (see e.g. [19]) and grasp planning
algorithms [54]. Among all the datasets in HandCorpus, we
select and review nine datasets that have collections of human
hand kinematics recorded in grasping and manipulation tasks.

For those who want to further examine the datasets covered
in this work, we provide the links to all datasets in Table III.

II. DATASETS OF COOKING ACTIVITY

In this section, we present thirteen datasets of cooking
activities. The interest in studying cooking activities is mo-
tivated by the large number of interactions with the objects
and the external environment that human hands and body
usually undergo. The datasets include common visual-based
acquisition modalities such as RGB vision and depth vi-
sion, as well as modalities that are less common such as
skin temperature and body heat. RGB vision is used by all
datasets. We first present each dataset individually, describing
the different characteristics; data type and size, modalities,
equipment, annotations etc. Then, we compare the datasets
on their different descriptive fields and discuss their suitability
and applicability for Learning from Demonstration (LfD) [55],
also known as Programming by Demonstration, or Imitation
Learning.

A. Slice&Dice

Slice&Dice [27] features four instrumented utensils which
include three knives of different sizes and a spoon. Each
utensil embeds in its handle a 3-axis accelerometer. Twenty
subjects participated and each subject prepared a salad or
a sandwich freely using the ingredients provided by the
experimenter. The acceleration data are accompanied by RGB
videos. We consider embedding accelerometers inside objects
a merit as, unlike vision based sensors, they provide acceler-
ation data that belong to a certain object alone, and is readily
usable without running object recognition first.

B. CMU-MMAC

The CMU-MMAC dataset [32] contains multi-modal cook-
ing activities of five recipies: brownie, eggs, pizza, salad, and



TABLE III
LINKS TO DATASETS

[27] http://openlab.ncl.ac.uk/publicweb/publicweb/AmbientKitchen/
KitchenData/Slice&Dice dataset/

[32] http://kitchen.cs.cmu.edu/
[45] images: http://ai.stanford.edu/∼alireza/GTEA/ and the

rest: https://www.dropbox.com/sh/q4s6nocyhpnauic/
AAAvCTfVPCo1u0vTCOsHGwA a?dl=0

[21](+) http://ai.stanford.edu/∼alireza/GTEA Gaze Website/
[22] https://www.mpi-inf.mpg.de/departments/

computer-vision-and-multimodal-computing/research/
human-activity-recognition/mpii-cooking-activities-dataset/

[23] https://www.mpi-inf.mpg.de/departments/
computer-vision-and-multimodal-computing/research/
human-activity-recognition/mpii-cooking-composite-activities/

[24] https://www.mpi-inf.mpg.de/departments/
computer-vision-and-multimodal-computing/research/
human-activity-recognition/mpii-cooking-2-dataset/

[29] http://cvip.computing.dundee.ac.uk/datasets/foodpreparation/
50salads/

[34] http://www.murase.m.is.nagoya-u.ac.jp/KSCGR/
[40] http://web.eecs.umich.edu/∼jjcorso/r/youcook/
[30] http://robocoffee.org/datasets/
[35] http://serre-lab.clps.brown.edu/resource/breakfast-actions-dataset/
[38] https://ias.in.tum.de/software/kitchen-activity-data
[44] http://www.cs.rochester.edu/∼rmessing/uradl/
[28] UCI repository: https://archive.ics.uci.edu/ml/datasets/

OPPORTUNITY+Activity+Recognition#, Challenge:
http://www.opportunity-project.eu/challengeDataset

[25][26] http://pr.cs.cornell.edu/humanactivities/data.php
[49] http://www.csee.umbc.edu/∼hpirsiav/papers/ADLdataset/
[41] https://archive.ics.uci.edu/ml/datasets/Dataset+for+ADL+

Recognition+with+Wrist-worn+Accelerometer#
[46] http://www.eng.yale.edu/grablab/humangrasping/
[52] http://wildhog.ics.uci.edu:9090/#EGOCENTRIC0%20Intel/

Creative
[13] http://www.handcorpus.org/?p=97
[31] http://www.handcorpus.org/?p=1596
[33] http://www.handcorpus.org/?p=100
[36] http://www.handcorpus.org/?p=1507
[13] http://www.handcorpus.org/?p=91
[39] http://www.handcorpus.org/?p=103
[42] http://www.handcorpus.org/?p=1156
[42] http://www.handcorpus.org/?p=1298
[42] http://www.handcorpus.org/?p=1578
[43] https://sites.google.com/site/brainrobotdata/home/push-dataset
[37] https://sites.google.com/site/brainrobotdata/home/grasping-dataset
[48] http://rpal.cse.usf.edu/imd/
[51] https://github.com/jrl-umi3218/ManipulationKinodynamics
[47] http://www.gregrogez.net/research/egovision4health/gun-71/
[50] http://www.hci.iis.u-tokyo.ac.jp/∼cai-mj/utgrasp dataset.html

[21](+) refers to both Gaze and Gaze+

sandwich. The modalities include RGB videos from static
and wearable cameras, multi-channel audios, motion capture,
inertial measurement units (IMU), RFID, etc. We are not
positive on the number of subjects that were involved, but we
infer that it is between thirty-nine and forty-five. Each subject
prepared all the recipes. The dataset also specifically recorded
anomalous accidental events that occurred while cooking. Cer-
tain modalities are incomplete for certain recipes performed by
certain subjects. Annotations exist for sixteen subjects while
preparing brownies and correspond to the videos captured
by the wearable camera. The annotations apply the structure
of “verb+objectOne+preposition+objectTwo”, whose compo-
nents are assembled using grammar.

Except RFID tagging which merely reports the involvement
of certain objects, all modalities are on human, which is
contrary to the Slice&Dice dataset [27]. The dataset is rich

in data of upper arm motions because of the combined use
of motion capture and IMUs, and therefore is suitable for 3D
manipulation motion analysis.

C. GTEA

The GTEA dataset [45] includes egocentric videos of four
subjects performing seven food/beverage preparing activities.
The videos amount to 31,222 RGB images. Annotations
consist of simple verbs (such as put, take, pour, etc.) and names
of objects (cup, sugar, etc.). Object recognition or manually
drawn bounding boxes on objects is required prior to analysis
of the object motion.

D. Gaze and Gaze+

The Gaze dataset [21] contains RGB egocentric videos of
fourteen subjects preparing meals using provided ingredients
on a table. The videos were captured using an eye-tracking
camera and therefore are accompanied by gaze data. The
Gaze+ dataset [21] (later referred to as [21]+) is an upgrade to
Gaze, and provides the two modalities in Gaze plus audio. The
videos have higher resolution than Gaze, and were captured
in an instrumented kitchen instead of on a simple table. Ten
subjects were involved and each one of them prepared a set of
seven dishes. Actions and objects were annotated in the same
way as in Gaze. Compared to static images, egocentric images
have much larger proportions of the image showing object
manipulation specifically and contain more detail, which we
consider a merit. Analyzing object motion, however, would
assume that object tracking has been done.

