THE BRUHAT ORDER ON HERMITIAN SYMMETRIC VARIETIES
AND ON ABELIAN NILRADICALS

JACOPO GANDINI, ANDREA MAFFEI

ABSTRACT. Let G be a simple algebraic group and P a parabolic subgroup of G with abelian unipotent
radical P", and let B be a Borel subgroup of G contained in P. Let p" be the Lie algebra of P" and
L a Levi factor of P, then L is a Hermitian symmetric subgroup of G and B acts with finitely many
orbits both on p" and on G/L. In this paper we study the Bruhat order of the B-orbits in p* and in
G/ L, proving respectively a conjecture of Panyushev and a conjecture of Richardson and Ryan.

1. INTRODUCTION

Let G be an almost simple algebraic group over an algebraically closed field k of characteristic different
from 2. Let P C G be a parabolic subgroup with abelian unipotent radical P" and let P = LP" be a
Levi decomposition. Then the Levi subgroup L is the identity component of the set of fixed points of
an algebraic involution of G if and only if P" is abelian, in which case the homogeneous space G/L is
called a Hermitian symmetric variety.

Let B be a Borel subgroup of G contained in P. Then B acts with finitely many orbits on G/L and
on p", the Lie algebra of P". The aim of this paper is to give a combinatorial characterization of the
corresponding Bruhat orders (that is, the partial order among B-orbits defined by the inclusion of orbit
closures) proving a conjecture of Richardson and Ryan in the first case (see [15]), and a conjecture of
Panyushev in the second case (see [13]).

Fix a maximal torus 7" in BN L and let ® be the root system of G associated to T'. We denote by
A C &7 the set of the simple and the set of the positive roots determined by B, by ®~ the negative
roots, by W the Weyl group of ®. Moreover, we denote by sg the reflection defined by a root 5 and by
¢ the length of an element of W determined by the choice of A.

The Bruhat order of the B-orbits in G/B was determined by Chevalley. In this case G = | |,y BwB
and BuB D BvB if and only if u > v with respect to the Bruhat order of W (that is, the partial order
generated by the relations wsg > w for all root § such that {(wsg) > £(w)). More generally if Q D B
is a parabolic subgroup of G, we have a similar description of the Bruhat order of the B-orbits in G/Q.
Let Wgo C W be the Weyl group of (), and let W be the set of minimal length representatives of the
cosets in W/W@. Then G = | |, cpe Bw@Q, and for u,v € W% we have BuQ O BvQ if and only if
u > v. If the unipotent radical of Q is abelian, then the Bruhat order of W€ is particularly simple (see
Proposition .

Let p* be the Lie algebra of P*. The B-orbits in p", and more generally in any abelian ideal of the
Lie algebra of B, were parametrized by Panyushev [I3] Theorem 2.2] (see also Corollary i)). Let W
be the set of roots of p", and fix a root vector e, of weight a for all a € W. If § C V¥ is an orthogonal
subset (that is, a subset of pairwise orthogonal roots), set es = ) g €. Then the B-orbits in p" are
all of the form Beg for some orthogonal subset S C ¥, and all such subsets give rise to distinct B-orbits.
Since the action of P" on p" is trivial, denoting By, = BN L, notice the B-orbits on p" coincide with the
Bp-orbits on p".

The B-orbits in a general symmetric variety were studied by Richardson and Springer [19} 14} 15 [16].
There they proved that many similarities with the case of flag varieties hold, however a parametrization
of the B-orbits in this setting is not so explicit as in the previous case. In the case of the Hermitian
symmetric variety G/L the parametrization is much simpler and explicit, and was given in [I5, Theorem
5.2.4] (see also Corollary ii)). We describe it by using the language introduced above.

Definition 1.1. Given v € W and an orthogonal subset S C ¥, we say that the pair (v, S) is admissible
if (S) C ®~. We denote by V7, the set of the admissible pairs.
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If S C ¥ is an orthogonal subset, define a point in G/L by setting g = exp(eg)L (the definition of
the exponential map for these particular elements is possible also in positive characteristic). Then to
any admissible pair (v, S) we associate the orbit Buxg: these orbits are all distinct, and every B-orbit
in G/L is of this form. Thus the B-orbits in G/L are parametrized by the admissible pairs.

The link between the two parametrization is easy to explain. Consider the projection 7 : G/L — G/P
and let w? be the longest element in W', it satisfies w?” (¥) C ®~. The stabilizer of w? P inside B is
equal to By, and the fiber of 7 over w! P is isomorphic to p". Hence the Bp-orbits in p" correspond
exactly to the B-orbits in Bw’ P.

In order to study the Bruhat order on a symmetric variety (still denoted by <), the approach of
Richardson and Springer is to look at the action of the minimal parabolic subgroups (2 B) of G on the
set of the B-orbits. If & € A, let P, C G be the associated minimal parabolic subgroup containing B. If
O is a B-orbit in G/L (or more generally in any symmetric variety), then P, decomposes in the union
of at most three B-orbits. Let m,-O be the open B-orbit in P,O, then obviously O < mq-O. As already
in the case of flag varieties, the Bruhat order it is not generated by the relations O < m,- O, however it is
possible to reconstruct it from the action of the minimal parabolic subgroups in the following way. Given
g, 01, ..., 0 € A and a B-orbit O C G/L, set O1 = mq,, - Mq, - O and Oz = Mg, -+ M, - Moy - O:
then O; is contained in the closure of Oy, and the Bruhat order on G/L is generated by these kind of
relations (see [I4, Theorem 7.11]). We will not directly use this result, but we will make use of some of
its consequences, and more generally we will make use of the action of the minimal parabolic subgroups.

Using the action of the minimal parabolic subgroups it is also not difficult to give a formula for the
dimension of a B-orbit in a symmetric variety (see [14, Lemma 7.2]). In our case the formula can be
expressed as follows. If S is a set of orthogonal roots, denote og = Hﬁes sg. If (v,5) € Vi, we have
then

Uoysy) +card S
dim Bvxg = card U + (o (S))2 cares, (1)

From this formula it’s also easy to deduce a dimension formula for the B-orbits in p" conjectured by
Panyushev, see Corollary

We now come to the main results of the paper. We first describe the Bruhat order on p". Let wp be
the longest element in Wp.

Theorem 1.2 (Corollary . Suppose that S, S’ C U are orthogonal subsets, then Begs C Beg: if and
only if Owp(s) < Twp(s)-

The previous theorem was conjectured by Panyushev (see [I3, Conjecture 6.2]). When G is of type A
or C, it can be deduced from more general results on the adjoint and coadjoint B-orbits of nilpotency
order 2 and their Bruhat order, studied by Ignatyev [9], Melnikov [12], and Barnea and Melnikov [1]. For
orthogonal groups this formula was proved by Barnea and Melnikov [2], so only the exceptional cases
remained to be proved. However our proof is not based on a case-by-case analysis, and it does not rely
on such results.

We now come to the Bruhat order on G//L. Beyond v and o,(g), there is a third Weyl group element
that one can canonically attach to a B-orbit in G/L. If indeed P~ denotes the opposite parabolic
subgroup of P, then L = PN P~. Thus one can define an element v € W¥ by the equality BvxgP~ =
BvP~. The element v can be easily described in terms of (v,S): if indeed [w]” € W denotes the
minimal length representative of the coset wWp, then we have v = [vog]T, see Lemma

Define a partial order on the set of the admissible pairs V, as follows:

(u,R) < (v,S) if [UUS]P < [uaR]P Su<v and oy Ry < Oy(s)- (2)

Then we will prove the following theorem, which was conjectured by Richardson and Ryan (see [I5}
Conjecture 5.6.2]).

Theorem 1.3 (Theorem . Let (u, R), (v, S) be admissible pairs. Then Buxr C Buxg if and only if
(wR) < (1, 5).

If an orbit is in the closure of another one, the fact that the above combinatorial conditions have to
hold was known. This is easily proved in the case of p* (see the first paragraph of the proof of Theorem
, and it follows from the work of Richardson and Springer in the other case. So, what we really need
to prove is the other implication.

Richardson and Ryan proved some partial results in this direction which were reported in [I5]. When
G is of type A, the B-orbits in G/L have also been studied by Matsuki-Oshima [II] and Yamamoto [23]
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in terms of suitable combinatorial parameters called clans. In this case, the Bruhat order on G/L was
recently determined by Wyser [22].

By identifying the B-orbits in p* with the B-orbits in Bw’ P as explained above, it is not hard to see
that the Bruhat order on p" appears as a particular case of the Bruhat order on G/L. However we will
need to study first this particular case, and more precisely to determine the Bruhat order of the B-orbits
in the subsets BuP/P for a fixed v € W¥. We will prove in this case an analogue of Theorem (see
Theorem , which will be used as the basis of an induction to prove Theorem

The abelian nilradicals p" are special instances of abelian ideals of b, and actually the mentioned
parametrization of the B-orbits in p* in [I3] Theorem 2.2] holds in this more general setting without
substantial differences. We will come back to this point in a forthcoming article [6], where we will study
the Bruhat order on arbitrary abelian ideals of b.

The paper is organized as follows. In Section [2] we prove some preliminary results concerning the
Bruhat order on G/P. In Section [3| we recall some results from [I4] [I5] about the Bruhat order on the
set of involutions. We also prove here some additional results which apply in the Hermitian case that
we will need later. In Section |4 we describe the parametrization of the B-orbits in p" and in G/L. In
Section [5| we describe some results about the action of the minimal parabolics, and prove the dimension
formulas. In Section [6] we prove Theorem whereas Section [7] is devoted to the prooof of Theorem
3

1.1. Notation and preliminaries. We keep the notation used in the Introduction. Moreover, we will
make use of the following conventions.

If H is any algebraic group, we will denote its unipotent radical by H" and its character lattice by
X(H), and we set U = B". The Lie algebra of H will be denoted by the corresponding fraktur letter.
Notice that the Lie algebra of G depends on the isogeny class of GG, however the only Lie algebra we will
be interested is p*, which is independent of the isogeny class of G.

We denote by A the weight lattice of T', and regard the vector space A ®zQ as a Euclidean space with
a W-invariant nondegenerate scalar product. As usual, the monoid of the dominant weights defined by
B is denoted by AT.

If v € W, then we define

Ot (v) ={acd" : v(a) € }.

If a € @, the corresponding coroot will be denoted by «¥. If moreover o € A, then the corresponding
fundamental weight (resp. coweight) will be denoted by w, (resp. by wY). We will denote by 6 the
highest root of ®.

If « € A and 8 € @, we denote by [5 : «] the coefficient of « in 8. The height of § is defined by
ht(8) = > ealB : a]. We will regard the weight lattice as a partially ordered set with the dominance
order: if A\, p € A, then we write A < p if g — X is a sum of simple roots. Similarly, we will regard the
coweight lattice as a partially ordered set with the dominance order defined by the simple coroots.

We say that a nonzero dominant weight u is minuscule if it is minimal in A™. Similarly, we say that
a dominant coweight p is cominuscule if it is a minuscule weight for the root system ® of the coroots.
Recall the following characterizations of cominuscule elements (see [4, VIII, §7, no. 3] and [8, Exercise
13.13]).

Proposition 1.4. Let u be a dominant coweight, then the following conditions are equivalent:

i) w is cominuscule;
ii) {(p,a) <1 for alla € +;
i) p=wy, for some o € A such that [0 : o] = 1.

