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Novel drug target identification for 
the treatment of dementia using 
multi-relational association mining
Thanh-Phuong Nguyen1,2, Corrado Priami1,3 & Laura Caberlotto1

Dementia is a neurodegenerative condition of the brain in which there is a progressive and 
permanent loss of cognitive and mental performance. Despite the fact that the number of people 
with dementia worldwide is steadily increasing and regardless of the advances in the molecular 
characterization of the disease, current medical treatments for dementia are purely symptomatic 
and hardly effective. We present a novel multi-relational association mining method that integrates 
the huge amount of scientific data accumulated in recent years to predict potential novel targets for 
innovative therapeutic treatment of dementia. Owing to the ability of processing large volumes of 
heterogeneous data, our method achieves a high performance and predicts numerous drug targets 
including several serine threonine kinase and a G-protein coupled receptor. The predicted drug 
targets are mainly functionally related to metabolism, cell surface receptor signaling pathways, 
immune response, apoptosis, and long-term memory. Among the highly represented kinase family 
and among the G-protein coupled receptors, DLG4 (PSD-95), and the bradikynin receptor 2 are 
highlighted also for their proposed role in memory and cognition, as described in previous studies. 
These novel putative targets hold promises for the development of novel therapeutic approaches for 
the treatment of dementia.

Neurodegenerative dementia (ND) is a multi-faceted cognitive impairment that is progressive and 
irreversible due to deterioration of brain cells and their interconnections. It involves multiple cog-
nitive deficits manifested by memory impairment and cognitive disturbances. The understanding of 
the genetic basis of ND has advanced in recent years, giving some insights into disease pathophysiol-
ogy, but there are still major knowledge gaps in understanding the molecular mechanism underlying 
dementia. Dementia can be caused by a wide variety of diseases including more frequent pathologies 
such as Alzheimer’s disease, but also rare ones including Pick’s disease. Despite the high prevalence of 
dementia in the population, no drug treatments are available that can provide a cure. The two main 
classes of drugs available to treat Alzheimer’s disease, cholinesterase inhibitors and NMDA receptor 
antagonists, can only ameliorate the symptoms, or temporarily slow down the disease progression1, 
but they are not efficacious in treating the disease. Thus, due to the constant and rapid increase of 
life expectancy with an epidemic progression of neurodegenerative disorders, particularly Alzheimer’s 
disease2, it becomes very urgent to understand the molecular basis of dementia and to develop novel 
efficacious treatments.

The identification of novel drug targets (DTs) is of great importance for the development of new 
pharmaceutical products3, but the traditional drug discovery process is often laborious and expensive4. 
Systems biology can contribute to this field of research through an integrated view, capturing the com-
plexity of the systems and integrating the huge amount of scientific data accumulated and archived 
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in recent years. In such a situation, computational methods have become more and more essential to 
mine high-throughput data and discover useful knowledge for drug discovery in general and drug tar-
get identification in particular3,5–9. Among a wide range of approaches, the molecular network-based 
approach has the potential for the identification of DTs8,10. Molecular networks are very informative in 
studying human diseases and drugs because it is well-known that most molecular components do not 
perform their biological function in isolation, but interact with other cellular components in an intri-
cate interaction network11–13. Emig et al. employed the network propagation and random walk method 
to predict DTs14. The domain-tuned-hybrid method was proposed to infer the network of drug-target 
interactions15. By analyzing human protein-protein interaction network, Milenković et al. developed a 
graphlet-based measure of network topology to predict potential drug targets16. Although previous works 
have been paving the way to the prediction of DTs, there exists a limiting factor in such data-intensive 
work due to the use of a single data source. Instead, it is essential to integrate the rich sources of -omic 
data (from the molecular to the network level) to acquire a comprehensive coverage of biomedical prop-
erties relevant to drug discovery.

