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Abstract

Tenants in a cloud environment run services, such as Virtual Network Function

instantiations, that may legitimately generate millions of packets per second.

The hosting platform, hence, needs robust packet scheduling mechanisms that

support these rates and, at the same time, provide isolation and dependable

service guarantees under all load conditions.

Current hardware or software packet scheduling solutions fail to meet all

these requirements, most commonly lacking on either performance or guaran-

tees.

In this paper we propose an architecture, called PSPAT, to build efficient

and robust software packet schedulers suitable to high speed, highly concurrent

environments. PSPAT decouples clients, scheduler and device driver through

lock-free mailboxes, thus removing lock contention, providing opportunities to

parallelise operation, and achieving high and dependable performance even un-

der overload.

We describe the operation of our system, discuss implementation and sys-

tem issues, provide analytical bounds on the service guarantees of PSPAT, and

validate the behaviour of its Linux implementation even at high link utilization,

comparing it with current hardware and software solutions. Our prototype can

make over 28 million scheduling decisions per second, and keep latency low, even

with tens of concurrent clients running on a multi-core, multi-socket system.
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1. Introduction

Allocating and accounting for available capacity is the foundation of cloud

environments, where multiple tenants share resources managed by the cloud

provider. Dynamic resource scheduling in the Operating System (OS) ensures

that CPU, disk, and network capacity are assigned to tenants as specified by

contracts and configuration. It is fundamental that the platform guarantees

isolation and predictable performance even when overloaded.

Problem and use case. In this work we focus on packet scheduling for very high

packet rates and large number of concurrent clients. This is an increasingly

common scenario in servers that host cloud clients: Virtual Machines (VMs),

OS containers, or any other mechanism to manage and account for resources.

Current hosts feature multiple processor sockets with tens of CPUs, and Network

Interfaces (NICs) with an aggregate rate of 10–100 Gbit/s, potentially resulting

in rates of 10+ Millions of packets per second (pps). Those rates, and the

fact that traffic source are highly concurrent, make packet scheduling extremely

challenging.

The challenge. Scheduling the link’s capacity in a fair and robust way almost

always requires to look at the global state of the system. This translates in some

centralised data structure/decision point that is very expensive to implement

in a high rate, highly concurrent environment. A Packet Scheduler that cannot

sustain the link’s rate not only reduces communication speed, but may easily

fail to achieve the desired bandwidth allocation or delay bounds, sometimes by

a large factor. We give several such examples in Sections 2.2, 6.5 and 6.6.

State of the art. OSes implement packet scheduling in software or in hardware.

Software Packet Schedulers are included in many OSes (TC [1] in Linux, dum-

mynet [2] and ALTQ [3] in FreeBSD and other BSD OSes), generally using

the architecture shown in Figure 1b. Access to the Packet Scheduler, and sub-

sequent transmissions, are completely serialized in these solutions, which can
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Figure 1: Common architectures for software and hardware packet schedulers in OSes.

barely sustain 1–2 Mpps (see Section 6 and [2]). Hardware packet scheduling is

possible on NICs with multiple transmit queues, which, as shown in Figure 1a,

can offer each client a private, apparently uncontended path down to the NIC.

But even this solution has one serialization point before the scheduler , namely

the PCIe bus and its controller on the NIC’s side. Those hardware resources are

normally configured and/or designed to barely match the nominal link speeds

in standard benchmarks, thus suffering significant degradation in other condi-

tions. As an example, several 10G and 40G NICs do not even support full line

rate with minimal-sized ethernet frames, or present significant performance loss

when buffers are not aligned to cache-line boundaries. In Section 2.2 we show

an example of how bus contention can prevent clients from even issuing requests

to the NIC at a sufficient rate.

Our contribution. In this paper we propose a different architecture for software

packet schedulers, called PSPAT and shown in Figure 4. PSPAT uses two

sets of mailboxes, implemented as lock free queues, to decouple clients, the

scheduling algorithm, and the actual delivery of packets to the NIC. This allows

maximum parallelism among these activities, removes locking, and permits a
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flexible distribution of work in the system. It is critical that the mailboxes are

memory friendly, otherwise we would have just replaced locks with a different

form of contention. Section 4 discusses this problem and our solution, based on

careful and rate-limited memory accesses.

PSPAT scales very well, and permits reuse of existing scheduler algorithms’

implementations. Our prototype can deliver over 28 M decisions per second

even under highly parallel workloads on a dual socket, 40 thread system. This

is several times faster than existing solutions, and is achieved without affecting

latency. Besides great performance, we can establish analytical bounds on the

service guarantees of PSPAT reusing the same analysis done for the underlying

scheduling algorithm.

Our contributions include: (i) the design and performance evaluation of

PSPAT; (ii) a theoretical analysis of service guarantees; and (iii) the implemen-

tation of PSPAT, publicly available at [4].

Scope. PSPAT supports a class of Scheduling Algorithms (such as DRR [5],

WF2Q+ [6], QFQ [7]) that provide isolation and provable, tight service guaran-

tees with arbitrary workloads. These cannot be compared with: 1) queue man-

agement schemes such as FQ CODEL [8], or OS features such as PFIFO FAST

or multiqueue NICs, often incorrectly called “schedulers”, that do not provide

reasonable isolation or service guarantees; 2) heuristic solutions based on col-

lections of shapers reconfigured on coarse timescales, that also cannot guaran-

tee fair short term rate allocation; or 3) more ambitious systems that try to

do resource allocation for an entire rack or datacenter [9], which, due to the

complexity of the problem they address, cannot give guarantees at high link

utilization. More details are given in Section 7.

Terminology remarks. The term “scheduler” is often used ambiguously: some-

times it indicates a Scheduling Algorithm such as DRR [5] or WF2Q+ [6]; some-

times it refers to the entire Packet Scheduler, i.e. the whole system that (i)

receives packets from clients, (ii) uses a Scheduling Algorithm to compute the

order of service of packets, and (iii) dispatches packets to the next hop in the
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communication path. For clarity, in this paper we avoid using the term “sched-

uler” alone.

Paper structure. Section 2 gives some background on packet scheduling. The

architecture and operation of PSPAT are presented in Section 3, which also

discusses implementation details. Section 4 describes the mailbox data structure

used by PSPAT. Analytical bounds on service guarantees are computed in

Section 5. Section 6 measures the performance of our prototypes and compares

them with existing systems. Finally, Section 7 presents related work.

2. Motivation and background

In this paper we target systems that need to handle highly concurrent work-

loads of tens of millions of packets per second. These workloads are not just

a theoretical possibility. High end hosts with tens of CPUs are standard in

datacenters; a commodity 40 Gbit/s NIC has a peak packet rate of 59.5 Mpps;

and tenants of cloud platforms may legitimately generate such high packet rates

when implementing routers, firewalls, NATs, load balancers. . . . Contention in

the use of a shared resource (the network interface) thus demands for a packet

scheduler that supports the packet rates sustainable by the link. In this Section

we discuss some possible architectures to implement the scheduler, and highlight

features of the NIC, the memory systems and scheduling algorithm that will be

useful to design the efficient packet scheduler presented in Section 3.

2.1. Packet Schedulers

A Packet Scheduler (PS) can be modeled as in Figure 2. One or more

QUEUES store packets generated by CLIENTS and belonging to different flows;

an ARBITER selects the next packet to be transmitted using some Scheduling

Algorithm (SA); a DISPATCHER delivers the selected packet to the physical

link (or the next stage in the network stack). Depending on the desired speed

of operation and other constraints, the scheduling functions (arbiter and dis-
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Figure 2: High level structure of a packet scheduler. Queues receive requests from clients, an
Arbiter runs the Scheduling Algorithm, one or more Dispatchers move data to the physical
link. Components can be implemented in software, hardware or a combination of the two.

patchers) can be embedded in the NIC (hardware scheduler), or implemented

in software as part of the operating system.

2.2. Hardware Packet Schedulers (and their limitations)

Modern NICs normally support multiple transmit queues to allow lock free

access to different CPUs, and sometimes offer a limited choice of scheduling

algorithms to decide the service order of queues. The entire packet scheduler

thus can be offloaded to the NIC, as illustrated in Figure 1a. Unfortunately this

architecture is inherently unable to protect the NIC against excessive requests

from users, because the scheduler operates after the PCIe bus and its controller

on the NIC’s side. Both these resources can be a bottleneck, and all CPUs have

equal bus access irrespective of the desired link bandwidth’s distribution. It

follows that one or more greedy CPUs can issue PCIe write requests at a rate

that prevents others from achieving the desired link sharing.

To show this problem, we ran an experiment in which one or more CPUs

concurrently issue PCIe write requests (an operation required to send packets

to a queue), and we measure the distribution of PCIe write latencies, as shown

in Figure 3. Writes go through the processor’s write buffer, so that at low rates

they are nearly instantaneous. However, when the write buffer fills up they take
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Figure 3: CDF of the duration of a PCIe write to an Intel X520 NIC, where 1, 4 or 8
clients continuously access the same device register. The CPU stalls waiting for the access to
complete. In all tests the device reaches its capacity (approximately 20 Mreq/s). Each CDF
is obtained from 100,000 samples.

as long as the NIC’s controller takes to process them. In our experiment, an

Intel X520 NIC (2×10Gbit/s) takes slightly less than 50 ns per write, as shown

by the curve for 1 CPU. As multiple CPUs issue writes, the total rate remains

the same and each CPU has limited guaranteed access to the link. With 8 active

CPUs, the median write time is 350 ns, and the time grows linearly with the

number of CPUs. Thus we cannot guarantee each CPU more than 1/N-th of

the NIC’s capacity.