E. MPII Cooking, Cooking Composite, and Cooking 2

MPII sequentially created three datasets related to cooking:
the MPII Cooking dataset [22] which focuses on fine grained
activity, the MPII Cooking Compositite dataset [23] which
focuses on composite activities composed of basic-level activ-
ities, and the MPII Cooking 2 dataset [24] which unifies and
is an upgrade of both [22] and [23].

The MPII Cooking dataset involved twelve subjects each
preparing one to six out of fourteen dishes, and contains forty-
four RGB high-definition (HD) videos with a total length of
over eight hours or 881,755 frames. The annotations include
sixty-five activities, and 5,609 instances were identified.

The MPII Cooking Composite dataset included all the
videos from the MPII Cooking dataset and added 212 newly-
recorded videos. Eighteen more subjects than in the MPII
Cooking dataset participated. Different from the MPII Cooking
dataset, the MPII Cooking Composite dataset annotations in-
clude four categories: activities (e.g. verbs), ingredients, tools,
and containers, which combined are referred to as “attributes”.
There exist 218 attributes in the dataset, among which seventy-
eight are activities. A total of 49,258 attribute instances have
been identified which belong to 12,642 annotated temporal
segments.

As a refined superset of [22] and [23], the MPII Cooking
2 dataset contains 273 videos involving thirty subjects. The
dataset contains fifty-nine dishes, which consist of fourteen
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diverse and complex dishes from [22], and forty-five shorter
and simpler composite dishes from [23]. A total of 222 at-
tributes exist, among which eighty-seven are activities. 54,774
attribute instances have been identified which belong to 14,105
temporal segments. For the above MPII datasets, the subjects
were only told which dish to prepare, which lead to natural
activities with much variability.

Of all the datasets we include in this work, the MPII
datasets altogether have the largest number of HD videos and
annotation instances. Objects and fine actions are annotated in
great detail, and 2D poses of upper body are also provided.
For vision-based 2D object manipulation analysis, the amount
of data and action variability of the MPII datasets can only be
rivaled by the Brown breakfast dataset [35], if not unmatched.

F. 50 Salad

The 50 Salad dataset [29] extends Slice&Dice [27] by using
accelerometers on more utensils and by including depth videos
in addition to RGB ones. Twenty-five subjects participated and
each prepared a mixed salad twice, and in each run followed a
specific sequence of tasks. The sequences were produced by a
statistical activity diagram, which would theoretically enable
the same number of samples for each task sequence.

The annotation includes three high-level activities: prepare
dressing, cut and mix ingredients, and serve salad. Each high-
level activity summarizes several low-level activities, and each
low-level activity has -pre, -core, and -post phases, which
were annotated respectively. 50 Salad inherits the merit of
Slice&Dice [27], involves more subjects, enables 3D analysis
with depth videos, and has finer annotations. In that regard,
we recommend 50 Salad over Slice&Dice.

G. Actions for Cooking Eggs (ACE)

The ACE dataset [34] contains RGB-D videos of cooking
activities for five egg menus, all of which were cooked by each
of seven subjects. The labels contain only verbs: break, mix,
bake, turn, cut, boil, season, and peel. We include this dataset
because it provides fine object manipulation motion, but since
objects are not identified in any way, using the dataset would
rely on human and object tracking more heavily than other
datasets.

H. YouCook

The YouCook dataset [40] consists of eighty-eight RGB
cooking videos downloaded from Youtube. All the videos have
a third person point of view. Although only seven actions
labels are used, as many as forty-eight object labels spanning
seven object categories exist, and object tracks are provided.
We consider the richness of object labels and the availability
of the objects tracks as the merits of the dataset, of which the
latter facilitates analysis of fine motion in 2D.

I. Actions for Making Cereal

In [30] the data of eight subjects are included while
preparing cereal. The dataset includes multiple modalities,

Fig. 1. Count of datasets for each modality. Blue denotes the modalities of
CMU-MMAC [32], Red denotes the modalities of the other datasets.

including RGB-D videos, audios, estimated six degree-of-
freedom (DOF) object pose trajectories, and object mesh
models. We consider the object pose trajectories as the merit
of the dataset. No other datasets that we include provide such
modality, and using the trajectories alone suffices to conduct
analysis on 3D object manipulation.

J. Brown Breakfast

The Brown breakfast dataset [35] contains roughly seventy-
seven hours of RGB videos involving fifty-two subjects cap-
tured at up to eighteen distinct kitchens. In total ten recipes
were performed and each subject was reported to have per-
formed all ten recipes, but available data for different subjects
vary. Forty-eight coarse activity annotations exist and 11,267
annotation instances were identified. The statistics of the
dataset makes it a possible rival of the MPII datasets. It has the
largest number of video frames (non HD) among the datasets
we include, more than the MPII datasets by 50%. The number
of coarse annotation instances is not much lower than the
MPII datasets, but the detail and richness of the annotation
could not compete with MPII. The dataset does include fine
activity annotations, but the statistics and the description of the
formation of such annotations are not yet available. Compared
with MPII, the dataset lacks 2D upper body pose annotations.

K. Summary

Table IV lays out the different modalities included in all
the datasets in this category, and Fig. 1 shows in descending
order the count of datasets for each modality.

One can easily notice in Table IV that [32] includes the
highest number of acquisition modalities, most of which
cannot be found in the other datasets. This is because the
goal of [32] is to make the dataset multi-modal.

In Table IV, we can notice that RGB vision is used in all
thirteen datasets and is the sole acquisition modality of five



TABLE IV
MODALITIES COOKING

Modalities [27] [32] [45] [21] [21]+[22] [23] [24] [29] [34] [40] [30] [35]
RGB video (image sequences) � � � � � � � � � � � � �
depth image sequence � � �
audio � � �
RFID �
motion capture �

3D acceleration on human �
3D rotational velocity on human �
2D acceleration on human �
body heat �
3D magnetic field on human �
skin temperature �
skin conductance �
gaze � �

3D acceleration on object � �
6D object pose track �
object models �

air temperature �
light �

moving camera � � � � �

# subjects 20 >39 4 14 10 12 30 30 25 7 n/a 8 52

datasets. The equipment required for recording RGB images is
generally minimal and is easy to set up. Apart from evaluating
certain vision-based algorithms, the recorded RGB video can
also be used to verify that the data collection scene is properly
set up, to spot any mistakes during the data collection process,
and to segment the collected data. RGB images are matrices
and carry much more information than other scalar modalities
(such as acceleration) captured at a comparable frequency. The
pose of the object or the human estimated from RGB images
has a lower accuracy than if it is directly measured by a motion
capture system, but it usually suffices for action recognition.

