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Abstract

Methods and results concerning the optical optimization of a linear Fresnel
collector are presented. The variables considered in the optimization are the
positions, widths and focal lengths of the mirrors; the mirrors can be of variable
size and focal length, and they can be nonuniformly spaced. The target function
to be optimized is the plant cost divided by the collected solar radiation in a
year. The computation of the collected radiation and of its average on the year,
and the optimization of the cost/radiation function are carried out via suitable
mathematical methods and the choice of a plausible cost function. Four different
level of optimization (uniformly spaced identical mirrors; nonuniformly spaced
identical mirrors; mirrors of the same width with uniform spacing and variable
focal lengths; and finally a full optimization) are presented, with a discussion of
the resulting gain on the target function (i.e. the reduction of the ratio plant
cost / collected radiation). The results show that the application of suitable
optimization strategies can lead to an estimated gain around 12% with respect
to the initial configuration (all mirrors identical and adjacent), and that a full
optimization leads to a gain of almost 5% over a simple uniform optimization.
This gain is due in large part to the possibility of regulating the focal lengths (the
optimization of focals leads to a 2.8% gain over the uniform case), while only
a minor improvement (less than 0.4%) is obtained with nonuniformly spaced
identical mirrors.
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1. Introduction

Linear Fresnel systems (Di Canio et al., 1979; Feuermann, 1991; Montes
et al., 2014; Zhu et al., 2014) are among the most promising technologies for
energy production from concentrated sun radiation. In such plants, a linear
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fixed receiver is suspended above a solar field composed by strips of mirrors,
flat or slightly concentrating; each strip rotates on a fixed horizontal axis in
order to reflect the sun radiation towards the receiver. Several studies have
been devoted to plant configurations (Abbas et al., 2013; Grena and Tarquini,
2011; Häberle et al., 2002; Mills and Morrison, 2000; Zhu and Huang, 2014),
study and simulation of various aspects of the plant work (Abbas et al., 2012;
Munoz-Anton et al., 2014; Pino et al., 2013; Velazquez et al., 2010; Zheng et
al., 2014), analysis of different types of receivers (Abbas et al., 2012; Facao
and Oliveira, 2011; Lin et al., 2013; Natarajan et al., 2012; Singh et al., 2010),
or comparisons with linear trough systems (Giostri et al., 2013; Morin et al.,
2012; Schenk et al., 2014); prototypes have been proposed and built (Areva,
2015; Bernhard et al., 2008, 2009; Novatec, 2015; Solar Power Group, 2015).
The main advantages with respect to trough systems are the fixed receiver, the
larger collection area for each receiver (which reduces the cost of the receivers
and simplifies the management of the fluid circulation), the small moving parts
(mirrors are far smaller than the single-block mirror of a solar trough) and the
lower cost of optical components (mirrors are almost flat, and their construction
is simpler). The main disadvantages are the reduced optical efficiency, especially
when the sun is far from the focal plane1, and the larger susceptibility to optical
and tracking errors, due to the larger distances between mirrors and receiver
and to the fixed receiver configuration.

Fresnel systems, even from a purely geometric point of view, allow for a large
variety of configurations, since the properties of the receiver and the positions,
widths and focal distances of the mirrors can all be in principle changed indepen-
dently. Usually, uniform configurations (with all the mirrors equal, and equally
spaced, or not spaced at all) are employed, but this is not mandatory. Uniform
configurations, while simpler in design, do not maximize efficiency, since the in-
clination of the mirrors, the distance from the receiver, the shape of the reflected
beams, the shadowing and blocking among the mirror strips, and the shadowing
from the receiver change significantly with the distance from the midpoint of the
solar field (the point under the receiver). In fact, solutions with varying widths
or spacing among the mirrors have been proposed for fixed-frame linear Fresnel
collectors2 (Goswami et al., 1990). The no-blocking condition (total absence of
blocking for normal incidence), usually imposed for such systems, can also be
applied in the case of independent-mirror Fresnel systems, leading to nonuni-
formly spaced mirrors. Another possible criterion that has been suggested is the
absence of shadowing up to a given incidence angle (Nixon and Davies, 2012).
Mirrors with variable sizes and shapes (and even variable heights) are proposed
in Chaves and Collares-Pereira (2010), following theoretical principles (etendue-

1The focal plane is defined here as the vertical plane containing the receiver.
2In a fixed-frame (or “true”) Fresnel collector, the mirror strips are blocked on a com-

mon flat frame that moves tracking the sun. Their properties and possible applications are
completely different from the case of independent-mirrors Fresnel systems, such as the ones
discussed in this work. In this paper, a Fresnel system will always be an independent-mirror
system, unless otherwise specified.

