European Journal of Inorganic Chemistry Structural Characterization of a Fluorido-Amide of Niobium, and Facile CO2 Incorporation Affording a Fluorido-Carbamate --Manuscript Draft--

Manuscript Number:			
Article Type:	Full Paper		
Corresponding Author:	Guido Pampaloni University Pisa, ITALY		
Corresponding Author E-Mail:	pampa@dcci.unipi.it		
Order of Authors (with Contributor Roles):	Guido Pampaloni		
	Giulio Bresciani		
	Marco Bortoluzzi		
	Stefano Zacchini		
	Fabio Marchetti		
Keywords:	Niobium, CO2 activation, amido derivatives, carbamato derivatives, X-ray structures,		
Manuscript Classifications:	Coordination Chemistry: Compound Classes; Coordination Chemistry: Ligand Classes Coordination Chemistry: Methodology and Reactions; Coordination Chemistry: Structure		
Suggested Reviewers:	William Levason wxl@soton.ac.uk expertise in the coordination chemistry of Nb pentafluoride		
	Ralf Haiges haiges@usc.edu expertise in the coordination chemistry of Nb pentafluoride		
	Gillian Reid G.Reid@soton.ac.uk expertise in the coordination chemistry of Nb pentafluoride		
Opposed Reviewers:			
Abstract:	The first compounds of niobium(V) with fluorido and monodentate amido ligands, 1a-c, are tetranuclear cations which were formed by the reaction between NbF5 and Me3SiNMe2, in the presence of a chloride (or bromide) source. The fluorido/carbamato derivative NbF2(O2CNMe2)3, 2, was obtained in good yields from NbF5/Me3SiNMe2, in the presence of carbon dioxide at 1 atm pressure and ambient temperature. All the products were characterized by analytical and spectroscopic (IR, multinuclear NMR) methods, and by X-ray diffraction in the cases of 1b-c. DFT calculations were useful to elucidate the structures of the products, and to give insight into the reaction pathways.		
Author Comments:	To the Editor Eur. J. Inorg. Chem. Pisa, 2017 November 7 Dear Editor, please find uploaded the manuscript: "Structural Characterization of a Fluorido-Amide of Niobium, and Facile CO2 Incorporation Affording a Fluorido-Carbamate" by G. Bresciani, M. Bortoluzzi, S. Zacchini, F. Marchetti and G. Pampaloni that we would like to be considered for publication in European Journal of Inorganic Chemistry as a Paper. We repute this manuscript suitable to publication for the following reasons: 1) The coordination chemistry of niobium pentafluoride has represented an intensively		

	 investigated field of research (see for instance: Angew. Chem. Int. Ed. 2014, 53, 5431; Dalton Trans., 2014, 43, 9557; Chem. Soc. Rev., 2013, 42, 1460; Chem. Eur. J. 2013, 19, 13962). 2) Several coordination compounds of MF5 (M = Nb, Ta) have been reported in the last decade, while amides are versatile ligands which have been used to prepare a range of metal complexes for applications in catalysis and material chemistry. Despite this preamble, fluorido-amides of niobium or tantalum remain a substantially unknown family of inorganic compounds. 3) We report the synthetic procedure to fluorido-amido compounds of niobium, from NbF5 and Me3SiNMe2. The products share the same structural motif, i.e. a tetranuclear niobium frame. 4) We demonstrate that the NbF5/Me3SiNR2 reaction systems efficiently absorb CO2 to produce fluorido-carbamato derivatives. The first example of a Nb fluorido-carbamate in general, has been obtained. Its structure has been elucidated by spectroscopic methods and with the assistance of DFT calculations. I hope that the manuscript will be considered acceptable for publication in the European Journal of Inorganic Chemistry. Yours sincerely, Guido Pampaloni 	
Section/Category:		
Additional Information:		
Question	Response	
Dedication		
Submitted solely to this journal?	Yes	
Has there been a previous version?	No	

FULL PAPER ____

DOI: (will be filled in by the editorial staff)

Structural Characterization of a Fluorido-Amide of Niobium, and Facile CO₂ **Incorporation Affording a Fluorido-Carbamate**

Giulio Bresciani,^[a,b] Marco Bortoluzzi,^[b,c] Stefano Zacchini,^[b,d] Fabio Marchetti ^{§,[a,b]} and Guido Pampaloni *,[a,b]

Keywords: Niobium, CO₂ activation, amido derivatives, carbamato derivatives, X-ray structures, DFT calculations

The first compounds of niobium(V) with fluorido and monodentate amido ligands, 1a-c, are tetranuclear cations which were formed by the reaction between NbF5 and Me₃SiNMe₂, in the presence of a chloride (or bromide) source. The fluorido/carbamato derivative NbF₂(O₂CNMe₂)₃, 2, was obtained in good yields from NbF₅/Me₃SiNMe₂, in the presence of carbon dioxide at 1 atm pressure and ambient temperature. All the products were characterized by

Introduction

For reasons clearly defined in a recent review by Levason and coworkers, the coordination chemistry of transition metal fluorides was neglected for many years and, when complexes were reported, the characterizations were often poor, and the properties not investigated in detail.1

In spite of this preamble, the interest in high valent fluorides of groups 4 and 5 metals has progressively grown in the last decade, due to possible applications in organic synthesis,² in material chemistry ³ and as possible precursors of innocent, weakly coordinating anions.⁴ In particular, a variety of derivatives have been obtained and characterized from the reactions of easily available niobium and tantalum pentafluorides, MF₅ (M = Nb, Ta), with N-,⁵ O-,⁶ S-donors,⁷ and with phosphines and arsines.^{5a,8}

To date, this flourishing investigation has not led to the synthesis of ternary fluorido-amides of niobium or tantalum,⁹ which remain a substantially unknown family of inorganic compounds.^{10,11} Few relevant, well characterized species comprise the amido unit as part of a pincer multidentate frame ¹² and/or additional ligands.13

- University of Pisa, Dipartimento di Chimica e Chimica [a] Industriale, Via G. Moruzzi 13, I-56124 Pisa, Italy. Tel: +39 050 2219221. E-mail: guido.pampaloni@unipi.it. Webpage: http://www.dcci.unipi.it/guido-pampaloni.html. ORCID.org/0000-0002-6375-4411.
- [b]
- CIRCC, via Celso Ulpiani 27, I-70126 Bari, Italy.
- Ca' Foscari University of Venezia, Dipartimento di Scienze [c] Molecolari e Nanosistemi, Via Torino 155, I-30170 Mestre (VE), Italy.
- [d] Università di Bologna, Dipartimento di Chimica Industriale "Toso Montanari", Viale Risorgimento 4, I-40136 Bologna, Italy.
- § ORCID.org/0000-0002-3683-8708.

1

65

analytical and spectroscopic (IR, multinuclear NMR) methods, and by X-ray diffraction in the cases of 1b-c. DFT calculations were useful to elucidate the structures of the products, and to give insight into the reaction pathways.