If o € @, we will denote by u,, C g the corresponding root space, and by U, C G and u,(t) : k — U,
respectively the corresponding root subgroup and a one parameter subgroup. We can choose the one
parameter subgroup so that s, = g (t) u_o(—t ") ua(t) T for all t € k* (see [I8] Lemma 8.1.4 i)). If
w € W, here and throughout the paper by abuse of notation we will denote by the same letter any
representative of w in the normalizer of T in G.

Fix root vectors e, € u, and f, € u_, for all o € ®*. If S C ¥ is an orthogonal subset, recall the
element eg = ) g€, defined in the Introduction, and define similarly fs = > s fa- If € € u, write
€= qco+ Cata and define the support of e as

supp(e) = {a € @1 : ¢, # 0}.
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Since p" is abelian, it is well defined a P-equivariant exponential map
exp : p* — P
in all characteristics (see [I7, Proposition 5.3]). This map is an isomorphism of varieties, and it satisfies
exp(z + y) = exp(z) - exp(y). A similar map exp : (p7)* — (P7)"Y, still denoted by the same symbol,
exists for P~ as well. If a € ¥, when convenient we will choose the root vectors e, and f, so that

U (t) = exp(teq) and u_q(t) = exp(t fa), for all t € k. If S C U is an orthogonal subset and if o, 8 € S
are not equal, then the elements u, and u_g commute (see Lemma i)), thus we have

og = exp(t fs) exp(—t~ ' eg) exp(t f5)T.

Finally we make some remarks about the characteristic of k. Notice that parabolic subgroups with
abelian unipotent radical only occur when G is a classical group, or when it is of type Eg or E7 (see e.g.
[15, Remark 5.1.3]). Since chark # 2 and since G is never of type Ga, the following property holds: let
a,B € ® be such that @ # £ and let m be maximal such that « + mg is a root (thus m < 2 by our
assumptions), then for all ¢ € k* we have

ug(t) - ea =ea+citears+ -+ cmt™ eatmp

for some nonzero constants ci,...,cy, (see for example the construction of Chevalley groups in [20]
Sections 1,2,3). If we assume that G is simply laced (in which case m < 1), then the same property holds
in characteristic 2 as well: in this case, we expect that Theorems and still hold (notice that in
the articles of Richardson and Springer it is always required chark # 2). On the other hand, Theorems
and and even the parametrizations of Corollary are false if G = Sp, and chark = 2, see
Subsection [Z.3l

2. SOME REMARKS ON THE BRUHAT ORDER ON G/P

We will freely make use of standard properties of the Bruhat order on W and on W¥ (see e.g. [3]). In
particular recall that, if u,v € W and u > v, then [u]f > [v]F as well, and that if v € W¥ and s,v < v
for some o € A, then so,v € W as well.

In this section we will prove a characterization of the Bruhat order on W in case P is a parabolic
subgroup of G with abelian unipotent radical, as in our assumptions. In this case P is a maximal
parabolic subgroup, corresponding to a simple root ap such that [0 : ap] = 1. We denote by wp and
wp respectively the fundamental weight and the fundamental coweight defined by ap, thus w) is a
cominuscule coweight by Proposition i). Denote also Ap = AN {ap}, let @p C P be the root system
generated by Ap, and set &5 = &+ N &p.

Recall that ¥ is the set of T-weights of p“. Since [0 : ap| = 1, we have

U={aecd" :[a:ap]=1}. (3)
If v € W, notice that v € W if and only if v(®}) C ®*, namely v € W7 if and only if ®*(v) C .
Lemma 2.1. Let v € WP and let « € ®F be such that spv € W and ((s,v) = €(v) — 1, then a € A.

Proof. Denote u = s,v, by [3, Proposition 3.1.3] it is enough to show that ®*(u) C ®*(v). Denote
B =—v"!(a) and let v € T (u), then v(y) = usg(y) = u(y) — (7, 8Y)a. Notice that 8,7 € ¥ because
u,v € WP, Thus 8+ ¢ ® because p" is abelian. Therefore (y, 3) > 0, and v(y) € ®~. O

Lemma 2.2. Let w € WP, then {(w) = ht(w} — ww)).

Proof. Let w = sy, ---s1 be a reduced expression and, for ¢ < n, denote w; = s; ---s1. Let a; € A be the
simple root corresponding to s; and denote 5; = wi:ll (a;). Notice that 8; € ¥ since w; € WF so that

[B; : ap] = 1. Hence we have
wi(wp) = wi—1(wp) — (wp, Bi)ai = wi—1(wp) — ai.
Therefore ht(w) — w;(w)%)) = ht(w) — w;—1(wp)) + 1, and the claim follows. O
The equivalence of i) and ii) in the following proposition was already known (see |21, Theorem 7.1]
and [5, Corollary 3.12]), we thank F. Brenti for pointing out the reference.

Proposition 2.3. Let u,v € W, then the following conditions are equivalent:

i) u < v;
i) @+ (u) C dF(v);
iii) v(wp) < u(wp);



i) v(wp) < ulwp).

Proof. i) = ii). Let n = £(u) — £(v), by the chain property (see [3, Theorem 2.5.5]) there exists a chain
u=1up <uy <...<u,=0uvof elements in W¥ such that £(u;) = £(u;_1) + 1 for all i < n. Therefore by
Lemma 2.1 we get @+ (u;_1) C ®*+(u;) for all i < n, hence ®F(u) C &F(v).

ii) = 1). This is well known, and it holds for all u,v € W (see [3, Proposition 3.1.3]).

i) = iii). By considering any chain in W between u and v, we can assume that ¢(u) = ¢(v) + 1. Let
a € ®T be such that v = s,u, and denote 8 = u~!(a). Then 8 € ®*, and since w}, is dominant it
follows that (u(wp), ) = (wp, B) = 0. Therefore

v(wp) = sau(wp) = u(wp) — (u(wp),a)a” < u(wp).

iii) = i). We show that u < v proceeding by induction on h = ht(u(w)) — v(w})). By Lemma [2.2] we
have £(v) — £(u) = ht(u(wp) — v(wp)).

Suppose that h = 0. Then u(w)) = v(wp). On the other hand the orbit map W — Ww} is bijective
because Wp is the stabilizer of w}é, therefore it must be © = v.

Suppose now that h > 0, and write u(wp) = v(wp)+ay +...+a) with a; € A. Denote 3; = v~ (ay),
then wy = v tv(wp) + BY + ... + BY. Notice that for all w € W \ Wp it holds w(wp) < wp — ap.
Since by definition v~ 'v & Wp, it follows that ap < 81 +. ..+ B,. Thus at least one of the 3; must be a
positive root supported on ap (namely 8; € ¥). It follows that u < s,,u and [s,,u]” # u which implies
[Sa,u]f > u. Since £(s4,u) = £(u) + 1 we deduce that s,,u € WF. On the other hand by construction
we have

Sa,u(wp) = u(wp) — (wp, Bi)a; = u(wp) — a,
hence v(wp) < sq,u(wp). By the inductive hypothesis we get then s,,u < v, thus u < v.
iii) < iv). This is obvious. O

Given v € WF, we now describe the roots a € A such that s,v < v by making use of the poset ®* (v).
If o is such a simple root, notice that £(s,v) = £(v) — 1, and that ®*(v) = ®F(s,v) U {—v"1(a)}.

Lemma 2.4. Let o, € & and suppose that o < 3. Then there exist ay,...,a, € A such that
ator+...+a; €® foralli<n, and B=a+a1+ ...+ ay.

Proof. Let B —a = a1 +...4+ a, be any expression of § — « as a sum of simple roots, we show the claim
by induction on n. The claim is obvious if n = 1, so we can assume that n > 1. Notice that for some
i < n it must be either (o, ;) < 0 or (3,a;) > 0: otherwise ||8 — af]? = Y1, (8 — a, ;) < 0, hence
a = f3, a contradiction. For such a choice of a;, we have either that « + o; € T and o < a + o;; < 3,
or that 8 — a; € ®* and a < B — a; < 8. Therefore the claim follows applying the induction. O

Proposition 2.5. Letv e WPF.

i) Let o € A be such that sqv < v and denote 3 = —v~Y(a). Then B is mazimal in ®*(v), and
minimal in U~ ®T (s,v).
ii) Let B € @ (v) be a mazimal element and denote « = —v(B). Then a € A and s,v < v.
iii) Let B € ¥\ ®T(v) be a minimal element and denote o = v(B). Then o € A and s,v > v.

Proof. i). We prove the first claim, the second one is proved similarly. Suppose that 3 is not maximal in
&t (v) and let v € ®*(v) be such that 8 < «, we can assume that 7 is minimal with this property. Since
v # B3, we have v € &1 (s,v). By Lemma there exists o’ € A such that v —a/ € @+ and 3 < v — <.
Since B,v € U, by we have [0 : ap] = [y: ap] =1, thus o € Ap. Notice that it must be =~ —«a/:
otherwise the minimality of v would imply that v(y — «’) > 0, hence v(y) > 0 because v(Ap) C PT.
Therefore we get a contradiction because s,v(y) = sqv(a’) + sqv(8) > 0.

ii). We only show that o € A, as the last claim is obvious. Suppose that o € A. Since o € &, by
Lemma there exists o/ € A such that a — o’ € ®F. Denote 8’ = —v~1(a/) and v = 8/ — 3. Notice
that v € @, indeed we have v = v~ !(a — o).

Suppose that v € ®*. Then 8’ € ®*(v) and 8 < B/, contradicting the maximality of 3. Therefore it
must be v € ®~. Denote 7/ = —v, then v/ € ®*(v). Since /' is comparable with 3, by the maximality
of B we get v/ < 3, namely ' € ®*. Thus by i) it follows that 8’ is also maximal in ®*(v), and since
B < B we get a contradiction.

iii). This is proved in a similar way to ii). d

Remark 2.6. Notice that the statements of Proposition[2.5]are false if P" is not abelian. Suppose indeed
that @ is of type By and that P is the maximal parabolic subgroup defined by ap = ay. Let v = w’ be the
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longest element in W¥. Then we have v = 535182 and sov < v. However & (v) = {ag, a1 +ag, ay +2a3}
and —v~1(ag) = a1 + as.

Finally, we recall some general well-known properties of the Bruhat order on W, that will be used
repeatedly. The last property is usually referred to as the lifting property.

Lemma 2.7. Let u,v € W with u < v and let a € A.

i) Suppose that sau > u and s4v > v, then squ < $40.
1) Suppose that squ < u and s,v < v, then squ < S40.
ii1) Suppose that squ > u and sav < v, then u < s,V and squ < v.

Similar statements hold if we consider the multiplication by s, on the right.

Proof. Properties i) and ii) easily follow from the definition of the Bruhat order on W. For the last
property, see [3, Proposition 2.2.7] O

3. THE BRUHAT ORDER ON THE SET OF INVOLUTIONS

In this section we recall some results from [I4] 15 [16]. Let Z be the set of the involutions in W. If
a € A and o € Z, following Richardson and Springer [14] we define

S$q0 if 5,0 = 05,4
Sq 00 =

Sa0Sq if 840 # 084

Notice that s, oo = 7 if and only if s, o7 = 0.

Replacing the ordinary action of the simple reflections with the circle action defined above, several
well-known properties of the Bruhat order on W carry over to the Bruhat order on Z. The results of
the following two lemmas are contained in [I4]. There they are stated for what Richardson and Springer
call the standard order on Z, which in [I6] is proved to be equivalent to the usual Bruhat order. Their
proof follows from general results whose proofs are spread across the two papers, for this reason we prefer
to give a direct proof here since it is quite short. This proof works for any Coxeter group without the
assumption of finiteness.