Only three datasets include depth images, only two datasets
provide information on 3D acceleration on object, and only
one dataset provides sequences of estimated object poses.
Despite the high accuracy it provides, a motion capture system
is used only in [32], possibly because of its cost, the lack of
portability and the effort required for the system setup. It is
worth to mention that one of the most envisioned applications
of these datasets in robotics is for learning from demonstration
(LfD). What is commonly done is to use movement sequences
of objects as input for training, while testing is performed
through physical manipulation of real objects by the robot,
(e.g., see [55]). The particular class of applications motivated
us to consider and evaluate which characteristics are important
to create a dataset that is designed for LfD. Ideally, we would
like to have readily available sequences of 3D object poses,
which include positions and orientations as in [30]. Object
3D acceleration data can be also converted to 3D position
as in [27], [29], and RGB-D images can be used to estimate
3D object pose as in [34]. Another important aspect to take
into account in data collection for LfD is the environment,
either real or lab-based. For example, among the datasets
described in this paper, [40], [21]+, and [35] were collected
in real kitchens, and the other datasets were collected either

on a table-top or in a lab kitchen. An important difference
between a real and a lab kitchen lies in the amount of clutter
in the background: real kitchens generally have more clutter,
which increases the difficulty of object recognition, which
may lower the accuracy of object recognition. Since object
pose estimations are fed into LfD as input, a possibly lower
accuracy of object recognition is undesirable.

Activity annotations can be useful for various purposes.
For example, if the annotations are short sentences describing
a video, natural language processing can be combined with
vision to provide higher accuracy on action/object recognition,
or generate more annotations [56]. Annotations in the form of
words can be used to represent motion activity classes. Paulius
et al. [57] labeled 65 cooking videos including 798 labeled
motion instances and 1229 labeled objects. The knowledge
in the cooking videos are represented by a network of mo-
tions and objects, which is called functional object-oriented
network (FOON). The FOON is continuously updated and
maintained at http://www.foonets.com. We identified
the annotated activities that are shared by multiple cooking
datasets, and list those datasets in Table VIII. We combine
similar annotations and specify each in the cells.

III. DATASETS OF ACTIVITIES OF DAILY LIVING (ADL)

In this section, we present ten datasets of activities of daily
living (ADL), three datasets of grasps acquired using camera,
and two datasets of robot motion. The interest of studying
ADLs is motivated by the extensive variety of the objects
that human hands interacted with daily, and the variety of the
environments where these interactions take place. Compared
with Section II, this section introduces additional modalities
such as 3D kinematics of objects, force and torque on objects
and on joints of robotic arms, sequences of estimated human



skeleton etc. Apart from action recognition, the application
fields of the datasets include hand pose recognition for Human
Machine Interaction, grasp analysis, and deep learning, among
others. Following the format in Section II, we first review each
dataset individually, and then we discuss the use of motion
capture and we provide more details on dataset suitability for
LfD.

A. TUM Kitchen

The TUM Kitchen dataset [38] contains multi-modal data
of set-a-table activities. The modalities include RGB and
raw Bayer pattern videos, motion capture, RFID, and reed
sensor. Four subjects each transported certain objects from
the cupboard, the counter, and the drawer, to a table, and
then laid them out in a specified way. The subjects transported
the objects one by one as a robot would do, and also several
objects at a time as naturally done by a human. The dataset
also includes repetitive activities of picking up and putting
down objects. The annotations cover the entire duration of
the set-a-table activity which starts with Reaching through
ReleaseGraspOfSomething. The actions of the left hand, the
right hand, and the trunk were annotated respectively.

Similarly to CMU-MMAC [32], the dataset identifies the
objects involved during motion execution, and the availability
of motion capture makes it a good candidate for 3D analysis
on pick-and-place motion.

B. Rochester ADL

The Rochester ADL dataset [44] contains RGB videos of
five subjects performing certain ADL and Instrumented ADL
(IADL) activities which can be summarized as: using phone,
writing, drinking and eating, and preparing food. Each video
records one activity. Similar to the MPII datasets [22]-[24] and
the Brown breakfast dataset [35], the Rochester ADL dataset
would rely on human and object recognition to be useful for
2D fine motion analysis.

C. OPPORTUNITY

The OPPORTUNITY dataset [28] contains multi-modal
data of five morning ADL runs and one Drill run for each
of four subjects. Motion sensors were densely deployed on
the human body, on the objects, and in the environment. The
modalities on the human body include IMUs, 3D accelerome-
ters, and 3D localizers. The modalities on the objects include
3D accelerometers and 2D rotational velocity sensors. The
annotations consists of five “tracks”: locomotion, high-level
activities, mid-level gestures, low-level actions, and objects
for the left and the right hand, respectively.

The dataset distinguishes itself from others that we include
by using accelerometers and rotational velocity sensors on
both the hand and the objects. Since object manipulation
analysis focuses on the interaction between hand and objects,
data that include the motion of both the hand and the objects
are desired. The dataset is comparable with 50 Salad [29],
CMU-MMAC [32], and TUM Kitchen [38] in modality avail-
ability, although the last three target cooking scenarios. For

the objects, the dataset includes 2D rotational velocity, which
is unavailable in 50 Salad. For the human body, the dataset
lacks motion capture, which is available in CMU-MMAC and
TUM Kitchen, but alternatively provides 3D acceleration and
3D rotational velocity.

D. Cornell CAD-60 and CAD-120

The CAD-60 [25] and the CAD-120 [26] are both RGB-
D video datasets. CAD-60 includes video sequences of four
subjects performing twelve ADLs in five different indoor
environments. Each sequence corresponds to one instance of a
certain activity. The CAD-120 dataset recorded four subjects
each performing ten high-level activities. Each subject per-
formed every high-level activity multiple times with different
objects. The annotations include ten low-level activities, and
twelve object affordances.

CAD-60 and CAD-120 feature skeleton data, which include
tracks of 3D position of all fifteen joints plus 3D orientation of
eleven joints. The skeleton data in these datasets were gener-
ated using the NITE library that complements the PrimeSense
sensors and were therefore estimated data. By comparison,
the skeleton data collected using a motion capture system are
actual physical measurements and therefore can be regarded
as ground truth. Thus, the accuracy of the skeleton data in
CAD-60 & 120 is lower than the accuracy of those collected
with a motion capture system. Nevertheless, the skeleton data
are directly usable for 3D fine motion analysis, a characteristic
we consider as an advantage of these datasets.