(© WILEY-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2007)

The availability of Nb/Ta fluorido-amides may be desirable also since amides are versatile ligands providing to the resulting metal complexes suitable properties for a possible use in catalysis ¹⁴ or in the formation of thin films of the metal 15 or the metal oxide.¹⁶cyclic esters, other than alkenes.¹⁷

The absence of information of niobium and tantalum fluoridoamides reflects the curious paucity of reports in the literature on the reactivity of the related pentafluorides with aliphatic amines.¹⁸ Otherwise, the parallel reactivity of MCl_5 (M = Nb, Ta) with various amines has been exhaustively investigated, providing in some cases a route to chlorido-amido compounds.¹⁹ More typically, the synthetic method to access M(V) dialkylamides (M = Nb, Ta) consists in the metathesis reaction between NbCl5 and an alkali metal salt of the amido anion.²⁰ Then, a variety of amido derivatives can be obtained from M(NR2)5, thanks to the easy displacement of a light amido unit as volatile dialkyamine.20c,21

In this setting, we decided to explore the possibility of preparing niobium(V) compounds with fluorido- and dialkylamido ligands, according to a strategy (use of an organic trimethylsilyl reactant) successfully employed for the synthesis of fluorido-alkoxido ^{6b} and fluorido-azido 5b,d complexes. The structural characterization of the first ternary fluorido-amide of niobium is presented. Furthermore, we demonstrate that the NbF5/trimethylsilylamine system efficiently captures CO₂ in mild conditions and, thus, can be used as a convenient precursor to unprecedented metal fluoridocarbamates.

Results and Discussion

A suspension of NbF5 in toluene reacted smoothly with 5 equivalents of Me₃SiNMe₂ at room temperature to afford a complex solid mixture. After extraction with CHCl₃, an extremely moisture sensitive compound was isolated and identified as $[Nb_4F_6(NMe_2)_{12}][Cl]_2$, 1a, on the basis of spectroscopic (multinuclear NMR) and analytical data, including Cl elemental

analysis, and X-ray characterization of a related compound (1b, vide infra). When different stoichiometric ratios were employed, 1a was finally isolated as the prevalent product, although in lower yields.

Scheme 1. Formation of fluoride-amido complexes from NbF₅.

The NMR spectra (¹H, ¹³C, ¹⁹F and ⁹³Nb) of **1a** (CDCl₃ solution) are all featured by a single resonance, thus suggesting a rather symmetrical structure; the singlet at -158 ppm in the ¹⁹F NMR spectrum indicates the presence of bridging fluorine atoms.^{6b}

The isolation of **1a** as a chlorido salt starting from NbF₅ is rather surprising. We suggest that the chloroform used for the recrystallization acts as a chlorido source, indeed similar examples where chloroform behaves as a Cl-donor are documented.²²

Single X-ray quality crystals of different nature were obtained
 either when 1a was dissolved in CDCl₃ in the presence of CH₂Br₂
 added for analytical purposes (1c), or from a CHCl₃/pentane
 mixture (1b).

Crystals of 1c correspond to [Nb₄F₆(NMe₂)₁₂][Br]₂·8CHCl₃ (Figure 1 and Table 1), the bromide anions being reasonably generated by halide exchange between 1a and dibromomethane. Actually, examples of haloalkane activation by early transition metal complexes are known.²³

The $[Nb_4F_6(NMe_2)_{12}]^{2+}$ cation in **1c·8CHCl₃** represents the first structurally characterized ternary compound of a group 5 metal with fluorido and monodentate amido ligands. The structure may be viewed as composed of four identical fac-NbF3(NMe2)3 octahedra condensed via the triangular F3-faces. This results in a Nb4 tetrahedron whose six edges are bridged by six µ-F ligands. A similar M₄(μ -F)₆ core is present in [Ti₄(μ -F)₆F₁₂]^{2-, 24} [W₄(μ -F)₆F₁₂]^{2-, 25} and [Al₄(μ -F)₆F₁₂]^{6-, 26} The μ -F bridges are perfectly symmetric and all the Nb-F ^{4c,27} and Nb-NMe2²⁸ distances are as expected for octahedral Nb(V) complexes. The Nb-F-Nb bridges [156.12(9)-157.34(9)°] are considerably bended in view of the tetrahedral structure of the Nb₄ cage, as previously found in the $[NbF_2(\mu-F)(OPh)_2]_3$ trimer. ^{6b} Otherwise almost linear Nb–F–Nb interactions [182.5°] are observable within the tetrameric [NbF5]4.29 Some H-bonds are present within the crystal structure of 1c-8CHCl₃, involving the Br⁻ anions and the CHCl₃ solvent molecules.

Figure 1. View of the cation $[Nb_4F_6(NMe_2)_{12}]^{2+}$ in $[Nb_4F_6(NMe_2)_{12}]Br_2$, **1c**, with key atoms labelled. Displacement ellipsoids are at the 50% probability level. H-atoms have been omitted for clarity.

Table 1.Selected bond distances (Å) and angles (°) for 1c.

	()	0 ()	
Nb(1)–F(1)	2.1248(16)	Nb(1)–N(1)	1.961(3)
Nb(1)–F(2)	2.1137(17)	Nb(1)–N(2)	1.964(2)
Nb(1)–F(3)	2.1222(17)	Nb(1)–N(3)	1.952(3)
Nb(2)–F(2)	2.1235(17)	Nb(2)–N(4)	1.958(3)
Nb(2)–F(5)	2.1108(16)	Nb(2)–N(5)	1.957(3)
Nb(2)–F(6)	2.1184(16)	Nb(2)–N(6)	1.965(3)
Nb(3)–F(1)	2.1154(16)	Nb(3)–N(7)	1.962(2)
Nb(3)–F(4)	2.1177(16)	Nb(3)–N(8)	1.962(3)
Nb(3)–F(5)	2.1153(16)	Nb(3)–N(9)	1.954(3)
Nb(4)–F(3)	2.1160(17)	Nb(4)–N(10)	1.949(3)
Nb(4)-F(4)	2.1092(16)	Nb(4)–N(11)	1.961(3)
Nb(4)–F(6)	2.1162(17)	Nb(4)–N(12)	1.961(3)
Nb(1)-F(1)-Nb(3)	156.12(9)	Nb(1)-F(2)-Nb(2)	157.13(9)
Nb(1)-F(3)-Nb(4)	157.34(9)	Nb(3)-F(4)-Nb(4)	156.68(9)
Nb(2)–F(5)–Nb(3)	156.97(9)	Nb(2)-F(6)-Nb(4)	157.32(9)

Attempts to crystallize 1a, *i.e.* the product of the reaction of NbF5 with Me₃SiNMe₂ treated with CHCl₃ but in the absence of bromide source (Scheme 1), led us to the isolation of few crystals corresponding to 1b. The structural analysis (Figure 2 and Table 2) revealed that 1b had the composition [Nb4OF6(NMe2)11]Cl·4CHCl3, the [Nb4OF6(NMe2)11]⁺ cation being closely related to the $[Nb_4F_6(NMe_2)_{12}]^{2+}$ cation of 1c. The former cation is probably generated from the latter by means of water traces present in the solvents used for the crystallization procedure. The structural characterization of 1b constitutes indirect proof for the identity of 1a, and confirms the tendency of Nb(V) fluoride amido compounds to adopt the tetranuclear frame. In 1b, the unique terminal F(1) ligand is bonded to Nb(1) in trans position respect to the μ -O(1) ligand. As for 1c, the Nb-F-Nb bridges are symmetric, whereas a considerable asymmetry is present in the Nb(1)-O(1)-Nb(2) oxido-bridge. Thus, the Nb(1)-O(1) interaction [1.832(4) Å] is rather shorter than Nb(2)–O(1) [2.042(4) Å], suggesting that the oxido bridge might be better described as a Nb=O-Nb interaction. Some H-bonds are present within the crystal structure of 1b·4CHCl₃ involving the Cl⁻ anion and the CHCl₃ lattice molecules.