2



matching). An analytical method to build a variable-size, variable-spacing solar
field that reduces the degrees of freedom to three variables is described in Abbas
and Martines-Val (2015).

If we choose to remove all the uniformity conditions and other prescriptions,
the efficiency of a Fresnel plant becomes dependent on a large amount of vari-
ables; so, there is space for refined - and nontrivial - optimization, which could
potentially lead to significant gains. However, due to the large number of vari-
ables, only partial optimization approaches have been tried so far. Studies of
the spacing factor for uniform systems, or of the optimal focal length of the
mirrors, have been performed for specific systems (Grena and Tarquini, 2011);
optimization of the exergy cost with respect to the no-shadowing maximal an-
gle has been performed, in plants adopting the aforementioned no-shadowing
criterium (Nixon and Davies, 2012). These studies consider a small number
of parameters (3 at most), while no strategies for full optimization have been
presented up to now.

In this paper we try to fill this void presenting a method for the full opti-
mization of the configuration of a Fresnel collector. The target function (i.e.
the function to minimize) is the ratio (plant cost / collected radiation). The
collected radiation is computed considering the geometric optical collection of
the system, averaged on the year. The optimized variables are all the listed pa-
rameters of a system, except the receiver properties (height and width), which
are kept fixed, and the number of mirrors (being discrete, it should be optimized
separately, comparing the different cases).

The target function is proportional to the specific cost of the energy pro-
duced under two hypotheses (whose validity is discussed in the following): (i)
the optical properties of the elements do not change too much with the radia-
tion incidence angle, and (ii) the thermal efficiency does not change too much
in working conditions. Methods to refine the analysis removing these two hy-
potheses are discussed.

Unfortunately, too little data are available to build a general cost function
for a Fresnel plant (which will be also strongly dependent on the design choices);
here a simple parametrization of the plant cost and an example with arbitrary
but plausible cost parameters will be presented.

The optimization will proceed in several steps, in order to evaluate the gain
due to different design choices; the gain is defined as the relative reduction of
the target function. First, a simple optimization of a uniform system will be
made, starting from an initial configuration with all the mirrors equal and ad-
jacent; the optimized variables in this case are only three (width, spacing, focal
length). Starting from the optimal uniform configuration, the uniform spacing
condition can be removed, maintaining all the mirrors equal: the variables be-
come Nm+2 (the Nm positions of the mirrors and the common width and focal
length). Alternatively, the condition on the equal focal lengths can be removed,
maintaining the mirrors uniformly spaced and with equal widths; in this case
there are again Nm + 2 variables. These two special cases of optimization are
of interest because they represent plausible engineering choices: mirrors can be
mass produced, and then, in the latter case, mechanically bent. The final step is
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a full optimization of all the 3Nm variables, removing all the constraints on the
solar field. The degrees of freedom can be reduced by a factor of about 2 if the
system is assumed to be symmetric, an obvious choice if it is NS oriented. The
relative gains due to each type of configuration will be discussed and compared.

The mathematical technique used for optimization is mostly BFGS (Broyden-
Fletcher-Goldfarb-Shanno), see e.g., Dennis and Schnabel (1983). With the ex-
ception of the uniform optimization, quite straightforward, in the other cases
the method will be complemented with simulated annealing cycles (Kirkpatrick
et al., 1983) in order to explore the configuration space in search of possible
multiple local minima. It must be stressed that, from a practical point of view,
the accuracy in finding the optimal configuration may not be very significant, as
the reduction on the final cost is the only important aspect. In other words, if
a very “flat” minimum is present, two distant configurations may exhibit a very
small difference in the target function, and can be considered as equivalent.

Despite the necessary simplifications of the model, the presented methods
are quite general and can be easily applied to practical cases, with known cost
functions and considering also thermal efficiency.