Lemma 3.1 ([I4], 3.2]). Let « € A and o € Z. Then the following hold:

i) Sq 00 > o if and only if sa0 > 0;

1) sq 00 < o if and only if sq0 < 0.
If moreover s,0 # 054 and s, 00 > 0 (Tesp. s 00 < 0), then $,054 > $40 > 0 and 5,084 > 0S4 > O
(resp. 864080 < 800 < 0 and $4084 < 840 < 0)

Proof. If so0 = 05, there is nothing to prove. Assume s,0 # 084. If 5,0 > 0, then o(a) = 071 (a) > 0
hence os, > o. Notice that o(a) # «, otherwise 05,0 = s,. Therefore (0s,) 1 (a) = (540)(a) =
Sa(o(a)) > 0, and we get 84,054 > Sa0, $408q > 084. The case s,0 < o is similar. O

Lemma 3.2 ([I4] 8.13 and 8.14]). Let a € A and 0,7 € Z, and suppose that o < 7. Then the following
hold:

i) if Sa00 >0 and 8o, 0T > T, then s, 00 < 84 07T;
i) if S 00 <0 and o 0T < T, then $5,00 < $407T;
Qi) if sq00 >0 and so, 0T < T, then sqa 00 <7 and 0 < 84,0 T.

Proof. We prove iii), the proofs of i) and ii) are similar.

If s0 = 05, and s, 7 = TS, there is nothing to prove. If s,0 # 0s, and s,7 = 7s,, then by Lemma
iii) applied to v = 7 and u = ¢ we deduce that 7 > s,0 and s, o7 > 0. Now if we apply the analogue
respect to the right multiplication of Lemma iii) to the case v = 7 and u = s,0, we deduce that
T2 8q00. If 540 # 054 and s,7 = TS, Or if sS40 # 05, and s47 # TS, the proof is similar. O

Following Richardson and Springer [14], 3.9], define the length of o € 7 as an involution to be
14 A
Loy = Mo M0)
where A(0) denotes the dimension of the —1 eigenspace of 0 on A ®z R. If S = {p1,...,8,} is a set of
orthogonal roots and og = sg, - - - s, , then the eigenspace of og on A ®z R of eigenvalue —1 is generated
by S, hence the formula above takes the form
l(og) + card S

L(os) = 5
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Remark 3.3. Notice that the previous definition agrees with that of [I4], in case the involution of G
acts trivially on W (as it happens in the Hermitian case).

The length function L is compatible with the circle action of the simple reflections and with the
Bruhat order. The following is a consequence of Lemma |3.1

Lemma 3.4 ([14], 3.18]). Let « € A and o0 € Z. Then

Lio)+1 ifsqoo>0
L(o)—1 ifsqo0<o

L(sqo00) = {

The following result is stated in [14] for the standard order. Again, since the proof is not hard, we
prefer to give a direct proof.

Lemma 3.5 ([I4], 8.1]). Let 0,7 € T be such that o < 7 and L(c) > L(1). Then o = 7.

Proof. We proceed by induction on (7). If £(7) = 0, then ¢ = 7 = id. Suppose that £(7) > 0, let @ € A
be such that s,7 < 7 and denote 7/ = s, o 7. Then 7/ < 7 by Lemma [3.1]ii), thus L(7') = L(7) — 1 by
Lemma [3.4 Denote ¢/ = s, 00.

Suppose that ¢’ > ¢. Then by Lemma iii) it follows o < 7/, and by induction we get o = 7/. Thus
T = 84 00, and by Lemma we get L(7) = L(o) + 1, a contradiction. Therefore it must be ¢’ < o,
hence L(c') = L(c) — 1 and by Lemma [3.2]ii) we get ¢’ < 7/. Thus ¢’ = 7/ by induction, and it follows
o=T. ]

3.1. Involutions in the Hermitian case. Let P be a parabolic subgroup of G with abelian unipotent
radical. In this subsection we will study the involutions of the form sy, where v € W¥ and S C ®*(v)
is an orthogonal subset. Since ®*(v) C ¥, in particular S will be an orthogonal subset of ¥. In the
following lemmas we collect some properties of such subsets which will be needed later on.

Lemma 3.6. Let a € @;, and let 3,3 € ¥ be orthogonal root, then:
i) B+ ¢ O,
i) if B+a€®, then 8 +a & d.
iii) if B—a eV, then f' —a ¢ V.

Proof. i). Notice that g+ 8 ¢ ®: otherwise 8 + ' € ¥ because p* is an ideal of b, and this cannot
happen because p" is abelian. On the other hand, if 5 — ' € ®, then S+ ' = s/ (8 — ) because 3, 5’
are orthogonal, thus 8 + 8’ € ® as well, which was already excluded.

Claims ii) and iii) are taken from [I3], Lemma 1.2]. O

If S C U is a set of orthogonal roots we define
Ps=Q5NP={ac®: og(a) =—a}.
Proposition 3.7. Let S C U be orthogonal, then
Ps={aec®:a=3(*+B+pP) forsomepB,p €S}

Proof. Let a € ®*. By the orthogonality of S it follows that og(a) = —« whenever a has the required
shape %(:ﬁ:ﬁ:l:ﬂ/). Suppose conversely that os(a) = —a. We distinguish two cases, depending on o € &,
orae V.

Suppose that a € <I>1+3. By Lemma there are at most two roots in S which are not orthogonal
to a. Since og(a) = a — E%S(a,ﬁvw = —a and a ¢ S, we deduce that there are precisely two
such roots 3, 3’. Consider the root sg(a) = a — (o, BY)B: since [0 : ap] < 1 for all § € T, we must
have (o, 8Y) = +1, and similarly for 3’. Moreover, by Lemma @ we can assume (o, 3Y) = 1 and
{a, B"V) = —1. Therefore o5(a) = a — + 3, and we get a = %(ﬁ - 6.

Suppose now that o € W. Then a + 8 ¢ &7 for all 8 € S, hence (a,8Y) > 0. On the other hand
os(a) = —a=a—3 g g(a, BY)5, thus by (3) we get that -, o(a, 3Y) = 2. Tt follows that 2a0 = S+ '
for some 3, 3’ € S. Therefore either o € S, or « is the half-sum of two such elements. O

Proposition 3.8. Let S be an orthogonal subset of W.
i) Suppose that @ is simply laced, then &g = S U (=S5);
1) Suppose that @ is not simply laced, and let ® = @, U P5 and S = S U Ss be the partitions into
long and short roots. Then the following hold:
a) dg = (I)Se L (I)SS,'



b) (I)SS =S, U (—SS);

C) b5, NPy =5, (—Sg);

d) Sy u (—Sg) = (‘I)( n ‘1)5) and Sg U (—SS) = S/l Ndg;
e) ZSN ot = 6.

Proof. Let a € ®f, then by the previous proposition we have either a € S or o = %(B + ') for two
different roots /3,5’ in S. Suppose that we are in the second case.

If 3 and B are short, or if ® is simply laced, then we would have [la|? = 1|/8]/?, which is impossible.
This implies i) and ii.b).

If 3 is short and /3’ is long, then we would have |a||? = %H ]| which is also impossible, and similarly
if 8 is long and @’ is short. This implies ii.a).

If 3 and B are long and the root system is not simply laced, then we have that ||a[/? = 1||3]|?, hence
« is a short root. This implies ii.c).

Finally ii.d) and ii.e) follow from the other points. O

Corollary 3.9. Let (u, R), (v, S) be admissible pairs, and suppose that o (ry = 0u(s). Then u(R) = v(S).

Proof. Let 0 = 0,(g) = 0y(s), and let V be the corresponding eigenspace of eigenvalue —1. Then VN® =
u(®r) = v(Pg). By points i) and ii.d) of Proposition [3.8| we see that u(R) U (—u(R)) = v(S) U (—v(S5)).
Thus u(R) = u(Pr) NP~ =v(Pg) NP~ = v(9). O

Remark 3.10. The previous corollary is false if P" is not abelian. Suppose for example that ® is of type
Dy, represented as usual in the Euclidean space R* with orthonormal basis {€1,€2,€3,24}. Let P be the
maximal parabolic subgroup of G corresponding to as = €5 — €3, and let u = v be the longest element
in WP, If we choose R = {e; — 4,61 + €4,60 — €3,62 + 3} and S = {e1 — e3,61 +€3,60 — €4,62 + €4},
then Ou(R) = Ou(S) = —id.

4. PARAMETRIZATION OF THE B-ORBITS IN G/L AND IN p"

In this section we will describe the parametrization of the B-orbits in p* and in G/L. As already
recalled, the parametrization of the B-orbits in p" in terms of orthogonal subsets is due to Panyushev
(see [13, Theorem 2.2]), whereas the parametrization of the B-orbits in G/L is due to Richardson (see
[15, Theorem 5.2.4]). Since the proof in [15] is only sketched, we will include here complete proofs.

Consider the projection map 7 : G/L — G/P. Recall the decomposition G/P = | |, .y » BvP, and
for v € WP let BY = vPv~! N B be the stabilizer of vP € G/P in B. Then

7~ Y(BvP/P) ~ B x5 vP/L.
Hence we have a bijection between the B-orbits in BvP/L and the BY-orbits in v P/ L, which is compatible

with the Bruhat order. Equivalently, if we set B, = v~!B%v = v~'Bv N P, then these orbits are also in
bijection with the B,-orbits in P/L.

Lemma 4.1. Let v € W, then By, = B,NL and B, = v 'BvN B = By, x U, where U, is the subgroup
of P" with Lie algebra u, = @aew\q>+(u) Uy

Proof. Notice that B, is the product of v=!Bv N B with the root subgroups U, with o € @5 Nv~H(®T),
whereas v~'Bv N B is the product of T with the root subgroups U, with o € ®* \ ®*(v). Thus the
claims follow because v(®5) C &+, O

We read now the action of B, on P/L, and more generally that of P on P/L, as an action of P
on p*. Let exp : p* — P" be the exponential map, as defined by Seitz [I7, Proposition 5.3]. Then
exp is a P-equivariant isomorphism, and setting rp(e) = exp(e)L we get a L-equivariant isomorphism
rp : p* — P/L. Notice that rp is not equivariant with respect to the action of P on P/L by left
multiplication, if we consider the adjoint action of P on p". In order to describe the action of P on p"
obtained from the isomorphism rp, consider the following description of P:

Lxpt = P

(9:4) +— gexp(y)
In particular, with this identification we have B, = By, X u,. Using such description of P, we see that
the action of P on p" which makes rp into a P-equivariant isomorphism is given by

(g7y).$ = Adg(x + y)v (4)

for all (g,y) € L x p* and x € p*. We summarize the discussion in the following Lemma.
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Lemma 4.2. Let v € WY, then the map Bye — Buvexp(e)L is an order isomorphism between the
By, -orbits in p* and the B-orbits in BvP/L. Moreover,

dim Bvexp(e)L/L = ¢(v) + dim B,e.

Proof. The first claim follows from the discussion above, and the second one follows from the equality
dim BuP/P = {(v). O

In order to provide some geometric background to the mentioned parametrizations, we recall how to
attach a weight lattice to any algebraic variety acted by a connected solvable algebraic group.

4.1. Standard base points. If Z is an algebraic variety acted by a connected solvable algebraic group
K, recall (see e.g. [I0]) that we can associate to Z a sublattice of X' (K), called the weight lattice of Z
and defined as follows:

Xk (Z) = {weights of rational K-eigenfunctions f € k(Z)}.