57 58

50

- 59
- 60
- 61 62

63 64 2

Figure 2. View of the cation $[Nb_4OF_6(NMe_2)_{11}]^+$ in $[Nb_4OF_6(NMe_2)_{11}]Cl$, 1b with key atoms labelled. Displacement ellipsoids are at the 50% probability level. H-atoms have been omitted for clarity.

7	Table 2.Selected bond distances (Å) and angles (°) for 1b.			
Ω	Nb(1)–F(2)	2.137(4)	Nb(1)-F(1)	1.974(4)
0	Nb(1)–F(3)	2.174(4)	Nb(1)–N(1)	1.977(6)
9	Nb(1)–O(1)	1.832(4)	Nb(1)–N(2)	1.973(5)
0	Nb(2)–O(1)	2.042(4)	Nb(2)–N(3)	1.972(6)
1	Nb(2)–F(4)	2.148(4)	Nb(2)–N(4)	1.977(6)
2	Nb(2)–F(5)	2.139(4)	Nb(2)–N(5)	1.990(6)
പ	Nb(3)–F(2)	2.095(4)	Nb(3)–N(6)	1.955(6)
3	Nb(3)–F(5)	2.097(4)	Nb(3)–N(7)	1.963(6)
4	Nb(3)–F(6)	2.106(3)	Nb(3)–N(8)	1.955(6)
5	Nb(4)–F(3)	2.065(4)	Nb(4)–N(9)	1.958(6)
6	Nb(4)-F(4)	2.095(4)	Nb(4)–N10)	1.948(5)
-	Nb(4)–F(6)	2.131(3)	Nb(4)–N(11)	1.959(6)
<i>/</i>	Nb(1)-O(1)-Nb(2)	158.4(3)	Nb(1)-F(2)-Nb(3)	148.45(19)
8	Nb(1)-F(3)-Nb(4)	150.43(18)	Nb(2)-F(5)-Nb(3)	155.25(18)
9	Nb(2)-F(4)-Nb(4)	153.67(19)	Nb(3)-F(6)-Nb(4)	156.2(2)

It is well known that the reactions of dialkylamides of a wide range of metals, M(NR₂)_n, with CO₂ can afford homoleptic carbamato complexes (Eq. 1).³⁰ These complexes can be prepared also by a straightforward synthetic route starting from easily available metal chlorides (Eq. 2).³¹

 $M(NR_2)_n + n CO_2 \rightarrow M(O_2CNR_2)_n$ (1)

 $MCl_n + n CO_2 + 2nNHR_2 \rightarrow M(O_2CNR_2)_n + n [NH_2R_2]Cl \qquad (2)$

Metal carbamates constitute an intriguing class of compounds, which have revealed to be suitable precursors to homogeneous catalysis,³² chemical vapour deposition ³³ and material chemistry.³⁴ There is a current interest in expanding the family of metalcarbamato complexes to mixed halido-carbamates. For instance, metal chlorido-carbamates may exhibit better activities in catalytic processes, compared to the respective homoleptic species.^{32c}

Until today, the unique case of a fluorido-carbamato complex, i.e. TiF₂(O₂CNEt₂)₂, has been obtained by metathesis reaction between TiF₄ and the homoleptic carbamate Ti(O₂CNEt₂)₄.³⁵

These observations prompted us to investigate the reactivity of the
newly prepared fluorido-amido complexes of Nb(V) with carbon
dioxide.

52 The optimized conditions to obtain the final fluorido carbamato 53 species consisted in performing the reaction of NbF₅ with 5 54 equivalents of Me₃SiNR₂ (R = Me, Et) directly under a carbon 55 dioxide atmosphere (p = 1 atm, RT). Using these conditions, the 56 complex NbF₂(O₂CNMe₂)₃, **2**, was afforded in high yield. On the 57 other hand, a mixture of products was produced from 58 NbF₅/Me₃SiNEt₂, Scheme 2.

Scheme 2. Reactions of NbF5 with Me_3SiNR_2 (R = Me, Et) under a CO_2 atmosphere.

Compound **2** was fully characterized by elemental analysis and IR and multinuclear NMR spectroscopy. The IR spectrum shows a diagnostic, strong absorption at 1625 cm⁻¹ which is indicative of a carbamato ligand bonded to a metal with monodentate mode.³⁶ The ¹⁹F NMR spectrum exhibits two resonances at 128 and 121 ppm, in agreement with the presence of two non-equivalent terminal fluorine atoms. Instead the ⁹³Nb NMR consists of a unique resonance centred at -1039 ppm.

We were not able to grow single crystals of **2**, thus the presumable structure of this compound was modelled by DFT calculations upon consideration of several possible structures. The most stable ground-state geometry, depicted in Figure 3, shows a distorted octahedral configuration, with the fluorine atoms in mutual *cis* position, two $[O_2CNMe_2]^-$ ligands $\kappa^1 O$ -bonded and the third one acting as O,O bidentate. The isomer bearing *trans*-fluorido ligands resulted less stable by about 3.5 kcal mol⁻¹ (enthalpy variation).

Figure 3. DFT-optimized geometry of **2** (C-PCM/ωB97X calculations). Selected computed bond lengths (Å): Nb–F1 1.890, Nb–F2 1.871, Nb–O1 1.912, Nb–O2 1.905, Nb–O3 2.103, Nb–O4 2.111. Selected computed angles (°): F1–Nb–F2 91.2, F1–Nb–O1 172.3, F1–Nb–O2 92.2, F1–Nb–O3 86.5, F1–Nb–O4 87.0, F2–Nb–O1 91.8, F2–Nb–O2 118.7, F2–Nb–O3 92.0, F2–Nb–O4 153.6, O1–Nb–O2 92.6, O1–Nb–O3 86.3, O1–Nb–O4 87.2, O2–Nb–O3 149.3, O2–Nb–O4 87.7.

The reaction of NbF5 with Me₃SiNEt₂/CO₂, using three equivalents of *N*,*N*-trimethylsilylamine, afforded a mixture of products, containing Nb(O₂CNEt₂)₅ and NbF₄(O₂CNEt₂), according to the merging of analytical and spectroscopic data [⁹³Nb NMR: two resonances at –1365 and –1029 ppm; ¹⁹F NMR: one resonance at 125.6 ppm; ¹³C NMR: resonances due to Nb(O₂CNEt₂)₅, at 167.7 (C=O), 39.8 (CH₂), 13.5 ppm (CH₃)].³⁷ We calculated the enthalpy variations for the ligand exchange reactions reported in Eq. 3. They are slightly negative and very similar to each other (R = Me: –8.6 kcal mol⁻¹; R = Et: –8.2 kcal mol⁻¹).

$$2 \text{ NbF}_2(\text{O}_2\text{CNR}_2)_3 \rightarrow \text{Nb}(\text{O}_2\text{CNR}_2)_5 + \text{NbF}_4(\text{O}_2\text{CNR}_2)$$
(3)
(R = Me, Et)

On account of the calculated thermochemical parameters, the different outcomes reported in Scheme 2 are probably ascribable to the insolubility of 2 in aromatic and aliphatic solvents (see Experimental), favouring its successful and clean isolation.

61 62 63

3

59 60

Conclusions

The reaction of NbF5 with N,N-dimethyltrimethylsilylamine has led us to the structural characterization of the first ternary niobium fluorido-amide. The introduction of a chloride (or bromide) source seems crucial to allow the stabilization and the isolation of a favourite tetra-niobium motif cationic Moreover. NbF5/trimethylsylilamine reaction mixtures behave as efficient CO2 trapping systems, leading to the formation of niobium fluoridocarbamato derivatives via CO2 fixation. The successful isolation of these products, representing very rare examples of mixed metal fluorido-carbamates, becomes viable when their solubility characteristics permit the efficient separation from the reaction media.