2.3. Software Packet Schedulers

The above limitations (or the absence of scheduling support in the NIC)

can be overcome by Software Packet Schedulers, which normally sit between

protocol processing and the device driver as shown in Figure 1b. Implemen-

tations in commodity OSes generally make CLIENTS (and interrupt handlers)

execute the ARBITER and DISPATCHER by gaining exclusive access to the

queues and the Scheduling Algorithm’s data structures for each packet inserted

or extracted. Arbitration occurs before sending requests to the NIC so the

bus cannot be saturated anymore. Unfortunately the performance of such an

architecture under concurrent workloads is generally limited to 1–2 Mpps (see

Section 6 and [2]), mostly because of heavy lock contention. As an example,

Table 1 shows the cost of a 100 ns critical section protected by a spinlock as
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the number of concurrent users grows; this experiment mimics the behavior of

multiple clients accessing a packet scheduler. We can see that the per-client cost

(first row) grows much more than linearly, making the cost of the SA (10–50 ns)

almost negligible. The total throughput (last row) also decreases significantly

with the number of users1

Users 1 2 3 4 8 20 40

Time [µs] 0.10 0.27 1.36 2.10 5.70 32.0 64.0
Total Mops/s 10.0 7.4 2.2 1.9 1.4 0.61 0.55

Table 1: Cost of locking contention for a dual Xeon processor machine, 10 CPUs each, 40
hyperthreads in total.

2.4. Memory communication costs

The key idea of PSPAT, described later in Section 3, is to replace the expen-

sive per-NIC global lock with N shared memory lock-free mailboxes and a thread

that polls them. The performance of our solution depends on how efficiently

clients and the polling thread can communicate through these mailboxes.

To characterize the behaviour of such shared memory communication we

run some tests on a dual socket Xeon E5-2640, 2.5 GHz system. Two threads,

a writer and a reader, access one or more shared 64-bit variables Vi stored in

different cache lines (few enough to fit in the L1 cache). For brevity, we report

the results from an experiment of interest: the writer keeps incrementing one or

1Recent versions of Linux optimize lock access in the scheduler dequeue phase giving a
speedup of roughly a factor of 2.

Measured parameter HT-HT CPU-CPU SKT-SKT

Different values per second seen by reader 75 M 20 M 5 M
Read stall latency 10–15 ns 50 ns 130–220 ns
Write stall latency – 15 ns 100 ns

Table 2: Cost of read or write memory operations on a dual socket Xeon E2-2640. Reader
and writer can run on two hyperthreads of the same physical core (HT-HT), on two different
physical cores (CPU-CPU) or on different processor sockets (SKT-SKT).
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more Vi variables, and the reader counts the number of reads and of different

values seen over time. In this experiment the reader alternates bursts of very

quick reads (when the cache line is believed to be unchanged) with individual

slow reads while the cache line is stale and updated. Writes normally go though

a write buffer, but they may stall too if the write buffer cannot run at sufficient

speed due to memory contention. The rate of visible updates and the duration

of read/write stalls2 depend on the “memory distance” between reader and

writer, and Table 2 shows these parameters in various settings. It is particularly

important to note that communication between sockets is (relatively) slow, so

protocols should be designed in a way to amortize the latency and long stalls.

2.5. Scheduling Algorithms

A key component of a packet scheduler is the Scheduling Algorithm (SA),

which is in charge of sorting packets belonging to different “flows” (defined in

any meaningful way, e.g., by client, network address or physical port), so that

the resulting service order satisfies a given requirement. Examples include (i)

giving priority to some flows over others; (ii) applying rate limiting to individual

flows; (iii) p
¯
roportional share scheduling, i.e., dividing the total capacity of the

link proportionally to “weights” assigned to flows with pending transmission

requests (“backlogged” flows). An SA is called “work conserving” if it never

keeps the link idle while there are backlogged flows.

Perfect proportional sharing can be achieved by an ideal, infinitely divisible

link that serves multiple flows in parallel; this is called a “fluid system”. Physi-

cal links, however, are forced to serve one packet at a time [10], so there will be

a difference in the transmission completion times between the ideal fluid system

and a real one, adding latency and jitter to the communication. A useful mea-

sure of this difference is the Time Worst-case Fair Index (T-WFI)[11], defined

as follows:

2See Appendix A for details on how stall times are measured.
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Definition 1 (T-WFI). the maximum absolute value of the difference between

the completion time of a packet of the flow in (i) the real system, and (ii) an

ideal system, if the backlog of the flows are the same in both systems at the

arrival time of the packet.

Each SA is characterized by a certain T-WFI metric, which depends on the

inner working of the specific algorithm. T-WFI matters as it measures the extra

delay and jitter a packet may experience: we would like to have a small upper

bound for it, possibly independent on the number N of flows. For any work-

conserving packet system, the T-WFI has a lower bound of one maximum sized

segment (MSS ), proven trivially as follows. Say a packet A for a flow with a

very high weight arrives just a moment after packet B for a low weight flow. In

a fluid system, upon its arrival, A will use almost entirely the link’s capacity;

in a packet system, A will have to wait until B has completed.

The theory. Some systems replace Scheduling Algorithms with bandwidth lim-

iting, or heuristics that give proportional sharing only over coarse time intervals

(e.g., milliseconds). These solutions are trivial but not interesting, because the

large and variable delay they introduce disrupts applications. As the accept-

able delays (hence, T-WFI) become shorter, the problem becomes challenging

and we enter into a territory of cost/performance tradeoffs. We have efficient

Weighted Fair Queueing algorithms [11, 12] that match the T-WFI lower bound,

with O(logN) cost per decision, where N is the number of flows. Fast variants

of Weighted Fair Queueing, such as QFQ [7] and QFQ+[13] achieve O(1) time

complexity per decision, at the price of a small constant increase of the T-

WFI, which remains within O(1) of the ideal value. On the other end of the

spectrum, algorithms such as DRR (Deficit Round Robin [5], also known as

Weighted Round Robin, WRR), have O(1) time complexity but a poor O(N)

T-WFI.

Some numbers can help appreciate the difference among Scheduling Algo-

rithms. With 1500 byte packets (1.2µs at 10 Gbit/s), a DRR algorithm with

just 25 busy flows will cause at least 30µs of latency even for high weight flows
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(the worst case is much higher, see Section 5.2, also depending on the schedul-

ing quantum used by DRR). In contrast, in a similar scenario, with a good

algorithm such as QFQ, a high weight flow will suffer 2–3µs of extra latency

irrespective of the number of flows.

The practice. Implementations of QFQ and QFQ+ are included in commodity

OSes such as Linux and FreeBSD. Their runtime cost is comparable to that

of simpler schedulers such as DRR, which offers much worse T-WFI. All of

the above implementations can make a scheduling decision in 20–50 ns on mod-

ern CPUs. Because of its simplicity, DRR/WRR is widely used in hardware

schedulers on popular high speed NICs.

3. PSPAT architecture

Having identified the problems in existing packet schedulers, we now discuss

how our design, PSPAT, addresses and solves them. We split the components

of the Packet Scheduler as shown in Figure 4, so that we can operate clients,

ARBITER and DISPATCHER(s) in parallel. The components of our system

are:

M clients each with its own Client Mailbox , CMi. Clients can be VMs, con-

tainers, processes, threads;

C CPUs on a shared memory system (each hyperthtread counts as one CPU);

C Client Lists CLc, indicating clients recently active on each CPU;

1 ARBITER thread, running a Scheduling Algorithm;

N flows in which traffic is aggregated by the ARBITER;

T Transmit queues on the Network Interface (NIC),

0–T TX mailboxes TMi, and an equivalent number of DISPATCHER threads

feeding the NIC.
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Figure 4: The architecture of PSPAT. A dedicated arbiter thread runs the Scheduling Algo-
rithm, communicating with clients and transmitter threads (dispatchers) by means of lock-free
queues.
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Mailboxes and client lists are implemented as lock free, single-producer single-

consumer queues. There are no constraints on the number of clients (M), CPUs

(C), flows (N), and transmit queues (T ), or on how traffic from different clients

is aggregated into flows. In particular, M and N can be very large (thousands).

PSPAT operates as follows:

1) A client x, who wants to transmit while running on CPU c, pushes packets

into its client mailbox, CMx, and then appends x to CLc only if x is not

already the last entry in CLc;

2) the ARBITER continuously runs function do_scan() in Figure 5, to grab

new requests from the mailboxes of active clients on all CPUs, pass them

to an SA, trim the Client Lists, and use a leaky bucket algorithm to release

packets to the TX mailboxes;

3) finally, dispatcher threads drain the TX mailboxes and invoke the device

driver for the actual transmission.