In this study, we present a novel integrative approach to predict potential new drug targets for demen-
tia based on multi-relational association mining (MRAM), an advanced data mining technique able to 
manipulate heterogeneous data without any information loss. The diseases studied are: Frontotemporal 
dementia (FTD), Alzheimer disease (AD), Lewy bodies disease (LBD), Progressive supranuclear palsy 
(PSP), Corticobasal dementia (CBD), Pick’s disease, Prion disease, Huntington’s disease, and Amyotrophic 
lateral sclerosis-Parkinsonism/dementia complex. The investigation was based on the list of known 
dementia DTs curated in17 with the integration of protein interaction network (PIN) and biological data 
from the Reactome, Gene Ontology, and InterPro databases. MRAM combined multiple relational data 
and achieved a better computational performance than other data mining techniques. Our method was 
able to predict novel DTs by inferring predictive association rules that were used to run testing exper-
iments on the set of putative DTs that have direct interactions with both dementia-related genes and 
dementia DTs in the PIN described in17.

Our systems biology approach identified a series of potential novel DTs functionally associated 
to metabolism, cell surface receptor signaling pathways, immune response, apoptosis, and long-term 
memory. Among the predicted DTs, numerous serine threonine kinases, such as DLG4 (PSD-95) and a 
G-protein coupled receptor, Bradykinin receptors 2, were highlighted which could be considered for the 
development of innovative therapeutic approaches for the treatment of dementia.

Materials and Methods
The pipeline that we applied is presented in Fig. 1 and consists of five steps as follows.

1.	 Extraction of molecular targets of drugs in different phases of the drug discovery process (from 
preclinical to marketed drugs);

2.	 Construction of a protein interaction network including the 1-step neighbors of DTs;
3.	 Integration of heterogeneous data from multiple databases (listed in Table 1);
4.	 Induction of association rules for DT prediction by using the MRAM algorithm;
5.	 Biological interpretation of the predicted DTs.

Curation of dementia-related drug targets.  Drug molecular targets were obtained by collecting 
information from different pharmaceutical company websites, from a clinical trial database (www.clin-
icaltrials.gov) and from the DrugBank database18. Drugs for the treatment of dementia in all phases of 
the drug discovery process, from preclinical to marketed drugs, were included. Although this approach 
is considering targets with lower (drugs in preclinical phases) and higher (marketed drug) level of con-
fidence, it allowed obtaining the broadest coverage of the genes of interest for pharmaceutical drug 
development to identify the overall key molecular targets of interest for the treatment of dementia. We 
did not consider the overall pharmacological activity of the compounds, but only the primary targets 
of the drugs. From the set of DTs, we converted gene symbols to UniProt protein accessions using the 
identifier mapping scheme provided by the UniProt database19, obtaining the set of 268 DT proteins 
reported in Supplementary Material S1.

Construction of the interaction network of drug targets.  PINs are becoming increasingly com-
prehensive and they provide a better way for the understanding of the interaction among molecules than 
gene networks11,20. Our PIN was obtained from the Interologous Interaction Database (i2d)21. The i2d 
database stores two types of interactions: the source interactions curated from the majority of well-known 
data sources such as HRPD, BIND, BioGrid, DIP, IntAct, and the predicted interactions obtained by a 
homology-based approach. To increase the reliability of the protein interaction data we only considered 
the 183,524 source interactions homo sapiens-related.

Based on the set of mapped DTs, we extracted the PIN by processing raw data of protein-protein 
interactions (PPI) in the i2d database. The final PIN of interest contained the DTs (nodes) and their 
direct interactions (edges). In this study, we considered one-step neighbors. The network was undirected 

http://www.clinicaltrials.gov
http://www.clinicaltrials.gov
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Figure 1.  The systematic workflow of our methodological approach. Drug targets (DTs) were obtained 
by collecting information from different pharmaceutical company websites in the different phases of the 
drug discovery process (in red, yellow and orange). The interaction network of DTs was then constructed by 
extracting the direct 1-step neighbors of the DT based on the i2d database (the blue nodes in the network). 
Following the integration of multiple and heterogeneous data types by using the MRAM method, the rules 
were induced to predict the potential DTs. Finally, We characterized the functionality of the potential DTs by 
testing over-represented Gene Ontology biological process terms and pathways.