Experimental

General

Warning. The metal products reported in this paper are highly moisture-sensitive, thus they were stored in sealed glass tubes under nitrogen or argon once obtained, and rigorously anhydrous conditions were required for the reaction and crystallization procedures. All the operations were carried out under an atmosphere of prepurified argon. The glass reaction vessels were oven dried at 140 °C prior to use, evacuated (10⁻² mmHg) and then filled with argon. Solvents (Sigma Aldrich) and diethylamine (Sigma Aldrich, 99.5%) were distilled from appropriate drying agents before use. *N*,*N*-dialkyl-1,1,1,-trialkylsilylamines (Sigma Aldrich, 97%), NbF₅²⁹ (Strem, 99.5%) was stored under argon atmosphere as received. Infrared spectra were recorded at 298 K on a FTIR-Perkin Elmer Spectrometer, equipped with a UATR sampling accessory. ¹H, ¹³C, $^{19}\text{F},~^{51}\text{V}$ and ^{93}Nb NMR spectra were recorded at 298 K with a Bruker Avance II DRX 400 spectrometer. The chemical shifts for ¹H and ¹³C were referenced to the non-deuterated aliquot of the solvent; the chemical shifts for ⁹³Nb were referenced to external [NEt₄][NbCl₆]; the chemical shifts for ¹⁹F were referenced to external CFCl₃.

C, H, N analyses were performed on a Carlo Erba mod. 1106 instrument. The chloride content was determined by the Volhard method ³⁸on samples prepared by dissolution of the solid in aqueous Na₂CO₃ at boiling temperature, followed by cooling to room temperature and addition of HNO₃ up to acidic pH. Niobium was analyzed as Nb₂O₅, obtained by hydrolysis of the samples followed by calcination in a platinum crucible.

Synthesis of [Nb₄F₆(NMe₂)₁₂][X]₂ (X = Cl, 1a; Br, 1b). Me₃SiNMe₂ (0.34 mL, 2.1 mmol) was added to a suspension of NbF₅ (0.08 g, 0.42 mmol) in toluene (5 mL). The reaction mixture was stirred for 20 hours at room temperature. The volatiles were removed in vacuo and the residue was treated with pentane (2 × 10 mL) and then dried in vacuo. An orange, extremely hygroscopic solid was obtained. Yield: 0.10 g. ¹H NMR (CDCl₃) δ = 3.75 (s), 3.69-3.49 (m-br), 2.55 (s), 2.33 (s) ppm. ¹³C{¹H} NMR (CDCl₃) δ = 51.0, 50.3, 49.6 ppm. ⁹³Nb{¹H} NMR (CDCl₃) δ = -253, -612, -921, -1550 (m, [NbF₆]⁻) ppm. Dissolution in CHCl₃ followed by slow evaporation of the solvent afforded 0.05 g (45% yield based on niobium) of [Nb4F₆(NMe₂)₁₂]Cl₂, **1a**, as yellow crystalline solid. Anal. Calc. for C₂₄H₇₂Cl₂F₆N₁₂Nb₄: C, 26.56; H, 6.68; N, 15.48; Nb, 34.24; Cl, 6.53. Found: C, 26.06; H, 6.48; N, 15.08; Nb, 33.84; Cl, 6.44. ¹H NMR (CDCl₃) δ = 3.70 (s, CH₃) ppm. ¹³C{¹H} NMR (CDCl₃) δ = 50.3 (CH₃) ppm. ¹⁹F{¹H} NMR (CDCl₃) δ = -158 (s, F_{bridging}) ppm. ⁹³Nb{¹H} NMR (CDCl₃) δ = -250 (Δv¹/₂ = 1.4 × 10³ Hz) ppm.

Crystallization of 1a from chloroform / pentane mixture at 243 K afforded pale yellow crystals of [Nb₄F₅(μ-O)(NMe₂)₁₂][Cl], 1b,in two weeks. Anal. Calc. for C₂₄H₇₂ClF₅N₁₂ONb₄: C, 27.53; H, 6.93; N, 16.05; Cl, 3.39. Found: C, 27.16; H, 6.29; N, 15.78; Cl, 3.25. A single crystal was used for a X-ray diffraction analysis.

In a different preparation, few crystals of [Nb₄F₆(NMe₂)₁₂][Br]₂, 1c, were obtained by cooling (243 K) a saturated CDCl₃ solution of 1a in the presence of CH₂Br₂. A single crystal was used for a X-ray diffraction analysis.

58 Synthesis of NbF₂(O₂CNMe₂)₃, 2. A suspension of NbF₅ (0.12g; 0.64
59 mmol) in toluene (50 ml) was treated with Me₃SiNMe₂ (0.20 g, 1.96 mmol),
60 The mixture was stirred for 24 hours at room temperature and then saturated with CO₂. After 24 hours under CO₂ atmosphere, a clear solution was obtained. The solvent was partially removed in vacuo and the residue
62

was treated with pentane (15 mL). The solid was recovered by filtration and dried in vacuo affording NbF₂(O₂CNMe₂)₃, **2** (0.214 g, 85% yield) as a highly moisture sensitive, microcrystalline solid. Anal. Calc. for C₉H₁₈F₂N₃O₆Nb: C, 27.35; H, 4.59; N, 10.63; Nb, 23.51. Found: C, 27.01; H, 4.68; N, 10.48; Nb, 23.24. IR (solid state) v = 2955vw, 2874vw, 2782vw, 1626vs (C=O), 1463m, 1445m, 1415s, 1059w, 1028w, 952w-m, 875w-m, 863w-m, 675vscm^{-1.1}HNMR (CDCl₃) δ = 3.01 (s, CH₃), 3.00 (s, CH₃) ppm. ¹³C{¹H} NMR (CDCl₃) δ = 168.8 (C=O), 168.1 (C=O), 34.9 (CH₃), 34.5 (CH₃) ppm. ¹⁹F{¹H} NMR (400 MHz, CDCl₃) δ = 128 (s), 121 (s) ppm. ⁹³Nb{¹H} NMR (CDCl₃) δ = -1039 ($\Delta v_{2}^{1/2}$ = 4.2 × 10³ Hz) ppm.

Reaction of NbF₅ with Me₃SiNEt₂. A suspension of NbF₅ (0.30 g, 1.62 mmol) in toluene (20 ml) was treated with Me₃SiNEt₂ (0.92 mL, 4.85 mmol). The mixture was stirred for 20 hours at room temperature. The argon atmosphere was replaced by CO2. After stirring overnight at room temperature, the solvent was partially removed in vacuo and the residue was treated with pentane (30 mL). The solid was recovered by filtration and dried in vacuo affording a brown solid (0.403 g) extremely sensitive to moisture. The brown solid was identified as a ca. 1:1 mixture of $Nb(O_2CNMe_2)_5$ and $NbF_4(O_2CNMe_2).$ Anal. Calc. for $C_{30}H_{60}F_4N_6O_{12}Nb_2$: C, 37.58; H, 6.31; N, 8.77; Nb, 19.38. Found: C, 37.02; H, 6.67; N, 8.46; Nb, 18.99. IR (solid state) v = 2976w, 2938w, 2877vw, 1584vs, br (C=O), 1482m, 1434s, 1381m, 1322s, 1261w, 1208m, 1091m, 983w, 931m, 839ms, 782m.scm⁻¹. ¹HNMR (CDCl₃) δ = 3.44-3.34 (m, 2H, CH₂), 1.20-1.11 (m, 3 H, CH₃), ppm. ¹³C{¹H} NMR (CDCl₃) δ = 168.3 (C=O), 167.7 (C=O), 39.8 (CH₂), 39.2 (CH₂), 13.5 (CH₃), 13.3 (CH₃), ppm. ¹⁹F{¹H} NMR (CDCl₃) $\delta = 125.6$ (s), ppm. ⁹³Nb{¹H} NMR (CDCl₃) $\delta = -1365$ ($\Delta v^{1/2}$ = 8.0×10^3 Hz), -1029 ($\Delta v^{1/2} = 5.3 \times 10^3$ Hz) ppm.