The paper is organized as follows. In Section 2, the structure of the Fresnel
system is described. Section 3 explains how to compute the target function: in
particular, it presents the optical simulation of the system, and the method for
the computation of the mean efficiency during the year. The model for the cost
of the plant is also illustrated, thus defining a suitable target function. Section
4 is devoted to the optimization techniques used in this work. Section 5 shows
the results of the optimization, and discusses possible further improvements
of the methods to include other effects (more realistic cost functions, thermal
efficiency, weather conditions).

2. Model of Fresnel system

The optimization only considers the geometric optical collection; for this rea-
son, the only relevant aspects of the Fresnel plant are the geometric properties
that determine the optical efficiency. In the model, the receiver is flat, horizon-
tal, and placed at height h from the ground. The semi-width of the receiver
opening will be indicated as l. The central axis of the receiver opening will be
called (somewhat improperly) focal line. The quantities h and l are kept fixed
(not involved in the optimization).

On the ground, a number Nm of cylindrical primary mirrors will be placed
with rotation axis at ground level. The system is NS oriented. The mirrors will
be placed symmetrically around the midline of the solar field (the line directly
below the focal line); this means that, in the case of odd Nm, the central mirror
will always be placed exactly below the receiver. This symmetry reduces the
total number of degrees of freedom used in the optimization from 3Nm to 3Nm/2
in the case of even Nm, and to 3(Nm + 1)/2 − 2 in the case of odd Nm. The
position of the axis of the mirror n with respect to the midline will be indicated
as xn, and the semi-width of the mirror will be wn. The mirror will have a focal
length fn. The scheme is shown in Fig. 1.
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>>> approx. position of Figure 1 <<<

For convenience, the list of all the variables defining the system will be
indicated as Xf in the following.

Some comments on the assumptions made here can be useful:

• The assumption of a flat horizontal receiver is the only significant simplifica-
tion introduced in the model; it is a sound assumption, since almost all the
proposed configurations for Fresnel plants adopt a receiver with a secondary
reflector or a cavity, with a flat opening that is the effective target;

• Mirrors are assumed to be cylindrical, since this is the most common choice; of
course, the same optimization procedure can be applied to parabolic mirrors,
adapting the optical simulations (described in Sec. 3);

• Symmetry of the mirrors around the receiver is a straightforward assump-
tion for NS-oriented systems, which will be the orientation considered in the
optimizations.

Physical properties of the optical elements (reflectivities, absorbance) are
not defined, since only the geometric optical collection is considered. In fact,
variations of reflectivities and other surface properties w.r.t. the incidence angle
become strong only for high incidence (> 60 deg), and the geometric optical
efficiency can be considered to be proportional to the real optical efficiency with
very good approximation.

Thermal properties are not considered, either: the energy obtained is as-
sumed to be proportional to the optical collection. A thermal analysis would
require a detailed description of the receiver and this is out of the scope of this
paper. A short discussion on the possibility of introducing thermal efficiency in
the analysis is given in Sec. 5. In fact, the choice of considering only the optical
collection does not lead to as large an error as one may think, since the thermal
efficiency of a receiver string in stationary state usually does not change too
much in working conditions; however, a truly accurate cost optimization would
require a thermal model of the receiver.

Beside the plant geometry and properties, two important parameters are
the minimum and maximum value of the collected radiation. The existence of
these limits is a quite straightforward assumption if a realistic plant must be
described, since the system is designed to operate in a certain range of radiation
intensity to achieve a determined target temperature. The assumption is also
mathematically important for the optimization procedure, since without this
hypothesis the optimal system could be completely unrealistic (e.g., a system
with a very low concentration can easily have a high optical efficiency, but
it is not a realistic solution; on the other side, price parameters that favour
extremely high concentrations can be devised, but this is not acceptable). So,
the definition of the minimum and maximum working radiation is essential for
the optimization procedure. It will be assumed that the plant will not work
below the minimum radiation (efficiency 0), and when the collected radiation
exceeds the maximum value the plant will work at the maximum value, reducing
in some way the incoming radiation (e.g. defocusing some of the mirrors).