Let Tk C K be a maximal torus, then K = Tx K" and restriction of characters gives an identification
X(K) = X(Tk). If Z is a homogeneous K-variety, we say that zg € Z is a Tk-standard base point
if Stabr, (z0) C Stabg(2p) is a maximal diagonalizable subgroup. Since a diagonalizable subgroup is
always conjugated to a subgroup of a maximal torus (see [I8, Corollary 6.3.6]), standard base points
always exist.

We have the following easy lemma (see e.g. [7}, Lemma 1.1]).

Lemma 4.3. Let Z be a homogeneous K -variety and let zg € Z be a Tx-standard base point, then
Txzo C Z is a closed Ty -orbit, and Xr,. (Tkzo) C X1y (Tiz) for all z € Z. If moreover H = Stabg (z0),
then H = (Tx N H)H" and

X (2) = X(K)" = X, (Tre2),
where X (K)H denotes the sublattice of X (K) of the characters which are trivial on H.

In the notation of the previous lemma, notice that a Tx-standard base point zy € Z is characterized
by the equality Xr, (Tkzo) = Xk (Z). Indeed, for all z € Z the restriction gives an inclusion Xx(Z) C
X1 (Tkz), therefore the Tk -standard base points correspond to those points of Z whose Tk-orbit has
minimal weight lattice.

The weight lattice is easily computed when K = Tk is a torus acting rationally on a vector space V'
and Z is a Tk-orbit in V. Let V = @XGX(TK) V. be the isotypic decomposition of V' as a Tx-module.
For e € V, write e = 3 ¢ v (7, €x and denote

supp(e) = {x € X(T«k) : ey, # 0}.
Lemma 4.4. Let V be a rational Tk -module, and let e € V. Then X1, (Tke) = Zsupp(e).

Proof. Denote Z = Tke. Up to replace V with a smaller submodule we may assume that V =
D, csupp(e) Vi and Vy = ke, for all x € supp(e). Then k[V] is generated by linear coordinates which
are Tx-semiinvariant of weight —y, with x € supp(e). Let 'y (resp. T'z) be the submonoid of X (Tk)
whose elements are the weights of the regular Tk-eigenfunctions on V' (resp. on Z). Since the weights of
the coordinates of V' are precisely the elements of — supp(e), it follows that 'y, is generated as a monoid
by —supp(e). By complete reducibility, every Tk-eigenfunction on Z extends to a Tk-eigenfunction on
V. Since no coordinate of V' vanishes on e, it follows that I'; = I'yy. Thus the claim follows because
X1, (Trie) is generated as a lattice by I'z. ]

4.2. B,-orbits in p" and B-orbits in G/L. We now enter into the parametrization of the B,-orbits
in p*, and of the B-orbits in G/L. First we compute the standard base points for the action of B, on p*
Recall that, if S C ¥ is an orthogonal subset, we denoted eg = ¢ eq and eg = 0.

Proposition 4.5. Let (v,S), (v, R) be admissible pairs, then the following hold.
i) The base point es € Byeg is T-standard, and Xp, (Byes) = ZS.
it) The base point vxg € Buxg is T-standard, and Xp(Bvzrgs) = v(ZS).
iti) If Byer = Byeg, then R=5.

Proof. i) Let ey € Byeg be a T-standard base point and denote Sy = supp(ep). Then by Lemmasand
Mwe have Xp,(Byes) = Xr(Teg) = ZSy. Applying again Lemmait follows that ZSy C Xr(Teg) =
7S, therefore by Proposition ii.e) we get the inclusion Sy C S. Since Sy is orthogonal, up to replace
eo with some element in the same T-orbit we may assume that eg = eg,.

9



Given an orthogonal subset R C W, the tangent space of Byeg at eg is
TeR(BveR) = [t, €R] + [U,GR] + Uy
Since S is orthogonal, by Lemma [3.6]ii) we have

[’c, 650] = @ Uy, C @uu = [t,es],

aESy a€ES

iu7 eSoi = @ Uy C @ Uy = [u, es].

aeWN(Sy+d+) ae¥N(S+o+)

On the other hand, by assumption S is contained in ®* (v) and by Lemma|3.6|i) we have SN(S+®1) = &,
hence [t,es] N ([u, es] + 1) = 0. Therefore, comparing the dimensions of the tangent spaces of B,egs at
es and at ey, we get

card(S \ Sp) + dim([u, eg] + u,) — dim([u, eg,] + u,) = 0,

and it follows Sy = S.

ii) It is enough to show that xg is a T-standard base point in (v~!Bv)zs, regarded as a homogeneous
variety for v~!Bv. Notice that Stabg(zs) C P because zg € P/L C G/L. Since by definition B, =
v~ IBvN P, it follows that

Stab,-1p,(rs) = v 'Bvn Stabp(zg) = Stabpg, (zg).

We proved in i) that eg is a T-standard base point for B,es. On the other hand by construction
p* — P/L is a B,-equivariant isomorphism, therefore Staby(zg) is a maximal diagonalizable subgroup
in Stabp, (zg), thus the claim follows from the previous equality.

iii) Let R, S be orthogonal subsets of ®*(v) such that B,eg = B,es. Then by Proposition i) it
follows that ZR = ZS, hence R = S by Proposition [3.8]ii.e). O

In order to parametrize the B,-orbits in p" we will proceed by induction on £(v). The following lemma
will be the key point of the inductive step.

Lemma 4.6. Let (v,S) be an admissible pair, let a € A be such that sqv < v and denote B = —v~!(a) €

V. Then
Byes U Byesugpy if SU{B} is orthogonal

B, ,es = .
Sav®S B,eg otherwise

Proof. Notice that, by Proposition B, = B x (u, @ug) = B, X ug, hence
Bsaves =B, “ug-eg = Bv<eS + keg).

If SU{B} is orthogonal, then B,(es +k*eg) = Byeguggy, thus the claim follows.

Suppose that S U {3} is not orthogonal, and let v € S be such that (8,7Y) # 0. Since 8 + v & ®, we
have 8 — v € ®, hence from it follows that 3 —« € ®p. On the other hand 8 € ®T(v) is a maximal
element by Proposition i), thus g —~v € @;. Set § = 8 —~ and let m > 1 be the maximum such that
v 4+ md is a root, then by Lemma ii) we get that

ug(t)-es =es+citeg+ -+ cmt™ egym-1)s,
for some ¢q, ..., ¢y, € k. Since § € @1 (v) is maximal, it follows that es +keg C Uges+u, C Byes. O
We can now prove the following parametrization of the B,-orbits in p".

Proposition 4.7. Let v € WP, then the map S — Byes induces a bijection
{S c " (v) : S is orthogonal } — {B,-orbits in p"}

Proof. We have already proved in Proposition iii) these orbits are all different.

We now show that every B,-orbit in p" contains a point of the form eg, for some orthogonal subset
S C ®*(v). We proceed by induction on £(v). If £(v) = 0, then B, = B and ®*(v) = &. Since the
B-action on p" defined by is transitive, the claim follows.

Suppose now that £(v) > 0 and let @ C p" be a By-orbit. Let @ € A be such that s,v < v, and
denote u = sov and 8 = —v~1(a) € U. Then &+ (v) = &+ (u) LU {B} and B, = B,Us. By induction,
there exists an orthogonal subset S C ®*(u) such that B,O = Byeg.

If SU{B} is not orthogonal, then B,es = Byes by Lemma thus O = B,eg and the claim follows.
Therefore we may assume that S U {3} is orthogonal. Denote S’ = S U {}. Then by Lemma we
have B,es = Byes U Byegr, hence we have either O = B,eg or O = B,eg:. [l
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As a consequence of the previous result we obtain both Panyushev’s parametrization of the B-orbits
in p" and Richardson’s parametrization of the B-orbits in G/L.

Recall from the introduction that Vj, denotes the set of the admissible pairs. Moreover, for S C ¥
orthogonal, we denote gs = exp(eg) and xg = gsL/L.

Corollary 4.8. i) Let B act on p* wvia the adjoint action. Then the map S — Beg induces a
bijection
{S C ¥ : S is orthogonal } — {B-orbits in p"}
it) The map (v, S) — Buzxg defines a bijection
Vi, — {B-orbits in G/L}

Proof. 1). As it is abelian, P" acts trivially on p". Therefore every B-orbit in p" is actually a Bp-orbit.
On the other hand, we have ®*(w”) = ¥ and B, » = By, thus the claims follow by Proposition
ii). The claim follows from Proposition and Lemma u

Notice that, if S = {81, ..., B} is an orthogonal subset of ¥, then Teg ~ k*eg, x--- xk*eg, . Thus
both the previous parametrizations are independent on the choice of the elements e, € gq.

4.3. The involution associated to a B-orbit. We now compute some other combinatorial invariants
of the B-orbits in G/L in terms of admissible pairs. First of all, by the equality L = PN P~, we have
two natural surjective maps

oy V- WE, oV —WF (5)

respectively defined by projecting B-orbits in G/L in G/P and in G/P~. Therefore ¢ (v,S) = v and
©_(v,8) = v, where v € WF is defined by the equality Bugs P~ = BvP~ and where gs = exp(eg).
Following Springer [19], we now recall how to attach an involution to any B-orbit in G/L, hence to
any admissible pair. Let ¥ : G — G be the involution of G such that L = (G”)°. Notice that 9 acts
trivially on W. Indeed it acts trivially on 7', hence for w € W and t € T' we have wtw ™! = J(wtw =) =
I (w)I(t)9(w) ™t = I(w)tI(w) ™!, which yields I(w) = w.
As in Springer [19], denote

V={geG:gdg) "€ Ng(T)}

Let B and L act on G respectively by left and right multiplication, and consider the induced action of
B x L on G. Then every (B x L)-orbit in G intersect V in a (T' x L)-orbit (see the proof of [I9, Theorem
4.2]). In this way we get a map ¢z : V, — Z, defined by setting

ez(v,S) = gd(9) ' T/T, (6)

where g € V is any element such that Bvzg = BgL/L. In our case it is easy to describe explicitly these
invariants. If (v, S) is an admissible pair, we denote g,(s) = vgsv L.

Lemma 4.9. Let (v,5) € Vi, then ¢z(v,S) = o, and p_(v,S) = [vog]”. Moreover Bo, B =
Bgv(S)B-

Proof. Denote g = vexp(—3fs)exp(es). Since v(S) C ®~, notice that Bvzg = BgL/L. On the other
hand
g¥(g HT/T = vexp(—3 fs) exp(2es) exp(—3 fs)v™'T/T = vogv~ ! = Ty(S)-

Therefore g € V, and it follows that ¢z(v,S) = 0y(s).
The second claim follows by noticing that

BvxgP~™ = Bvexp(—fs)exp(es) exp(—fs)P~ = BvogP~.

Finally, notice that o,(sy = (vexp(—fg)v™!)gy(s)(vexp(—fs)v™!). Since (v, S) is admissible, we have
by definition v(S) C ®~. Thus vexp(—fs)v~! € B, and we get 0,(s) € Bgy(s)B. O
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5. DIMENSION FORMULAS, AND THE ACTION OF THE MINIMAL PARABOLIC SUBGROUPS

In this section we will study the action of the minimal parabolic subgroups of G on the set of the
B-orbits in G/L. Let (v,S) € Vi, and let @« € A. Since B acts with finitely many orbits on G/L, in
particular it acts with finitely many orbits on P,vzg. Following [14] we define

me (v, S) = unique (v',S") € Vp, s.t. Bv'zg C Pyvxg is open

In the previous notation, notice that, if mq (v, S) # (v, S), we have dim(Bv'zg/) = dim(Bvzg) + 1.
If (v,8) € Vi, and o € A, we also set

Ea(v,8) ={(u,R) € V, : mq(u,R) = (v,S) and (u, R) # (v, 5)}.