X-ray crystallography.

Crystal data and collection details for **1b**-**4**C**H**C**I**₃ and **1c**-**8**C**H**C**I**₃ are reported in Table 3. The diffraction experiments were carried out on a Bruker APEX II diffractometer equipped with a PHOTON100 detector using Mo–K α radiation. Data were corrected for Lorentz polarization and absorption effects (empirical absorption correction SADABS).³⁹ Structures were solved by direct methods and refined by full-matrix least-squares based on all data using $F^{2,40}$ Hydrogen atoms were fixed at calculated positions and refined by a riding model. All non-hydrogen atoms were refined with anisotropic displacement parameters.

Table 3. Crystal	data and	experimental	details t	for 1b·	4CHCl ₃	and
1c·8CHCl ₃ .						

	1b-4CHCl ₃	1c·8CHCl ₃
Formula	C26H70Cl13F6N11Nb4O	$C_{32}H_{80}Br_2Cl_{24}F_6N_{12}Nb_4$
Fw	1499.42	2129.34
Т, К	100(2)	100(2)
λ, Å	0.71073	0.71073
Crystal system	Triclinic	Monoclinic
Space group	P^{1}	$P2_{1}/c$
, Å	10.329(3)	14.7404(6)
<i>b</i> , Å	15.147(4)	23.9630(9)
<i>c</i> , Å	20.309(6)	23.5127(9)
a, °	85.668(4)	90
β,°	76.703(4)	93.574(2)
g,°	74.623(4)	90
Cell Volume, Å ³	2981.2(14)	8289.1(6)
Z	2	4
D_c , g cm ⁻³	1.670	1.706
μ, mm ⁻¹	1.384	2.324
F(000)	1500	4208
Crystal size, mm	0.220×0.160×0.110	0.180×0.160×0.120
θ limits, °	1.394-26.997	1.384-27.191
Reflections collected	28484	139233
Independent reflections	12796 [Rint=0.0523]] 18238 [<i>R</i> _{int} =0.0589]
Data / restraints /parameters	12796 / 18 / 550	18238 / 240 / 780
Goodness of fit on F ²	1.132	1.013
$R_1 (I > 2\sigma(I))$	0.0651	0.0325
wR_2 (all data)	0.1535	0.0746
Largest diff. peak / hole, e Å	-3 1.425 / -1.917	1.686 / -1.322

Computational studies

The computational geometry optimizations were carried out without symmetry constrains, using the hybrid-GGA EDF2 functional ⁴¹ in combination with the 6-31G** basis set (ECP-based LANL2DZ basis set for Nb).⁴² The "restricted" formalism was always applied. The stationary points were characterized by IR simulations (harmonic approximation),

63 64 65

from which zero-point vibrational energies and thermal corrections (T = 298.15 K) were obtained.⁴³ Further optimization of selected geometries was carried out using the range-separated DFT functional ω B97X, ⁴⁴ in combination with the split-valence polarized basis set of Ahlrichs and Weigend, with ECP for the niobium centre.⁴⁵ The C-PCM implicit solvation model was added to ω B97X calculations, considering chloroform as continuous medium.⁴⁶ The software used for C-PCM/ ω B97X calculations was Gaussian '09, ⁴⁷ while EDF2 calculations were performed with Spartan '16.⁴⁸

Acknowledgements

We gratefully thank the University of Pisa for financial support.

Supplementary Material

Cartesian coordinates of all DFT-optimized compounds are collected in a separated .xyz file. CCDC reference numbers 1526864 (1b·4CHCl₃), 1526865 (1c·8CHCl₃), contain the supplementary crystallographic data for the X-ray studies reported in this paper. data can be obtained free of These charge at www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12, Union Road, CambridgeCB21EZ, UK; fax: (internat.) +44-1223/336-033; e-mail: deposit@ccdc.cam.ac.uk).

References and notes

- 1 S. L. Benjamin, W. Levason, G. Reid, *Chem. Soc. Rev.* 2013, 42, 1460-1499, and references therein.
- (a) G. B. Nikiforov, H. W. Roesky, D. Koley, *Coord. Chem. Rev.* 2014, 258-259, 16-57; (b) M. Yoshiki, R. Ishibashi, Y. Yamada, T. Hanamoto, *Org. Lett.* 2014, *16*, 5509-5511; (c) S. M. Coman, M. Verziu, A. Tirsoaga, B. Jurca, C. Teodorescu, V. Kuncser, V. I. Parvulescu, G. Scholz, E. Kemnitz, *ACS Catal.* 2015, *5*, 3013–3026; (d) S. Soo Kim, G. Rajagopal, S. C. George, *Appl. Organometal. Chem.* 2007, *21*, 368–372.
- 3 (a) R. L. Davidovich, D. V. Marinin, V. Stavila, K. H. Whitmire, *Coord. Chem. Rev.* 2015, 299, 61-82; (b) Y. J. Kwak, S. H. Lee, H. R. Park, M. Y. Song, J. Nanosci. *Nanotech.* 2016, *16*, 10508-10514; (c) C. Evangelisti, M. Hayatifar, F. Marchetti, M. Marelli, G. Pampaloni, F. Piccinelli, *Inorg. Chem.* 2016, *55*, 1816–1820; (d) S. A. Pighin, G. Urretavizcaya, F. J. Castro, *Int. J. Hydrogen Energy* 2015, *40*, 585-4596.
- 4 (a) K. Radan, E. Goreshnik, B. Zemva, Angew. Chem. Int. Ed. 2014, 53, 13715-13719; (b) F. Marchetti, G. Pampaloni, C. Pinzino, S. Zacchini, Chem. Eur. J. 2013, 19, 13962-13969; (c) F. Marchetti, G. Pampaloni, C. Pinzino, S. Zacchini, Eur. J. Inorg. Chem. 2013, 33, 5755-5761; (d) M. Jura, W. Levason, G. Reid, M. Webster, Dalton Trans. 2009, 7610-7612.
- (a) R. Haiges, P. Deokar, K. O. Christe, Z. Anorg. Allg. Chem. 2014, 640, 1568-1575; (b) R. Haiges, P. Deokar, K. O. Christe, Angew. Chem. Int. Ed. 2014, 53, 5431-5434; (c) R. Haiges, M. Vasiliu, D. A. Dixon, K. O. Christe, Dalton Trans. 2016, 45, 10523-10529. (d) R. Haiges, J. A. Boatz, T. Schroer, M. Yousufuddin, K. O. Christe, Angew. Chem. Int. Ed. 2006, 45, 4830-4835.
- (a) F. Marchetti, G. Pampaloni, *Chem. Commun.* 2012, 48, 635-653, and references therein; (b) M. Bortoluzzi, N. Guazzelli, F. Marchetti, G. Pampaloni, S. Zacchini, *Dalton Trans.* 2012, 41 12898-12906; (c)
 R. Bini, C. Chiappe, F. Marchetti, G. Pampaloni, S. Zacchini, *Inorg. Chem.* 2010, 49, 339-351; (d) M. Bortoluzzi, F. Marchetti, G. Pampaloni, M. Pucino, S. Zacchini, *Dalton Trans.* 2013, 42, 13054-13064.
 J. G. S. L. Benjamin, A. Hyslon, W. Leyason, G. Beid, *J. Fluoring.*
- 53 7 (a) S. L. Benjamin, A. Hyslop, W. Levason, G. Reid, J. Fluorine
 54 Chem. 2012, 137, 77-84; (b) M. Jura, W. Levason, R. Ratnani, G.
 55 Reid, M. Webster, Dalton Trans. 2010, 39, 883-891
- 8 (a) W. Levason, M. E. Light, G. Reid, W. Zhang, *Dalton Trans.* 2014, 43, 9557-9566; (b) W. Levason, G. Reid, W. Zhang, *J. Fluorine Chem.* 2015, 172, 62–67.
- 58 9 The term "ternary fluorido-amide" will be used throughout this
 59 manuscript to describe metal compounds with fluoride and
 60 monodentate amide ligands only.
 - 10 J. C. Fuggle, D. W. A. Sharp, J. M. Winfield, J. Chem. Soc., Dalton Trans. 1972, 1766-1768.