Database Description URL Statistics Data extracted

Clinical drug data
a database of publicly and 

privately supported clinical studies 
of human participants conducted 

around the world
www.clinicaltrials.gov drug target

DrugBank

a bioinformatics and 
cheminformatics resource that 

combines detailed drug data with 
comprehensive drug target (i.e. 

sequence, structure, and pathway) 
information

http://www.drugbank.
ca/ 4,092 unique drug targets drug target

i2d
an on-line database of known 
and predicted mammalian and 

eukaryotic protein-protein 
interactions

http://ophid.utoronto.
ca/

183,524 curated 
interactions for human protein interaction

Reactome
a curated resource of core 

pathways and reactions in human 
biology.

http://www.reactome.
org 1,597 for human pathway

InterPro

an integrated database of 
predictive protein "signatures" 
used for the classification and 

automatic annotation of proteins 
and genome

http://www.ebi.ac.uk/
interpro/ 7,497 protein domains protein domain

Gene Ontology

a relational database comprised 
of the GO terms as well as the 
annotations of genes and gene 
products to terms in the those 

ontologies

http://geneontology.
org/ GO term

Table 1.  Reference databases used for data retrieval during the investigation.

http://www.clinicaltrials.gov
http://www.drugbank.ca/
http://www.drugbank.ca/
http://ophid.utoronto.ca/
http://ophid.utoronto.ca/
http://www.reactome.org
http://www.reactome.org
http://www.ebi.ac.uk/interpro/
http://www.ebi.ac.uk/interpro/
http://geneontology.org/
http://geneontology.org/
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and unweighted because we considered the binary interactions. Figure 2 illustrates the resulting PIN of 
dementia DTs. Protein identifiers are the UniProt ID accession number and gene identifiers are repre-
sented by the official gene symbols.

Combination of heterogeneous data from multiple data sources.  We considered both topo-
logical relationships between the DTs and their network neighbors and functional data representing 
biological properties of the DTs.

Regarding the topological data features, we calculated the number of a protein’s neighbors in our PIN, 
i.e. the degree centrality index of proteins formally defined as the cardinality of the set DC(pi) =  {pj ∈  N 
|eij ∈  E}, where eij denotes an interaction connecting pi and pj, and E is the set of interactions. Degree 
centrality is one of the main measures used to study hubs of a network. We also considered articulation 
proteins. A protein is an articulation point in a network iff removing it (and the interactions through it) 
disconnects the network. These topological properties help elucidating the role of the DTs in the PIN.

Regarding the functional data features, we investigated three different kinds of properties: GO term, 
biological pathway and protein domain. The GO terms in the Gene Ontology database22 are divided into 

Figure 2.  Interaction network of drug targets including drug targets and their first neighbors as 
extracted from the i2d database. The DTs are highlighted in red.
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three categories: molecular function, biological process, and cellular component, and this information is 
used for the DT prediction. Since DTs most likely are part of the same cellular pathways, data extracted 
from the Reactome pathway database23 were analyzed. Protein domains are defined as structural or 
functional elements within a protein and affect the way that one protein interacts with one another. The 
protein domains of the DTs were obtained from the InterPro database24.

A multi-relational scheme was structured in form of tables and relationships between tables in the 
SQL Server Database Management to store our knowledge base as described above. The multi-relational 
scheme shows its advantage in the data integration because the data types are heterogeneous: GO terms, 
pathways, and protein domains are categorical free text while the degree centrality indexes are numerical 
and the articulation point feature is boolean.