The following result due to Richardson and Springer will be needed in the proof of Theorem [6.2] which
will constitute the basis of the induction to prove our main theorem.

Lemma 5.1 ([I4] 7.4]). Let (v,5) € Vi, and o € A, then the following hold.

i) If ma(v,S) = (v, 8") # (v,5), then 0,/(s1) = 80 © Ty(5) > Tu(s)-
ii) Ea(v,S) # @ if and only if 5o 0 Ty(5) < Ty(s)-
i) Ea(v,8) = @ if and only if 5o 0 Oy(s) > Ty(s)-

Proof. Since our statements are slightly different from those in [I4], we provide some details.

i). Suppose that mq(v,S) # (v,5). Notice that s, o 0,(5) and o,(g) are always comparable by
Lemma Assume by contradiction that s, o 7,5y < 0y(s)- Then so04(s5) < Ty(s) by Lemma ii),
therefore we get £,(v, S) # @ by [14] 7.4(ii)]. Let (u, R) € E4(v,S), then by definition Bvxg is open in
Pyuzp. On the other hand Pyuxr = P,vxg, hence mq (v, S) = (v, S), a contradiction. This shows that
54 0 0y(5) > 0y(s), and the remaining claim follows from [14} 7.4(i)] together with Lemma

ii). Suppose that s, 0 0,5y < Ty(s), then soo,5) < 0ys) by Lemma ii), therefore we get
Ea(v,8) # @ by [14, 7.4(ii)]. Suppose now that &,(v,5) # @, and let (u,R) € E4(v,S). Then by
construction we have mq(u, R) # (u, R), thus by i) we get o,(g) = Sa © 0y(r) > Our). Therefore
Sa O 0y(8) = Ou(R) < Oy(S)-

iii). Notice that sq 0 0,5y and o,(s) are never equal, and they are always comparable by Lemma
Therefore the claim follows from ii). [l

Using the techniques developed by Richardson and Springer [I4], we can easily compute the dimension
of a B-orbit (see [I4, Theorem 4.6]).

Notice indeed that 0 € Byeg for all S C . Thus, if (v,.S) € V, is associated to a closed orbit, it must
be S = @. On the other hand dim(Bvzg) = ¢(v) + dimu, = card(¥), therefore (v, S) corresponds to
a closed B-orbit if and only if S = @. Suppose now that (v, S) is an admissible pair with S # @: then
oy(s) # id, and if @ € A is such that s, 0 0, (g) < 04(s), by Lemmaii) we can find (v',5") € E4(v,S).
Thus by Lemma [3.4] we have

dim Bvuzg = dim Bv'zss +1  and  L(oy(s)) = L(ow(s)) + 1,
and arguing by induction we obtain
dim Bvzs = card ¥ + L(oy(s))- (7)
This is equivalent to formula in the Introduction.

Definition 5.2. Let (v,S) € VL, the length of (v,S), denoted by L(v, S), is the length L(co,g)) of the
corresponding involution o, (s, namely

f(o‘v(s)) + card S
5 .
As a consequence of the previous dimension formula we also get a dimension formula for the adjoint

B-orbits in p", which was conjectured by Panyushev [13, Conjecture 6.2]. Recall that w? denotes the
longest element in W', wp the longest element in Wp and wg = wPwp the longest element in .

L(v,S) =

Corollary 5.3. Let B act on p" via the adjoint action, and let S C ¥ be an orthogonal subset. Then

U(Owp(s)) +card S

dim Beg = 5
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Proof. As we already noticed, every B-orbit in p" is a By -orbit, thus dim Beg = dim Byzg. On the other
hand B, = B,,r and £(w?) = card ¥. Hence by Lemma we have dim Bw”zg = card ¥ + dim Beg,
and by formula it follows that dim Beg = 3({(o,,r(s)) + card S). To conclude the proof, it is enough

P

to notice that £(o,r(s)) = £(0w,(s)): indeed wy b = wPwp, therefore using the fact that w’ and wy are

involutions we get o, (s) = woawp(s)wal. (I
We give now a more precise result about the action of the minimal parabolic subgroups.

Lemma 5.4. Let (v,S) € Vi, and a € A, then the following hold.

i) If E4(v,S) # & and s,v < v, then there exists (v, S") € E(v, S) with v/ = syv.
i) If [sqv]F > v, then mo (v, S) # (v, S).
iii) If Ea(v,8) = @ and my(v,S) = (v,S), then [sqv]f = v.

Proof. i). Notice that Bvxs C P,vzg is open, because &, (v,S) # @. Let O = Bs,vzs and let (u, R)
be the corresponding admissible pair. Since O C P,vzg, we have (u, R) € E4(v,5). On the other hand
sqU € WP, therefore u = sov.

ii). Suppose that m,(v,S) = (u, R). Notice that [s,v]F = s,v because of the assumption. It follows
that P,vxg N Bs,vP/L is a dense open subset of P,vxg. Since B has finitely many orbits on G/L, it
has an open orbit O C Pyvxg N BsquP/L. Then O is open in Pyvzg as well, therefore O = Buzg and
U = Su0.

iii). By ii) we have [s,v]" < v, therefore either s,v < v or [s,v]F = v. Suppose that we are in the
first case. Then P,vzrg N BsavP/L # &, therefore there exists an admissible pair of the shape (sqv,S")
such that Bs,vrg: C P,vrg. On the other hand Bvxgs C P,vxg is open by the assumption, thus
(squ, ") € E4(v, S), a contradiction. O

]P

Similarly to the previous lemma, we have the following analogous statements, obtained by looking at
the representatives on G/P~ rather than on G/P.

Lemma 5.5. Let (v,5) € Vi, and a € A, and set v = [vog]F, then the following hold.

i) If E4(v,8) # @ and [sqv]F > v, then there exists (v, S") € E4(v, S) such that [v'og]F = sqv.
it) If sqv < v, then mq (v, S) # (v, 5).
iii) If Ea(v,8) = @ and my(v,S) = (v,5), then [sov]F =v.

Proof. i). Notice that [sov]F = sqv and that P,vgsL N BsavP~ # @. Therefore by Lemma there
exists (v, 8') € V such that [v'0s/]’ = sov. On the other hand Bvrs C P,vrg is open because
Ea(v,8) # @, therefore (v, S") € E,(v, S).

ii). Notice that s,v € W¥ and that Bs,vP~ C P,vP~ is a dense open subset. Therefore the open
B-orbit of Pyvxg is contained inside Pyvzs N Bs,v P~ /L, and it follows that m, (v, S) # (v, S).

iii). By ii) it holds [s,v]f > v, suppose that [sov]" > v. Then Pyvzs N Bs,vP~/L # @ and
there exists an admissible pair (v',S") such that Bv'zg: C Pyvxg N Bsav P~ /L. Since by assumption
Bvxg C Pyvxg is open, it follows that (v, S") € £,(v, S), a contradiction. O

Recall the following basic fact from [14] §4.3] (which is essentially based on the classification of the
spherical subgroups of SLa): a P,-orbit in G/L decomposes at most into three B-orbits. In [14] §4.3,
Case C] it is also proved that if £, (v, S) has two elements then « is real for (v, S), namely o, g (o) = —a.

In the following lemmas we further analyze the sets &, (v, S). First we will give conditions (which are
only possible if the root system is of type B or C) so that &,(v, S) contains a unique element, then we
will characterize when &, (v, S) has cardinality 2.

Lemma 5.6. Let (v,S) € V, and a € A be such v='(a) € Ap. Denote B = v~ (a) and assume that
there exists v € S such that v — 20 is also an element of S. Denote v' = v —28 and vo = v — 3, and set
S'=S~{v,7y'}. Then (v,S"U{y}) € VL, and

504(’07 S) = {(Ua S'U {’YO})}

Proof. Since v and « — 28 are both roots, 79 must be a root as well, and since ® is not of type G, we
also have sg(y) =7/ and (8Y,7) = 2. Moreover we have v(vy) < 0, therefore setting So = S" U {vo} we
get an admissible pair (v, Sp).
Let Gg C L be the subgroup generated by Ug,U_g. Then Gg is isomorphic to SLy or to PSLs, and
the vector space V = (e, e4,,€) is a representation of Gg of highest weight 2. By the construction of
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Chevalley groups (see e.g. [20 Sections 1,2,3]) we can normalize e, e+, e, so that
Ady, (1) (eyo) = €4, + 2te, Ady, ) (ey) = ey + tey, + ey,
Ady_,(1)(ey,) = €y + 2ty Ad,_,1)(ey) = ey +tey, + t2€,y/.
Notice that xe, + ye, +eg € Teg for all z,y # 0, thus Bvzg contains all the elements of the form
uq(t)vexp(zey + ye, +esr)L = vug(t) exp(zre, + yey +egr)L
=vexp (Ady, @) (zey +yey +esr))L (since Ug C L)
=vexp ((yt* + x)ey + ytes, + yey + es/)L.
Therefore Bvxrg contains all the elements of the form
vexp (aey + bey, + cey + eg/)L
with ¢ # 0 and ca # b%. In particular it follows that Bvzg is in the closure of Bvzg. Similarly, since
chark # 2, all the elements of the form
v exp (ae»Y +bey, +es)L
with b # 0 belong to Buxg,.
We now analyze P,vxg. Write P, = BU_, U Bs,. From the equality sz(y) =~ it follows
5025 = vsggsL = ngB(S)SﬁL =vgsL =vxg,
thus Bsqvrs = Bvrg. Let now t € k, since U_g C L we have
u_o(t)vzs = vu_g(t) exp(es)L = vexp (Ad, @ (es))L
=vexp(es + ey +tey, + (1 +t%)ey )L
By the discussion above, it follows that u_,(t)vzs is in Bvwxg, if 1 +t? = 0, and in Bvxg otherwise.

The claim follows. O

Lemma 5.7. Let (v,S5) € Vi, a € A and set B = —v~=Y(a). Then E,(v,S) has cardinality 2 if and only
if B €S, in which case

50¢(U7S) = {(sav,S N {ﬁ})ﬂ (UvS N {B})}

Proof. Assume first that 8 € S. Then s,v € W thus (s,v, S\{8}) and (v, S~ {8}) are both admissible
pairs. Set S" = S~ {8}, then

vrg: = vgs' L = vug(—1)ug(l)gs' L = u_o(—1)vgsL,
SaUxgr = Ua(—1) ua (1) sqvgs L = ua(—1) sqvug(l) gsL = uq(—1) sqvgsL.

Thus both the previous elements belong to P,vzg, and Bvrg and Bs,vrg: are both contained in P,vzxg.
Finally 0,51y = 0 0(5) = 8a0u(s) = Sa © Ty(s) < Ty(s), therefore (v,5"), (sqv, ') € Eu(v,S) and the
claim follows.

Suppose now that £, (v, S) has cardinality 2. As already recalled, by [14} 4.3] it follows that o,(s) () =
—a. Notice that [s,v]F < v, otherwise mq (v, S) # (v,9) and £, (v, S) = 2.