E. First Person ADL

The First Person ADL dataset by Pirsiavash [49] contains
RGB videos captured using a GoPro camera. It recorded
twenty subjects performing eighteen ADLs. Forty-two objects
were annotated by annotators with bounding boxes, tracks, and
the status as to whether the object is being interacted with.
Similar to Gaze(+) [21], with first person images, the working
area of the hands is emphasized. However, since the dataset
includes a single modality, using it for analysis on 2D fine
motion would rely on object tracking.

F. Wrist-Worn Accelerometer

The wrist-worn accelerometer dataset [41] contains ac-
celerometer data of sixteen subjects performing a total of
fourteen ADLs. The accelerometers were attached to the
right wrists of the subjects and the data were recorded at
the subjects’ home. The dataset contains 979 trials. For fine
motion analysis, wrist acceleration may be less ideal than hand
acceleration, but it remains a readily usable modality.

G. UCI-EGO

The UCI-EGO or general-HANDS dataset [52] includes
four sequences of object manipulation activities. Each se-
quence includes 1,000 RGB-D frames captured using an
egocentric camera. Various objects were involved and manip-
ulated, but since the dataset focuses on hand detection and
pose estimation, the manipulation tasks performed with each



object are relatively short. As other vision oriented datasets,
the use of UCI-EGO dataset for object manipulation analysis
relies on object tracking.

H. Yale Human Grasping

The Yale human grasping dataset [46] contains 27.7 hours
of RGB wide-angle videos of profession-related manipulation
motion. Two machinists and two housekeepers participated.
The dataset is intended for grasping analysis. The annotations
were done on two levels. On the first level, the grasp type
was annotated along with the corresponding task name and
object name. The second level provided the properties of the
object and the task. A total of 18,210 grasp instances have
been annotated. The dataset includes prolonged videos of
manipulation motion of machining and housekeeping alone,
two categories that are not to be found in other datasets that
we include.

I. UT Grasp

The UT Grasp Dataset [50] contains data of four subjects
who were asked to grasp a set of objects in controlled environ-
ment ( placed on a desktop) after a brief demonstration of how
to perform each type of grasps. A subset of 17 grasp types
from Feix’s tanonomy were selected which are commonly used
in everyday activities [58]. The videos were recorded using
a HD head mounted camera (GoPro Hero2) at 30 fps while
subjects performed each grasp type with varying hand poses.
Annotations were also provided. UT Grasp differs from [46]
and [47] in that it consists of data captured in a controlled
environment (in front of a desk) in contrast with the [46] and
[47] for which data were collected in different parts of a house.

J. GUN-71

The GUN-71 Dataset [47] contains roughly 12,000 RGB-D
images of grasps, each annotated with one of the 71 grasp
classes in [59]. The images were captured using a chest-
mounted camera. 28 objects per grasp were recorded, resulting
in 1,988 different hand-object configurations. An important
difference between GUN-71 [47] and [46], [50] is that, in
[46] and [50] images were captured during daily activities
and the annotations follow the distribution of everyday object
manipulations, i.e. common grasp classes are much more
represented than rare grasps. In contrast, care was taken in
GUN-71 to ensure a balanced distribution of grasps and
variability of data. To that end, 3-4 different objects were
used for each grasp class, 5-6 views of the manipulation scene
were considered for each hand-object configuration, 8 subjects
participated in the experiments (4 males and 4 females) and 5
different houses were involved.

K. Google Push and Grasping

To facilitate deep learning in robotics, Google Brain pub-
licly shares two datasets of movements of robotic arms: Push
[43] and Grasping [37].

The Push dataset contains about 59,000 sequences of mul-
timodal data of robotic arms pushing objects. A bin which

contained different objects was placed in front of a 7 DOF
robotic arm, and the arm repeatedly pushed the objects in
one out of two ways: either pushing randomly, or starting
randomly from somewhere on the border of the bin and
sweeping towards the middle. A camera was mounted behind
the arm facing the bin. The bin contained ten to twenty
objects at a time, and the objects were swapped out for new
ones after roughly 4,000 pushes. Ten robotic arms were used.
The data include RGB images, recorded gripper pose (x, y, z,
yaw, pitch), commanded gripper pose, robot joint position
and external torques. The dataset provides two test sets each
including 1,500 sequences. One test set contains two different
subsets of objects from the training set, and the other test set
includes two sets of objects absent from the training set.

The Grasping dataset is collected using a similar setup to
that of Push. The dataset contains about 650,000 sequences of
multimodal data of robotic arms grasping objects. The modali-
ties include RGB-D images, recorded and commanded gripper
pose (position in x, y, z and orientation in quaternions), joint
positions – velocities – external torques – and commanded
torques.

Using Push or Grasping which involve robots only, one aims
at learning to finish a task rather than learning to finish a task
like a human. The absence of the retargeting problem [60] is
an inherent convenience if the learned motion is to be executed
by the same robot.

L. Manipulation Kinodynamics

The manipulation kinodynamics dataset [51] includes 3.2
hours of kinematics and dynamics information of objects
grasped and manipulated by humans using five fingers. More
specifically, the data of the object include mass, inertia, linear
and angular acceleration, angular velocity, and orientation. For
each of the five fingers, the collected data include friction,
force, contact point position, and the axes of a right-handed
local coordinate frame (x,y, z), where axes x and y define
the contact surface, and axis z points towards the object.
The dataset does not include images or videos. The objects
are custom made and can vary in mass distribution, friction,
and shape. The performed motions vary in speed, direction,
and task (e.g., emulating pouring). In total 193 different
combinations were recorded.

[51] provides a full suite of kinematics and dynamics data. It
was created for investigating the mapping relationship between
the kinematics features (velocity, acceleration, etc.) of a ma-
nipulated object and the underlying manipulating force, which
is something similar to a Newtonian physical law. Both the
cause of manipulation (the force) and the corresponding result
(the kinematics) were measured and both were of the object,
and no extra processing or estimation is needed. Therefore, we
consider the dataset as invaluable for manipulation research,
although including RGB-D images would have made the
dataset more approachable to the computer vision community.

M. RPAL Tool Manipulation

The dataset [48] features tool manipulation by human and
is still in the process of being created. The dataset contains



multimodal sequential data of subjects using different tools.
The tool consists of four components from front to back: a
swappable tooltip, a 6 DOF force-and-torque (FT) sensor, a
universal handle, and a 6 DOF position-and-orientation (PO,
x, y, z, yaw, pitch roll) tracker. When possible, another PO
tracker is mounted on the object which interacts with the tool.
Modalities recorded besides FT and PO data are top view RGB
videos and depth sequences of the scene, and finger flexture.
Currently available data are hosted at http://rpal.cse.
usf.edu/imd/. Since FT and PO data are of the tool, they
can be used directly for manipulation learning, without the
need of feature extraction which is necessary for images.