By reducing serialization to the bare minimum (only the ARBITER runs

the Scheduling Algorithm), and removing lock contention through the use of

private, lock free mailboxes, PSPAT can achieve very good scalability, opening

the door to performance enhancements through pipelining and batching. Note

that the leaky bucket rate limiting also protects the PCIe bus from saturation.

Of course the devil is in the details, so the rest of this Section and Section 4

describe in depth the various components of PSPAT and discusses how they

interact with the hardware.

3.1. Clients

Each client pushes packets into its private mailbox (CM) to communicate

with the ARBITER. A client that transmits many packets from CPU C (before

being preempted) will append itself into CLc at most on the first transmission.

For all the subsequent transmissions it will quickly verify that the last entry

in CLc already contains itself an do nothing. As a result, under high load the

average cost of a client updating CLc is approximately the cost of reading from
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the L1 cache (as the append operation is amortized over many packets). The

overall cost of clients updating the CLc is then proportional to the average

context switch rate, which usually does not exceed 1000–2000 context switches

per second per CPU. The cost of a context switch is anyway at least an order

of magnitude higher of the cost of updating a CL (even in the worst case of

a dual socket CPU); should the context switch rate be too high, the system

performance will suffer because of the CPU scheduling overhead, irrespective of

the Packet Scheduling architecture. Note in particular that the cost of updating

the CLs is not proportional on the number of clients M .

The lack of notifications requires the ARBITER to scan all mailboxes that

may contain new requests since the previous scan. Client Lists let us keep the

number of mailboxes to scan within O(C). A client list CLc contains more than

one entry only if new clients have been scheduled on CPU c and have generated

traffic since the previous ARBITER scan. This is a very rare event, as the time

to schedule a thread is comparable to the duration of a scan (see Section 3.4).

Clients may migrate to other CPUs without creating data races (because

the mailbox is private to the client) or correctness problems: even if a mailbox

appears in multiple client lists as a result of migration(s), its owner will not get

any unfair advantage.

Backpressure. Conventional scheduler architectures often return an immediate

error if a packet is dropped locally; this information provides backpressure to

the sender (e.g., TCP) so that it can react. A drop may happen because of

underlying queues are full or because of SA specific policies (e.g., CODEL may

drop to keep the delay under a threshold). PSPAT offers immediate reporting

when the client mailbox is full. Policy-related drops cannot be reported imme-

diately, because they happen in the SA, which does not run in the context of

the client thread. The ARBITER thread can however set a backpressure flag

in the client mailbox, so that the drop can be reported as soon as the client

attempts the next transmission.
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3.2. Flows

How traffic is assembled into flows (which are then subject to scheduling)

depends on how the scheduler is configured at runtime. Some settings may split

traffic from one client into different flows, others may aggregate traffic from

multiple clients into the same flow. PSPAT is totally agnostic to this decision,

as it delegates flow assembly to the Scheduling Algorithm. Our architecture

also guarantees that traffic from the same CPU is never reordered.

3.3. Dispatchers

NICs implement multiple queues to give each client an independent, uncon-

tended I/O path, but on the NIC’s side, more queues can be detrimental to

performance, as explained in Section 2.2. PSPAT provides separate I/O paths

through Client Mailboxes, which have much better scalability in size and speed,

and lets us keep the number of dispatchers, T , as small as it suffices to transfer

the nominal workload to the next stage (typically a NIC). If transmitting pack-

ets to the next stage is fast, as it is the case in frameworks like netmap [14] and

DPDK [15], dispatching can be done directly by the ARBITER thread. Con-

versely, if transmission is expensive, the overall throughput can be improved by

means of separate dispatcher threads running in parallel to ARBITER.

3.4. The arbiter

The body of the ARBITER’s code, function do_scan() in Figure 5, is struc-

tured in three blocks. The first block takes a timestamp t_now, and drains the

CMs, submitting the packets to the SA. All packets arrived before t_now are

guaranteed to be in the scheduler, and the number of packets extracted from

each CM is limited by the mailbox’s size. For each CPU, this block also trims

the associated CL to keep only the last element, which is likely to reference the

client that is currently running on the CPU; in this way we clear most entries

in the CL and at the same time we save the current client from adding itself to

the CL for each packet it wants to transmit. Similar to what happens for clients

(Sec. 3.1), the cost of trimming is proportional to the overall context switch
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1 void do_scan () {
2 t_now = time ();
3 for (i=0; i < CPUs; i++) {
4 for (cli in CL[i]) {
5 while ((pkt = extract(CM[cli])) != NULL) {
6 SA.enqueue(pkt);
7 }
8 }
9 <trim CL[i] leaving last entry >

10 }
11 while (link_idle < t_now) {
12 pkt = SA.dequeue ();
13 if (pkt == NULL) {
14 link_idle = t_now;
15 return; /* no traffic */
16 }
17 link_idle += pkt ->len / bandwidth;
18 i = pkt ->tx_mbox_id;
19 <enqueue pkt in TM[i]>
20 i = pkt ->client_id;
21 <clear one entry in CM[i]>
22 }
23 for (i=0; i < TX_QUEUES; i++) {
24 if (!empty(TM[i])) {
25 <notify dispatcher[i]>
26 }
27 }
28 }

Figure 5: Simplified code for the ARBITER. The first loop pushes packets to the SA. The
second loop invokes the SA and emulates the link. The last loop submits the scheduled packets
to the dispatchers.
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rate. In the second block, packets are extracted from the SA and pushed to

the TX mailboxes in conformity with the the link’s rate up to time t_now; CM

entries are released accordingly. This guarantees correctness of the scheduling

order (all packets arrived before t_now are in the scheduler) and prevents TX

mailboxes from overflowing. Finally, the third block notifies the dispatchers, so

that TX mailboxes can be efficiently drained in batches [16].

It is important that the ARBITER completes a round very quickly, to avoid

adding too much latency, and that it does not spend a large fraction of its time

stalled on memory reads; the latter is a real risk, as it has to scan O(C) CMs

updated by clients. C should not be more than 100 even for a reasonably large

system. The ARBITER accesses a small part of each CM, and does it frequently,

so a CM that needs no service (either empty, or completely full), is likely to be

in the L1 or L2 cache of the ARBITER. This results in access times in the

order of 2–4 ns each (we have measured such values on a dual-socket E5-2640

system). It follows that a full scan of idle clients collectively takes in the order

of 200 ns, comparable to the cost of a single cache miss in the architectures we

target (see Table 2). Section 4 describes how mailboxes can be implemented to

reduce cache misses and amortise read or write stalls.

3.5. Avoiding busy wait

PSPAT has been designed to be deployed on highly loaded systems, where

the ARBITER thread has (almost) always some work to do. In this situation

it can busy wait to minimize latency and maximize throughput; this strategy is

also convenient for energy efficiency as sleeping or blocking for very short time

intervals (1–20µs) can be unfeasible or add unacceptable per-packet overhead,

as explained in [17] (Sec. 4.3).

However, if PSPAT is deployed on systems where the load can be low for

long periods, we would like to make the ARBITER sleep when there is no work

to do. This happens (i) while the current packet completes transmission, or (ii)

when all the client mailboxes (CMs) are empty. In the first case, the ARBITER

can just sleep() until the (known) time when the link will be idle again. The
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case of empty CMs is trickier because new requests may arrive at any time,

including while the ARBITER is deciding whether to block, and we need a

notification from clients to restart. Such notifications are expensive, so they

should be avoided if possible. This is a common problem in multicore OSes and

normally handled as follows: 1) the ARBITER spins for some short interval Tw

when idle, in case new requests come soon; 2) when the ARBITER is asleep,

clients run the ARBITER’s functions themselves if there is no contention with

other clients, and activate the ARBITER’s thread otherwise. Combining these

two strategies, we guarantee at most one contention period and one notification

every Tw seconds. The value for Tw can be chosen by experimentation, in such

a way to achieve performance in presence of traffic, and very low overhead when

there is light or no traffic.

To put number in context, if the ARBITER has no more requests to process

and no traffic arrives in the next millisecond (or more), spinning for at most 20–

50µs before deciding to block does not impact CPU consumption in practice.

On the other hand, if some traffic does come while the ARBITER is spinning

we save the (high) cost of a block-notify-wakeup sequence, which impacts both

ARBITER and clients. Since the notification can easily cost 2–5µs for the

clients (on a multi-socket machine), if the ARBITER spins at least for 20–

50µs then the client will not spend on notifications more than 10% of its CPU

time. In particular, this strategy avoids pathological situations where there is a

notification every 1–2 packets under moderate or high load.

In summary, if power consumption or CPU sharing require to avoid busy

wait, this can be done without too much harm to performance or latency. An

experimental evaluation of the impact on PSPAT, however, is not in the focus

of this paper. Our previous work [17, 18, 19] covers this space, analysing similar

high-rate packet processing systems, including evaluation of sleeping and noti-

fication costs, and impact of overall throughput, latency and energy efficiency.
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Figure 6: Lockless mailboxes implementation. Entries containing a valid value are colored.
Memory sharing between producer and consumer affects performance. Obviously, array entries
need to be shared. The classical (Lamport) scheme on the left also has additional memory
sharing on the head and tail pointers, whereas the scheme on the right uses special values to
indicate the validity of an entry, so head and tail are not shared.