5



3. Computation of the target function

3.1. Computation of the mean collected radiation

The computation of the mean collected radiation during the year requires the
integration of the collected radiation over a number of different sun positions.
For each sun position, the computation of the collected radiation is performed by
numerically integrating over the solar cone. So, the basic tool is the computation
of the collected radiation for collimated rays. The computational procedure can
be summarized in three steps:

1. Given an irradiation of collimated rays with a defined direction (within the
solar radiation cone), the amount of radiation collected in the receiver open-
ing is computed, with the tracking position of the plant determined by the
sun coordinates;

2. Results of the previous step are averaged on the solar profile;

3. Results of the previous step are averaged on the distribution of the sun
position during the year, also considering the change in the extraterrestrial
radiation (due to the change in sun-earth distance) and introducing the air
mass correction dependent on the sun position.

The first step is performed by computing, for each of the primary mirrors,
the fraction of its surface which projects the radiation in the receiver opening
(the “active” part): this can be done numerically with high accuracy. The
active part will be determined by taking into account shadowing and blocking
from other mirrors, out-of-target rays, and the shadow of the receiver itself.
This computation is almost exact, except for the small error (< 10−7) that
arises when finding numerically the limits of the active fraction of the mirrors;
the computation does not introduce the discretization effects (such as spurious
oscillations of the efficiency) typical of ray-tracing methods.

This computation is repeated for a sample of ray directions (second step)
suitably weighted so as to reproduce the solar beam, under the Lambertian as-
sumption of a uniform radiation cone. The geometric cosine effect is included in
the computation, as is the enlargement of the projected radiation cone when the
sun direction is not orthogonal to the focal line. The result of the computations
is the collected radiation (per length unit) given a unitary DNI and a given
position for the sun, considering only the geometrical efficiency (all the surface
reflectivities and absorbances set to 1). The sun position will be described us-
ing as coordinates the declination δ and the hour angle H, for reasons that will
be made clear below; such a coordinate system requires the knowledge of the
latitude, which will be considered as fixed (and omitted from the list of vari-
ables). The results of these first two steps of the computation will be indicated
as R(δ,H,Xf ). An example of the behaviour of the function R(δ,H,Xf ) with
respect to H, for three different values of δ (summer and winter solstices and
equinox), at a latitude of 30 deg N, is shown in Figure 2, for the system that
will be used as a starting point for the optimizations.

>>> approx. position of Figure 2 <<<
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Air mass correction is then applied to the computed result, in the form
(Ineichen, 2008):

AM(δ,H) = exp

(
− t

(cos z)d

)
, t = 0.606, d = 0.491, (1)

where z is the Zenith angle of the sun (obtained from δ and H). The quantity
AM(z(δ,H)) × R(δ,H,Xf ) is the radiation (geometrically) collected by the
receiver when the sun is at (δ,H), for a DNI equal to AM . This quantity is
proportional to the collected radiation in clear sky average conditions.

Such a quantity should be weighted on the distribution of the extraterrestrial
solar radiation with respect to (δ,H) during the year (third step), in order to
obtain a quantity proportional to the overall collected radiation in the year. A
coordinate set given by declination δ and hour angle H is especially well suited
to this task, since it can be easily shown that the distribution will be uniform
in H, while the distribution in δ can be written as the theoretical distribution
for a circular earth orbit, which is easily computable. This is due to the fact
that the changes in the radiation due to the variation in earth-sun distance
(radiation is proportional to 1/D2) are exactly compensated by the change in
orbital velocity (the “transit time” of the sun in a given small range of positions
is proportional to D2, due to the conservation of angular momentum). The
domain of the distribution will be limited to δ ∈ [−ε,+ε], where ε is the earth
axis inclination (ε = 23.4393 deg). The domain of H will be given by the
condition that the sun is above the horizon: it will be dependent on δ, and it
is given by H ∈ [−Hl(δ),+Hl(δ)], with Hl = arccos(− tanφ tan δ), and φ is the
latitude. In the following optimizations, a latitude of 30 deg N will be assumed.
The normalized distribution will be

ρ(δ,H) =
1

π2

cos δ√
(sin ε)2 − (sin δ)2

, δ ∈ [−ε,+ε], H ∈ [−Hl(δ),+Hl(δ)]. (2)

Note that the shape of the distribution does not depend on the latitude φ, since
δ is a global coordinate, but the domain does.

It will be assumed that the plant will work only whenAM(z(δ,H))R(δ,H,Xf ) ≥
Rmin. This fact restricts the range of H (since, for H = Hl, AM ∗ R = 0) to
[−Hc(δ,Xf ),+Hc(δ,Xf )], where AM(z(δ,±Hc))R(δ,±Hc, Xf ) = Rmin

3. The
requirement could also in principle restrict the range of δ, but this is unlikely to
happen for a real system (it would mean that the system must be completely
shut down in winter, and such a working configuration is likely to be far from
the optimum).