N. Summary

Similar to what we do for the cooking datasets, here we lay
out the modalities in all the datasets in Table V, and we show
in Fig. 2 the count of datasets for each modality in descending
order.

We can see from the figure that, RGB vision is the most
commonly used modality and is provided in twelve datasets
excluding only [28], [41] and [51]. In fact, [28] did collect
RGB videos but did not publish them. Motion capture data
are very accurate and can be found in [38] which uses a
markerless system, and in [48] which uses both an optical
marker-based system and an electromagnetic system. When
an object is being manipulated, its orientation may change
significantly (for example, when a spatula is used to flip a
bread), challenging the reliability of an optical marker-based
system. Moreover, objects vary in shape and can be small,
which limits the maximum amount of markers that can be
used. Also, during the execution of a task, a manipulated object
generally has certain contact with another object or certain
material (such as water), which makes the contact surface
unavailable for mounting markers and the available mounting
surface even smaller. The above reasons drove [48] to switch
from an optical marker-based system to an electromagnetic
(EM) alternative. The EM motion capture system consists of
at least one source which defines the world frame and acts
as the origin, and one tracker which senses its position and
orientation with respect to the source. The source and tracker
are both connected to a processing station with cables. Since
the EM system uses cables, it does not require an uncon-
strained line-of-sight as in an optical marker-based system, and
therefore a significant object pose change cause occlusions and
does not affect measurement accuracy. However, continuously
rotating motion such as using a screwdriver has a possibility
of finally putting stress on the cable, and therefore requires
extra attention.

In this section, we also include RGB vision based grasp
datasets [50], [46], and [47], that are quite different from
the wearable sensors based datasets presented in Section IV.
Vision based algorithms and methods can be used in order
to perform both hand pose estimation and classification using
simple images of executed grasps or postures. However, the
limited estimation accuracy and the lack of directly measured
joint angles or fingertips positions limit the applicability of
vision based methods in the experimental analysis, design

Fig. 2. Count of datasets for each modality

optimization and control of actual robot artifacts (e.g., robot
grippers and hands). The vision-based methods are also known
to be prone to errors caused by changes in the environmental
conditions (e.g., lighting conditions) and their efficiency can
also be significantly affected by possible occlusions during the
data collection process.

Unique to this section, [51], [48], [43], and [37] introduced
the provision of force and torque. The [51] and [48] data
belong to the object and the [43] and [37] data belong to
the joints of the robotic arms. Including force and torque
enables modeling feedback, which makes the learning of
object manipulation more physically realistic and helps with
performing a learned task with a real object.

The dataset described in [51], is intended for learning
the relationship between kinematic features and manipulating
force during a manipulation motion in general, and not for
a particular manipulation task. In simpler words, the dataset
focuses on manipulation rather than task. As a consequence,
the dataset falls short of the requirement for Learning from
Demonstration [55], which focuses on manipulation tasks.
Since [51] used 3D printed objects, modifying [51] to make
it suitable for LfD would require to change the current 3D
object models to enable interaction with other objects while
keeping the kinodynamics sensors from interfering with the
manipulation tasks, task that may be non-trivial. In compar-
ison, [48] focuses on recording data of tasks and is suitable
for LfD, although it provides less fine-grained dynamics data
than [51].

As for the cooking datasets, we identified the annotated
activities that are shared by multiple ADL datasets, and we
list those datasets in Table VI. We combine similar annotations
and specify each in the cells. For example, on the first row of
Table VI, the annotated activity is summarized as “use phone”,

http://rpal.cse.usf.edu/imd/
http://rpal.cse.usf.edu/imd/


TABLE V
MODALITIES ADL

Modalities [38] [44] [28] [25] [26] [49] [41] [46] [43] [37] [48] [47] [50] [51] [52]
RGB video (image sequences) � � � � � � � � � � � �
depth image sequence � � � � � �
RFID �
motion capture � �
Bayer pattern video �

3D acceleration on human � �
3D rotational velocity on human �
3D orientation on human �
3D location on human �
3D magnetic field on human �
finger flexture �
skeleton � �
joint angles � �

3D acceleration on object � �
3D rotational velocity and acceleration on object �
2D rotational velocity on object �
3D acceleration on furniture �
reed switch on furniture � �
force on fingertip �
in-tool force �
in-tool torque �

gripper pose � �
commanded gripper pose � �
robot joint position � �
robot joint velocity �
robot joint commanded torque �
robot joint external torque � �

moving camera � � � � �

# subjects 4 5 4 4 4 20 16 4 - - n/a 8 4 - 2

whereas [44] specifically uses “answer phone” and “dial on a
phone”, and [25] specifically uses “talk on the phone”.

IV. DATASETS OF GRASPING

In this section, we introduce HandCorpus (http://www.
handcorpus.org) [53] and then review 9 datasets about
human hand kinematics recorded in grasping and manipulation
tasks that are collected by the HandCorpus community and
are stored in the HandCorpus repository. Unlike datasets [46],
[47], and [50], which focus on video data, in this section
we report on datasets about kinematic recording of human
hand pose, in terms of sensor readings (marker positions and
raw sensor data from a glove-based hand pose reconstruction
system) and joint angles of human hand during reach to grasp,
manipulation or grasps of real or imaginary objects.

A. The HandCorpus Initiative

HandCorpus is an open access (no login or membership
required) initiative / repository for sharing datasets, tools and
experimental results about human and robotic hands. The
repository provides an accurate and coherent record for citing
data sets, giving due credit to authors. Data sets are hierarchi-
cally indexed and can be easily retrieved using keywords and
advanced search operations.

The motivation for HandCorpus is to provide the multi-
disciplinary ”hand community” with a tool for benchmark-
ing, results re-using and to foster collaborations between
scientistics in the fields of neuroscience and robotics. Of
course, we study hands to understand the language of the
human embodiment but also to try to reproduce this incredible
language under a technological point of view. Under these
considerations, the importance to have a common scientific
framework is crucial.

The HandCorpus was originally created in 2011, within
the European Project “The Hand Embodied (THE)”, with the
objective of making data collections and analyses about human
hand publicly available. Since then, the HandCorpus website
and structure have been ameliorated; today (July 2016), the
HandCorpus repository contains 9 datasets about human hand
kinematics recorded in grasping and manipulation tasks, with
real or imaginary objects and 2 descriptions of kinematic
models of human hands.

Regarding the latter point, it is possible to find : (i) the
description of a kinematic human hand model [61] devised
from Magnetic Resonance Imaging of a female hand, which
provides axis locations in the form of transformation matrices,
endowed with a visualization tool for the hand skeleton de-
veloped in Opensim (http://opensimulator.org//),
(a freely available, user extensible software system to develop

http://www.handcorpus.org
http://www.handcorpus.org
http://opensimulator.org//


TABLE VI
SHARED ANNOTATED ADLS.