4. Mailboxes

In this section we motivate and describe our mailbox implementation, which

is crucial to PSPAT high-throughput operation. Mailboxes are implemented

as circular queues of a fixed number of slots, accessed concurrently by only

two threads: a producer, inserting in the queue tail, and a consumer, extract-

ing from the queue head. Each queue slot can accommodate a single memory

pointer. In our case, Client Mailboxes and TX mailboxes contain pointers to

packet descriptors (sk_buff’s in Linux). Client Lists are also implemented as

mailboxes: they contain pointers to Client Mailboxes.

Locking operations in multi-core/multi-socket systems are very expensive,

therefore insertion and extraction operations in shared memory queues are usu-

ally implemented in a lock-free fashion. The common way to achieve this is by

using Lamport’s algorithm [20] (see Figure 6a). In this algorithm, the tail and

head indices are shared among the producer and the consumer. On insertion,

the producer compares head and tail to make sure that there is room avail-
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able, then it first updates the queue’s tail slot, and then (circularly) increments

tail. On extraction, the consumer compares head and tail to make sure that

the queue contains some new message, then it first extract the message in the

head slot, and then (circularly) updates head.

There are a couple of issues with this algorithm in modern, multi-core/multi-

socket systems, where the producer and consumer are meant to run on separate

CPUs/hyperthreads. First, the algorithm correctness relies on the preservation

of the ordering between two writes (e.g., writes into the tail slot and into

the tail index, during insertion). On some architectures, this may require the

interposition of costly memory barriers. Second, the sharing of the tail and

head indices between the producer and the consumer may cause write and read

operations to wait for the remote caches to update or deliver their cache lines.

When these wait times cannot be hidden by the CPU internal pipeline, they

cause throughput-limiting stalls in the execution (see Section 2.4).

4.1. PSPAT’s fast mailboxes

PSPAT avoids the sharing of the tail and head indices through the tech-

nique presented in FastForward [21] (see Figure 6b):

• empty slots contain a special value (e.g. a NULL pointer);

• tail and head are private to the producer and consumer, respectively;

• the producer waits for an empty tail slot, before writing a new message

to it and advancing the index;

• the consumer waits for a non-empty head slot to read a new messages,

mark the slot as empty and advance the index.

The main advantage of this technique is that no memory barriers are needed

between queue and pointer updates, because producer and consumer only look

at the queue. Moreover, cache conflicts between the producer and the consumer

are now limited to two situations: nearly-full and nearly-empty queues, when

the two threads are likely accessing the same cache line, thus causing lots of
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read and write stalls due to invalidation/update messages going back and forth

from their caches.

Conflicts in the nearly-full case are easily avoided if the producer refrains

from adding messages to a new cache line until it is completely free; this can be

ascertained by looking at the first slot in the cache line further down the queue,

and checking it’s NULL. In Figure 6, this is illustrated by having the producer

read the the slot one cache line ahead of the tail one.

Nearly-empty queue states, however, cannot be avoided: the consumer can-

not wait until the producer has filled a cache line, since the producer may have

nothing more to transmit for an arbitrary long period of time. To avoid write-

write conflicts between the consumer releasing slots and the producer adding

new messages, we let the consumer release the slots only when it has consumed

a full cache line (see the write arrow from the consumer in Figure 6).

There remains the problem of read-write cache conflicts occurring when the

producer updates multiple slots in the same cache line while it is accessed by

the consumer. We address this problem by rate-limiting read accesses to the

mailboxes. For example, the ARBITER rate-limits its own accesses to each

Client Mailboxes to one read every 1–2µs. Since write stalls cost in the order of

100 ns (see Table 2), each client will not stall for more than 5–10 % of its time.

5. T-WFI in PSPAT

An important quality metric of a Scheduling Algorithm is the T-WFI (Def-

inition 1). A larger T-WFI is associated to more jitter and delay, with obvious

consequences on network performance. PSPAT does not define new algorithms,

but reuses existing ones within the ARBITER. The purpose of this Section is

therefore to determine the overall T-WFI of PSPAT given that of the underlying

scheduling algorithm, T-WFISA.

5.1. T-WFI analysis

The literature contains an evaluation of the T-WFISA for several Scheduling

Algorithms that we can use in PSPAT. For example, the analysis in [22] shows
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that the T-WFI of a complete Packet Scheduler is made of a first component,

say T-WFISA, accounting for intrinsic inaccuracies of the Scheduling Algorithm,

plus a component due to external artifacts (such as the presence of a FIFO in

the communication device.)

In PSPAT, the second component depends on how we feed the Scheduler

Algorithm and the NIC. Here we evaluate this under the following assumptions:

(i) the ARBITER, each client, the NIC and the link must all be able to handle

B bits/s; (ii) the ARBITER calls do_scan() to make a round of decisions every

∆A seconds; (iii) each DISPATCHER processes the Transmit Mailbox every ∆D

seconds; (iv) the NIC serves its queues using round-robin (trivial to implement

in hardware and avoids starvation).

Under these assumptions, the ARBITER may see incoming packets and

pass them to the SA with a delay ∆A from their arrival. This quantity just

adds to T-WFISA, without causing any additional scheduling error, at least in

scheduling algorithms where decisions are made only when the link is idle.

We call a “block” the amount of traffic released to the Transmit Mailboxes in

every interval ∆A. This can amount to at most B ·∆A bits, plus one maximum

sized packet L3. The quantity exceeding B ·∆A is subtracted from the budget

available for the next interval ∆A, so the extra traffic does not accumulate on

subsequent intervals.

Since the ARBITER releases up to one block of data at once, and DIS-

PATCHERS send those packets to the NIC in parallel, the order of transmission

may be different from the one decided by the ARBITER. Let’s first assume

that DISPATCHERS operate with ∆D = ∆A and are synchronised with the

ARBITER. This adds a delay term ∆D to the service of packets, and also a

potential reordering within the block, which amounts (in time) to the size of

the block itself, i.e. ∆D.

When ∆D 6= ∆A and/or DISPATCHERS are not synchronised, a further

3The ARBITER releases all packets that start transmission in the current interval, so the
last one may complete after the end of the interval.
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complication occurs, as the link may receive at once up to B · (∆D + ∆A) bits,

more than the capacity of the link, before the next round of transmissions. The

excess block B ·∆A that remains at the end of the round will in turn be reordered

together with the block from the next round (which this time is within the link’s

capacity). The number of ∆D intervals to drain packets from the excess block

will be proportional to k = ∆AB/L, or the number of maximum sized packets in

the block. We report the proof of this property in the appendix, to not interrupt

the flow. For practical purposes, ∆A is 1–2µs, and even on a 40 Gbit/s interface

the value of k is less than 5. On a 10 Gbit/s and lower, for all practical purposes

we can assume k = 1.

In conclusion, putting all pieces together, we have

T-WFI = T-WFISA + ∆A + (2 + k)∆D. (1)

5.2. T-WFI examples

To put numbers into context: from [22] we know that

T-WFI
(k)
QFQ = 6

Lk

φkB
+
L− Lk

B
, (2)

T-WFI
(k)
DRR =

(
1

φmin
+

1

φk
+N − 1

)
L

B
. (3)

The T-WFI depends on the weight of each client. In the equations, N is the

number of clients, and Lk is the maximum packet size for client k. φk is the

weight of client k, 0 < φk < 1 and
∑N

k=1 φk = 1, φmin is the minimum weight

among all clients.

In practice, QFQ has a T-WFI of about 6/φk times the maximum packet

transmission time (L/B), whereas for DRR the multiplying factor has a large

term 1/φmin plus a linear term in the number of clients. For a 10 Gbit/s link

and L = 1500 bytes, L/B = 1.2µs. Assuming weights ranging from 0.005 to 0.5,

the client with the highest weight will have T-WFI
(k)
QFQ = 12, L/B = 14.4µs

irrespective of N . For DRR, the dependency on N gives T-WFI
(k)
DRR = 226,

L/B = 271.2µs for 25 clients, and 301L/B, or 361.2µs for 100 clients. In
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comparison, the additional term 2∆A + 2∆D (between 2 and 4µs) introduced

by PSPAT is small or negligible.

6. Experimental evaluation

We now evaluate PSPAT architecture and compare its performance with

existing alternatives. As described in Sections 3 and 4, PSPAT uses convenient

data structures for fast operation and to limit or avoid contention between the

clients. Our goal here is therefore to check that an implementation of PSPAT

behaves well in the following worst-case conditions:

• Under high input load, e.g. 10 Mpps or more;

• As the number of clients grows to fill up the available CPU cores in the

system;

• A combination of the two cases above.

In particular we would like to verify that as the input load and/or number of

clients increase, the following behaviour holds:

• The throughput increases until a saturation point, which is the maximum

load that the arbiter can sustain in the given configuration. It is not

acceptable that the throughput drops significantly with increasing load,

as this is a sign that the Packet Scheduler is being slowed down by some

kind of congestion.