Given a value of δ, the value of Hc(δ,Xf ) is easily computed with numer-
ical procedures, with a limited number of R(δ,H,Xf ) evaluations (4-5 for an
accuracy of 10−3).

3In theory, since for a NS system the collected radiation can have maxima that are not at
midday, a domain composed of disjoint intervals could be obtained. In practice, this never
happens for reasonable Rmin values.
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The implementation of Rmax (maximum geometric collection) is simpler: in
the integration, the result of AM(z(δ,H))R(δ,H,Xf ) is replaced by Rmax when
it exceeds the prescribed value.

So, defining the function

R(δ,H,Xf ) =

{
AM(z)R(δ,H,Xf ) when AM ×R ≤ Rmax
Rmax otherwise

, (3)

the integral to compute in order to obtain a quantity proportional to the col-
lected radiation is

Rm(Xf ) =

∫ +ε

−ε
dδρ(δ,H)

∫ +Hc(δ)

−Hc(δ)

dHR(δ,H,Xf ). (4)

The distribution ρ depends on H only in the definition of its domain, so it
can be moved outside the integral w.r.t. H.

The integration is performed first on the variable H, and then on δ. Each
integration node requires the numerical computation of R(δ,H,Xf ), which is
the heaviest computational burden in the procedure; therefore, the number of
integration points should kept as small as possible. Since the values at the
endpoints of the integration interval for H are known (when the sun is at ±Hc

the collected radiation is R = Rmin), one can use the Gauss-Lobatto quadrature
rule; the number of integration nodes can be halved by symmetry (the function
does not depend on the sign ofH). The integral onH must be computed for each
of the nodes for δ. One can note that the distribution ρ diverges as δ approaches
±ε, with integrable divergences behaving like ∼ 1/

√
|ε− δ|. This fact suggests

the use of a Gauss-Chebyshev (type I) integration method, which is well-suited
for functions with such a behaviour. Using this method (Gauss-Lobatto on
H and Gauss-Chebyshev on δ) the computation of the integral requires a few
seconds on a common PC.

This computation only includes the air mass correction, thus assuming that
the atmospherical conditions, on average, do not change during the day and
during the year. If sufficient meteorological data are available, the analysis
can be refined introducing in the radiation distribution a correction factor that
considers the measured average radiation when the sun is in a certain position
(δ,H).

3.2. Plant cost computation

Once the collected radiation has been determined, the computation of a
target function for the cost optimization requires a model for the cost of the
plant, as a function of the variables to be optimized. The detailed analysis of
the cost of Fresnel plants is beyond the scope of this paper, and it is probably
premature (Fresnel plants show many different configurations with presumably
different cost parameters). For this work, we adopt a plausible and quite general
cost model, dependent on few parameters, and then we try to estimate not-too-
unrealistic cost parameters from some simple assumptions.

The model used here has four cost components:
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1. Since the receiver is not included in the optimization, the receiver cost (in-
cluding the support structure) will be a fixed component in the cost function.

2. Land preparation and common mirror support structures will have a cost
proportional to the occupied area.

3. Each mirror will have a fixed cost component due to the axis, tracking system,
mounting costs, and

4. a cost component proportional to its area (cost of the mirror itself).

Assuming that these are the only cost components, the cost function for a linear
metre of collector can be written as

C(Xf ) = c0 + ctxNm
+ cmNm + cw

Nm∑
i=1

wi. (5)

where the first term is the receiver component (fixed), the second term is propor-
tional to the occupied area (estimated using the position of the last mirror), the
third term is the fixed cost component for each mirror (proportional to the num-
ber of mirrors) and the fourth term is the area-dependent cost for the mirrors.
Note that the two coefficients ct and cw are defined in relation to half-widths.

In order to obtain a sufficiently realistic model for the cost of the plant, price
parameters were estimated in the following way. We started from a typical
cost estimate for linear concentrator plants (200 AC/m2), assuming that this
will be a correct overall estimate for a Fresnel plant with 25 mirror strips of
1 m each, without any spacing between adjacent mirrors. We also assume
(somewhat arbitrarily) that the cost will be equally distributed among the four
cost component, thus obtaining the price parameters. The result is

c0 = 1250 AC/m, ct = 100 AC/m2, cm = 50 AC/m, cw = 100 AC/m2. (6)

The target function that should be minimized will be simply C(Xf )/Rm(Xf ).
This function is proportional to the specific cost of the energy optically collected
by the receiver.