Suppose that [s,v]f = v, and set 8/ = v~!(a). Then 5’ € ®p, and since v(8') = « is a simple
root we obtain 8 € Ap. Moreover og(f’) = —f’, thus by Proposition we have 3/ = %(7 —~") for
some 7,7 € S. In particular ¥ = v — 2/3’, and by Lemma we deduce that card&,(v,S) = 1, a
contradiction.

Therefore we have [s,v]” < v. Notice that 8 € ¥, that v(8) = —a and that og(8) = —3. By
Proposition [2.5i) we see that 8 is maximal in ®*(v), and by Propositionw we have 8 = 3(y+1') for
some 7,v" € S. Since v and +' are orthogonal, it follows that (v, 3") = (7/,8Y) # 0. In particular, 3 is
comparable both with v and +/, thus by the maximality of 3 we get 8 > v and 8 > +'. By the equality
8= %('y +9') we get then 8 =+ =4/, and in particular 3 € S, which concludes the proof. (]

Finally we will need the following property of the Bruhat order (which is equivalent to the one-step
property of [I4]). It establishes some basic compatibilities between the Bruhat order on G/L and the
action of the minimal parabolic subgroups of G.

Lemma 5.8 ([14, 7.11(i) and 6.5]). Let (u,R), (v,S) € Vi be such that Burr C Bvrg. Let o € A be
such that E,(v, S) # @ and let (v',5") € E4(v,S), then the following hold.

i) If ma(u, R) # (u, R), then Pyuxr C Buvxrg and there exists (u',R') € E4(my(u, R)) such that
Bu'zr C Bv'zg:.
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it) If mo(u, R) = (u, R), then either Buxgp C Bv'zg or there exists (v, R') € E,(u, R) such that
Bu'zr C Bv'zgr.

6. THE BRUHAT ORDER ON ABELIAN NILRADICALS

In this section we study the Bruhat order of the B,-orbits in p", where B, acts on p" via the action
defined in . In order to do this, we will prove a more general statement characterizing the Bruhat
order for some particular classes of B-orbits in G/L. Indeed, by the discussion in Section 4| (and more
specifically by Lemma7 the Bruhat order among the B,-orbits in p" is equivalent to the Bruhat order
among the B-orbits in BuP/L C G/L. The advantage of working inside G/L is that there we can can
use the action of the minimal parabolic subgroups, and argue by induction. As a consequence, we will
get a characterization of the Bruhat order on the abelian nilradicals.

The next Lemma will give us the technical ingredients for the inductive step. Notice first that Bvzg C
Buvxg whenever (v, R) € £,(v,5): indeed by definition we have P,vzr = Bvzg, hence Bvzg C Pyvrr =
Buzxg.

Lemma 6.1. Let (v, R), (v, S) € Vi, with the same component on W Suppose that o,(r) < 0y(s) and
let a € A be such that E,(v, S) # &, then the following hold.
i) If mo(v,R) # (v, R), then my(v,R) = (v,R’) for some orthogonal subset R' C ®*(v), and
Ou(R) < Oy(R") K Oy(S)-
ii) If ma(v, R) = (v, R) and E,(v, R) = @, then there exists an orthogonal subset S’ C ®*(v) such
that ('U,S/) S 5(,(’0, S) and Oy(R) < Oy(s") < Oy(S)-
iii) If (v, R) # &, then there exist (v/,S") € E4(v,S) and an orthogonal subset R' C ®*(v') such
that (’0/7 R/) S 5Q(U, R) and Oy (S7) > Oy (R!)-

Proof. 1). Because &, (v, S) # @, notice that mq(v,S) = (v, S). Therefore by Lemma ii) we have
that [s,v]” < v. It follows that BvP/L intersects P,vrr in an open subset of the latter. Since
ma(v, R) # (v, R), we get that mq (v, R) = (v, R') for some admissible pair of the shape (v, R’), and
by Lemma i) we get oy(r) < Oy(r) = Sa © Oy(r)- On the other hand by Lemma ii) we have
S0 0 0y(s) < Oy(s), thus by Lemmaiii) we get oy (r) < Oy(s)-

ii). Let (v, 8") € €4(v, S), then v" = v by Lemmaiii). On the other hand by Lemma[5.1]i) we have
Ty(S) = 8a 0 0y(5) < Ty(s) and So 0 04 (R) > Oy(R), thus by Lemmaiii) we get 0y(r) < Oy(sr) < Oy(s)-

iii). Let (v/,8") € E.(v,8) and (v, R') € Eu(v, R). Notice that [sov]f < v. If [s,v]f = v, then
v' = v"”. Otherwise [s,v]F = s,v < v, and by Lemma i) we can assume that v = v’ = s,v. By
Lemma i) we have o,/(s/) = 84 0 0y(5) and G/(r/) = Sa © 0y(g). On the other hand by Lemma
ii) we have the inequalities s, 0 0y(g) < Tyr) and sq © Ty(s) < Ty(s), thus by Lemma ii) we get
Sa 0 0y(R) < Sa O 0y(s)- (]

We can now describe the Bruhat order on BuP/L, or equivalently the Bruhat order among the B,-
orbits in p".
Theorem 6.2. Let (v, R), (v,S) € Vi. Then

i) Byer C Byes if and only if 0,(ry < 0u(s);
ii) Bvxg C Bvxg if and only if oyry < 0y(s)-

Proof. The two claims are equivalent by Lemma[4.2] To prove the first implication, we use the formulation
in p". Assume that eg € Byes. Since B,es = Br(es + u,), by taking the exponential exp : p* — P"
we get gr € BrU,9sBr = B,gsBr. Since vB,v~! C B, this implies that 9u(rR) € Bgy(s)B, hence
Tu(r) < Oy(s) by Lemma [£.9]

We now prove the second implication, by using the formulation in G//L. Assume that o,ry < 0y(g).
We proceed by induction both on L(oy(s)) and on £(oy(s)) — £(0y(r)). Suppose that L(oyg)) = 0, then
S = @ and 0,(g) = 1, thus o,y = 1 and R = @ as well. More generally, if £(o,(r)) = £(0y(s)), then
Ou(R) = Oy(s) and by Corollary it follows R = S.

Suppose now that L(oys)) > 0 and £(oy(ry) < £(0y(s)). Since £(o,(g)) > 0, by Lemma/5.1}ii) together
with Lemma [3.1]ii), there exists o € A such that &,(v, S) # @.

Suppose that mq (v, R) # (v, R) and set m, (v, R) = (v', R'). Then by Lemma i) we have v’ = v,
and o,(g) < Tyr) < Oy(s)- Therefore by induction we get vagr € Bvzg, and since vrr € Bvrp it

follows that vap € Buxg as well.
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Suppose that mq (v, R) = (v, R) and £,(v, R) = @. Then by Lemma [6.1]ii) there exists an admissible
pair (v/,8") € £q(v, S) such that v = v and o,,(gy < 0y(s/) < 0y(s). Therefore var € Bvxg by induction,

and since xg € Bvxg it follows vz g € Bvxrg as well.

Suppose finally that £,(v,R) # @. Then by Lemma iil) there exist (v/,S") € &4(v,S) and
(", R') € E4(v, R) such that v' = v" and 0(r) < 0yr(s7). On the other hand L(oy(5)) — L(oy(sy) =
dim Bvzg — dim Bv'zg = 1, thus we get Bv'x g C Bv'xzg by the inductive hypothesis. Applying P, to
the previous inclusion we get then

Bvrg C P2W'zp C Pyw'zs = Buxg,
and the proof is complete. O
In particular we get the following corollary, which was conjectured by Panyushev [I3 Conjecture 6.2].

Corollary 6.3. Let B act on p" via the adjoint action. Suppose that R,S C ¥ are orthogonal subsets,
then Begr C Beg if and only if 0., (R) < Owp(s)-

Proof. Since P" is abelian, every adjoint B-orbit in p" is a Bp-orbit. On the other hand, by Theorem
i) applied to the case v = w’, we have that er € Breg if and only if OwP(R) S OywrP(s). Now recall
that wy = wPwp and that wy and wp are involutions, hence OwP(R) = W0o0wp(R)Wo L and similarly

TwP(S) = Wo0ywp(S)Wo ! Therefore the claim follows by noticing that the conjugation by wq preserves
the Bruhat order. O

7. THE BRUHAT ORDER ON HERMITIAN SYMMETRIC VARIETIES

We now come to main theorem of the paper. In this section and in the next one, we will prove a
conjecture of Richardson and Ryan [16, Conjecture 5.6.2] describing the Bruhat order on G/L.

Recall from the Introduction the definition of the partial order on V. Then we will prove the
following theorem.

Theorem 7.1. Let (u, R), (v,S) € V. Then Buxg C Bvzxg if and only if (u, R) < (v, S).
We start with a few remarks on the previous theorem.

Remark 7.2. Notice that one of the conditions involved in the definition of the combinatorial order
among admissible pairs is always fulfilled. More precisely, if (u, R) € V7, then we always have [uog|" < u.
If indeed 8 € R then u(8) € ®~, namely usg < u. Thus by the orthogonality of R we get uog < u.

Remark 7.3. Let (v,S5) € V1, and let @ € A, then the inequality (v,S5) < mq(v,S) is always fulfilled.
If indeed v’ is the longer of the two elements v and [s,v]?, then P,vxg N Bv'P/L is a dense open
subset of P,vzg. Thus it must be my (v, S) = (v, S’) for some orthogonal subset S’ C ®*(v’), and by
construction v’ > v. Similarly, if u = [vog]? and v is the shorter of the two elements p and sqpu, then
P,vzs N BvP~ /L is a dense open subset of P,vzg, thus [v'o%]” = v and we have v < p. Finally, the
inequality o, (s) > 04 (g) follows from Lemma i).

The first implication of Theorem was already known. We recall the proof in the following lemma,
which relies substantially on a result from [16].

Lemma 7.4. Let (u, R), (v, S) € Vi, and suppose that Buxr C Bvxs. Then (u,R) < (v, 5).

Proof. By [16, Lemma 1.1] together with Lemmait follows that oy, (r) < 0y(s). The inequality u < v
is obvious, and the inequality [uor|” < [vos]? also is obvious thanks to Lemma The last inequality
follows from Remark [Z.2} O

The other implication of Theorem|7.1|will be proved by induction. The next two lemmas will constitute
the basis of the induction.

Lemma 7.5. Let (v, R), (v, S) € Vi, then the following are equivalent:
i) Bvxg C Buxg;
it) (v, R) < (v,5);
ZZZ) Ou(R) < Ou(S)-
Proof. The implication ii) = iii) is trivial, iii) = i) is the content of Theorem [6.2]ii), and i) = ii) follows
from Lemma [T4l O
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Remark 7.6. Notice that the previous proposition provides a geometric proof of the following combi-
natorial statement: if (v, R), (v, S) € Vi, and o,(g) < 0u(s), then [vos]” < [vog]”. The same stament
can be proved combinatorially in case v = [wo]Q, Where Q@ is any parabolic subgroup of G, but we do
not know a direct proof for v € W¥.

Lemma 7.7. Let (u, R), (v,S) € Vi, be such that (u, R) < (v,S) and L(u,R) > L(v,S). Then (u,R) =
(v, 5).

Proof. By assumption we have o,(p) < 0y(s) and L(o,(s)) < L(0y(r)). Therefore we get o, (r)y = 0y(s)
by Lemma [3.5] and u(R) = v(S) by Corollary
Since w), is fixed by Wp, by Proposition iii) the inequalities [vog]’ < [uog]f and u < v are
equivalent to the followings
v(wp) < u(wp), uor(wp) < vos(wp).