• The latency distribution degrades gracefully and as predicted by the T-

WFI of the PS (Sec. 5). It is not acceptable that the latency figure grows

unbounded because of uncontrolled congestion.

• The PS behaviour complies with the Scheduling Algorithm configuration

(e.g., rate allocation to the different flows, priorities). The PS may fail to

invoke the SA in the expected way because of contention on the PS data

structures.
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Note that our experiments use proper scheduling algorithms (e.g. QFQ,

DRR), which need to access some global state to make decisions. In par-

ticular we leave out queue management schemes such as Linux fq_codel or

pfifo_fast, as they make local decisions and so they are not real schedulers.

With local decisions the clients can run the queue management scheme in par-

allel on different cores, so that our centralized architecture is not necessary.

6.1. Two PSPAT implementations

In order to better evaluate the architecture of PSPAT, we have built two

versions of PSPAT, one in kernel, one in userspace. The in-kernel PSPAT is

a completely transparent replacement of the Linux packet scheduler. Once en-

abled with a sysctl, packets are intercepted in __dev_queue_xmit() and put

in the client mailboxes. After being scheduled, the packets are delivered to

the network device through dev_hard_start_xmit(). The ARBITER is im-

plemented as a kernel thread which uses the TC [1] subsystem from the Linux

kernel (also known as the “qdisc” layer) as the Scheduling Algorithm. This

gives a perfectly fair comparison with TC as we use exactly the same code and

datapaths for the SA. On the other hand, the reuse of existing code brings in

some unnecessary performance limitations, as discussed below.

The userspace version of PSPAT uses scheduler implementations taken from

the dummynet [2] link emulator, and optimized for running in a single thread. It

supports multiple network I/O mechanisms through UDP sockets, BPF sockets,

or high speed ports provided by the netmap [14] framework and the VALE [23]

software switch. Since PSPAT already implements a rate limiter, it is not nec-

essary to add another one (the HTB node) as in TC. The in-kernel version of

PSPAT requires two memory accesses (and cache misses) per packet: one to

fetch the skbuf from the CM, one to fetch the packet size and metadata from

the skbuf. On top of this, classification through TC consumes some extra time.

In contrast, hardware schedulers can make their decisions using pre-classified

traffic (one client = one flow), and the packet length is readily available in the

transmit ring. The userspace version of PSPAT permits an evaluation in condi-
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tions similar to those of hardware schedulers. Each client produces a different

flow, so the only information needed for scheduling is the packet length, which

is 2 bytes instead of the 8 bytes of an skbuf, and is available in the CM without

an extra pointer dereference. Communication through the mailbox is thus a lot

more efficient. Finally, clients also perform the role of DISPATCHERS, once

the ARBITER has cleared packets for transmission.

Overall, the userspace PSPAT can be a lot faster and therefore useful to

explore performance improvements in the implementation of Scheduling Algo-

rithms and the ARBITER architecture. Moreover, it supports operation on

platforms where we cannot replace the running kernel, or we do not want to

(e.g., userspace I/O frameworks and protocol stacks).

6.2. Testbed description

For our experiments we use two hardware platforms called I7 and XEON40,

and several 10 G and 40 G NICs. Platform I7 is a single-socket i7-3770K CPU at

3.5 GHz (4 physical cores, 8 threads), 1.33 GHz DDR3 memory, and runs Linux

4.13. On I7 we can use dual port Intel NICs: the X520 (10 Gbit/s, 8 PCIe-v2

lanes at 5 Gbit/s each) and the XL710 (40 Gbit/s, 8 PCIe-v3 lanes at 8Gbit/s

each), both including a hardware DRR scheduler. Our tests use one or two

NIC ports, connected back-to-back. Since we have physical access and complete

control on I7, we are able to replace the Linux kernel and use the in-kernel

PSPAT implementation, in addition to the userspace one (see Sec. 6.1).

Platform XEON40 is a dual socket system with Xeon E5-2640 CPUs v4

at 2.4 GHz (max turbo 3.4 GHz), with 10 cores (20 threads) for each socket,

2.133 GHz DDR4 memory, and running Linux kernel 3.10. XEON40 does not

have fast NICs so tests here are done on the loopback interface, using different

UDP ports to avoid contention on the destination socket. Moreover, on XEON40

we don’t have the freedom to change the kernel and so we are only able to test

the userspace PSPAT implementation.
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6.3. Experiment methodology and configuration

In all the experiments, clients are traffic generators with configurable rate,

packet size and burst size. With the in-kernel PSPAT, clients are either pro-

cesses sending on UDP sockets, or pkt-gen transmitters. The pkt-gen program

is a fast UDP packet generator that uses the netmap API [14]; although netmap

normally bypasses the whole Linux kernel stack, we use a configuration (emu-

lated netmap mode) that lets the packets go through the standard Linux network

device (qdisc) layer, like the similarly named Linux kernel module [24, 25]. In

the userspace implementation clients are instead simple generator threads that

directly write to the client mailboxes.

Usual care is taken to achieve reliable and meaningful measurements:

• Disable high C-states, to avoid the high and unpredictable latency of CPU

wake ups.

• Lock CPU clock speed to the maximum value, to avoid dynamic frequency

adjustments.

• Pin threads to CPU cores to limit interferences due to process scheduling.

The ARBITER thread, if present, is allocated on a separate core, with the

other hyperthread normally left idle to avoid interference. The assignment

strategy of client threads is experiment specific.

• Configure interrupt moderation on the NICs to vendor-recommended val-

ues, that allow for interrupt batching with low latency cost.

• For latency tests, on the receiver side, use of busy wait instead of noti-

fications. This removes the unrelated receiver wake-up latency from the

measurement.

• For throughput tests, receivers bind UDP sockets or netmap ports, but

normally do not read from them to minimize the receive side processing

costs and focus the measurements on the transmit side.
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• Repeat each single measurement 10 times, computing the arithmetic mean

and standard deviation. The standard deviation is not shown in the plots

when it is smaller than 5% of the average.

Unless specified otherwise, in all experiments the system is configured for

the worst case or to stress the phenomena under investigation:

• Using minimum-sized packets (60 bytes) for throughput measurements

allows to stress the systems under the highest possible load.

• Using MTU-sized packets (1500 bytes) for latency tests cause the highest

T-WFI, and so the highest latency.

• The Scheduling Algorithm (DRR or QFQ) uses a quantum of one packet,

and queue size and bandwidth large enough not to act as a bottleneck.

• Clients have the same weight, and send as fast as possible.

• PSPAT uses ∆A = 1000 ns, as explained in Sec. 3.4

• On XEON40 the ARBITER thread runs on the second socket, while clients

are allocated starting from the first socket; in this way we can measure

the worst case cost of the interaction with clients.

6.3.1. Packets per second vs decisions per second

For packet processing systems, the load has little dependency on the packet

size, so the metric of interest for throughput is normally “packets per second”

(pps). When the packet transmission time is very short (say, below 500 ns),

there is no measurable advantage in scheduling individual packets, and it may

be preferable to make a single decision on multiple packets for each flow, (say,

up to 500–1000 ns worth of data, if available). If one performs this aggregation,

the “pps” figure may be deceiving, and instead one should report the number of

“decisions per second”. The userspace version of PSPAT supports aggregation,

but here we only report results with aggregation disabled (i.e. the worst case),

so its “decisions per second” and “pps” are the same.
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Figure 7: Throughput in pps on I7 using UDP socket senders. For PSPAT experiments, the
in-kernel version is used.

6.3.2. T-WFI vs latency distribution

The T-WFI cannot be measured directly unless we can identify the worst

case scenario. Furthermore, the theoretical analysis abstracts from real world

phenomena such as lock contention, cache misses, congestion, which ultimately

lead to variable processing times and latency. We thus look at a related metric,

namely the latency distribution in one-way communication between a client and

a receiver.

6.4. Throughput experiments

Our first set of experiments measures the maximum throughput achievable

with multiple UDP senders in the following scenarios: (i) no scheduling (base-

line); (ii) scheduling done by TC; and (iii) scheduling done by PSPAT. In order

to measure the maximum throughput, we configured the Scheduling Algorithm

with a very high link rate (i.e. 500Gbit). In this way the link emulation never

acts as a limitation, and we are able to see the bottlenecks in the network stack,

the packet scheduler or the clients.