The computation of the cost itself does not add any computational difficul-
ties, once the function Rm is known.

4. Optimization method

The choice of an optimization strategy depends, of course, on the properties
of the target function. Here the target function is nonsmooth and nonconvex;
moreover, it is not feasible to compute its gradient analytically (where it exists).

If the starting point is comparatively close to a possible minimum, the opti-
mization method employed in the present work is BFGS with numerical compu-
tation of the gradient. Although BFGS is conceived, in principle, to minimize
functions that are at least twice differentiable, it turns out to be surprisingly
robust even in presence of points where the target function is nondifferentiable
(Lewis and Overton, 2013).
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If the initial guess is potentially far from a minimum, simulated annealing
is used to generate a starting point for BFGS.

Four cases are considered here:

• The uniform case (UC): the mirrors are all alike (that is, they all have the
same width and focal length) and uniformly spaced. Optimization is therefore
performed with respect to three variables: distance between adjacent mirrors,
mirror semiwidth and mirror focal length. This is a comparatively simple
optimization that has already been analyzed by several authors. In our case,
several methods, such as BFGS and the Nelder-Mead simplex method, have
been applied, and they all converge to the same optimal configuration.

• Optimization of mirror positions (OP): the mirrors are all alike, but their
positions are free. The efficiency is a function of Nm + 2 variables: the
positions of the mirrors (Nm variables), their common semiwidth and focal
length (two more variables). If the system is symmetric with respect to the
receiver, the number of degrees of freedom reduces to (Nm − 1)/2 + 2 if Nm
is odd, or to Nm/2 + 2 if Nm is even.

• Optimization of focal distances (OF): this case involves uniformly spaced mir-
rors of the same size, with varying focal lengths. The degrees of freedom here
are again Nm + 2: the Nm focal lengths plus the common semiwidth and
spacing factor. If the system is symmetric with respect to the receiver, the
number of degrees of freedom reduces to (Nm + 1)/2 + 2 if Nm is odd, or to
Nm/2 + 2 if Nm is even.

• Nonuniform full optimization (NU): mirror widths, focal lengths and positions
are free. The number of degrees of freedom is 3Nm for a general system,
whereas for a symmetric configuration there are (3Nm + 1)/2 free variables if
Nm is odd, or 3Nm/2 if Nm is even.

When dealing with many variables (that is, the OP, OF and NU cases), the
target function is likely to have several local minima, which make the optimiza-
tion task more difficult. In these cases, a first local minimum has been obtained
via BFGS starting from the previously obtained optimal configuration. In an
effort to explore other minima, simulated annealing has been used to “heat up”
the system (that is, move it away from the computed minimum) and then to
“cool it down” (that is, find an approximation to a new minimum). At this
point, BFGS has been applied to refine the result. This procedure has been
repeated five times for OP and NU, thus yielding six local minima, and once for
OF, thus obtaining two local minima.

Optimization has been carried out in Matlab, using the following implemen-
tations:

• for BFGS, the implementation available with the fminunc Matlab function,
with default stopping criteria,

• for simulated annealing, a modified version of the Matlab implementation by
J. Vandeckerhove (available on Matlab File Exchange4),

4http://www.mathworks.com/matlabcentral/fileexchange/
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• for Nelder-Mead, implementations available with the fminsearch Matlab
function and with N. Higham’s Matrix Computations Toolbox (Higham, 2002).

For computational reasons, the inverse focal lengths have been used as vari-
ables instead of the actual focal lengths, and the actual target function used
in the computation is −Rm(Xf )/C(Xf ). However, the results shown below
(values of variables and percent gains) refer to to the original target function
C(Xf )/Rm(Xf ), which is more representative of the specific energy cost.

5. Results and discussion

5.1. Results

The configuration used in this work contains 25 mirrors and a receiver of
width 0.4 m placed 10 m above the central mirror. The configuration is assumed
to be symmetric with respect to the receiver.