Prediction of drug targets using multi-relational association mining. 
MRAM and its applications.  Most of the existing data mining algorithms seek data patterns in single 
tables. However, many datasets are inherently multi-relational and the information systems that manage 
them rely on multi-relational databases (MRDs). Multi-relational data mining (MRDM) open the way for 
handling and mining data in multiple tables (relations) directly in a MRD25–27. In MRDM, data are repre-
sented in a relational form where the records of the target table are potentially related to several records 
in secondary tables in one-to-many or many-to-many relationships. Three popular MRDM techniques 
are classification, clustering, and association. Association techniques (called multi-relational association 
mining - MRAM) have been successfully applied in bioinformatics, for example the analysis of gene 
set enrichment28, the prediction of hepatitis patients29, the analysis of different types of cancers based 
on microarray data30, the detection of potential adverse drug reactions31, and the prediction of protein 
interactions32. MRAM mines the data directly in their original structure of multiple relational tables, 
not requiring any pre-processing stage to generate a single table as in classical association mining (AM) 
algorithms like Apriori33 and FP-growth34. We developed an MRAM approach to exploring multiple data 
from a wide range of data sources to predict the dementia DTs.

Predicting drug targets using MRAM.  The extracted data from GO, i2d, InterPro and Reactome are 
represented as relational tables in the Microsoft SQL server management system. Later one-to-many 
or many-to-many relationships among the tables were established. For example, many proteins may 
have the same degree centrality (one-to-many relationship) and on the other side a protein may belong 
to many Reactome pathways and one Reactome pathway has many proteins involved (many-to-many 
relationship). Figure  3 illustrates an example of extracted data in a multi-relational table form where 
‘pathway’, ‘protein’, and ‘degree’ are three entity types, shown at the left-hand side of the figure. There is a 
relationship type between ‘pathway’ and ‘protein’, specifying the pathways that the proteins take part in, 
and between ‘protein’ and ‘degree’, specifying the degree centrality corresponding to a protein. The first 
relationship type is a many-to-many while the second is one- to-many. Note that the heterogeneity in 
the data makes the use of classical AM unsuitable in mining multiple relational data and underlines the 
importance of using an MRAM algorithm for the identification of the DTs.

The MRAM algorithm to explore data in multiple relational tables was employed by using the SQL 
Server 2012 Analysis Services (SSAS). The MRAM algorithm in the SSAS package uses optimization 
techniques to save space and make processing faster. Similar to traditional AM, MRAM handles data as 

Figure 3.  Example of a MRD in table form (left) and in graph form (right). The entity types ‘pathway’, 
‘protein’, and ‘degree’ correspond to different blocks in the graph and the entities of each type correspond 
to different nodes. The table ‘Reactome_Pathway’ defines the pathway description. The join table ‘Of_
Pathway’ defines a many-to-many relationship between the entity types ‘pathway’ and ‘protein’ and the 
table ‘Centrality’ defines an one-to-many relationship between entities ‘protein’ and ‘degree’. Two entities are 
linked with an edge if they co-occur in a same tuple.
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items and group of items, called itemset. An association model consists of a series of itemsets and rules 
of the form X ⇒ Y, where X and Y are disjoint itemsets X ∩ Y =  ∅. The algorithm finds rules within a 
dataset based on two parameters, support and probability/confidence. Support is the occurrence frequency 
of the targeted item or itemset in a given dataset. Probability is the co-occurrence frequency of items in 
Y and X.

The inputs of the algorithm are (1) positive training examples as the set of known DTs, denoted 
Spos, (2) negative training examples as the set of non-DT selected randomly from the set of proteins 
which do not belong to Spos, denoted Sneg, and (3) a five-dimension vector representing degree centrality 
fdeg, articulation point fart, GO term fGO, Reactome pathway fpath, and protein domain fdom. The MRAM 
algorithm traverses the input dataset in multiple tables to find items that appear together in a case. The 
algorithm then groups into itemsets any associated items that have support greater than a threshold 
MINIMUM_SUPPORT. Probability is calculated for each rule and the algorithm restricts the number 
of rules based on a threshold parameter MINIMUM_ PROBABILITY. The resulting rules were used to 
infer new putative DTs.

Gene ontology and pathway analysis.  We run the proposed method to predict putative DTs from 
the set of connector genes identified in our previous work17. Connector genes being directly linked to 
both the dementia disease genes extracted from the OMIM database35 and the DTs extracted in this study 
are likely to have more chance to be relevant for the disease and, thus, for being potential DTs.