Figure 7 shows the results on I7 with the in-kernel PSPAT and a 40 Gbit/s
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NIC, using up to 100 UDP clients distributed over the first 6 hyperthreads (the

first three 3 physical cores). Clients are allocated on the hyperthreads in a

round-robin fashion, filling the two hyperthreads of a physical core before using

the next physical core. With no schedulers, clients can work in parallel on the 8

NIC queues, and throughput increases monotonically until the 6 hyperthreads

are fully utilized, which happens around 10 clients. Note that the slope of the

curve for 1–6 clients alternates between two values, because of the order used

to allocate the clients. This happens because running two greedy UDP clients

on the two hyperthreads of a same physical core slows down both clients con-

siderably: the pair delivers only 1.3 times the traffic delivered by a single client

if the other hyperthread is idle. With more than 10 clients the system saturates

almost perfectly at 5.7 Mpps, with only minor performance degradation due to

increased memory pressure and process scheduling overhead. When using the

Linux TC packet scheduler (configured with QFQ), throughput is much lower in

general (up to 80% lower than the baseline), and starts degrading after 5 clients,

where it peaks at 1.5 Mpps. The huge difference w.r.t. the baseline shows that

the Linux packet scheduler is the bottleneck. With many clients TC saturates

at 1.18 Mpps. The throughput degradation in this case is also due to increased

contention on the scheduler lock. The other two curves report the performance

of PSPAT configured with QFQ; in the first one transmission is carried out di-

rectly by the arbiter, while in the second one transmission is done by a separate

DISPATCHER thread, which is pinned to one of the 6 hyperthreads used for

the clients. In both cases, for less than 4 clients the throughput of PSPAT is

even higher than the baseline, because part of the work (scheduling and trans-

mission) is now performed in parallel by the ARBITER or the DISPATCHER

thread, instead of being performed by the clients. Note that offloading work to

other entities such as interrupt handlers and worker threads is common practice

in OSes. For more clients, the throughput reaches a peak and then slightly

degrades to the saturation point. While peak and saturation numbers are dif-

ferent when a DISPATCHER is used (4.7 vs 3.8 Mpps for the peak, 4 vs 3.2

Mpps for the saturation), the behaviour of the curve is very similar. Our profil-
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Figure 8: Throughput in pps on I7 using netmap pkt-gen senders. For PSPAT experiments,
the in-kernel version is used. A wrong configuration of PSPAT (i.e., not reserving a physical
core for the ARBITER thread) causes a significant throughput drop in the worst case, as can
be seen in the PSPAT curve for 7 and 8 clients.

ing analysis shows that the sensible throughput degradation is to be attributed

mainly to the implementation of the Scheduling Algorithm: we observed that

the ARBITER thread spends an increasing portion of its time in the SA en-

queue/dequeue routines as the number of clients increases. To a lesser extent,

increasing the number of clients implies more work for the arbiter, which must

handle more queues.

To exercise the system at higher input loads we use pkt-gen as clients:

these sources generate much higher packet rates, up to 16 Mpps with 8 clients.

Figure 8 shows how with no scheduler the system achieves perfect scaling, with

each client transmitting on a separate NIC queue. The alternating slope is

not visible here because a single pkt-gen client does not utilize the 100% of its

hyperthread; the two hyperthreads on the same core can therefore alternate

efficiently in using the shared CPU resources, without measurable interference.

The curves for TC and PSPAT in Fig. 8 show a behaviour that is very similar

to the one of Fig. 7, with both packet schedulers saturating already with two

clients, as pkt-gen clients are more greedy than UDP ones. Throughput for TC
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Figure 9: Throughput for userspace PSPAT on I7.

starts to drop earlier (with 3 clients), slowly declining down to 1.5 Mpps as more

clients are added to fill all the available NIC queues and hyperthreads. Up to

6 clients, PSPAT throughput slightly declines because of increased inefficiency

of the Scheduling Algorithm, as explained earlier. If pkt-gen clients are placed

on the same physical core (with 7 clients) and the same hyperthread of the

ARBITER thread (with 8 clients), throughput drops significantly because the

clients are aggressively stealing CPU cycles (or the CPU internal pipeline) to

the ARBITER while the ARBITER is the bottleneck. Despite being a worst-

case, this is not the right way to deploy PSPAT, which requires a physical

core to be dedicated to the ARBITER thread, but we present this result here

for completeness. Note that in all the correct configurations (up to 6 clients)

PSPAT is still twice as performant as TC.

Finally, Figure 9 shows the results of our throughput experiments on I7

with the userspace PSPAT configured with DRR. The three curves on the bot-

tom correspond to the same experiments reported in Figure 7, except for the

experiment with the DISPATCHER, which does not apply here because the
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transmission is performed by the client themselves. For the baseline and TC

experiments, the only differences with the previous experiments are that (i) the

UDP clients are implemented as threads in the same process that (optionally)

runs the userspace ARBITER thread; and (ii) DRR is used in place of QFQ.

This explains the minor performance differences between the two curves across

Fig. 7 and Fig. 9, which are otherwise the result of the same experiment. The

alternating slope is visible also here for both the baseline and PSPAT curves.

The most notable difference between kernel and userspace PSPAT is that a

sensible UDP throughput degradation is not visible with the userspace version,

which saturates almost perfectly at 4 Mpps. This confirms that an optimized

implementation of the PSPAT architecture (together with a scalable implemen-

tation of the scheduling algorithms) is able to behave ideally under high load

and/or with many clients, and that the throughput drop of the kernel PSPAT

is not a limitation of our architecture.

As the userspace implementation is sufficiently fast, we perform two addi-

tional tests to push the PSPAT architecture to its limits. The corresponding

curves are reported at the top of Fig. 9. In the first experiment, described by

the lower curve, each client transmits the packets to a port of a separate netmap

VALE [23] switch instead of sending to an UDP socket. This makes the I/O

very fast for two reasons: first, the cost of transmitting a single packet is lower

because the OS network stack is completely bypassed; second, and more im-

portantly, the ARBITER releases scheduled packets in batch, so that the client

can send the whole batch with a single system call. Note that we use VALE

ports because they are faster than our NICs in terms of pps. The throughput

curve shows a behaviour that is very similar to the UDP+PSPAT curve but is

more than 10 times higher for any number of clients, peaking at about 40 Mpps

with 5 clients or more. In this situation the ARBITER is the bottleneck, and

a minor performance degradation is measurable as the number of clients grows

(with 100 clients the throughput is 15% less than the peak). Once again, this

degradation is due to the higher number of queues that the ARBITER thread

needs to scan, and it is only visible because of the extreme packet rates enabled
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Figure 10: Throughput on XEON40 using UDP sockets and different configurations. The
userspace PSPAT has almost no loss of performance with respect to the no scheduler case,
whereas TC scales very poorly.

by the netmap fast I/O. Replacing the fast I/O with a no-op does not lead to

interesting differences. The throughput is essentially the same for 5 clients or

more, while for less than 5 clients the alternating slope is replaced by a more

linear trend, since the two clients on the same hyperthread have less work to do

and therefore interfere less with each other. The same behaviour in saturation

just confirms that the ARBITER thread is the bottleneck for both experiments.

6.4.1. Scalability with dual-socket machines

On XEON40 we can run the throughput tests only with UDP clients sending

to the loopback interface (see Sec. 6.2), and userspace PSPAT. These experi-

ments are interesting mainly because XEON40 is a dual-socket machine, and we

can see how the NUMA memory system affects PSPAT performance. Results

are reported in Figure 10, using a logarithmic scale for both X and Y axes. The

bottom curves show that the network stack scales reasonably well in absence of

a scheduler, with the usual alternating slope resulting from the client allocation
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strategy. However, when TC is configured with a scheduling algorithm (DRR),

throughput saturates early on and severely as clients are added, down to just

0.25 Mpps with 100 clients (less than 20% of the maximum value). Note that

the throughput drop due to the congestion of the TC subsystem becomes more

evident for more than 20 clients, when new clients are placed to cores on the

second socket. This dramatically increases the cost of locking as contenders are

placed across two different sockets.

In contrast, the userspace PSPAT only loses a small amount of capacity even

with a large number of clients. No sensible throughput drop happens because

of (greedy) clients being placed across different sockets. Similarly to I7, the

total throughput is limited by the the network stack, not by the ARBITER.

By replacing transmission with a no-op, we can isolate the interaction of the

clients with the ARBITER. As shown in the top curve, the ARBITER can

make between 30 and 40 M decisions per second. The bump at 11 appears to

be caused by an operating regime with a better usage of the internal memory

busses in the Xeon socket where the clients are running. This suggests that the

throughput in the top curve is limited by the clients rather than by the arbiter.

6.5. Stability of rate allocation

It is expected that a correctly configured Packet Scheduler, driven below

its maximum speed, can guarantee rates as configured and according to the

properties of the Scheduling Algorithm. When the Packet Scheduler cannot

sustain the link’s speed in terms of packet rate, however, no queues build up

and the Scheduling Algorithm has no opportunity to make decisions. This

situation can lead to incorrect rate allocation.

An experiment with TC on I7 shows exactly this behaviour. Once TC is

configured with a given link capacity and two flows with weight 10 and 1, we

start sending 60-bytes packets at maximum speed from both flows. With a link

capacity up to 590 Mbit/s (corresponding to approximately 1.2 Mpps) TC can

keep up and rate allocation is nominal. Just 10% above that, no queueing occurs

in the SA (because TC cannot keep up with the packet rate), and the bandwidth
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is shared only depending on how requests interleave; in our experiment, the first

flow gets 40% of the effective link bandwidth, while the second flow gets the

remaining 60%.

PSPAT avoids this problem by design: in each round of do_scan() it first

collects outstanding requests before making scheduling decisions, thus allowing

queues to build up and creating input for the decision, independently on the

input load.