- 11 The reaction of NbF_5 with Me_3SiNEt_2 was claimed to afford $NbF_n(NEt_2)_{5-n}$ (n = 3, 4) derivatives, whose identification was based on insufficient analytical data.
- 12 (a) L. C. H. Gerber, L. A. Watson, S. Parkin, W. Weng, B. M. Foxman, O. V. Ozerov, *Organometallics* **2007**, *26*, 4866-4868; (b) T. Kurogi, B. C. Manor, P. J. Carroll, D. J. Mindiola, *Polyhedron* **2017**, *125*, 80-85; (c) K. Schweiger, H. Hückstädt, H. Hombor, Z. Anorg. Allg. Chem. **1997**, *623*, 1853-1854.
- 13 P. A. Petrov, T. S. Sukhikh, M. N. Sokolov, *Dalton Trans.* 2017, 46, 4902-4906.
- 14 Y. Yamashita, S. Kobayashi, Chem. Eur. J. 2013, 19, 9420-9427.
- See, e.g.: (a) J.-S. M. Lehn, P. van der Heide, Y. Wang, S. Suh, D. M. Hoffman, J. Mater. Chem. 2004, 14, 3239-3245; (b) X. Liu, Z. Wu, H. Cai, Y. Yang, T. Chen, C. E. Vallet, R. A. Zuhr, D. B. Beach, Z.-H. Peng, Y.-D. Wu, T. E. Concolino, A. L. Rheingold, Z. Xue, J. Am. Chem. Soc. 2001, 123, 8011-8021; (c) X. Liu, Z. Wu, Z. Peng, Y.-D. Wu, Z. Xue, J. Am. Chem. Soc. 1999, 121, 5350-5351;(d) F. Ossola, F. Maury, Chem. Vap. Dep. 1997, 3, 137-143;(e) T. S. Lewkebandara, P. H. Sheridan, M. J. Heeg, A. L. Rheingold, C. H. Winter, Inorg. Chem. 1994, 33, 5879-5889; (f) T. S. Cale, M. B. Chaara, G. B. Raupp, I. J. Raaijmakers, Thin Solid Films 1993, 236, 294-300;(g) L. H. Dubois, B. R. Zegarski, G. S. Girolami, J. Electrochem. Soc. 1992, 139, 3603-3609; (h) R. M. Fix, R. G. Gordon, D. M. Hoffman, Chem. Mater. 1990, 2, 235-240.
- (a) S. J. Song, T. Park, K. J. Yoon, J. H. Yoon, D. E. Kwon, W. Noh, C. Lansalot-Matras, S. Gatineau, H.-K. Lee, S. Gautam, D.-Y. Cho, S. W. Lee, C. S. Hwang, *ACS Appl. Mater. Interfaces* 2017, *9*, 537–547; (b) S.-J. Chen, X.-H. Zhang, X. Yu, H. Qiu, G. P. A. Yap, I. A. Guzei, Z. Lin, Y.-D. Wu, Z.-L. Xue, *J. Am. Chem. Soc.* 2007, *129*, 14408-14421; (c) R. Wang, X.-H. Zhang, S.-J. Chen, X. Yu, C.-S. Wang, D. B. Beach, Y.-D. Wu, Z.-L. Xue, *J. Am. Chem. Soc.* 2005, *127*, 5204-5211; (d) B. C. Hendrix, A. S. Borovik, C. Xu, J. F. Roeder, T. H. Baum, M. J. Bevan, M. R. Visokay, J. J. Chamber, A. L. P. Rotondaro, H. Bu, L. Colombo, *Appl. Phys. Lett.* 2002, *80*, 2362-2364; (e) K.-A. Son, A. Y. Mao, Y.-M. Sun, B. Y. Kim, F. Liu, A. Kamath, J. M. White, D. L. Kwong, D. A. Roberts, R. N. Vrtis, *Appl. Phys. Lett.* 1998, 72, 1187-1189; (f) A. Bastianini, G. A. Battiston, R. Gerbasi, M. Porchia, S. Daolio, *J. Phys. IV France*, 1995, *5*, C5-525-C5-531.
- (a) A. M. Raspolli Galletti, G. Pampaloni, Coord. *Chem. Rev.* 2010, 254, 525-536; (b) F. Marchetti, G. Pampaloni, C. Pinzino, F. Renili, T. Repo, S. Vuorinen, *Dalton Trans.* 2013, 42, 2792-2802.
- 18 S. Brownstein, M. J. Farrall, Can. J. Chem. 1974, 52, 1958-1965.
- (a) R. Bondi, F. Marchetti, G. Pampaloni, S. Zacchini, *Polyhedron* 2015, 100, 192-198, and references therein; (b) K. C. Jayaratne, G. P. A. Yap, B. S. Haggerty, A. L. Rheingold, C. H. Winter, *Inorg. Chem.* 1996, 35, 4910-4920; (c) P. A. Bates, A. J. Nielson, J. M. Waters, *Polyhedron* 1985, 8, 1391-1401; (d) U. Jayarathne, J. T. Mague, J. P. Donahue, *Polyhedron* 2013, 58, 13-17.
- (a) D. C. Bradley, I. M. Thomas, *Can. J. Chem.* **1962**, *40*, 449-454;
 (b) D. C. Bradley, I. M. Thomas, *Can. J. Chem.* **1962**, *40*, 1355-1360;
 (c) X.-H. Zhang, S.-J. Chen, H. Cai, H.-J. Im, T. Chen, X. Yu, X. Chen, Z. Lin, Y.-D. Wu, Z.-L. Xue, *Organometallics* **2008**, 27, 1338-1341.
- (a) F. Zhang, H. Song, G. Zi, *Dalton Trans.* 2011, 40, 1547-1566; S.-H. Huang, T. Pilvi, X. Wan, M. Leskelä, M. G. Richmond, *Polyhedron* 2010, 29, 1754-1759; (c) A. Baunemann, D. Bekermann, T. B. Thiede, H. Parala, M. Winter, C. Gemel, R. A. Fischer, *Dalton Trans.* 2008, 3715-3722.
- (a) B. Lucchese, K. J. Humphreys, D.-H. Lee, C. D. Incarvito, R. D. Sommer, A. L. Rheingold, K. D. Karlin, *Inorg. Chem.* 2004, 43, 5987–5998; (b) D. F. Martin, K. A. Hewes, S. G. Maybury, B. B. Martin, *Inorg. Chim. Acta* 1986, 111, 5-7, (c) K. A. Hewes, D F. Martin, *J. Environ. Sci. Health. Part A* 1984, 19, 713-724; (d) C. T. Nahar, A. J. Mukhedkar, *J. Ind. Chem. Soc.* 1981, 58, 343-346; (e) D. F. Martin, *J. Inorg. Nucl. Chem.* 1975, 37, 1941-1944.
- (a) P. D. Newman, K. J. Cavell, B. M. Kariuki, Organometallics
 2010, 29, 2724–2734; (b) D. A. Lemenovskii, M. Putala, G. I. Nikonov, N. B. Kazennova, D. S. Yufit, Yu. T. Struchkov, J. Organomet. Chem. 1993, 454, 123-131; (c) M. L. H. Green, A. K. Hughes, P. Mountford, J. Chem. Soc., Dalton Trans. 1991, 1407-1416.
- 24 (a) M. Jura. W. Levason, E. Petts, G. Reid, M. Webster, W. Zhang, Dalton Trans. 2010, 39, 10264-10271; (b) Z. Mazej, E. Goreshnik, Inorg. Chem. 2009, 48, 6918-6923; (c) A. Decken, H. D. B. Jenkins, C. Knapp, G. B. Nikiforov, J. Passmore, J. M. Rautiainen, Angew. Chem. Int. Ed. 2005, 44, 7958-7961.