The newly predicted DTs were used to extract the most representative GO biological process terms 
(i.e., the ones that are over-represented, but that do not refer to most general biological processes). 
For identifying and visualizing enriched GO terms, we used GOrilla36 and REVIGO web-based tools37. 
Hypergeometric distribution was applied to test GO term enrichment, and a p-value threshold of 
0.05 was selected. Pathway enrichment analysis and disease association was performed using DAVID 
web-based tool38.

Results
221 DTs out of 268 known DTs have at least one interacting neighbor in our PIN. Therefore the positive 
example Spos consists of 221 DTs. Since there are no available negative examples (non-DTs), we randomly 
selected three sets of negative examples with different sizes (221, 500, and 1,000) to build the set Sneg. The 
approach applied to different size examples proved to be scalable and stable. We obtained a network of 
3,112 proteins and 6,541 interactions that is well connected with the average shortest path length equal 
to 3 and the average number of neighbors equal to 4. We obtained 44,433 GO terms, 11,738 InterPro 
domains, and 4,240 Reactome pathways related to the 3,122 proteins.

To evaluate the performance of our method, we computed the lift charts for MRAM, Decision Tree 
(D-Tree), Naïve Bayes (NB), and Neural Network (NN) methods. These charts show how the model per-
forms for all states of the predictable attribute. Figure 4A–D shows the lift charts of D-Tree, NB, NN, and 
MRAM with 500 negative examples. The lift chart of MRAM is closer to the ideal model than the other 
three methods. MRAM also achieved a better accuracy (93%) than D-Tree, NB, and NN that achieved 
89%, 83%, and 88%, respectively. We then performed the 10-fold cross validation to compute Likelihood 
Log Score, Likelihood Lift, Likelihood Root Mean Square Error (RMSE)39, and area under the curve 
(AUC)40. Recall that the higher AUC, Likelihood Log Score, Likelihood Lift and the lower RMSE, the bet-
ter performance. The experiments were performed for the four methods on the same set of data. Table 2 
presents the average values calculated for 10 experiments corresponding to the 10-fold cross validation 
of the above-mentioned measures and the standard deviations calculated for the methods with the three 
sets Sneg of 221, 500 and 1,000 negatives. In all experiments, MRAM performed better than the other 
methods. To evaluate the contribution of each data feature, we did several experiments by excluding the 
features one-by-one and then computing the likelihood lift. Table 3 shows that the experiment with all 
data combined achieved the best result, and the next was the one excluding InterPro domain feature. The 
worst likelihood lift was obtained when excluding topological features. As a result, the topological feature 
contributes most and the InterPro domain feature contributes least to the method.

Figure 5 shows some of the induced rules with probability equal to 1 in three columns: Probability, 
Importance, and Rule. For example, the rule “GO:0005887 = C:integral to plasma membrane, 
Degree =  10–77, REACT_111102 = Signal Transduction ⇒DT = Y” has probability =  1 and impor-
tance =  0.514. The rule shows that one protein has chance to be a DT if it is integral to the plasma mem-
brane, is central with at least 10 interactions (up to 77 interacting proteins), and takes part in the signal 
transduction pathway. The probability describes how likely the result of a rule is to occur. The importance 
measures the significance of a rule. The importance of a rule is calculated by the log likelihood of the 
right-hand side of the rule, given the left-hand side of the rule. For example, in the rule A ==> B, MRAM 
calculates the ratio of cases with A and B over cases with B but without A, and then normalizes that ratio 
by using a logarithmic scale. Indeed a rule with high probability might be too general to provide useful 
information. The greater importance, the more significant the rule is. The top rules with probability =  1 
and importance >  0.5 are presented in Supplementary File Table S2.