On the other hand, since wl\é is minuscule, we have

or(wp) = wp — Zoz Us(w}é):w}é—Za.

a€ER a€cS
Since u(R) = v(S), it follows that u(wp) — uor(w)p) = v(wp) — vos(w)), thus by the inequalities above
we get u(wp) = v(w)). Therefore u = v, and we also get R = S. O

7.1. Strategy of the proof and preliminary lemmas. The proof of Theorem will be given in
Section[7.2] In this section we explain its structure and we prove some prelimary lemmas. In its general
structure the proof is similar to that of Theorem[6.2] however there are some important differences which
make the proof quite a bit more complicated.

Let (u, R) and (v, S) be two admissible pairs. As we have already seen in Lemma if Buxr C Buvxg
then the inequality (u, R) < (v, S) follows from the work of Richardson and Springer. Assume now that
(u, R) < (v,S). Arguing by induction on the dimension of orbits as in the proof of Theorem let
a € A be such that £,(v,S) # &. As in the proof of Theorem we will analyze three main different
cases.

The first case we analyze is when &, (u, R) = @. The technical ingredients to deal with this case are
contained in Lemma [7.8 below. In the proof of the theorem, this corresponds to the cases 1, and 2,.

Thus we are reduced to the case where &, (u, R) # &, and arguing by induction we would like to find
admissible pairs (v/, R') € £4(u, R) and (v, 5") € €4 (v, S) such that (v/, R") < (v/,S’). A posteriori this
is indeed true, but we are not able to prove it directly in general. However we are able to find such pairs
in most cases: the technical ingredient to do that is Lemma [7.10 below and this corresponds to the cases
3. and 4, in the proof of the theorem.

There is a single case that remains outside of this analysis, namely the case where &, (u, R) has
cardinality 2, and &,(v,S) = {(v/,8")} with v/ < v and [v'os/]¥ < [vos]¥. Even more, we can assume
that we are in this situation for all & € A such that &, (v, S) # @.

To treat this case we will argue by induction also on £(v) — £(u). In particular, at the basis of our
induction we will find the case where u = v, which was treated in Theorem[6.2] Notice that the inequality
Oy(R) < Oy(s) Of Theore is just one of those involved in the inequality (v, R) < (v, S): however, as
we have seen in Lemma for these particular pairs this single inequality implies all the others. Most
of the proof in Section will be dedicated to treat this last case.

We now come to the preliminary lemmas mentioned above. The first one will be used to treat the
case where &, (u, R) = &

Lemma 7.8. Let (u,R), (v,S) € Vi, with (u,R) < (v,5), and let & € A be such that E,(v, S) # & and
Euo(u, R) = &, then the following hold.

i) If mo(u, R) # (u, R), then mq(u, R) (v,5).

it) If mg(u, R) = (u, R) and (v',S") € E,(v, S), then (u, R) < (v, S").

Proof. Denote u = [uog]? and v = [vog|?

i). Set my(u,R) = (v, R') and denote p/ = [u'or/]F. Notice that by the assumptions we have
BuW'P C P,uP and BvP = P,vP, thus Bu/P C BvP because P,uP C P,vP. Similarly, we have
Buy/'P~ C P,uP~ and BvP~ = P,wvP~, thus By/P~ C BvP~ because P,uP~ C P,vP~. Together
with Remark this show the inequalities v < ' < v < v. Finally by Lemma iii) we get
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Ow(R') = Sa ©Oy(R) > Oy(R), thus by Lemmas ii) and iii) we obtain o,/ (g/) < 0y(g) and the claim
follows.

ii). Since &, (v, S) # @, we have m, (v, S) = (v,S). Therefore by Lemmas [5.4] i) and [5.5]ii) we get
[sqv]F < v and [s4]F > v. Similarly, by the same lemmas we have [s,u]” = u and [s,pu]" = pu.

By the assumptions we have v < p < u < v and o, (g) < 0y(g). Let (v/,5") € (v, S) and denote
V' = [v'os/]F, we have to show the inequalities Owr) < Oy(s), u < v and V' < p.

The first one follows from Lemma ii)-iii) together with Lemma iii): indeed oy Ry < Oy (5 =
Sa O 0y(S)-

To show the second one, notice that either v’ = v or v/ = sqv < v. Thus, if v # v’, it must be u < v.
Since u < s,u, by the lifting property we get then u < v'.

To show the last inequality, notice that either v’ = v or v/ = s,v > v. In the first case there is nothing
to show, suppose that v/ > v. Then s,V < Sqp, thus v/ = s,v = [s4v]F < [sap]f = p. O

The next two lemmas are related to the analysis of the case where both &, (v, S) and &, (u, R) are not
empty. The first one is general and will be used many times, the second one, as explained above, gives
the technical ingredient to treat many cases of the induction.

Lemma 7.9. Let (u, R), (v,S) € Vi, be such that (u,R) < (v,5), and let « € A. If (v/,R') € E4(u, R)
and (v',8") € E4(v, ), then o, (g < Ty (57

Proof. By Lemma i) we have 0,/(5/) = 54 0 0y(g) < Oy(s), and similarly o,/ (r/) = 54 © Oy(r) < Tu(r)
for all (u', R') € E4(u, R). Thus o, gy < 0y gy by Lemma ii). O

Lemma 7.10. Let (u, R), (v, S) € VL, be such that (u, R) < (v,S). Let « € A be such that E,(u, R) # @

and E,(v,8) # @. Set u = [uog]’ and v = [vog]F, then the following hold.
i) Let (v',S") € E4(v,S). Assume that either v/ = v or v'os/|F = v, then there exists (v, R') €
Ea(u, R) such that (v/,R') < (v/,97).
i1) Suppose that one of the following equalities holds:
1 17 "=u [san]” = p.

Then, for all (v',S") € E4(v,S), there exists (u', R') € Eu(u, R) such that (u',R’) < (v',5").

[saV]” =, [saV]” =v, [sau

Proof. By assumption we have the inequalities u < v, v < p and oy,(g) < o). If (', R) € E4(u, R)
Q! : [ / P ! oy P
and (v, S") € E,(v,S), we will denote p/ = [w'ogr/]” and v/ = [v'og/]". Thus by Lemma we have
(u',R") < (v,8") if and only if v/ < v" and v/ < p'.
Since &, (u, R) # @ and &, (v, S) # &, we have mq(u, R) = (u, R) and mq (v, S) = (v, .S). If moreover
(v, R") € E,(u, R), then we have the inequalities
]P

[sau]” <’ <u,  [sav]” <V <0, [sapl” Zu s [sav]T 2V 20

We prove i). Suppose that v = v. Then v’ < u < v = v/, thus we only have to show the inequality
v < p/. We can choose (u/,R') € £,(u, R) in such a way that p' = [squ]?: if [squ]” = i, then every
(u', R") € E,(u, R) has this property, otherwise we can apply Lemma i). On the other hand we have
Saft > = v, thus squ > sqv. Therefore we get ' = [sou]f = [sav]f = V.

Suppose that v’ = v, and assume that v' = s,v < v (otherwise we apply the argument above). Since
i > p we have v/ = v < g/, thus we only have to show the inequality v’ < v'. Arguing as in the case
v =1, by Lemma i), we can choose (u', R') € E,(u, R) in such a way that v’ = [s,u]f. If v’ < u,
then v’ = spu < v and we get ' = squ < sqv = v'. If instead «' = u, then s,u > u, and by the lifting
property we get u < sqv = v'.

We prove ii). If [s,v]" = v or [s4V]F = v, then any (v, S’) € €,(v, S) satisfies the condition in i),
thus the claim follows from i). Therefore we can assume that v = s,v < v and V' = s,V > v.

Suppose that [s,u]f = u. Then we have v’ = u < s,u, thus v’ < v’ by the lifting property. To show
the other inequality, by Lemma i) we can choose (u/, R') € £,(u, R) in such a way that ' = [sou]”.
Since sou > p > v, for such a choice we get p/ = [sou]” = [sav]f =1/

Suppose that [sau] = p. Notice that sou > pand sav > v, thus i/ = [sau]? > [sav]f =/, To
show the other inequality, by the previous case we can assume that spu < u. Thus by Lemma i)
we can choose (u/, R') € E,(u, R) in such a way that u’ = s,u, and since s,u < u and s,v < v we get
U = s,u < U =0, O
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7.2. Proof of Theorem By Lemma we have to show that, if (u, R) < (v,S), then Buxg C
Bvzxg. Throughout this subsection, we will denote u = [uog]” and v = [vog]F.

By Lemma we have L(v,S) — L(u, R) > 0, therefore we can proceed by induction on £(v), on
L(v,S), on £(v) — £(u) and on L(v,S) — L(u, R). By Lemmas [7.5[ and the claim holds if £(u) = ¢(v)
or if L(u, R) = L(v,S), and in particular if {(v) = 0 or if L(v,S) = 0. Therefore we may assume that
l(u) < £(v) and L(u, R) < L(v,S).

Since L(v,S) > 0, we have £(g,s)) > 0 as well. Thus by Lemma ii) together with Lemma ii)
there exists € A such that &, (v, S) # @. Thanks to Lemma we can easily conclude the proof in a
few special cases.

Case 1,. Suppose that £, (u, R) = @ and mq(u, R) = (W', R') # (u, R). Then by Lemma [7.§i) we
have (u,R) < (v/,R') < (v,S). Since L(v,S) — L(u/,R’) = L(v,S) — L(u, R) — 1, it follows from the
inductive assumption on L(v, S) — L(u, R) that Pyurgp = Bu'zgp C Bvxg, hence Buxr C Buvxg.

Case 2,,. Suppose that &, (u, R) = @ and mq(u, R) = (u, R). Let (v/,5") € E4(v,.S), then by Lemma
ii) we have (u,R) < (v,5"). On the other hand L(v',S") — L(u,R) = L(v,S) — L(u, R) — 1, thus
by the inductive assumption on L(v,S) — L(u, R) it follows that Buzxgr C Bv'xz g/, and the claim follows
because Bv'zr C Bvxp.

Case 3,. Suppose that &, (u, R) # &, and assume that there exist (v/, R') € E4(u, R) and (v/,5’) €
Ea(v,S) such that (v, R’) < (v/,8"). Then L(v',S’) = L(v,S) — 1, thus by the inductive assumption on
L(v,S) we get Bu'zg C Bv'xzg. Moreover, it follows that P,u'zg C Pyv'zg/, hence Buxg C Buzs.

Case 44. Suppose that &, (u, R) = {(v/, R’)} and let (v/,5") € E4(v,S). We claim that in this case
we have necessarily (v/, R') < (v/, '), so that we fall again in the previous case. Denote y' = [u'ogr/]|”
and v/ = [v'0s/]F. By Lemma [7.9|we only have to show that u/ < v' and p/ > v/. We only show the first
inequality, as the other one is similar.

Notice that [s,v]” < v < v, and that v’ = [s,u]” < u by the assumption on (u, R). If v/ = u and
v’ = v there is nothing to show, therefore we can assume that either v’ = s,u < u or v/ = s,v < v.

Suppose that we are in the first case: then either v/ = v, in which case v/ < u < v, or v/ = s,v < v,
in which case we get u/ < v’ by Lemma [2.7]ii).

Suppose that we are in the second case, and not in the first case. Then we have v’ = v and v/ = s,v.
Thus u = [squ]? (hence u < s,u) and s,v < v, and by Lemma iii) we get v’ = u < sqv =v'.

Hence we can assume, and we will assume it from now on, that for all & € A such that E, (v, S) # @
none of the previous cases hold.