6.6. Measurement of latency distributions

Our final evaluation looks at latency distributions. The actual latency in-

troduced by the Packet Scheduler depends in part on the Scheduling Algorithm

and its configuration, and in part on other causes, such as process interaction,

buses, internal pipelines and notifications. As stated at the beginning of Sec. 6,

we want to verify that latency remains stable even when the system is over-

loaded.

For these experiments we set the first client (the “VICTIM”) to send at an

arbitrary low rate (4 Kpps), thus using a small fraction of the link’s bandwidth,

but with a weight 50 times higher than all other “interfering” clients (which

generate traffic as fast as possible). Using a packet size of 1500 bytes also helps

to trigger early any potential CPU, memory or bus bottlenecks. Packets from the

VICTIM client are marked with a TSC timestamp when they are submitted to

the packet scheduler; the TSC is read again on the receiver (on the same system)

to compute the one way latency. The receiving NIC uses netmap to sustain the

incoming traffic rate with no losses. The VICTIM client and the receiver are

pinned to the two hyperthreads of the same physical core; the interfering clients

run the remaining two (for PSPAT tests) or three physical cores (for TC tests) to

avoid interferences due to CPU scheduling. Table 3 reports the one way latency

on I7 and a 40 Gbit/s port in a number of configurations that we comment here.

The first three rows, with the VICTIM client alone, show the one way latency

in the uncongested situation (baseline): latency is small and its distribution is
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Clients Configuration Min Percentile

10 50 90 99

1 HW 5.7 5.8 6.0 6.1 6.4
1 TC 5.5 5.7 5.9 6.1 6.6
1 PSPAT 6.3 6.8 7.2 7.7 8.2

5 HW (PCIe congestion) 9.8 117.0 125.0 137.0 152.0

5 TC @ 10G .812 Mpps 6.6 8.5 12.6 16.6 18.6
5 PSPAT @ 10G .823 Mpps 6.4 7.3 9.0 11.1 12.2

Table 3: Latency (µs) introduced by the scheduler in various configurations, when sending
1500 byte frames on a 40 Gbit/s NIC. The huge latency with HW scheduler is not a mistake:
the PCIe bus is saturated and cannot cope with the load. All tests are run on I7 using the
in-kernel PSPAT implementation

mostly flat in all three cases. PSPAT adds an extra 1–2µs because of the rate-

limited reads and the time it takes to scan all queues.

The next row shows what happens when there is congestion on the PCIe bus.

Here 5 clients drive the NIC’s queues at full speed, but the bus can only sustain

(as determined from other measurements) a little less than 35 Gbit/s, so less

than line rate. The resulting congestion on the bus prevents the VICTIM client

from being served as it should, and the latency jumps well over 100µs, much

beyond even the analytical bound for the T-WFI. The bound is not wrong: the

bus bottleneck is just not modeled as part of the T-WFI.

The last two rows with DRR, 5 clients and link set at 10 Gbit/s show the

effect of a slow scheduler. The in-kernel PSPAT can sustain the nominal packet

rate (.823 Mpps, since preambles and framing are not accounted for), whereas

TC is saturated, runs a little below the line rate, and causes a slightly higher

latency as the service order depends on how clients win access to the scheduler

lock.

6.6.1. Latency on loopback

We conclude the latency analysis comparing TC and the userspace PSPAT

on a loopback interface, using up to 80 UDP clients and DRR configured with

variable link rate. The test configuration is similar to the one described in
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Figure 11: 98-percentile of the latency for TC and userspace PSPAT at different link rates,
operating on the loopback interface. Saturation is indicated by a sudden increase in the
latency. Note the logarithmic scales on both axes.

Sec. 6.6; however, here we use minimum sized packets to reach higher packet

rates, so that we can achieve maximum interference and stress congestion on

the scheduler.

The curves in Figure 11 show some of our measurements, describing how

latency varies with increasing link rate. Theory says that latency for DRR

is proportional to the number of flows and inversely proportional to the link

bandwidth. This behaviour is shown by all the curves in Figure 11 for link

rates below the saturation threshold. On saturation, the Packet Scheduler gets

overloaded, acting as a bottleneck for the packet rate. Note that link rate is

reported in terms of pps (for 60-bytes packets) rather than bps, in order to show

the saturation threshold in terms of packet rate. This is important because the

cost for the Packet Scheduler to process a packet does not depend on the packet

size.

On XEON40, the behaviour of TC and PSPAT is similar until about 150

Kpps. Beyond this value TC saturates because the large number of clients
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starts to congest the scheduler lock, which becomes very expensive to acquire

(see Table 1), specially on a dual-socket machine. In this situation the VICTIM

client competes for the lock with the interfering ones, irrespective of its higher

priority, resulting in higher latencies. In contrast, PSPAT saturates only at 20

Mpps, which is 2 orders of magnitudes higher. Because of PSPAT architecture,

clients don’t compete with each other, but talk with the scheduler by means of

dedicated queues; this gives better isolation among clients, reducing the latency

for “well-behaved” users.

The curves labeled with I7 TC and I7 PSPAT show the result of the same

experiment on I7, with only 5 clients. Both curves show lower latency because

there are less flows, in accordance to the DRR properties. The saturation thresh-

old is higher for both TC (1 Mpps) and PSPAT (35 Mpps) because of the faster

CPU and because I7 is a single socket machine, which means cheaper memory

interactions (see Table 2).

7. Related work

Scheduling algorithms have been extensively studied in the 90’s for their

theoretical properties [10, 6, 11, 26, 27] and later for efficient implementa-

tions [12, 7, 13, 28, 29, 30, 31, 32]. Software packet schedulers such as TC [1],

ALTQ [3] and dummynet [2] are available in most commodity operating systems.

The performance of host-only schedulers has not received much attention.

Some data is reported in [2, 7], but otherwise the majority of experimental anal-

ysis uses bulk TCP traffic (often with large segments and hardware supported

TSO) or ping-pong tests, and in both cases packet rates are not too high. Part

of the reason is also that, until recently [15, 14] network stacks were incapable

to handle high packet rates.

Recent years have seen an increasing recourse to various heuristic solutions

as in Hedera [33], partly motivated by more ambitious goals (such as, scheduling

resources across an entire rack or data center, as in Fastpass [9]), and partly

because of the presumed low performance of existing software solution (which, as
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we demonstrated, were erroneously blaming scheduling algorithms rather than

heavyweight network stacks). Also, the increasing importance of distributed

computation and the impact of latency and tail latency on many such tasks has

shifted the interest from maximum utilization to latency reduction.

As part of this trend, numerous recent proposals started using rate limiters,

such as EyeQ [34], or “Less is more” [35]. Senic [36] shows how large numbers of

rate limiters can be implemented in hardware. By (re)configuring rate limiters

(more on this later) one can keep traffic rates under control thus achieving

some of the advantages of scheduling without the complexity of the algorithms.

Running links below nominal capacity is also a common strategy to reduce

congestion hence latency, and is used in [34, 35, 37] among others.

cheduling network resources for an entire cluster or datacenter is a challeng-

ing problem that has often been addressed by monitoring traffic on individual

nodes, and exchanging feedback between the various node to, eventually, recon-

figure rate limiters at the sources. Unavoidably, such solutions act on coarse

timescales (a few milliseconds at best) and lack any theoretical analysis of per-

formance bounds. As an example in this category, EyeQ [34] proposes an archi-

tecture where rate meters at the destinations periodically communicate suitable

rates for the sources, tracking active sources and their weights. The information

is used to program per-destination pacers on the sources, thus reducing the load

for the scheduler(s). The control loop (at the receiver) compares the receive rate

with allocations, and adjusts them every 200µs, with a feedback that according

to the authors converges in approximately 30 iterations. From these numbers

and graphs in the paper, we can infer that EyeQ has a response time of several

milliseconds, adds a round trip latency of over 300µs, and does not support

rates higher than 1 Mpps. Another example in this category, Silo [37], uses

network calculus to derive formulas for the admission of new clients, then uses

padding frames to implement fine grained traffic shaping in a standard NIC.

Another approach to cluster-level scheduling is Fastpass [9], which has some

high level similarity with PSPAT. In Fastpass, requests for packet transmissions

are first passed to a global, external scheduler that replies with the exact time
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at which the packet should be transmitted. Fastpass addresses a significantly

harder problem than ours, namely, to reduce queueing on the entire network in

a datacenter, as opposed to a single link. As a result, it must use a centralized

scheduler for an entire group of machines, which knows the topology, capacity

and state of the network, as well as the weights/reserved bandwidth for the var-

ious flows. Due to the computational complexity of the problem, the scheduler

in Fastpass must use heuristics that are more expensive than PSPAT, cannot

give strict service guarantees4, and is several times more expensive than ours.

8. Conclusions

We have presented PSPAT, a scalable, high performance packet scheduler

that decouples clients, scheduling algorithm and transmissions using lock free

mailboxes. This maximises parallelism in the system, and permits good scala-

bility and very high throughput without penalising latency.

We have implemented PSPAT and evaluated its performance on single and

dual socket systems and in a variety of load configurations. An in-kernel imple-

mentations runs more than 2 times faster than TC, without slowing down with

increased concurrency. We have much room for improving this version, from

instantiating more dispatcher threads to improving the Scheduling Algorithm

implementation (we currently hook into the implementations supplied by TC).