Functional enrichment analyses of GO biological process terms was performed for the list of pre-
dicted DTs, showing metabolic-related terms (regulation of glucose transport and of insulin signaling), 
cell surface receptor signaling pathways (Wnt, neurotrophin, MAPK cascade, and tachykinin receptor 
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Figure 4.  Computational performance of the multi-relational association mining (MRAM) method 
compared to the other methods. Fig 4A–D shows the lift charts of the Decision Tree method (D-Tree), 
the Naïve Bayes (NB) and, the Neural Network (NN), and (MRAM, respectively. The x-axis of the chart 
represents the percentage of the test dataset that is used to compare the predictions. The y-axis now 
represents the percentage of predictions that are correct. The blue lines show the performance of the ideal 
model and the red lines show the performance of D-Tree, the NB, NN, and MRAM models correspondingly.

Measure Method AUC Likelihood Log Score Likelihood Lift Likelihood RMSE

n1 =  221

  MRAM 0.846 − 0.259 ±  0.021 0.433 ±  0.020 0.211 ±  0.001

  Decision Tree 0.837 − 0.405 ±  0.063 0.287 ±  0.063 0.213 ±  0.020

  Bayesian Network 0.822 − 0.540 ±  0.175 0.152 ±  0.175 0.284 ±  0.029

  Neural Network 0.783 − 0.416 ±  0.084 0.276 ±  0.084 0.224 ±  0.026

n2 =  500

  MRAM 0.890 − 0.149 ±  0.010 0.469 ±  0.019 0.113 ±  0.016

  Decision Tree 0.827 − 0.294 ±  0.102 0.314 ±  0.102 0.115 ±  0.009

  Bayesian Network 0.814 − 0.348 ±  0.073 0.276 ±  0.073 0.116 ±  0.031

  Neural Network 0.783 − 0.501 ±  0.108 0.114 ±  0.108 0.237 ±  0.018

n3  =   1,000

  MRAM 0.883 − 0.211 ±  0.056 0.256 ±  0.054 0.063 ±  0.007

  Decision Tree 0.866 − 0.265 ±  0.039 0.202 ±  0.040 0.166 ±  0.001

  Bayesian Network 0.808 − 0.263 ±  0.048 0.218 ±  0.047 0.130 ±  0.025

  Neural Network 0.804 − 0.293 ±  0.060 0.198 ±  0.057 0.174 ±  0.019

Table 2.   Computational measures calculated for the four methods with the three sets of negative 
examples with different sizes n1, n2, n3. The best results obtained are labeled in bold.
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signaling), immune response-related terms (innate immune response and toll-like receptor singalling), 
apoptosis, and long-term memory (Fig. 5; Supplementary File Table S3).

Pathway analysis revealed similar results as the GO, but in addition indicates Alzheimer disease-amyloid 
secretase pathway, type 2 Diabetes, and metabotropic glutamate receptor group I pathways as associated 
with the predicted DTs (Supplementary File Table S4).

Discussion
In recent years, wealth of information has been produced on neurodegenerative dementia and par-
ticularly on Alzheimer’s disease, and the integration of these data to obtain novel knowledge is one 
of the big challenges in modern neurobiology. This investigation employed a data mining method 
on heterogeneous data including categorical free text (i.e. GO terms and pathways), numerical val-
ues (i.e. the degree centrality and number of domain-domain interactions), and boolean values (i.e. 
articulation protein). The data were managed in a multiple relational database for which classical 
AM methods do not provide a suitable platform. MRAM is the most recent approach which aims to 
overcome the difficulties in multi-relational data integration. It enables direct pattern extraction from 
multiple relations, without the necessity of transferring data to a single relation25,28, thus avoiding 
computationally expensive joining operations and semantic losses caused by the representation limit 
of a single table with repetitions of many attributes and data. Because this merged table is large and 
sparse, the mining process becomes more expensive and time-consuming41. The experiments on the 
DT prediction showed that MRAM was the best among other well-known data mining techniques: 
DT, NB, and NN methods. With the rapid growth of public biological databases, MRAM can be 
widely applied to discover complex patterns through the rich relational structure and the mixed-up 
types of data.