1

63

5

61

62

- 25 T. S. Cameron, T. M. Klapotke, A. Schulz, J. Valkonen, J. Chem. Soc. Dalton Trans. 1993, 659-662.
- (a) K. Adil, A. Le Bail, M. Leblanc, V. Maisonneuve, *Inorg. Chem.*2010, 49, 2392-2397; (b) K. Adil, M. Leblanc, V. Maisonnuve, J. *Fluorine Chem.* 2009, 130, 1099-1105; (c) K. Adil, M. Leblanc, V. Maisonneuve, J. *Fluorine Chem.* 2006, 127, 1349-1354.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

- (a) K. Alimaji, M. Liu, J. Peng, P. Zhang, X. Wang, M. Zhu, D. Wang, C. Meng, *Inorg. Chem. Commun.* 2011, *14*, 1209-1211; (b) F. Marchetti, C. Pinzino, S. Zacchini, G. Pampaloni, *Angew. Chem. Int. Ed.* 2010, *49*, 5268-5272.
- (a) F. Zhang, H. Song, G. Zi, *Dalton Trans.* 2011, 40, 1547-1566; (b)
 G. Zi, F. Zhang, H. Song, *Chem. Commun.* 2010, 46, 6296-6298; (c)
 S. W. Schweiger, D. L. Tillison, M. G. Thorn, P. E. Fanwick, I. P. Rothwell, *J. Chem. Soc., Dalton Trans.* 2001, 2401-2408.
- 29 Niobium pentafluoride has a tetranuclear structure in the solid state [A. F. Wells, *Structural Inorganic Chemistry*, 5th Edition, Clarendon Press, Oxford, **1993**]. For sake of simplicity, in this paper the formula NbF₅ will be used.
- (a) G. Chandra, M. F. Lappert, *Inorg. Nucl. Chem. Lett.* **1965**, *1*, 83-84; (b) G. Chandra, A. D. Jenkins, M. F. Lappert, R. C. Srivastava, *J. Chem. Soc. A* **1970**, 2550-2558; (c) M. H. Chisholm, M. W. Extine, *J. Am. Chem. Soc.* **1977**, *99*, 782-792; (d) M. H. Chisholm, M. W. Extine, *J. Am. Chem. Soc.* **1977**, *99*, 772-802; (e) M. H. Chisholm, M. W. Extine, M. J. Am. Chem. Soc. **1975**, *97*, 1623-1625. (f) M. H. Chisholm, M. Extine, M. J. Am. Chem. Soc. **1975**, *97*, 1623-1625. (f) M. H. Chisholm, M. Extine, M. J. Am. Chem. Soc. **1975**, *97*, 1623-1625. (f) M. H. Chisholm, M. Extine, J. Am. Chem. Soc. **1974**, *96*, 6214-6216; (g) M. H. Chisholm, D. A. Haitko, C. A. Murillo, J. Am. Chem. Soc. **1978**, *100*, 6262-6263. (h) P. Gómez-Sal, A. M. Irigoyen, A. Martín, M. Mena, M. Monge, C. Yélamos, C. J. Organomet. Chem. **1995**, *494*, C19-C21.
- 31 F. Calderazzo, G. Dell'Amico, R. Netti, M. Pasquali, *Inorg. Chem.* 1978, 17, 471-473.
- 24 32 (a) F. Marchetti, G. Pampaloni, C. Pinzino, F. Renili, T. Repo, S. 25 Vuorinen, Dalton Trans. 2013, 42, 2792-2802; (b) F. Marchetti, G. 26 Pampaloni, Y. Patil, A. M. Raspolli Galletti, F. Renili, S. Zacchini, Organometallics 2011, 30, 1682-1688; (c) C. Forte, M. Hayatifar, G. 27 Pampaloni, A. M. Raspolli Galletti, F. Renili, S. Zacchini, J. Polym. 28 Sci., Part A: Polym. Chem. 2011, 49, 3338-3345; (d) D. Belli 29 Dell'Amico, F. Calderazzo, U. Englert, L. Labella, F. Marchetti, M. 30 Specos, Eur. J. Inorg. Chem. 2004, 3938-3945.
- 31 (a) S. D. Cosham, M.I S. Hill, G. A. Horley, A. L. Johnson, L. Jordan,
 32 K. C. Molloy, D. C. Stanton, *Inorg. Chem.* 2014, *53*, 503-511; (b) M.
 R. Hill, P. Jensen, J. J. Russell, R. N. Lamb, *Dalton Trans.* 2008, 2751-2758.
- 34 (a) D. Belli Dell'Amico, H. Bertagnolli, F. Calderazzo, M. 34 D'Arienzo, S. Gross, L. Labella, M. Rancan, R. Scotti, B. M. 35 Smarsly, R. Supplit, E. Tondello, E. Wendel, Chem. Eur. J. 2009, 15, 36 4931-4943; (b) C. Forte, G. Pampaloni, C. Pinzino, F. Renili, Inorg. 37 Chim. Acta 2011, 365, 251-255; (c) L. Abis, D. Belli Dell'Amico, F. 38 Calderazzo, R. Caminiti, F. Garbassi, S. Ianelli, G. Pelizzi, P. Robino, 39 A. Tomei, J. Mol. Cat., A: Chemical 1996, 108, L113-L117; (d) L. Abis, D. Belli Dell'Amico, C. Busetto, F. Calderazzo, R. Caminiti, F. 40 Garbassi, A. Tomei, J. Mat. Chem. 1998, 8, 2855-2861; (e) L. Abis, 41 L. Armelao, D. Belli Dell'Amico, F. Calderazzo, F. Garbassi, A. 42 Merigo, E. A. Quadrelli, J. Chem. Soc., Dalton Trans. 2001, 2704-43 2709
- 44 35 M. Bortoluzzi, G. Bresciani, F. Marchetti, G. Pampaloni, S. Zacchini, New J. Chem. 2017, 41, 1781-1789.
- 36 D. Belli Dell'Amico, F. Calderazzo, L. Labella, F. Marchetti, G. Pampaloni, *Chem. Rev.* 2003, 103, 3857-3897.
- 47 37 The presence of Nb(O₂CNEt₂)₅ was confirmed by comparison of the NMR spectra of the mixture with the NMR spectra of an authentical sample of Nb(O₂CNEt₂)₅ (P. B. Arimondo, F. Calderazzo, U. Englert, C. Maichle-Mössmer, G. Pampaloni, J. Strähle, *J. Chem. Soc., Dalton Trans.* 1996, 311-319).
 51 38 D. A. Skoog, D. M. West, F. I. Holler, *Fundamentals of Analytical*
- 51 38 D. A. Skoog, D. M. West, F. J. Holler, *Fundamentals of Analytical* 52 *Chemistry*, Thomson Learning, Inc, USA, 7th edn, 1996.
- 53 39 L. Krause, R. Herbst-Irmer, G. M. Sheldrick, D. Stalke, *J. Appl. Cryst.* **2015**, *48*, 3-10.]
- 54 G. M. Sheldrick, *Acta Cryst.* **2015**, *A71*, 3-8.
- 55 41 C. Y. Lin, M. W. George, P. M. W. Gill, Aust. J. Chem. 2004, 57, 365-370.
- 57 42 (a) W. J. Henre, R. Ditchfield, J. A. Pople, J. Chem. Phys. 1972, 56, 2257-2261; (b) P. J. Hay, W. R. Wadt, J. Chem. Phys. 1985, 82, 270-283; (c) P. J. Hay, W. R. Wadt, J. Chem. Phys. 1985, 82, 299-310; (d) M. Dolg, Modern Methods and Algorithms of Quantum Chemistry, J. Grotendorst Ed., John Neumann Institute for Computing, NIC series, Jülich, 2000, 1, 479.