Activities [38] [44] [28] [25] [26] [49] [41]

use phone answer phone,
dial on a phone

talk on the
phone

� �

write on whiteboard � �

drink � sip � � � �

eat � � �

chop/cut chop cut chop

reach � � �

release release grasp �

comb hair � �

brush teeth � � �

use computer � �

move � dishes

stir � �

pour � �

open door, drawer � �

close door, drawer � �

We only consider low-level annotations for [28].

models of musculoskeletal structures and create dynamic sim-
ulations of movement); (ii) the 3D coordinates of a static
pose of a human hand using a motion capture system and
the kinematic model described in [42]. The coordinates are
expressed in C3D format (https://www.c3d.org/) that
represents a 3D biomechanics data standard.

In addition, HandCorpus contains 5 datasets about robotic
hands. There are 3 entries on the description of device
architecture and specs, as well as links to schematics
and files to in house build the robotic devices. The
OpenBionics under-actuated, compliant and modular robot
hands [62] and the OpenBionics light-weight, affordable,
anthropomorphic prosthetic hand [63] have been developed
by the OpenBionics Initiative and all the files required for
their replication are available at the OpenBionics website
(http://www.openbionics.org/). The OpenBionics
is an open-source initiative for the development of affordable,
light-weight, modular robotic and bionic devices founded in
2013. The Pisa/IIT SH [19] is an affordable anthropomorphic
robot hand, which embeds within its design the concept
of kinematic synergies [13] to move according to the
first human principal grasping pattern in free motion, and
adaptability, which enables the hand to deform with the
external environment in order to grasp a large variety of
objects. The hand has 19 joints, but only uses 1 actuator, and
it is very soft and safe, yet powerful and extremely robust.
The schematics of the SH can be retrieved from a direct
link to Natural Machine Motion Initiative (NMMI) (http:
//www.naturalmachinemotioninitiative.com/).
The NMMI is a modular open platform aiming to provide the
scientific community with tools for fast and easy prototyping
of Soft Robots, such as variable stiffness actuators, soft
grippers, a pool of application specific add-ons, an open
mechanical standardized interconnection system and common

open electronics and software infrastructure to enable system
integration. The Pisa/IIT SoftHand has also served as the
starting point for the development of affordable and easy-to-
use prostheses, whose realization is actually pursued within
the EU-H2020 funded grant SoftPro – the latter is also one of
the sponsors of HandCorpus together with other 6 European
grants (see Acknowledgments) and the 22 international
research groups across Europe, Asia and United States of
America forming the HandCorpus community.

HandCorpus also contains kinematic recordings from two
robotic hands: i) the fingertip positions of RBO Hand 2
[64] while enacting the Feix grasps [65] with the list of 3D
coordinates of each of the five fingers, and the joint angles of
a robot hand (schunk DLR HIT 4 fingers), while being tele-
operated by a human hand wearing a Cyberglove [66]. The
intention was to capture the workspace of the robotic hand,
while avoiding possible collisions so as for the workspace to
be modelled with the concept of principal motion directions,
thus providing a reduced space for motion planning.

Finally, HandCorpus contains tools for the analysis, visual-
ization and study of human and robot hands, including psycho-
physical investigation, tactile sensing and biomechanical mod-
eling. As previously mentioned, HandCorpus is also a hub to
other open-access initiatives about robotic and human hands. A
blog, a newsletter, a publication repository and HandCorpus
profiles in all major social networks are also provided. For
further information, please visit the HandCorpus website,
which is cross-platform, cross-browser and easily accessible
through mobile devices, such as internet enabled smartphones
and tablets.

In Table VII, we have reported an overview of the datasets
about human hand kinematics included in the HandCorpus,
with a description of the different labels used to characterize
data. Focusing on human hand kinematics, the following 9

https://www.c3d.org/
http://www.openbionics.org/
http://www.naturalmachinemotioninitiative.com/
http://www.naturalmachinemotioninitiative.com/


datasets refer to grasping and activities of daily living, such
as haptic exploration.

B. DLR Dataset

The DLR dataset (May 2012) [13] contains the kinematics
of the human hand - joint angles (captured with a passive-
marker based motion capture system - Vicon), while executing
the grasps reported in [13]. The results are different from
[13], since the objects grasped are real and the contact forces
between the fingers and the object surface induce certain
deformations to the hand postures. Data of seven subjects were
included and twenty three different objects were grasped.

C. HUST Dataset

The HUST Dataset (March 2016) [31] reports the joint
angles of the human hand while executing the grasping tasks of
the Feix taxonomy [65]. During the experiments, the subjects
(5) were seated and they had their right arm fixed on the table
surface in a comfortable posture. The subjects were instructed
to perform thirty three types of tasks of the Feix Taxonomy
[65], using a large number of objects. The human hand motion
was captured with a dataglove (Cyberglove system).

D. NTUA Dataset

The NTUA Dataset (May 2010) [33] investigates the role
of hand synergies during reach to grasp. A subject was seated
on a chair, while his trunk was restrained to the chair and his
hand was placed on the table with the palm facing downwards.
Objects of varying shape and size were placed at a higher point
than the starting hand position. The user was instructed to
move his arm in order to reach and grasp the object. For each
trial the starting hand position and the object position were
kept the same. The human hand kinematics was described in
terms of joint angles and captured with a Cyberglove system.

E. TU Berlin Dataset

The TU Berlin Dataset 1 (June 2015) [36] contains sensor
raw data of five participants enacting the grasps of the Feix
taxonomy (thirty three grasps) [65]. During the resting periods,
the subjects were asked to place the hand on a table surface.
The human motion was captured with a Cyberglove.

F. UNIPI-ASU Dataset

The UNIPI-ASU Dataset (May 2011) [13] reports the joint
angles of the human hand, while grasping fifty seven imagi-
nary objects according to the procedure proposed by Santello
et al [13]. Human hand motion was once again captured with
a Cyberglove.

G. UNIPI Datasets

The UNIPI Dataset (October 2011) [39] contains the joints
angles of fifty seven grasps of imaginary objects [13], captured
with an optical motion capture system (Phase Space). A single
subject (male, 26) participated in the experiments.

The UNIPI Dataset 2 (September 2013) [42] contains the
joint angles of the human hand of a female right handed sub-
ject described according to the model reported in [42], while
grasping several imaginary objects, and recorded through
a marker-based motion capture system (Phase Space). The
subject was comfortably seated with the flat hand on the leg
and was asked to move the hand so as to grasp an imaginary
object for tool use, and then return to the rest position.

The UNIPI Dataset 3 (June 2014) [42] contains markers
coordinates of a human hand of a single subject acquired
through the Phase Space system, while executing the Kapandjii
movement [67]. The kinematic model under investigation was
described in [42].