The limits imposed on the absorbed radiation (normalized with respect to
DNI / AM) are 50 (maximum) and 20 (minimum). The choice of 50 as upper
bound is motivated by the fact that the maximum radiation computed for the
initial configuration (see below) is 50.4.

Initial configuration. This is the starting configuration used to initialize
the first optimization step. We consider 25 adjacent mirrors, symmetrically
arranged with respect to the collector. Each mirror is 1 m wide. The focal
length is taken as the arithmetic mean of the distance between the central
mirror and the collector (10 m), and of the distance between one of the most
external mirrors and the collector (15.62 m), so focal length is f = 12.81 m for
all mirrors. The value of the target function for this configuration is e0 = 560.91.

Uniform optimization. The optimal configuration is given by

• ∆x = 1.21 m (distance between centers of consecutive mirrors),

• w = 0.50 m (semi-width of each mirror),

• f = 16.85 m.

The target function value for this configuration is eUC = 516.00, with a gain of
8.01% with respect to e0.

Optimization of mirror positions. Six local minima were found, with values
of the target function in the range [514.17, 515.78]. This range corresponds to
0.3% of the function value, so the six minima can be considered as essentially
equivalent. However, the corresponding optimal configurations present nonneg-
ligible differences in the mirror positions; this fact will be discussed below (a
similar behavior has also been observed for the NU case). Anyway, even consid-
ering the best of the computed minima (eOP = 514.17), the gain with respect
to the UC case is only 0.36%. This is quite disappointing, since such a small
gain is likely not worth the extra effort involved in building a nonuniform solar
field, if the mirrors are kept identical.

Optimization of focal lengths. Two minima were found, both equal to eOF =
501.50. Since the two values were identical and the corresponding configurations
were quite close, no further minima have been computed. The gain with respect
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to UC is 2.81%, a significant result. This shows that variable focal lengths have
a bigger impact on the efficiency than variable mirror positions.

Note that such a gain cannot be obtained by simply setting the focal lengths
equal to the mirrors’ distances from the target. This fact can be easily verified
by replacing the focal lengths in the OF optimal configuration with the distances
from the target, and noting that the gain disappears completely: the value of
the target function becomes 517.65. The optimal setting of focal lengths is a
more subtle issue.

Nonuniform full optimization. Six local minima were found, with values of
the target function in the range [492.95, 496.45]. This range corresponds to 0.7%
of the function value. Also in this case, even though the variation of the minima
is not large, the corresponding configurations are not necessarily close to each
other. Considering the best among the minima, i.e., eNU = 492.95, the gain
with respect to UC is 4.46%, a satisfactory result. The full optimization of a
Fresnel plant therefore proves to be effective in improving efficiency and points
to the practical interest of choosing nonuniform configurations over uniform
ones. However, it should be stressed that a large part of this gain comes from
variable focal lengths; the additional gain of NU over OF is “only” 1.65%.

The results of the optimizations are summarized in Tables 1 and 2. In Table
1 the gains with respect to the initial configuration and to the uniform opti-
mization are listed. In Table 2, the complete lists of the geometric parameters
for the best minimum found in OP, OF and NU cases are given.

It has been remarked above that, in the OP and NU cases, slightly different
local minima are associated with significantly different plant configurations.
This is likely due to a “flatness” of the target function in a large neighborhood
of the optimal configurations: as a consequence, nonnegligible changes in the
input variables may lead to very small variations in the values of the function.
This behavior may slow down the optimization process, but it has no negative
consequences on the actual realization of the plant, since all the configurations
in the neighborhood are equivalent in practice.

>>> approx. position of Table 1 <<<
>>> approx. position of Table 2 <<<

5.2. Discussion

When considering the results shown in the present work, one should always
keep in mind that the computations are performed for a model with a specific
cost function, considering only the geometric optical collection; moreover, our
aim here is primarily to illustrate the procedure and its feasibility, rather than
give general and conclusive results. Different price functions or different hy-
potheses on the functioning of the plant may change the conclusions. However,
some aspects can be quite safely generalized to generic Fresnel plants work-
ing in a similar concentration range, unless drastically different hypotheses on
the plant are made. Among these considerations, the following are especially
significant:
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• the feasibility of the optimization: a few days of work on a common PC were
needed;

• the order of magnitude of the obtained gain: a gain of more than 10% can
be expected over a configuration with uniform and adjacent mirrors, and a
full optimization gives a gain of the order of 4-5% with respect to a simple
uniform optimization;

• the relative importance of the different variables to be optimized: indepen-
dent tuning of the focal lengths is especially relevant, whereas allowing free
positions for identical mirrors does not lead to a significant gain;

• the “flatness” of the minimum, with the consequent existence of a large range
of configurations that are in practice equivalent;

• the usefulness of the optimization procedure: when planning an investment
for a full scale solar field, reducing the cost of some % means significant
savings, which are surely worth the time and effort required for a preliminary
optimization.