- 43 C. J. Cramer, *Essentials of Computational Chemistry*, 2nd Edition, Wiley, Chichester, **2004**.
- 44 (a) Yu. Minenkov, Å. Singstad, G. Occhipinti, V. R. Jensen, *Dalton Trans.* 2012, *41*, 5526-5541; (b) J.-D. Chai, M. Head-Gordon, *Phys. Chem. Chem. Phys.* 2008, *10*, 6615-6620; (c) I. C. Gerber, J. G. Ángyán, *Chem. Phys. Lett.* 2005, *415*, 100-105.
- (a) F. Weigend, R. Ahlrichs, *Phys. Chem. Chem. Phys.* 2005, 7, 3297-3305; (b) D. Andrae, U. Haeussermann, M. Dolg, H. Stoll, H. Preuss, *Theor. Chim. Acta* 1990, 77, 123-141.
- 46 (a) V. Barone, M. Cossi, J. Phys. Chem. A 1998, 102, 1995–2001; (b)
 M. Cossi, N. Rega, G. Scalmani, V. Barone, J. Comput. Chem. 2003, 24, 669-681.
- 47 Gaussian 09, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian, Inc., Wallingford CT, 2010. 48
 - (a) Spartan '16, Build 1.1.0, WavefunctionInc., Irvine CA, USA, 2016; (b) Y. Shao, Z. Gan, E. Epifanovsky, A. T. B. Gilbert, M. Wormit, J. Kussmann, A. W. Lange, A. Behn, J. Deng, X. Feng, D. Ghosh, M. Goldey, P. R. Horn, L. D. Jacobson, I. Kaliman, R. Z. Khaliullin, T. Kuś, A. Landau, J. Liu, E. I. Proynov, Y. M. Rhee, R. M. Richard, M. A. Rohrdanz, R. P. Steele, E. J. Sundstrom, H. L. Woodcock III, P. M. Zimmerman, D. Zuev, B. Albrecht, E. Alguire, B. Austin, G. J. O. Beran, Y. A. Bernard, E. Berquist, K. Brandhorst, K. B. Bravaya, S. T. Brown, D. Casanova, C.-M. Chang, Y. Chen, S. H. Chien, K. D. Closser, D. L. Crittenden, M. Diedenhofen, R. A. DiStasio Jr., H. Do, A. D. Dutoi, R. G. Edgar, S. Fatehi, L. Fusti-Molnar, A. Ghysels, A. Golubeva-Zadorozhnaya, J. Gomes, M. W. D. Hanson-Heine, P. H. P. Harbach, A. W. Hauser, E. G. Hohenstein, Z. C. Holden, T.-C. Jagau, H. Ji, B. Kaduk, K. Khistyaev, J. Kim, J. Kim, R. A. King, P. Klunzinger, D. Kosenkov, T. Kowalczyk, C. M. Krauter, K. U. Lao, A. D. Laurent, K. V. Lawler, S. V. Levchenko, C. Y. Lin, F. Liu, E. Livshits, R. C. Lochan, A. Luenser, P. Manohar, S. F. Manzer, S.-P. Mao, N. Mardirossian, A. V. Marenich, S. A. Maurer, N. J. Mayhall, E. Neuscamman, C. M. Oana, R. Olivares-Amaya, D. P. O'Neill, J. A. Parkhill, T. M. Perrine, R. Peverati, A. Prociuk, D. R. Rehn, E. Rosta, N. J. Russ, S. M. Sharada, S. Sharma, D. W. Small, A. Sodt, T. Stein, D. Stück, Y.-C. Su, A. J. W. Thom, T. Tsuchimochi, V. Vanovschi, L. Vogt, O. Vydrov, T. Wang, M. A. Watson, J. Wenzel, A. White, C. F. Williams, J. Yang, S. Yeganeh, S. R. Yost, Z.-Q. You, I. Y. Zhang, X. Zhang, Y. Zhao, B. R. Brooks, G. K. L. Chan, D. M. Chipman, C. J. Cramer, W. A. Goddard III, M. S. Gordon, W. J. Hehre, A. Klamt, H. F. Schaefer III, M. W. Schmidt, C. David Sherrill, D. G. Truhlar, A. Warshel, X. Xu, A. Aspuru-Guzik, R. Baer, A. T. Bell, N. A. Besley, J.-D. Chai, A. Dreuw, B. D. Dunietz, T. R. Furlani, S. R. Gwaltney, C.-P. Hsu, Y. Jung, J. Kong, D. S. Lambrecht, W. Liang, C. Ochsenfeld, V. A. Rassolov, L. V. Slipchenko, J. E. Subotnik, T. Van Voorhis, J. M. Herbert, A. I. Krylov, P. M. W. Gill, M. Head-Gordon, Mol. Phys. 2015, 113, 184-215.

63

6

64 65

The first fluorido/amido and fluorido/carbamato complexes of niobium have been obtained and fully characterized.

Amido complexes, CO₂ Fixation, Niobium fluoride

Giulio Bresciani, Marco Bortoluzzi, Stefano Zacchini, Fabio Marchetti, and Guido Pampaloni

Structural Characterization of a Fluorido-Amide of Niobium, and Facile CO₂ Incorporation Affording a Fluorido-Carbamate

Keywords: Niobium, CO₂ activation, amido derivatives, carbamato derivatives, X-ray structures, DFT calculations

Supporting Information

Click here to access/download Supporting Information Coordinates Nb complexes.xyz CIF

[checkCIF Results]

Click here to access/download CIF cif.cif CIF

[checkCIF Results]

Click here to access/download CIF checkcif.pdf