The UNIPI Dataset 4 (September 2015) [42] contains data
of a single subject that was blindfolded and was asked to
haptically identify some common objects. Before each trial,
the subject placed the dominant hand on a table and one of
the objects was placed in random order about 30 cm in front of
the hand. On a go signal, the subject reached out, explored and
identified the object. In addition, the subject was also asked
to explore the surface curvature, edges and textures of each
object in order to prolong the exploration time. The human
hand kinematics was captured with a Phase Space system and
data represents joint angles.

H. Summary

From Table VII we can observe that human hand kine-
matics can be acquired through different acquisition systems
(active marker-based motion capture system, passive-marker
motion capture system (Vicon) and data glove), and using
different descriptors (raw sensor data, joint angles, marker
3D coordinates). The most common acquisition modalities are
(i) active marker motion capture system and (ii) data glove.
The main reason for this relies on the high accuracy (the
amount of static marker jitter is inferior than 0.5 mm, usually
0.1 mm) and the ease in handling marker IDs for (i), while
wearability and the fact that there is no need for implementing
filtering techniques to reconstruct joint angles from marker
measurement represents the main motivations for using (ii).
Regarding data descriptors, joint angles represent the most
common type of data. This is intuitive, since this information is
crucial for grasp planning [54], to drive the design and control
of robotic hands [12], [19] and to improve the performance of
hand-pose reconstruction systems, see e.g [68], [69].

Data format also varies (mainly .txt, .dat and .mat, but
also .C3D and .csv), although .mat and .txt are the most
used ones. Main motivations for this are simplicity (.txt) and
the fact that joint angles are usually obtained after a post-
processing phase, which is commonly performed in Matlab or
Mathematica (.mat).

Finally, regarding the type of actions, reach to grasp
and grasp of real objects are the most represented within
HandCorpus, although grasping of imaginary objects, haptic
exploration, free hand motion can be also found.

Conclusion that can be drawn is that a standardized pro-
cedure for data acquisition and data format still lacks, and
it would be needed to facilitate data re-usage (e.g. the usage



TABLE VII
HANDCORPUS STATISTICS

Attributes [13] [31] [33] [36] [13] [39] [42] [42] [42]

human postures � � � � � � � � �

joint angles � � � � � � �

marker coordinates �

joint sensor raw data �

static grasps � � � � �

reach & grasp � � � � �

free space � �

haptic exploration �

active marker motion capture system � � � �

passive marker motion capture system �

cyberglove � � � �

objects type R R R R I I I N R

# of DOFs 20 16 20 23 15 15 24 24 26

# of subjects 7 30 1 5 1 1 1 1 1

year (20–) 12 16 10 15 11 11 13 14 15

In “objects type”, “R” stands for “real”, “I” stands for “imaginary” and “N” for “no
object”.

of .C3D biomechanics standard). However, there is a clear
trend in favor of the employment of motion capture and glove-
based systems, joint angles as type of data, .mat and .txt
for data format. Under this regard, it would be important to
increase the information available on the kinematic model in
use, with schemes and visual representations provided together
with datasets, thus enabling a correct and simple re-usage
and interpretation of data. This is already partly done within
HandCorpus thanks to the usage of accompanying Read me
file for the datasets, but it could be further improved through
the adoption of common and unique data descriptions.

V. DISCUSSION

Table IX lays out different modalities included in the
datasets of all three categories. We can clearly see that the
different focuses require different modalities. Twenty out of
twenty-two datasets in cooking/ADL tasks have RGB videos,
but none of the grasping datasets has any video except for
the UNIPI dataset 3, where a video of the rendered skele-
ton of the hand while performing grasping actions is also
provided and is freely available in the dedicated YouTube
channel of the HandCorpus initiative https://youtu.
be/wTZdAFGjHpI. Such a visualization is important as it
practically demonstrates the actions under investigation and
increases the data comprehension. All nine datasets in the
grasping category contain hand tracking data in contrast with
the cooking and ADL categories that contain only one or
two datasets with hand tracking data combined. Seven of nine
datasets in grasping have also joint/skeleton angles, comparing
with two out of eight datasets in ADL tasks and zero out
twelve datasets in cooking tasks.

Research in object manipulation might find 3D object poses
very useful. Explicit or readily usable recordings of object
poses are available in [48]. Poses of the robot end effector are
provided in [43] and [37]. [30] provides estimated object pose

trajectories. Object poses may be computed using acceleration
and rotational velocity, and object motions that are simpler
than poses can be obtained if a sensor actively takes samples
and is attached to an object. Datasets with such setup include

1) [27] and [29] where objects were equipped with ac-
celerometers,

2) [28] where objects were equipped with accelerometers
and rotational velocity sensors. Furniture and appliances
were equipped with reed switches and accelerometers,

3) [38] where doors were equipped with reed switches.

The shared activities demonstrate a consensus among dif-
ferent authors on what activities should be performed and
annotated. For example, certain grasping taxonomies are often
adopted and such directions can be helpful for one who
tries to create a new dataset. However, not being a com-
monly shared activity does not necessarily mean an activity
is not important. Therefore, we also provide the complete list
of annotated activities at http://rpal.cse.usf.edu/
motiondatasetreview/index.htm, for cooking and
ADL, respectively. The shared activities can also help with
using more than one dataset. If one wants to study a certain
shared activity, one could use several datasets that include
this activity in order to access more modalities and higher
variability. Objects that are involved in an activity may also
be helpful for activity analysis. For all datasets except [34],
objects are identifiable in the annotated activities through

1) being separately annotated: [23], [24], [40], [26], [49],
[46], [45],

2) being part of the annotation phrases: [27], [32], [21],
[21]+, [22], [29], [30], [35], [38], [44], [25], [41], [45],

3) being equipped with sensors
a) accelerometers: [27], [29], [28],
b) rotational velocity sensors: [28],
c) reed switches: [38], [28],

https://youtu.be/wTZdAFGjHpI
https://youtu.be/wTZdAFGjHpI
http://rpal.cse.usf.edu/motiondatasetreview/index.htm
http://rpal.cse.usf.edu/motiondatasetreview/index.htm


d) RFID: [32], [38].
Temporal segmentation of annotated activities is also im-

portant for activity analysis. For [46] [50], [47], temporal
segmentation does not apply because they focus on grasp
instances. All other datasets include temporal segmentation,
in the following forms

1) video subtitle: [27], [30],
2) explicit video time: [21]+, [49],
3) frame number: [32], [21], [22], [23], [24], [34], [40],

[35], [38], [26], [45],
4) timestamp: [29], [28],
5) implicit: [44], [25], [41].
As previously mentioned in the Introduction for the case of

the whole-body motion datasets, we are aware of the existence
of other related datasets, however, to keep this work focused
we do not include them. Examples of the excluded datasets
are 1

1) [71], and [72], [73], [74], which are datasets that do not
include object manipulation motions, or if they do, the
object manipulation motions are sparse,

2) [75], [76], and [3], which are dataset of objects that are
typically involved in manipulation, rather than datasets
of motion.