A significant enrichment in Alzheimer disease-amyloid secretase pathway (Panther:P00003), the hall-
mark of Alzheimer’s disease42 was evidenced by pathway analysis of the predicted DTs giving further 
support to the relevance of our findings to dementia. In addition, a significant enrichment in biological 
functions associated to long-term potentiation (Fig. 6), a phenomenon related to synaptic plasticity, one 

Experiment n1 = 221 n2 = 500 n3 = 1,000

Exp1: All data features excluding the topological data features 0.391 0.412 0.211

Exp3: All data features excluding the GO data feature 0.398 0.443 0.220

Exp4: All data features excluding the Reactome data feature 0.408 0.436 0.215

Exp5: All data features excluding the InterPro data feature 0.411 0.449 0.237

Exp6: All of investigated data feature 0.433 0.469 0.256

Table 3.   Performance of MRAM in term of likelihood lift with different subsets of data features and the 
three sets of negative examples with different sizes n1, n2, n3. The best results obtained are labeled in bold.

Figure 5.  Representation of obtained association rules. Three columns: Probability, Importance, and Rule. 
The probability describes how likely the result of a rule is to occur. The importance measures the significance 
of a rule.
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UniProt 
ID

Official 
Gene 

Symbol Gene Name Degree

P78352 DLG4 discs, large homolog 4 (Drosophila) 18

P17612 PRKACA protein kinase, cAMP-dependent, catalytic, alpha 17

P28482 MAPK1 mitogen-activated protein kinase 1 16

P05771 PRKCB protein kinase C, beta 14

Q05655 PRKCD protein kinase C, delta 13

P31749 AKT1 v-akt murine thymoma viral oncogene homolog 1 12

P68400 CSNK2A1 casein kinase 2, alpha 1 polypeptide pseudogene; casein kinase 2, alpha 1 polypeptide 11

P68400 CSNK2A1P casein kinase 2, alpha 1 polypeptide pseudogene; casein kinase 2, alpha 1 polypeptide 11

Q96RR4 CAMK2A calcium/calmodulin-dependent protein kinase kinase 2, beta 10

P27361 MAPK3 hypothetical LOC100271831; mitogen-activated protein kinase 3 9

Q8TD19 NEK9 NIMA (never in mitosis gene a)- related kinase 9 9

Q05513 PRKCZ protein kinase C, zeta 7

Q9UQM7 CAMK2a calcium/calmodulin-dependent protein kinase II alpha 7

P25098 ADRBK1 adrenergic, beta, receptor kinase 1 6

Q02156 PRKCE protein kinase C, epsilon 6

O00141 SGK1 serum/glucocorticoid regulated kinase 1 5

P45983 MAPK8 mitogen-activated protein kinase 8 5

P51812 RPS6KA3 ribosomal protein S6 kinase, 90kDa, polypeptide 3 5

Q15831 STK11 serine/threonine kinase 11 5

Q96L34 MARK4 MAP/microtubule affinity-regulating kinase 4 5

Q9Y6E0 STK24 serine/threonine kinase 24 (STE20 homolog, yeast) 5

P19784 csnk2a2 casein kinase 2, alpha prime polypeptide 4

P23443 RPS6KB1 ribosomal protein S6 kinase, 70kDa, polypeptide 1 4

P34947 GRK5 G protein-coupled receptor kinase 5 4

O94985 CLSTN1 calsyntenin 1 3

P30411 BDKRB2 bradykinin receptor B2 3

P43250 GRK6 G protein-coupled receptor kinase 6 3

Q15418 RPS6KA1 ribosomal protein S6 kinase, 90kDa, polypeptide 1 3

Q16512 PKN1 protein kinase N1 3

Q16659 MAPK6 mitogen-activated protein kinase 6 3

O75582 RPS6KA5 ribosomal protein S6 kinase, 90kDa, polypeptide 5 2

Q99683 MAP3K5 mitogen-activated protein kinase kinase kinase 5 2

Q9NSB8 HOMER2 homer homolog 2 (Drosophila) 2

Q9NSC5 HOMER3 homer homolog 3 (Drosophila) 2

Table 4.   List of predicted drug targets with UniProt ID, Official gene symbol, Gene name and Degree 
centrality.

of the most important cellular mechanisms that underlies learning and memory, was also found. Proteins 
involved are PKC, PKA, ERK1/2, Rsk, and CAMK2 (Supplementary File 3). These results are in line with 
recent studies suggesting that activation of protein kinase C could have potential for the treatment of 
dementia43.