An optimised userspace PSPAT implementation can handle over 28 million

scheduling decisions per second without overloading, even with 100 concurrent

clients on a dual socket machine, and even faster on a single-socket system. The

maximum scheduling rate is almost 40 Mpps, and latency remains stable even

under heavy load and a large number of clients.

Considering the high packet rates it supports, PSPAT is a good candidate for

use in firewalls or software routers managing access to high speed links. Given

the high scalability, it also very well suited for use on cloud hosting platforms,

4As clearly indicated by the authors, the bound given in the paper [9] only applies if link
utilization is less than 50%
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where resource allocation for potentially non cooperating clients is a necessity,

and certain clients, e.g. instances of Virtual Network Functions, may generate

traffic with extremely high packet rates.

9. Acknowledgements

This paper has received funding from the European Union’s Horizon 2020 re-

search and innovation programme 2014-2018 under grant agreement No. 644866.

This paper reflects only the authors’ views and the European Commission is not

responsible for any use that may be made of the information it contains.

References

[1] W. Almesberger, Linux network traffic control–implementation overview,

in: 5th Annual Linux Expo, no. LCA-CONF-1999-012, 1999, pp. 153–164.

[2] M. Carbone, L. Rizzo, Dummynet revisited, ACM SIGCOMM Computer

Communication Review 40 (2) (2010) 12–20.

[3] K. Cho, Managing traffic with ALTQ, in: USENIX Annual Technical Con-

ference, FREENIX Track, 1999, pp. 121–128.

[4] G. Lettieri, V. Maffione, L. Rizzo, PSPAT source code,

https://github.com/giuseppelettieri/linux-pspat.

[5] M. Shreedhar, G. Varghese, Efficient fair queuing using deficit round-robin,

IEEE/ACM Transactions on Networking 4 (3) (1996) 375–385.

[6] J. C. Bennett, H. Zhang, WF2Q: worst-case fair weighted fair queueing, in:

INFOCOM’96, Vol. 1, IEEE, 1996, pp. 120–128.

[7] F. Checconi, L. Rizzo, P. Valente, QFQ: Efficient packet scheduling with

tight guarantees, IEEE/ACM Transactions on Networking 21 (3) (2013)

802–816. doi:10.1109/TNET.2012.2215881.

42



[8] C. Kulatunga, N. Kuhn, G. Fairhurst, D. Ros, Tackling bufferbloat

in capacity-limited networks, in: Networks and Communications

(EuCNC), 2015 European Conference on, 2015, pp. 381–385.

doi:10.1109/EuCNC.2015.7194103.

[9] J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah, H. Fugal, Fastpass:

A centralized zero-queue datacenter network, in: ACM SIGCOMM 2014,

Chicago, IL, 2014.

[10] A. K. Parekh, R. G. Gallager, A generalized processor sharing approach

to flow control in integrated services networks: the single-node case,

IEEE/ACM Transactions on Networking 1 (3) (1993) 344–357.

[11] J. C. R. Bennet, H. Zhang, Hierarchical packet fair queueing algorithms,

IEEE/ACM Transactions on Networking 5 (5) (1997) 675–689.

[12] P. Valente, Exact GPS simulation and optimal fair scheduling with loga-

rithmic complexity, IEEE/ACM Transactions on Networking 15 (6) (2007)

1454–1466. doi:http://dx.doi.org/10.1109/TNET.2007.897967.

[13] P. Valente, Reducing the execution time of fair-queueing packet

schedulers, Computer Communications 47 (2014) 16 – 33.

doi:http://dx.doi.org/10.1016/j.comcom.2014.04.009.

URL http://www.sciencedirect.com/science/article/pii/

S0140366414001455

[14] L. Rizzo, netmap: A novel framework for fast packet I/O, in: USENIX

ATC’12, Boston, MA, USENIX Association, 2012.

[15] Intel, Intel data plane development kit,

http://edc.intel.com/Link.aspx?id=5378.

[16] Jonathan Corbet, Bulk network packet transmission.

URL https://lwn.net/Articles/615238/

43



[17] G. Lettieri, V. Maffione, L. Rizzo, A study of I/O performance of virtual

machines, The Computer Journal (2017) 1–24doi:10.1093/comjnl/bxx092.

URL http://dx.doi.org/10.1093/comjnl/bxx092

[18] L. Rizzo, S. Garzarella, G. Lettieri, V. Maffione, A study of speed mis-

matches between communicating virtual machines, in: Proceedings of

the 2016 Symposium on Architectures for Networking and Communica-

tions Systems, ANCS ’16, ACM, New York, NY, USA, 2016, pp. 61–67.

doi:10.1145/2881025.2881037.

URL http://doi.acm.org/10.1145/2881025.2881037

[19] L. Rizzo, G. Lettieri, V. Maffione, Speeding up packet I/O in virtual ma-

chines, in: Proceedings of the Ninth ACM/IEEE Symposium on Archi-

tectures for Networking and Communications Systems, ANCS ’13, IEEE

Press, Piscataway, NJ, USA, 2013, pp. 47–58.

URL http://dl.acm.org/citation.cfm?id=2537857.2537864

[20] L. Lamport, Specifying concurrent program modules, ACM Trans. Pro-

gram. Lang. Syst. 5 (2) (1983) 190–222. doi:10.1145/69624.357207.

URL http://doi.acm.org/10.1145/69624.357207

[21] J. Giacomoni, T. Moseley, M. Vachharajani, Fastforward for effi-

cient pipeline parallelism, a cache-optimized concurrent lock-free queue,

PPoPP’08.

[22] L. Rizzo, P. Valente, On service guarantees of fair-queueing schedulers in

real systems, Computer Communications 67 (2015) 34–44.

[23] L. Rizzo, G. Lettieri, VALE, a switched ethernet for virtual ma-

chines, in: CoNEXT’12, ACM, Nice, France, 2012, pp. 61–72.

doi:10.1145/2413176.2413185.

URL http://doi.acm.org/10.1145/2413176.2413185
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Appendix A. Deriving the cost of memory stalls

The cost of memory stalls is heavily dependent on the CPU architecture (x86

in our case), memory coherency protocol and CPU model. The key observation

to estimate the duration of read stalls for a system like PSPAT is that a memory

load operation can complete very quickly if the variable is already in a valid cache

line, or incur in a larger latency (stall) when the cache line has been invalidated
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by a write operation done by another CPU. Similarly, a write operation can

complete very quickly if the variable is in a valid cache line owned exclusively by

the writing CPU. Or it can stall if the CPU write buffer is full, and another CPU

has recently read the same cache line and turned the cache line in shared mode;

in the latter case the write stalls until the update is propagated to the other

CPU. Due to x86 strong memory ordering guarantees, writing alternatively to

just two cache lines shared between R and W, at high rates, is enough to keep

the CPU write buffer full.

Let us TRF and TWF be the average cost of read and write operations,

respectively, when they are “fast”. Similarly, TRS and TWS are the average

cost of read and write operations when they are slow, that is when they stall.

To compute TRF and TRS we let R run at maximum speed (i.e. continuously

reading from Vi), and let W write at a given rate, using a different rate in

each run. For each run we count the total number of reads NR, the number of

different values seen NRS and the total duration DR of the test as seen by R.

Since for each different value seen we pay a slow read we can write

TRSNRS + TRF (NR −NRS) = DR (A.1)

Since we have two unknowns (TRF and TRS), two runs would be enough to

compute them. In practice we can collect more points and use interpolation.

To obtain a well-conditioned set of equations we can use the same duration for

all the runs (so that all the DR will have similar values), and double the writer

rate at each run. Note that if the writer rate is zero, NRS is zero and we can

immediately compute TRF .

We can compute TWF and TWS in a similar way. We let W run at maximum

speed (i.e. continuously writing to Vi), and let R read at a given rate in each

run. We still count the number of different values seen by R, but we also count

the total number of writes done by W (NW ) and the total duration DW as seen
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by W. Since for each different value seen by R we pay a slow write, we have

TWSNRS + TWF (NW −NRS) = DW (A.2)

and compute TWF and TWS by interpolation, using different reader rates and

the same duration across multiple runs.

Appendix B. Proof from Section 5

We report here the proof of the following property, used in Section 5: the

number of ∆D intervals to drain packets from the excess block will be propor-

tional to k = ∆AB/L, or the number of maximum sized packets in the block.

The excess block is drained at the minimum possible rate if clients succeed in

keeping the maximum possible number of queues, say Q, constantly non-empty

from when the round (that leaves the excess block unfinished) terminates. In

fact, in this case the packets in the excess block are served at the minimum

possible rate, B/Q, by the round-robin scheduler in the NIC. Then it will take

about Q
BB∆A = Q∆A time units to consume the block. As for Q, the number

of packets for different queues that clients can dispatch in their B ·∆D budget,

and thus the maximum number of different queues that clients can keep full,

is proportional to the size B ·∆D of the budget, and inversely proportional to

the size L of the packets. The total time to consume the excess block is then

proportional to B∆D

L ∆A = k∆D.
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