Most datasets are intended for action recognition. However,
researchers who work on learning from demonstration (LfD)
[55] intend to reproduce human actions rather than recognizing
them. Thus, we suggest in addition to choosing from the
modalities we have reviewed, a more ideal dataset for LfD
should also aim to provide readily usable data that are more
closely related to dynamic and kinematic motion execution.
Examples of suggested modalities include trajectories of object
poses, joint poses of human upper body, hand posture, torque,
force between hand and object, etc.

Finally, an important specification for creating useful
datasets that can be used in robotics applications, is to facilitate
benchmarking. One interesting example is provided in [3],
where the objects used for manipulation were chosen to
cover different aspects of the manipulation problem and object
characteristics, and RGB-D object scans, physical properties
and geometric models are also provided together with protocol
examples and physical object delivery.

VI. CONCLUSIONS

We reviewed twenty-eight datasets on object manipulation
and nine datasets on grasping. We reported the characteristics
and modalities of each dataset individually, we gave our view

1HandCorpus represents an interesting example of datasets whose role can
bridge the gap between neuroscience and robotics. However, in literature, it is
possible to find also datasets specifically built to address purely neuroscientific
questions, which are currently out of the scope of this review. It is the
case of the WAY-EEG-GAL [70], which was designed to allow critical tests
of techniques to decode sensation, intention, and action from scalp EEG
recordings in humans who perform a grasp-and-lift task. Twelve participants
performed lifting series (a total of 3,936 trials) in which the object’s weight,
surface friction, or both, were changed unpredictably between trials. EEG,
EMG, the 3D position of both the hand and object (through the Pholemus
passive-marker magnetic motion capture system), as well as force/torque at
both contact plates were recorded.

on the relation between each dataset and object manipulation,
and we compared and summarized all of them together.

The datasets were created to serve their own purposes and
many of them are unique. Therefore different modalities were
used. The modalities range from popular video recording to
rarely used air temperature and light. Many datasets were
collected with numerous subjects, while some were collected
with only one subject. Several datasets provide motion anno-
tations. Twenty-three different cooking-related motions and 15
different ADL motions are annotated in the examined datasets.
The survey provides a “map” for researchers in choosing the
right existing dataset(s) for their own research purposes. If
the right datasets are not found, the researchers may decide on
creating new datasets that will supplement the exiting datasets.
For example, we have not come across a dataset that includes
interactive force or torque.

Observing the diversity of the datasets, we understand that
trying to get a unique standard for the different types of
datasets is clearly a daunting and challenging task. How-
ever, moving towards a common standardization that defines
common data formats for common working areas as well as
acquisition protocols would enable efficient data re-usage and
sharing, fostering collaborations, and creating large datasets
that allow big-data-driven approaches such as deep learning.
It has been discussed recently in many conferences and work-
shops of the robotics community as one of several important
initiatives. HandCorpus as one example is exploring a central
depository approach, by collecting and processing existing
datasets to provide consistent data formats and guarantee data
quality.

This survey does not include datasets that, although are
introduced in publications, are not openly available. Many of
them were presented in the Workshop on Grasping and Ma-
nipulation Datasets that was organized under the International
Conference on Robotics and Automation (ICRA) in May 2016.
The workshop’s report [77] provides a survey of those works
and datasets.
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TABLE VIII
SHARED ANNOTATED COOKING ACTIVITIES

Activity [27] [32] [21] [21]+ [24] [29] [34] [40] [30] [35] [45]

chop/cut chop, slice,
dice

cut chop, cut,
cut apart, cut
dice, cut off
ends, cut off
inside, cut
stripes, slice

cut cut cut

peel/shave peel, shave peel peel peel peel peel

stir/mix stir stir mix mix, stir mix mix stir stir stir

pour � � � � � milk, cereal � �

put/place put put put in, put on place put down put put

take � � � take lid, take
out

� �

spread/smear spread spread spread spread smear spread

eat/taste eat taste

scoop/spoon scoop scoop spoon scoop

season/spice spice season season

turn/flip flip turn over turn flip

open/close food (container) open � � � � �

open/close drawer open �

open/close dishwasher/oven oven �

open/close cupboard /fridge
/microwave

� fridge �

crack/break egg � open egg � �

beat/whip beat egg whip

add � � teabag, salt
and pepper,
topping

squeeze � � �

turn on/off � �

wash � �

dry � �

fill � �

Since [24] supercedes [22] and [23], we only include [24] in the table.



TABLE IX
MODALITIES

C O O K I N G A D L H A N D C O R P U S
Modalities [27] [32] [45] [21] [21]+[22] [23] [24] [29] [34] [40] [30] [35] [38] [44] [28] [25] [26] [49] [41] [46] [43] [37] [48] [47] [50] [51] [52] [13] [31] [33] [36] [13] [39] [42] [42] [42]

RGB video (image sequences) � � � � � � � � � � � � � � � � � � � � � � � � �
depth image sequence � � � � � � � � �
audio � � �
RFID � �
motion capture � � � � � � � � �
glove-based system � � � � � �
Bayer pattern video �

3D acceleration on human � � �
3D rotational velocity on human � �
3D orientation on human � �
3D location on human � �
2D acceleration on human �
skeleton � �
joint angles � � � � � � � � � �
body heat �
3D magnetic field on human � �
skin temperature �
skin conductance �
gaze � �

3D acceleration on object � � � �
3D rot. vel. & acc. on object �
2D rotational velocity on object �
6D object pose track � �
object models �
3D acceleration on furniture �
reed switch on furniture � �
force on fingertip �
in-tool force & torque �

gripper pose � �
commanded gripper pose � �
robot joint position � �
robot joint velocity �
robot joint commanded torque �
robot joint external torque � �

air temperature �
light �

moving camera � � � � � � � � � �

activity type C C C C C C C C C C C C C A A A A A A A A P G A G G M M G G G G G G G M H
# subjects 20 >394 14 10 12 30 30 25 7 n/a 8 52 4 5 4 4 4 20 16 4 - - n/a 8 4 - 2 7 30 1 5 1 1 1 1 1
year (20–) 09 09 11 12 12 12 12 15 13 13 13 14 14 09 09 10 11 13 12 14 14 16 16 16 15 15 16 14 12 16 10 15 11 11 13 14 15

In row “activity type”, “C” stands for “cooking”, “A” stands for “ADL”, “G” stands for “grasping”, “P” stands for “pushing”, “M” stands for “manipulation” and “H” stands for “haptic exploration”.
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