Interestingly, an association with type 2 diabetes pathway (KEGG:hsa04930) was also evidenced. Type 
2 Diabetes is a major risk factor for Alzheimer’s disease and dementia and the concept that Alzheimer’s is 
fundamentally a metabolic disease that results in progressive impairment in the brain’s capacity to utilize 
glucose and respond to insulin/insulin like growth factor stimulation has recently gained increasing sup-
port44,45. Thus, in line with ours17,46 and other groups’47,48 previous findings, these results further empha-
size the strong link between Alzheimer’s disease and, more generally, neurodegenerative dementia, to 
metabolic disorders and diabetes. This finding may suggest that a dementia drug could be used as treat-
ment platforms for both diseases and their co-morbidities in view of the overlapping molecular pathway.
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Figure 6.  Summary of statistically significant Gene Ontology biological processes functional annotation 
corresponding to the putative DT list as obtained from REVIGO. Nodes are GO terms and edges 
represent the strongest GO terms pairwise similarity. Colors represent the p-values (low values in green, 
high in red). Only significant GO terms are shown (P <  0.001).

Figure 7.  Flow diagram representing the molecular interactions in the MAPK signaling pathway (from 
KEGG database hsa04010)59. The pathway is enriched with predicted drug targets proteins, labeled in pink. 
In blue are labeled the drug targets for dementia.
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Considering the most enriched GO terms and pathway, a major role for MAPK (KEGG: hsa04010) 
is evident (Figs. 6 and 7). The putative role of p38 MAPK as a new Alzheimer’s disease treatment strat-
egy has emerged in recent years. p38 MAPK operates not only in response to stress and inflamma-
tory reactions, but also in other events related to AD, such as excitotoxicity, synaptic plasticity, and tau 
phosphorylation49.

Finally, considering the degree index (Table 4), DLG4 (Discs, Large Homolog 4 or PSD-95), a post-
synaptic marker playing a basic role in synaptic transmission by anchoring NMDA receptors and inter-
acting with nNOS50,51, was the protein with the highest degree centrality. Its link to dementia, particularly 
in cognitive performances is also supported by animal studies: mice lacking PSD-95 have severe spatial 
memory deficits52, while mice exposed to enriched environments with improved learning and memory, 
have elevated PSD-9553. Finally, DLG4 has been linked to a genetic form of dementia: familial Danish 
dementia54. A high affinity molecule acting on PSD-95 has been previously identified and could possibly 
be used for Alzheimer’s disease as also suggested by Bach and collaborators.55.

Most of the putative DTs are kinases, particularly serine threonine kinases. In drug development, 
achieving selective inhibition of specific protein kinases is challenging since most small-molecule kinase 
inhibitors interact with multiple members of the protein kinase family56. Thus, among the predicted DTs 
in the G protein-coupled receptor family, a possible protein of interest could be the bradikynin receptor 
2 (BDKRB2). Bradikynin and related kinins are a family of small peptides which act as mediators of 
inflammation and pain and that transmit their biological effects via G protein-coupled receptors through 
the action on two bradykinin receptors, the B1 and the B2 subtypes57. Previous studies support the pro-
posed effectiveness of an action on BDKRB2 for the treatment of dementia, demonstrating the ability of 
a BDKRB2 antagonist (HOE 140) in reversing the spatial learning and memory deficits induced by Aβ  
peptide in an animal model of Alzheimer’s disease58. Thus, further studies are needed in this direction 
to confirm the validity of this target for future development.

Conclusions
Our systems biology approach was able to integrate previous existing knowledge in dementia to identify 
novel molecular targets for the development of innovative therapeutic intervention. A series of kinase 
including DLG4 (PSD-95) and BDKRB2, a G protein-coupled receptor of the kinin family were identi-
fied, but further studies are needed to confirm this finding and the druggability of the proposed targets.
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