Moreover, the work can be easily extended to more complex and realistic
optimizations, when specific data on the planned system are available. Possible
improvements for the application to real systems are listed here.

• Cost functions can be defined more accurately, without any additional com-
putational weight.

• Receiver variables can be included in the optimization, defining suitable work-
ing conditions (e.g. lower and upper limits on the radiation that depend on
the receiver properties).

• Tracking errors, alignment defects, or surface defects of the mirrors (e.g. ran-
dom deviation from the perfect profile) can be included in the analysis, modi-
fying the optical simulation. For example, defects of the mirrors can be intro-
duced by adopting a degraded sun profile when computing the efficiency, in-
stead of a perfect Lambertian distribution; the effect of tracking errors can be
introduced by averaging different configurations, weighed with the expected
probability distribution of the tracking error (4-5 samples should be enough
if the probability function is smooth and suitable integration techniques are
used). The required computational effort is increased, but the optimization
remains feasible; use of ray-tracing does not seem to be required, unless one is
interested in the details of the distribution on the receiver (in this case, spe-
cial care should be applied in the optimization, since ray-tracing methods can
introduce discontinuities and spurious small oscillations which could hinder
convergence of the optimization).

• Optical physical parameters (reflectivities, absorption coefficients) and their
dependence on the incidence angle can be also included in the optical simu-
lation, with minimal changes.

• Average meteorological conditions during the year can be included by adding a
factor to the radiation distribution, in the same way as the air mass correction.

• If the receiver structure and thermal properties are given, the thermal effi-
ciency can also be considered. This can be done via a steady-state simulation,
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computing beforehand the thermal efficiency of the receiver given the value
of the absorbed radiation (as proposed in Grena and Tarquini (2011)), and
this would not add any computational weight to the optimization; or it can
also be made with a transient simulation, given a suitable not-too-complex
model of the receiver behaviour. In this last case it is not possible to compute
the average on the sun position distribution, and a step-by-step year simu-
lation should be performed. This seems perfectly affordable, given the short
time required by the optical computations; the computation of a few hun-
dred integration values requires a few seconds, so it could be expected that
the simulation of some thousands of time steps, with the analysis of thermal
efficiency, should not require more than a few minutes.

These improvements can be added without changing the optimization scheme,
and - with the exception of the transient thermal simulation - without drastically
changing the method to compute the target function.

6. Conclusions

The feasibility and the usefulness of the cost optimization of a Fresnel plant
were analyzed, considering the optimization of all the variables that describe
the geometry of the mirror field (position, width, and focal length of each mir-
ror). The optimized quantity was the plant cost divided by the averaged optical
collection during a year. The optimization presents no feasibility problem, and
the required computing time was reasonable (a few days of work on a com-
mon PC). The usefulness of the optimization was investigated by comparing
the results obtained for different optimization levels, starting from a uniform
adjacent-mirrors configuration, performing a first uniform, simple optimization,
and then freeing different parameters up to a full optimization. The gain ob-
tained for a full optimization with respect to the initial configuration is around
12%. The gain obtained passing from a simple, uniform optimization (only three
variables involved) to a full optimization is not negligible (almost 5%), and it
is surely worth the effort, given the cost of a full-scale solar plant. Among the
various configurations under study, the choice of identical mirrors with nonuni-
form spacing presents no significant gain with respect to the simple uniform
optimization, whereas the largest gain (almost 3%) is obtained when the focal
distances are allowed to change. The importance of tuning the focal distance
according to the mirror position is an aspect (usually not much stressed in the
literature) that should be carefully considered.

Even if these results are obtained under some simplifications and for a specific
cost function, the methods presented here give a general scheme also suitable
for a more accurate optimization that may involve thermal efficiency and adopt
more realistic and complex cost functions.
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