Since a P,-orbit in G/L decomposes at most into three B-orbits, it follows that &, (u, R) has cardinality
2 for all simple root « such that &£, (v,S) # @ . Notice also that by Lemma we are in the following
setting.

Claim 1. Let a € A be such that E,(v,S) # @, and let (v',S") € E4(v,S). Denote V' = [v'os/]F, then
the following hold:

Satt < U, SaU < v, v = sqv,

[sap]f = sap, [sav]F = 541, Vv = s,V.

Moreover, we have the following.
Claim 2. Let o € A be such that E,(v,S) # @ and denote
Ealu,R) ={(v',R"), (u",R")}.
Set B =—u=Y(a), W = [Wor]t and p" = [u" o )T, then the following hold:
i) B € R, and up to switching (v, R’) and (u”, R") we have

"

u = u, 1= sqp, v’ = squ, w=pu, R =R"= R~ {B};

]P

1) u and s,v are uncomparable;
i) B is mazimal both in T (u) and in ®*(v), and B = —v~1(a).
Proof of the claim. Point i) follows from Lemma by noticing that woy(r{s}) = Sauoyr) and

Sall0u(R~{p}) = UTu(R)-
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Point ii) follows from Lemmal[7.9] since v’ < 1’ and by the assumption above we cannot have (u/, R’) £
(v',S") otherwise we would be in step 3.

We prove iii). Denote 3/ = —v~!(a). Then § is maximal in ®* (u) and 3’ is maximal in ®* (v) thanks
to Proposition i) and the fact that s,v < v by Claim [I} Notice that ®T(s,u) = ®*(u) \ {3} and
Dt (s4v) = @ (v) N {A’}. On the other hand, because u < v and u £ s,v, by Proposition we have

Ot (u) C Dt (v) and T (u) ¢ T (sqv). Therefore it must be g = 3. O

Fix a € A such that &,(v,S) # &, we will keep the notation of Claim By assumption we have
u < v, thus, by the chain property (see [3, Theorem 2.5.5]) and Lemma there exists ag € A such
that u < 84,0 < v and (in particular) s,,v € W¥. Let By = —v~1(ap). Then by Proposition i) we
see that By is maximal in ®*(v). Since u < s4,v, notice that by Lemma [2]ii) it must be &, (v, S) = 2.
Denote

So=SU {ﬁo}
Claim 3. The following hold:

i) ag and a are orthogonal;
ii) So C ®T(v) is an orthogonal subset, and By & S. Moreover, mq, (v, S) = (v,S0), and Ey, (v, Sy) =
{(Saovv S)7 (Uv S)}
Proof of the claim. i). Notice that a and «ag are orthogonal if and only if § and 3y are orthogonal. Since
B, Bo € ¥, we have 3+ By € ®. On the other hand 8 and 8y are both maximal in ®*(v) by Proposition
i), and by construction they cannot be equal. Thus 8 — Sy ¢ P, which shows that 8 and Sy are
orthogonal.

ii). Since sq,v < v, it follows that P,,vzs N Bs,,vP/L is a nonempty closed proper subset of
P,,vzg. On the other hand &,,(v,S) = @, thus Bvxg cannot be open in P, ,vrg. It follows that
Ma, (v, S) # (v,5), and the complement of the open B-orbit in P,,vzg intersects both BvP/L and
Bsa,vP/L. Therefore €4, (ma, (v, S)) has cardinality at least 2, and the claims follow by Lemma[5.7] [

Claim 4. We have the following equalities:
Ea(0,8) ={(8av,9)}, Eal(8agv,S) = {(5a8astsS)}s  Ealv,S0) = {(sav, So)}-
Moreover, Eqy(8av,50) = {(54,5), (SaSagt,S)}-

Proof of the claim. Recall that 3 = —v~!(a) from Claim [2]iii). Notice that 3 € ¥ \ S: otherwise by
Lemma [5.7| there would exist (v/, S") € £,(v, S) with v = v, and this is not possible by Claim [I} On the
other hand by construction 8 # fy, therefore 5 & Sy as well.

It follows from Lemma that £, (v,9), Ea(Sayv,S) and 4 (v, Sy) have all cardinality at most 1.
On the other hand (s,v,5), (SaSayv,S) and (s4v, Sp) are all admissible pairs, and we have the obvious
inclusions

Bs,vxg C Pyvxg, Bsy5a,vTs C PySa,vxs, Bsyvxs, C Pyvzg,.
Therefore the first claim follows thanks to the inequalities s,v < v and $48q4,v < Sq,v, and the second
claim follows from Lemma thanks to the orthogonality of o and «y. (]

Claim 5. We have the inequality (u, R) < (Saov,S). In particular, we have the inclusion Buxgr C

Bsq,vxs.

Proof of the claim. Notice that s,V < v, [Sa,v05]F = [SayV]F = Sa,v and that Os,y0(S) = Ou(s)- Thus

by the inequality (u, R) < (v,S) we immediately obtain the inequalities so,v < p and o, gy < Tsyu(S)-
To prove the first claim, it only remains to show that u < s,,v. By Proposition we have ®T(u) C

@t (v). On the other hand @ (s,,v) = &1 (v) \ {Bo}, and by construction we have By & @1 (u). It

follows that u < $4,v, thus (u, R) < (S0, S), and the last claim follows from the inductive assumption

on £(v). O
Claim 6. We have the inclusions
Bsquzrp C BSySa,vTs, Burpr C Bsg,vxs.

Proof of the claim. By Claim [5| we have the inclusion Buxg C Bs,,vzs, whereas by Claims|2|i) and
we have
Ea(u, R) = {(sau, R'), (u, R")}, Ea(8a0,S) = {(5a5a,v,S)}-
Thus by Lemmaii) either Bs,uzp: or Bux g is contained in Bs,$q,v2g. On the other hand s454,v <
Sqv, and u £ sqv thanks to Claim [2[ii). Therefore u € $484,v, and we obtain Bsautr C BSaSagVTs.
The second inclusion follows as well, since (u, R) = mq(squ, R') and (84,0, 5) = Ma(SaSagv, S). O
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Claim 7. We have the inclusion Bs,uxr C Bsavzxs.

Proof of the claim. Since s,v < v, by the inductive assumption on ¢(v) it’s enough to show that
(sau, R') < (sqv,5).

Notice that s,u < s,v, indeed we have u < v by assumption, and by Claim [l| we have sp,u < u
and s,v < v. Notice also that by Lemma we have o (r) < 05, 0(5)- Indeed (squ, R') € Eq(u, R)
and (sqv,S) € £4(v,S), and by assumption (u, R) < (v,S). Finally, notice that [squor/]’ = p and
[savas]P = s,V, therefore it only remains to show the inequality u > s,v.

By the previous lemmas, the Hasse diagram of (V7, <) has the following subdiagram (for convenience
we extend all admissible pairs with a third entry representing the Weyl group element associated by
projecting on G/P~):

(v, S0, SagV)
(Sap¥, S, SagV) (v, S,v) (8av, S0, SapSal)
(e 75) (e 7s)
(SapSa, S, Sag Sal/) (8a®, S, SaV)

(Sau, R, ) (u, R, s ft)
Consider now the Hasse diagram in W with the Bruhat order obtained by looking at the last
components of the entries of the previous diagram (notice that this reverses the order). By assumption
we have the three inequalities v < p, v < s and p < sq i, therefore sov < sqou as well. Thus we get

the following diagram in W
/ Sakt

SalV

u

SapSal

\

SapV

By applying the elements in the diagram above to the fundamental coweight w), as in Proposition
we can translate the previous diagram into the following Hasse diagram in the coweight lattice with the

dominance order: y
Sag V(WP) \
v

Sa¥/(wp)

p(wp) \

Since wy, is minuscule, we have the equalities

Sap(wp)

a = 80,/(WP) = Sagsar(Wp) = v(wp) = sav(wp),
0 = SagV (W) — V(W}):
Therefore
V(wh) = 1(W}) = (sa,v(@h) = 1(@})) = (s0(w}) = v(w})) > @ — ao.
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On the other hand by assumption we have u(w)) < v(w)), and by construction ag and « are distinct
simple roots. Therefore it must be v(wp) — pu(wp) > «, and we get p(wp) < sqer(w)p). Thus by
Proposition 2.3 we get sqv < p . O

Since (v, S) = mq(8av, S), we have the equality Bvzs = Pysavxs. On the other hand by Claimwe
have Bsqurp C Bsyvrg, therefore we get

Buzxg C Pysquxg C Pysavrs = Bvxg.

The proof is complete.

7.3. An example: the case of Sps. We now give some details about the example of G = Sp,, and
explain the failure of our theorems in characteristic 2.

Let aq, a be the simple roots of G, and denote n = a; + a2 and 6 = 2a; + a5. In this case P = P,
and L = GLo. First we will give the Hasse diagram for G/L in characteristic different from 2, then we
will explain how the situation changes in characteristic 2.

If chark # 2, the Bruhat order on G/L is described by the picture here below, which is organized as
follows. The vertical diagram on the right and the horizontal diagram on the bottom are respectively
the Hasse diagrams of the B-orbits in G/P~ and in G/P. The other diagram is the Hasse diagram
of the B-orbits in G/L. For every entry of the Hasse diagram of G/L we have written down the set
S. One can read the projection of a B-orbit in G/L on G/P by looking at the corresponding entry on
the same column in the horizontal diagram on the bottom, and similarly one can read the projection
on G/P~ by looking at the corresponding entry on the same row in the vertical diagram on the right.
There is only one exception to these rules: the entry on the upper-left corner of the Hasse diagram of
G/L, which is the open B-orbit in G/L and which projects onto the open orbits both on G/P and on
G/P~, which is not aligned with the two projections for graphical reasons. Finally, we have decorated
the arrows representing the covering relations in the Hasse diagrams with the number 1 (resp. 2) when
the two B-orbits are in the same P,, orbit (resp. in the same P,, orbit).

G/P-

5152

528182

2 1
G/P 5285182 5152 S92 1

The proof given in Section [7.2] is of course very fast in this case. The diagram above represents
the combinatorial order on the set Vi, of the admissible pairs, and we want to prove that it represents
the Bruhat order on G/L. The statement is trivial for all covering relations that are decorated. We
only have two covering relations that are not decorated, both starting from the admissible pair (v, S) =
(s28182,{n}). Following the general line of the proof given in the previous section, suppose that we
want to prove that the closure of the corresponding orbit contains the orbit defined by the admissible
pair (u,R) = (s2,{a2}), then we argue by induction by noticing that £,,(v,S) = {(s152,5)} and
Eaos (U, R) = {(82,9), (1,2)}, and that (s152,5) > (s2,92).

Suppose now that chark = 2. Denote J = (9 ), and notice that G = {g € GLy : gJg' = J} is a
simply connected algebraic group of type Co. So, as in the case of characteristic different from 2, the
nilradical p" is the algebra of symmetric matrices and L = GLs.
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If chark # 2, the Bruhat order of the B-orbits in p" is represented in the diagram of G/L by the
subdiagram of the elements whose projection in G/P equals $35159: in particular we have five B-orbits
in p*. A direct computation shows that, if chark = 2, there is an new B-orbit in p" and that is Beg
with S = {n, 0}, and the Bruhat order on p" is represented by the following Hasse diagram:

TN T

0, g — g 7,0 ——n 0 — o

In particular, the Bruhat order on p" in characteristic different from 2 is different form that in charac-
teristic 2, and similarly for the Bruhat order on G/L.
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